fetch_impl.hh (8949:3fa1ee293096) fetch_impl.hh (8975:7f36d4436074)
1/*
2 * Copyright (c) 2010-2011 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 * Korey Sewell
42 */
43
44#include <algorithm>
45#include <cstring>
46#include <list>
47#include <map>
48#include <queue>
49
50#include "arch/isa_traits.hh"
51#include "arch/tlb.hh"
52#include "arch/utility.hh"
53#include "arch/vtophys.hh"
54#include "base/types.hh"
55#include "config/the_isa.hh"
56#include "cpu/base.hh"
57//#include "cpu/checker/cpu.hh"
58#include "cpu/o3/fetch.hh"
59#include "cpu/exetrace.hh"
60#include "debug/Activity.hh"
61#include "debug/Fetch.hh"
62#include "mem/packet.hh"
63#include "params/DerivO3CPU.hh"
64#include "sim/byteswap.hh"
65#include "sim/core.hh"
66#include "sim/eventq.hh"
67#include "sim/full_system.hh"
68#include "sim/system.hh"
69
70using namespace std;
71
72template<class Impl>
73DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
74 : cpu(_cpu),
75 branchPred(params),
76 predecoder(NULL),
77 numInst(0),
78 decodeToFetchDelay(params->decodeToFetchDelay),
79 renameToFetchDelay(params->renameToFetchDelay),
80 iewToFetchDelay(params->iewToFetchDelay),
81 commitToFetchDelay(params->commitToFetchDelay),
82 fetchWidth(params->fetchWidth),
83 cacheBlocked(false),
84 retryPkt(NULL),
85 retryTid(InvalidThreadID),
86 numThreads(params->numThreads),
87 numFetchingThreads(params->smtNumFetchingThreads),
88 interruptPending(false),
89 drainPending(false),
90 switchedOut(false),
91 finishTranslationEvent(this)
92{
93 if (numThreads > Impl::MaxThreads)
94 fatal("numThreads (%d) is larger than compiled limit (%d),\n"
95 "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
96 numThreads, static_cast<int>(Impl::MaxThreads));
97 if (fetchWidth > Impl::MaxWidth)
98 fatal("fetchWidth (%d) is larger than compiled limit (%d),\n"
99 "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
100 fetchWidth, static_cast<int>(Impl::MaxWidth));
101
102 // Set fetch stage's status to inactive.
103 _status = Inactive;
104
105 std::string policy = params->smtFetchPolicy;
106
107 // Convert string to lowercase
108 std::transform(policy.begin(), policy.end(), policy.begin(),
109 (int(*)(int)) tolower);
110
111 // Figure out fetch policy
112 if (policy == "singlethread") {
113 fetchPolicy = SingleThread;
114 if (numThreads > 1)
115 panic("Invalid Fetch Policy for a SMT workload.");
116 } else if (policy == "roundrobin") {
117 fetchPolicy = RoundRobin;
118 DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
119 } else if (policy == "branch") {
120 fetchPolicy = Branch;
121 DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
122 } else if (policy == "iqcount") {
123 fetchPolicy = IQ;
124 DPRINTF(Fetch, "Fetch policy set to IQ count\n");
125 } else if (policy == "lsqcount") {
126 fetchPolicy = LSQ;
127 DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
128 } else {
129 fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
130 " RoundRobin,LSQcount,IQcount}\n");
131 }
132
133 // Get the size of an instruction.
134 instSize = sizeof(TheISA::MachInst);
135}
136
137template <class Impl>
138std::string
139DefaultFetch<Impl>::name() const
140{
141 return cpu->name() + ".fetch";
142}
143
144template <class Impl>
145void
146DefaultFetch<Impl>::regStats()
147{
148 icacheStallCycles
149 .name(name() + ".icacheStallCycles")
150 .desc("Number of cycles fetch is stalled on an Icache miss")
151 .prereq(icacheStallCycles);
152
153 fetchedInsts
154 .name(name() + ".Insts")
155 .desc("Number of instructions fetch has processed")
156 .prereq(fetchedInsts);
157
158 fetchedBranches
159 .name(name() + ".Branches")
160 .desc("Number of branches that fetch encountered")
161 .prereq(fetchedBranches);
162
163 predictedBranches
164 .name(name() + ".predictedBranches")
165 .desc("Number of branches that fetch has predicted taken")
166 .prereq(predictedBranches);
167
168 fetchCycles
169 .name(name() + ".Cycles")
170 .desc("Number of cycles fetch has run and was not squashing or"
171 " blocked")
172 .prereq(fetchCycles);
173
174 fetchSquashCycles
175 .name(name() + ".SquashCycles")
176 .desc("Number of cycles fetch has spent squashing")
177 .prereq(fetchSquashCycles);
178
179 fetchTlbCycles
180 .name(name() + ".TlbCycles")
181 .desc("Number of cycles fetch has spent waiting for tlb")
182 .prereq(fetchTlbCycles);
183
184 fetchIdleCycles
185 .name(name() + ".IdleCycles")
186 .desc("Number of cycles fetch was idle")
187 .prereq(fetchIdleCycles);
188
189 fetchBlockedCycles
190 .name(name() + ".BlockedCycles")
191 .desc("Number of cycles fetch has spent blocked")
192 .prereq(fetchBlockedCycles);
193
194 fetchedCacheLines
195 .name(name() + ".CacheLines")
196 .desc("Number of cache lines fetched")
197 .prereq(fetchedCacheLines);
198
199 fetchMiscStallCycles
200 .name(name() + ".MiscStallCycles")
201 .desc("Number of cycles fetch has spent waiting on interrupts, or "
202 "bad addresses, or out of MSHRs")
203 .prereq(fetchMiscStallCycles);
204
205 fetchPendingDrainCycles
206 .name(name() + ".PendingDrainCycles")
207 .desc("Number of cycles fetch has spent waiting on pipes to drain")
208 .prereq(fetchPendingDrainCycles);
209
210 fetchNoActiveThreadStallCycles
211 .name(name() + ".NoActiveThreadStallCycles")
212 .desc("Number of stall cycles due to no active thread to fetch from")
213 .prereq(fetchNoActiveThreadStallCycles);
214
215 fetchPendingTrapStallCycles
216 .name(name() + ".PendingTrapStallCycles")
217 .desc("Number of stall cycles due to pending traps")
218 .prereq(fetchPendingTrapStallCycles);
219
220 fetchPendingQuiesceStallCycles
221 .name(name() + ".PendingQuiesceStallCycles")
222 .desc("Number of stall cycles due to pending quiesce instructions")
223 .prereq(fetchPendingQuiesceStallCycles);
224
225 fetchIcacheWaitRetryStallCycles
226 .name(name() + ".IcacheWaitRetryStallCycles")
227 .desc("Number of stall cycles due to full MSHR")
228 .prereq(fetchIcacheWaitRetryStallCycles);
229
230 fetchIcacheSquashes
231 .name(name() + ".IcacheSquashes")
232 .desc("Number of outstanding Icache misses that were squashed")
233 .prereq(fetchIcacheSquashes);
234
235 fetchTlbSquashes
236 .name(name() + ".ItlbSquashes")
237 .desc("Number of outstanding ITLB misses that were squashed")
238 .prereq(fetchTlbSquashes);
239
240 fetchNisnDist
241 .init(/* base value */ 0,
242 /* last value */ fetchWidth,
243 /* bucket size */ 1)
244 .name(name() + ".rateDist")
245 .desc("Number of instructions fetched each cycle (Total)")
246 .flags(Stats::pdf);
247
248 idleRate
249 .name(name() + ".idleRate")
250 .desc("Percent of cycles fetch was idle")
251 .prereq(idleRate);
252 idleRate = fetchIdleCycles * 100 / cpu->numCycles;
253
254 branchRate
255 .name(name() + ".branchRate")
256 .desc("Number of branch fetches per cycle")
257 .flags(Stats::total);
258 branchRate = fetchedBranches / cpu->numCycles;
259
260 fetchRate
261 .name(name() + ".rate")
262 .desc("Number of inst fetches per cycle")
263 .flags(Stats::total);
264 fetchRate = fetchedInsts / cpu->numCycles;
265
266 branchPred.regStats();
267}
268
269template<class Impl>
270void
271DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
272{
273 timeBuffer = time_buffer;
274
275 // Create wires to get information from proper places in time buffer.
276 fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
277 fromRename = timeBuffer->getWire(-renameToFetchDelay);
278 fromIEW = timeBuffer->getWire(-iewToFetchDelay);
279 fromCommit = timeBuffer->getWire(-commitToFetchDelay);
280}
281
282template<class Impl>
283void
284DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
285{
286 activeThreads = at_ptr;
287}
288
289template<class Impl>
290void
291DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
292{
293 fetchQueue = fq_ptr;
294
295 // Create wire to write information to proper place in fetch queue.
296 toDecode = fetchQueue->getWire(0);
297}
298
299template<class Impl>
300void
301DefaultFetch<Impl>::initStage()
302{
303 // Setup PC and nextPC with initial state.
304 for (ThreadID tid = 0; tid < numThreads; tid++) {
305 pc[tid] = cpu->pcState(tid);
306 fetchOffset[tid] = 0;
307 macroop[tid] = NULL;
308 delayedCommit[tid] = false;
309 }
310
311 for (ThreadID tid = 0; tid < numThreads; tid++) {
312
313 fetchStatus[tid] = Running;
314
315 priorityList.push_back(tid);
316
317 memReq[tid] = NULL;
318
319 stalls[tid].decode = false;
320 stalls[tid].rename = false;
321 stalls[tid].iew = false;
322 stalls[tid].commit = false;
323 }
324
325 // Schedule fetch to get the correct PC from the CPU
326 // scheduleFetchStartupEvent(1);
327
328 // Fetch needs to start fetching instructions at the very beginning,
329 // so it must start up in active state.
330 switchToActive();
331}
332
333template<class Impl>
334void
335DefaultFetch<Impl>::setIcache()
336{
337 assert(cpu->getInstPort().isConnected());
338
339 // Size of cache block.
340 cacheBlkSize = cpu->getInstPort().peerBlockSize();
341
342 // Create mask to get rid of offset bits.
343 cacheBlkMask = (cacheBlkSize - 1);
344
345 for (ThreadID tid = 0; tid < numThreads; tid++) {
346 // Create space to store a cache line.
347 cacheData[tid] = new uint8_t[cacheBlkSize];
348 cacheDataPC[tid] = 0;
349 cacheDataValid[tid] = false;
350 }
351}
352
353template<class Impl>
354void
355DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
356{
357 ThreadID tid = pkt->req->threadId();
358
359 DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n", tid);
360
361 assert(!pkt->wasNacked());
362
363 // Only change the status if it's still waiting on the icache access
364 // to return.
365 if (fetchStatus[tid] != IcacheWaitResponse ||
366 pkt->req != memReq[tid] ||
367 isSwitchedOut()) {
368 ++fetchIcacheSquashes;
369 delete pkt->req;
370 delete pkt;
371 return;
372 }
373
374 memcpy(cacheData[tid], pkt->getPtr<uint8_t>(), cacheBlkSize);
375 cacheDataValid[tid] = true;
376
377 if (!drainPending) {
378 // Wake up the CPU (if it went to sleep and was waiting on
379 // this completion event).
380 cpu->wakeCPU();
381
382 DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
383 tid);
384
385 switchToActive();
386 }
387
388 // Only switch to IcacheAccessComplete if we're not stalled as well.
389 if (checkStall(tid)) {
390 fetchStatus[tid] = Blocked;
391 } else {
392 fetchStatus[tid] = IcacheAccessComplete;
393 }
394
395 // Reset the mem req to NULL.
396 delete pkt->req;
397 delete pkt;
398 memReq[tid] = NULL;
399}
400
401template <class Impl>
402bool
403DefaultFetch<Impl>::drain()
404{
405 // Fetch is ready to drain at any time.
406 cpu->signalDrained();
407 drainPending = true;
408 return true;
409}
410
411template <class Impl>
412void
413DefaultFetch<Impl>::resume()
414{
415 drainPending = false;
416}
417
418template <class Impl>
419void
420DefaultFetch<Impl>::switchOut()
421{
422 switchedOut = true;
423 // Branch predictor needs to have its state cleared.
424 branchPred.switchOut();
425}
426
427template <class Impl>
428void
429DefaultFetch<Impl>::takeOverFrom()
430{
431 // the instruction port is now connected so we can get the block
432 // size
433 setIcache();
434
435 // Reset all state
436 for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
437 stalls[i].decode = 0;
438 stalls[i].rename = 0;
439 stalls[i].iew = 0;
440 stalls[i].commit = 0;
441 pc[i] = cpu->pcState(i);
442 fetchStatus[i] = Running;
443 }
444 numInst = 0;
445 wroteToTimeBuffer = false;
446 _status = Inactive;
447 switchedOut = false;
448 interruptPending = false;
449 branchPred.takeOverFrom();
450}
451
452template <class Impl>
453void
454DefaultFetch<Impl>::wakeFromQuiesce()
455{
456 DPRINTF(Fetch, "Waking up from quiesce\n");
457 // Hopefully this is safe
458 // @todo: Allow other threads to wake from quiesce.
459 fetchStatus[0] = Running;
460}
461
462template <class Impl>
463inline void
464DefaultFetch<Impl>::switchToActive()
465{
466 if (_status == Inactive) {
467 DPRINTF(Activity, "Activating stage.\n");
468
469 cpu->activateStage(O3CPU::FetchIdx);
470
471 _status = Active;
472 }
473}
474
475template <class Impl>
476inline void
477DefaultFetch<Impl>::switchToInactive()
478{
479 if (_status == Active) {
480 DPRINTF(Activity, "Deactivating stage.\n");
481
482 cpu->deactivateStage(O3CPU::FetchIdx);
483
484 _status = Inactive;
485 }
486}
487
488template <class Impl>
489bool
490DefaultFetch<Impl>::lookupAndUpdateNextPC(
491 DynInstPtr &inst, TheISA::PCState &nextPC)
492{
493 // Do branch prediction check here.
494 // A bit of a misnomer...next_PC is actually the current PC until
495 // this function updates it.
496 bool predict_taken;
497
498 if (!inst->isControl()) {
499 TheISA::advancePC(nextPC, inst->staticInst);
500 inst->setPredTarg(nextPC);
501 inst->setPredTaken(false);
502 return false;
503 }
504
505 ThreadID tid = inst->threadNumber;
506 predict_taken = branchPred.predict(inst, nextPC, tid);
507
508 if (predict_taken) {
509 DPRINTF(Fetch, "[tid:%i]: [sn:%i]: Branch predicted to be taken to %s.\n",
510 tid, inst->seqNum, nextPC);
511 } else {
512 DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n",
513 tid, inst->seqNum);
514 }
515
516 DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n",
517 tid, inst->seqNum, nextPC);
518 inst->setPredTarg(nextPC);
519 inst->setPredTaken(predict_taken);
520
521 ++fetchedBranches;
522
523 if (predict_taken) {
524 ++predictedBranches;
525 }
526
527 return predict_taken;
528}
529
530template <class Impl>
531bool
532DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, ThreadID tid, Addr pc)
533{
534 Fault fault = NoFault;
535
536 // @todo: not sure if these should block translation.
537 //AlphaDep
538 if (cacheBlocked) {
539 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
540 tid);
541 return false;
542 } else if (isSwitchedOut()) {
543 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n",
544 tid);
545 return false;
546 } else if (checkInterrupt(pc) && !delayedCommit[tid]) {
547 // Hold off fetch from getting new instructions when:
548 // Cache is blocked, or
549 // while an interrupt is pending and we're not in PAL mode, or
550 // fetch is switched out.
551 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
552 tid);
553 return false;
554 }
555
556 // Align the fetch address so it's at the start of a cache block.
557 Addr block_PC = icacheBlockAlignPC(vaddr);
558
559 DPRINTF(Fetch, "[tid:%i] Fetching cache line %#x for addr %#x\n",
560 tid, block_PC, vaddr);
561
562 // Setup the memReq to do a read of the first instruction's address.
563 // Set the appropriate read size and flags as well.
564 // Build request here.
565 RequestPtr mem_req =
566 new Request(tid, block_PC, cacheBlkSize, Request::INST_FETCH,
567 cpu->instMasterId(), pc, cpu->thread[tid]->contextId(), tid);
568
569 memReq[tid] = mem_req;
570
571 // Initiate translation of the icache block
572 fetchStatus[tid] = ItlbWait;
573 FetchTranslation *trans = new FetchTranslation(this);
574 cpu->itb->translateTiming(mem_req, cpu->thread[tid]->getTC(),
575 trans, BaseTLB::Execute);
576 return true;
577}
578
579template <class Impl>
580void
581DefaultFetch<Impl>::finishTranslation(Fault fault, RequestPtr mem_req)
582{
583 ThreadID tid = mem_req->threadId();
584 Addr block_PC = mem_req->getVaddr();
585
586 // Wake up CPU if it was idle
587 cpu->wakeCPU();
588
589 if (fetchStatus[tid] != ItlbWait || mem_req != memReq[tid] ||
590 mem_req->getVaddr() != memReq[tid]->getVaddr() || isSwitchedOut()) {
591 DPRINTF(Fetch, "[tid:%i] Ignoring itlb completed after squash\n",
592 tid);
593 ++fetchTlbSquashes;
594 delete mem_req;
595 return;
596 }
597
598
599 // If translation was successful, attempt to read the icache block.
600 if (fault == NoFault) {
601 // Check that we're not going off into random memory
602 // If we have, just wait around for commit to squash something and put
603 // us on the right track
604 if (!cpu->system->isMemAddr(mem_req->getPaddr())) {
605 warn("Address %#x is outside of physical memory, stopping fetch\n",
606 mem_req->getPaddr());
607 fetchStatus[tid] = NoGoodAddr;
608 delete mem_req;
609 memReq[tid] = NULL;
610 return;
611 }
612
613 // Build packet here.
614 PacketPtr data_pkt = new Packet(mem_req, MemCmd::ReadReq);
615 data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
616
617 cacheDataPC[tid] = block_PC;
618 cacheDataValid[tid] = false;
619 DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
620
621 fetchedCacheLines++;
622
623 // Access the cache.
1/*
2 * Copyright (c) 2010-2011 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 * Korey Sewell
42 */
43
44#include <algorithm>
45#include <cstring>
46#include <list>
47#include <map>
48#include <queue>
49
50#include "arch/isa_traits.hh"
51#include "arch/tlb.hh"
52#include "arch/utility.hh"
53#include "arch/vtophys.hh"
54#include "base/types.hh"
55#include "config/the_isa.hh"
56#include "cpu/base.hh"
57//#include "cpu/checker/cpu.hh"
58#include "cpu/o3/fetch.hh"
59#include "cpu/exetrace.hh"
60#include "debug/Activity.hh"
61#include "debug/Fetch.hh"
62#include "mem/packet.hh"
63#include "params/DerivO3CPU.hh"
64#include "sim/byteswap.hh"
65#include "sim/core.hh"
66#include "sim/eventq.hh"
67#include "sim/full_system.hh"
68#include "sim/system.hh"
69
70using namespace std;
71
72template<class Impl>
73DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
74 : cpu(_cpu),
75 branchPred(params),
76 predecoder(NULL),
77 numInst(0),
78 decodeToFetchDelay(params->decodeToFetchDelay),
79 renameToFetchDelay(params->renameToFetchDelay),
80 iewToFetchDelay(params->iewToFetchDelay),
81 commitToFetchDelay(params->commitToFetchDelay),
82 fetchWidth(params->fetchWidth),
83 cacheBlocked(false),
84 retryPkt(NULL),
85 retryTid(InvalidThreadID),
86 numThreads(params->numThreads),
87 numFetchingThreads(params->smtNumFetchingThreads),
88 interruptPending(false),
89 drainPending(false),
90 switchedOut(false),
91 finishTranslationEvent(this)
92{
93 if (numThreads > Impl::MaxThreads)
94 fatal("numThreads (%d) is larger than compiled limit (%d),\n"
95 "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
96 numThreads, static_cast<int>(Impl::MaxThreads));
97 if (fetchWidth > Impl::MaxWidth)
98 fatal("fetchWidth (%d) is larger than compiled limit (%d),\n"
99 "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
100 fetchWidth, static_cast<int>(Impl::MaxWidth));
101
102 // Set fetch stage's status to inactive.
103 _status = Inactive;
104
105 std::string policy = params->smtFetchPolicy;
106
107 // Convert string to lowercase
108 std::transform(policy.begin(), policy.end(), policy.begin(),
109 (int(*)(int)) tolower);
110
111 // Figure out fetch policy
112 if (policy == "singlethread") {
113 fetchPolicy = SingleThread;
114 if (numThreads > 1)
115 panic("Invalid Fetch Policy for a SMT workload.");
116 } else if (policy == "roundrobin") {
117 fetchPolicy = RoundRobin;
118 DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
119 } else if (policy == "branch") {
120 fetchPolicy = Branch;
121 DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
122 } else if (policy == "iqcount") {
123 fetchPolicy = IQ;
124 DPRINTF(Fetch, "Fetch policy set to IQ count\n");
125 } else if (policy == "lsqcount") {
126 fetchPolicy = LSQ;
127 DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
128 } else {
129 fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
130 " RoundRobin,LSQcount,IQcount}\n");
131 }
132
133 // Get the size of an instruction.
134 instSize = sizeof(TheISA::MachInst);
135}
136
137template <class Impl>
138std::string
139DefaultFetch<Impl>::name() const
140{
141 return cpu->name() + ".fetch";
142}
143
144template <class Impl>
145void
146DefaultFetch<Impl>::regStats()
147{
148 icacheStallCycles
149 .name(name() + ".icacheStallCycles")
150 .desc("Number of cycles fetch is stalled on an Icache miss")
151 .prereq(icacheStallCycles);
152
153 fetchedInsts
154 .name(name() + ".Insts")
155 .desc("Number of instructions fetch has processed")
156 .prereq(fetchedInsts);
157
158 fetchedBranches
159 .name(name() + ".Branches")
160 .desc("Number of branches that fetch encountered")
161 .prereq(fetchedBranches);
162
163 predictedBranches
164 .name(name() + ".predictedBranches")
165 .desc("Number of branches that fetch has predicted taken")
166 .prereq(predictedBranches);
167
168 fetchCycles
169 .name(name() + ".Cycles")
170 .desc("Number of cycles fetch has run and was not squashing or"
171 " blocked")
172 .prereq(fetchCycles);
173
174 fetchSquashCycles
175 .name(name() + ".SquashCycles")
176 .desc("Number of cycles fetch has spent squashing")
177 .prereq(fetchSquashCycles);
178
179 fetchTlbCycles
180 .name(name() + ".TlbCycles")
181 .desc("Number of cycles fetch has spent waiting for tlb")
182 .prereq(fetchTlbCycles);
183
184 fetchIdleCycles
185 .name(name() + ".IdleCycles")
186 .desc("Number of cycles fetch was idle")
187 .prereq(fetchIdleCycles);
188
189 fetchBlockedCycles
190 .name(name() + ".BlockedCycles")
191 .desc("Number of cycles fetch has spent blocked")
192 .prereq(fetchBlockedCycles);
193
194 fetchedCacheLines
195 .name(name() + ".CacheLines")
196 .desc("Number of cache lines fetched")
197 .prereq(fetchedCacheLines);
198
199 fetchMiscStallCycles
200 .name(name() + ".MiscStallCycles")
201 .desc("Number of cycles fetch has spent waiting on interrupts, or "
202 "bad addresses, or out of MSHRs")
203 .prereq(fetchMiscStallCycles);
204
205 fetchPendingDrainCycles
206 .name(name() + ".PendingDrainCycles")
207 .desc("Number of cycles fetch has spent waiting on pipes to drain")
208 .prereq(fetchPendingDrainCycles);
209
210 fetchNoActiveThreadStallCycles
211 .name(name() + ".NoActiveThreadStallCycles")
212 .desc("Number of stall cycles due to no active thread to fetch from")
213 .prereq(fetchNoActiveThreadStallCycles);
214
215 fetchPendingTrapStallCycles
216 .name(name() + ".PendingTrapStallCycles")
217 .desc("Number of stall cycles due to pending traps")
218 .prereq(fetchPendingTrapStallCycles);
219
220 fetchPendingQuiesceStallCycles
221 .name(name() + ".PendingQuiesceStallCycles")
222 .desc("Number of stall cycles due to pending quiesce instructions")
223 .prereq(fetchPendingQuiesceStallCycles);
224
225 fetchIcacheWaitRetryStallCycles
226 .name(name() + ".IcacheWaitRetryStallCycles")
227 .desc("Number of stall cycles due to full MSHR")
228 .prereq(fetchIcacheWaitRetryStallCycles);
229
230 fetchIcacheSquashes
231 .name(name() + ".IcacheSquashes")
232 .desc("Number of outstanding Icache misses that were squashed")
233 .prereq(fetchIcacheSquashes);
234
235 fetchTlbSquashes
236 .name(name() + ".ItlbSquashes")
237 .desc("Number of outstanding ITLB misses that were squashed")
238 .prereq(fetchTlbSquashes);
239
240 fetchNisnDist
241 .init(/* base value */ 0,
242 /* last value */ fetchWidth,
243 /* bucket size */ 1)
244 .name(name() + ".rateDist")
245 .desc("Number of instructions fetched each cycle (Total)")
246 .flags(Stats::pdf);
247
248 idleRate
249 .name(name() + ".idleRate")
250 .desc("Percent of cycles fetch was idle")
251 .prereq(idleRate);
252 idleRate = fetchIdleCycles * 100 / cpu->numCycles;
253
254 branchRate
255 .name(name() + ".branchRate")
256 .desc("Number of branch fetches per cycle")
257 .flags(Stats::total);
258 branchRate = fetchedBranches / cpu->numCycles;
259
260 fetchRate
261 .name(name() + ".rate")
262 .desc("Number of inst fetches per cycle")
263 .flags(Stats::total);
264 fetchRate = fetchedInsts / cpu->numCycles;
265
266 branchPred.regStats();
267}
268
269template<class Impl>
270void
271DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
272{
273 timeBuffer = time_buffer;
274
275 // Create wires to get information from proper places in time buffer.
276 fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
277 fromRename = timeBuffer->getWire(-renameToFetchDelay);
278 fromIEW = timeBuffer->getWire(-iewToFetchDelay);
279 fromCommit = timeBuffer->getWire(-commitToFetchDelay);
280}
281
282template<class Impl>
283void
284DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
285{
286 activeThreads = at_ptr;
287}
288
289template<class Impl>
290void
291DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
292{
293 fetchQueue = fq_ptr;
294
295 // Create wire to write information to proper place in fetch queue.
296 toDecode = fetchQueue->getWire(0);
297}
298
299template<class Impl>
300void
301DefaultFetch<Impl>::initStage()
302{
303 // Setup PC and nextPC with initial state.
304 for (ThreadID tid = 0; tid < numThreads; tid++) {
305 pc[tid] = cpu->pcState(tid);
306 fetchOffset[tid] = 0;
307 macroop[tid] = NULL;
308 delayedCommit[tid] = false;
309 }
310
311 for (ThreadID tid = 0; tid < numThreads; tid++) {
312
313 fetchStatus[tid] = Running;
314
315 priorityList.push_back(tid);
316
317 memReq[tid] = NULL;
318
319 stalls[tid].decode = false;
320 stalls[tid].rename = false;
321 stalls[tid].iew = false;
322 stalls[tid].commit = false;
323 }
324
325 // Schedule fetch to get the correct PC from the CPU
326 // scheduleFetchStartupEvent(1);
327
328 // Fetch needs to start fetching instructions at the very beginning,
329 // so it must start up in active state.
330 switchToActive();
331}
332
333template<class Impl>
334void
335DefaultFetch<Impl>::setIcache()
336{
337 assert(cpu->getInstPort().isConnected());
338
339 // Size of cache block.
340 cacheBlkSize = cpu->getInstPort().peerBlockSize();
341
342 // Create mask to get rid of offset bits.
343 cacheBlkMask = (cacheBlkSize - 1);
344
345 for (ThreadID tid = 0; tid < numThreads; tid++) {
346 // Create space to store a cache line.
347 cacheData[tid] = new uint8_t[cacheBlkSize];
348 cacheDataPC[tid] = 0;
349 cacheDataValid[tid] = false;
350 }
351}
352
353template<class Impl>
354void
355DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
356{
357 ThreadID tid = pkt->req->threadId();
358
359 DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n", tid);
360
361 assert(!pkt->wasNacked());
362
363 // Only change the status if it's still waiting on the icache access
364 // to return.
365 if (fetchStatus[tid] != IcacheWaitResponse ||
366 pkt->req != memReq[tid] ||
367 isSwitchedOut()) {
368 ++fetchIcacheSquashes;
369 delete pkt->req;
370 delete pkt;
371 return;
372 }
373
374 memcpy(cacheData[tid], pkt->getPtr<uint8_t>(), cacheBlkSize);
375 cacheDataValid[tid] = true;
376
377 if (!drainPending) {
378 // Wake up the CPU (if it went to sleep and was waiting on
379 // this completion event).
380 cpu->wakeCPU();
381
382 DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
383 tid);
384
385 switchToActive();
386 }
387
388 // Only switch to IcacheAccessComplete if we're not stalled as well.
389 if (checkStall(tid)) {
390 fetchStatus[tid] = Blocked;
391 } else {
392 fetchStatus[tid] = IcacheAccessComplete;
393 }
394
395 // Reset the mem req to NULL.
396 delete pkt->req;
397 delete pkt;
398 memReq[tid] = NULL;
399}
400
401template <class Impl>
402bool
403DefaultFetch<Impl>::drain()
404{
405 // Fetch is ready to drain at any time.
406 cpu->signalDrained();
407 drainPending = true;
408 return true;
409}
410
411template <class Impl>
412void
413DefaultFetch<Impl>::resume()
414{
415 drainPending = false;
416}
417
418template <class Impl>
419void
420DefaultFetch<Impl>::switchOut()
421{
422 switchedOut = true;
423 // Branch predictor needs to have its state cleared.
424 branchPred.switchOut();
425}
426
427template <class Impl>
428void
429DefaultFetch<Impl>::takeOverFrom()
430{
431 // the instruction port is now connected so we can get the block
432 // size
433 setIcache();
434
435 // Reset all state
436 for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
437 stalls[i].decode = 0;
438 stalls[i].rename = 0;
439 stalls[i].iew = 0;
440 stalls[i].commit = 0;
441 pc[i] = cpu->pcState(i);
442 fetchStatus[i] = Running;
443 }
444 numInst = 0;
445 wroteToTimeBuffer = false;
446 _status = Inactive;
447 switchedOut = false;
448 interruptPending = false;
449 branchPred.takeOverFrom();
450}
451
452template <class Impl>
453void
454DefaultFetch<Impl>::wakeFromQuiesce()
455{
456 DPRINTF(Fetch, "Waking up from quiesce\n");
457 // Hopefully this is safe
458 // @todo: Allow other threads to wake from quiesce.
459 fetchStatus[0] = Running;
460}
461
462template <class Impl>
463inline void
464DefaultFetch<Impl>::switchToActive()
465{
466 if (_status == Inactive) {
467 DPRINTF(Activity, "Activating stage.\n");
468
469 cpu->activateStage(O3CPU::FetchIdx);
470
471 _status = Active;
472 }
473}
474
475template <class Impl>
476inline void
477DefaultFetch<Impl>::switchToInactive()
478{
479 if (_status == Active) {
480 DPRINTF(Activity, "Deactivating stage.\n");
481
482 cpu->deactivateStage(O3CPU::FetchIdx);
483
484 _status = Inactive;
485 }
486}
487
488template <class Impl>
489bool
490DefaultFetch<Impl>::lookupAndUpdateNextPC(
491 DynInstPtr &inst, TheISA::PCState &nextPC)
492{
493 // Do branch prediction check here.
494 // A bit of a misnomer...next_PC is actually the current PC until
495 // this function updates it.
496 bool predict_taken;
497
498 if (!inst->isControl()) {
499 TheISA::advancePC(nextPC, inst->staticInst);
500 inst->setPredTarg(nextPC);
501 inst->setPredTaken(false);
502 return false;
503 }
504
505 ThreadID tid = inst->threadNumber;
506 predict_taken = branchPred.predict(inst, nextPC, tid);
507
508 if (predict_taken) {
509 DPRINTF(Fetch, "[tid:%i]: [sn:%i]: Branch predicted to be taken to %s.\n",
510 tid, inst->seqNum, nextPC);
511 } else {
512 DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n",
513 tid, inst->seqNum);
514 }
515
516 DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n",
517 tid, inst->seqNum, nextPC);
518 inst->setPredTarg(nextPC);
519 inst->setPredTaken(predict_taken);
520
521 ++fetchedBranches;
522
523 if (predict_taken) {
524 ++predictedBranches;
525 }
526
527 return predict_taken;
528}
529
530template <class Impl>
531bool
532DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, ThreadID tid, Addr pc)
533{
534 Fault fault = NoFault;
535
536 // @todo: not sure if these should block translation.
537 //AlphaDep
538 if (cacheBlocked) {
539 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
540 tid);
541 return false;
542 } else if (isSwitchedOut()) {
543 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n",
544 tid);
545 return false;
546 } else if (checkInterrupt(pc) && !delayedCommit[tid]) {
547 // Hold off fetch from getting new instructions when:
548 // Cache is blocked, or
549 // while an interrupt is pending and we're not in PAL mode, or
550 // fetch is switched out.
551 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
552 tid);
553 return false;
554 }
555
556 // Align the fetch address so it's at the start of a cache block.
557 Addr block_PC = icacheBlockAlignPC(vaddr);
558
559 DPRINTF(Fetch, "[tid:%i] Fetching cache line %#x for addr %#x\n",
560 tid, block_PC, vaddr);
561
562 // Setup the memReq to do a read of the first instruction's address.
563 // Set the appropriate read size and flags as well.
564 // Build request here.
565 RequestPtr mem_req =
566 new Request(tid, block_PC, cacheBlkSize, Request::INST_FETCH,
567 cpu->instMasterId(), pc, cpu->thread[tid]->contextId(), tid);
568
569 memReq[tid] = mem_req;
570
571 // Initiate translation of the icache block
572 fetchStatus[tid] = ItlbWait;
573 FetchTranslation *trans = new FetchTranslation(this);
574 cpu->itb->translateTiming(mem_req, cpu->thread[tid]->getTC(),
575 trans, BaseTLB::Execute);
576 return true;
577}
578
579template <class Impl>
580void
581DefaultFetch<Impl>::finishTranslation(Fault fault, RequestPtr mem_req)
582{
583 ThreadID tid = mem_req->threadId();
584 Addr block_PC = mem_req->getVaddr();
585
586 // Wake up CPU if it was idle
587 cpu->wakeCPU();
588
589 if (fetchStatus[tid] != ItlbWait || mem_req != memReq[tid] ||
590 mem_req->getVaddr() != memReq[tid]->getVaddr() || isSwitchedOut()) {
591 DPRINTF(Fetch, "[tid:%i] Ignoring itlb completed after squash\n",
592 tid);
593 ++fetchTlbSquashes;
594 delete mem_req;
595 return;
596 }
597
598
599 // If translation was successful, attempt to read the icache block.
600 if (fault == NoFault) {
601 // Check that we're not going off into random memory
602 // If we have, just wait around for commit to squash something and put
603 // us on the right track
604 if (!cpu->system->isMemAddr(mem_req->getPaddr())) {
605 warn("Address %#x is outside of physical memory, stopping fetch\n",
606 mem_req->getPaddr());
607 fetchStatus[tid] = NoGoodAddr;
608 delete mem_req;
609 memReq[tid] = NULL;
610 return;
611 }
612
613 // Build packet here.
614 PacketPtr data_pkt = new Packet(mem_req, MemCmd::ReadReq);
615 data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
616
617 cacheDataPC[tid] = block_PC;
618 cacheDataValid[tid] = false;
619 DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
620
621 fetchedCacheLines++;
622
623 // Access the cache.
624 if (!cpu->getInstPort().sendTiming(data_pkt)) {
624 if (!cpu->getInstPort().sendTimingReq(data_pkt)) {
625 assert(retryPkt == NULL);
626 assert(retryTid == InvalidThreadID);
627 DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
628
629 fetchStatus[tid] = IcacheWaitRetry;
630 retryPkt = data_pkt;
631 retryTid = tid;
632 cacheBlocked = true;
633 } else {
634 DPRINTF(Fetch, "[tid:%i]: Doing Icache access.\n", tid);
635 DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
636 "response.\n", tid);
637
638 lastIcacheStall[tid] = curTick();
639 fetchStatus[tid] = IcacheWaitResponse;
640 }
641 } else {
642 if (!(numInst < fetchWidth)) {
643 assert(!finishTranslationEvent.scheduled());
644 finishTranslationEvent.setFault(fault);
645 finishTranslationEvent.setReq(mem_req);
646 cpu->schedule(finishTranslationEvent, cpu->nextCycle(curTick() + cpu->ticks(1)));
647 return;
648 }
649 DPRINTF(Fetch, "[tid:%i] Got back req with addr %#x but expected %#x\n",
650 tid, mem_req->getVaddr(), memReq[tid]->getVaddr());
651 // Translation faulted, icache request won't be sent.
652 delete mem_req;
653 memReq[tid] = NULL;
654
655 // Send the fault to commit. This thread will not do anything
656 // until commit handles the fault. The only other way it can
657 // wake up is if a squash comes along and changes the PC.
658 TheISA::PCState fetchPC = pc[tid];
659
660 DPRINTF(Fetch, "[tid:%i]: Translation faulted, building noop.\n", tid);
661 // We will use a nop in ordier to carry the fault.
662 DynInstPtr instruction = buildInst(tid,
663 decoder.decode(TheISA::NoopMachInst, fetchPC.instAddr()),
664 NULL, fetchPC, fetchPC, false);
665
666 instruction->setPredTarg(fetchPC);
667 instruction->fault = fault;
668 wroteToTimeBuffer = true;
669
670 DPRINTF(Activity, "Activity this cycle.\n");
671 cpu->activityThisCycle();
672
673 fetchStatus[tid] = TrapPending;
674
675 DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n", tid);
676 DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s.\n",
677 tid, fault->name(), pc[tid]);
678 }
679 _status = updateFetchStatus();
680}
681
682template <class Impl>
683inline void
684DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC,
685 const DynInstPtr squashInst, ThreadID tid)
686{
687 DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n",
688 tid, newPC);
689
690 pc[tid] = newPC;
691 fetchOffset[tid] = 0;
692 if (squashInst && squashInst->pcState().instAddr() == newPC.instAddr())
693 macroop[tid] = squashInst->macroop;
694 else
695 macroop[tid] = NULL;
696 predecoder.reset();
697
698 // Clear the icache miss if it's outstanding.
699 if (fetchStatus[tid] == IcacheWaitResponse) {
700 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
701 tid);
702 memReq[tid] = NULL;
703 } else if (fetchStatus[tid] == ItlbWait) {
704 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding ITLB miss.\n",
705 tid);
706 memReq[tid] = NULL;
707 }
708
709 // Get rid of the retrying packet if it was from this thread.
710 if (retryTid == tid) {
711 assert(cacheBlocked);
712 if (retryPkt) {
713 delete retryPkt->req;
714 delete retryPkt;
715 }
716 retryPkt = NULL;
717 retryTid = InvalidThreadID;
718 }
719
720 fetchStatus[tid] = Squashing;
721
722 // microops are being squashed, it is not known wheather the
723 // youngest non-squashed microop was marked delayed commit
724 // or not. Setting the flag to true ensures that the
725 // interrupts are not handled when they cannot be, though
726 // some opportunities to handle interrupts may be missed.
727 delayedCommit[tid] = true;
728
729 ++fetchSquashCycles;
730}
731
732template<class Impl>
733void
734DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
735 const DynInstPtr squashInst,
736 const InstSeqNum seq_num, ThreadID tid)
737{
738 DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid);
739
740 doSquash(newPC, squashInst, tid);
741
742 // Tell the CPU to remove any instructions that are in flight between
743 // fetch and decode.
744 cpu->removeInstsUntil(seq_num, tid);
745}
746
747template<class Impl>
748bool
749DefaultFetch<Impl>::checkStall(ThreadID tid) const
750{
751 bool ret_val = false;
752
753 if (cpu->contextSwitch) {
754 DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
755 ret_val = true;
756 } else if (stalls[tid].decode) {
757 DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
758 ret_val = true;
759 } else if (stalls[tid].rename) {
760 DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
761 ret_val = true;
762 } else if (stalls[tid].iew) {
763 DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
764 ret_val = true;
765 } else if (stalls[tid].commit) {
766 DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
767 ret_val = true;
768 }
769
770 return ret_val;
771}
772
773template<class Impl>
774typename DefaultFetch<Impl>::FetchStatus
775DefaultFetch<Impl>::updateFetchStatus()
776{
777 //Check Running
778 list<ThreadID>::iterator threads = activeThreads->begin();
779 list<ThreadID>::iterator end = activeThreads->end();
780
781 while (threads != end) {
782 ThreadID tid = *threads++;
783
784 if (fetchStatus[tid] == Running ||
785 fetchStatus[tid] == Squashing ||
786 fetchStatus[tid] == IcacheAccessComplete) {
787
788 if (_status == Inactive) {
789 DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
790
791 if (fetchStatus[tid] == IcacheAccessComplete) {
792 DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
793 "completion\n",tid);
794 }
795
796 cpu->activateStage(O3CPU::FetchIdx);
797 }
798
799 return Active;
800 }
801 }
802
803 // Stage is switching from active to inactive, notify CPU of it.
804 if (_status == Active) {
805 DPRINTF(Activity, "Deactivating stage.\n");
806
807 cpu->deactivateStage(O3CPU::FetchIdx);
808 }
809
810 return Inactive;
811}
812
813template <class Impl>
814void
815DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
816 const InstSeqNum seq_num, DynInstPtr squashInst,
817 ThreadID tid)
818{
819 DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid);
820
821 doSquash(newPC, squashInst, tid);
822
823 // Tell the CPU to remove any instructions that are not in the ROB.
824 cpu->removeInstsNotInROB(tid);
825}
826
827template <class Impl>
828void
829DefaultFetch<Impl>::tick()
830{
831 list<ThreadID>::iterator threads = activeThreads->begin();
832 list<ThreadID>::iterator end = activeThreads->end();
833 bool status_change = false;
834
835 wroteToTimeBuffer = false;
836
837 for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
838 issuePipelinedIfetch[i] = false;
839 }
840
841 while (threads != end) {
842 ThreadID tid = *threads++;
843
844 // Check the signals for each thread to determine the proper status
845 // for each thread.
846 bool updated_status = checkSignalsAndUpdate(tid);
847 status_change = status_change || updated_status;
848 }
849
850 DPRINTF(Fetch, "Running stage.\n");
851
852 if (FullSystem) {
853 if (fromCommit->commitInfo[0].interruptPending) {
854 interruptPending = true;
855 }
856
857 if (fromCommit->commitInfo[0].clearInterrupt) {
858 interruptPending = false;
859 }
860 }
861
862 for (threadFetched = 0; threadFetched < numFetchingThreads;
863 threadFetched++) {
864 // Fetch each of the actively fetching threads.
865 fetch(status_change);
866 }
867
868 // Record number of instructions fetched this cycle for distribution.
869 fetchNisnDist.sample(numInst);
870
871 if (status_change) {
872 // Change the fetch stage status if there was a status change.
873 _status = updateFetchStatus();
874 }
875
876 // If there was activity this cycle, inform the CPU of it.
877 if (wroteToTimeBuffer || cpu->contextSwitch) {
878 DPRINTF(Activity, "Activity this cycle.\n");
879
880 cpu->activityThisCycle();
881 }
882
883 // Issue the next I-cache request if possible.
884 for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
885 if (issuePipelinedIfetch[i]) {
886 pipelineIcacheAccesses(i);
887 }
888 }
889
890 // Reset the number of the instruction we've fetched.
891 numInst = 0;
892}
893
894template <class Impl>
895bool
896DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
897{
898 // Update the per thread stall statuses.
899 if (fromDecode->decodeBlock[tid]) {
900 stalls[tid].decode = true;
901 }
902
903 if (fromDecode->decodeUnblock[tid]) {
904 assert(stalls[tid].decode);
905 assert(!fromDecode->decodeBlock[tid]);
906 stalls[tid].decode = false;
907 }
908
909 if (fromRename->renameBlock[tid]) {
910 stalls[tid].rename = true;
911 }
912
913 if (fromRename->renameUnblock[tid]) {
914 assert(stalls[tid].rename);
915 assert(!fromRename->renameBlock[tid]);
916 stalls[tid].rename = false;
917 }
918
919 if (fromIEW->iewBlock[tid]) {
920 stalls[tid].iew = true;
921 }
922
923 if (fromIEW->iewUnblock[tid]) {
924 assert(stalls[tid].iew);
925 assert(!fromIEW->iewBlock[tid]);
926 stalls[tid].iew = false;
927 }
928
929 if (fromCommit->commitBlock[tid]) {
930 stalls[tid].commit = true;
931 }
932
933 if (fromCommit->commitUnblock[tid]) {
934 assert(stalls[tid].commit);
935 assert(!fromCommit->commitBlock[tid]);
936 stalls[tid].commit = false;
937 }
938
939 // Check squash signals from commit.
940 if (fromCommit->commitInfo[tid].squash) {
941
942 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
943 "from commit.\n",tid);
944 // In any case, squash.
945 squash(fromCommit->commitInfo[tid].pc,
946 fromCommit->commitInfo[tid].doneSeqNum,
947 fromCommit->commitInfo[tid].squashInst, tid);
948
949 // If it was a branch mispredict on a control instruction, update the
950 // branch predictor with that instruction, otherwise just kill the
951 // invalid state we generated in after sequence number
952 if (fromCommit->commitInfo[tid].mispredictInst &&
953 fromCommit->commitInfo[tid].mispredictInst->isControl()) {
954 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
955 fromCommit->commitInfo[tid].pc,
956 fromCommit->commitInfo[tid].branchTaken,
957 tid);
958 } else {
959 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
960 tid);
961 }
962
963 return true;
964 } else if (fromCommit->commitInfo[tid].doneSeqNum) {
965 // Update the branch predictor if it wasn't a squashed instruction
966 // that was broadcasted.
967 branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
968 }
969
970 // Check ROB squash signals from commit.
971 if (fromCommit->commitInfo[tid].robSquashing) {
972 DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
973
974 // Continue to squash.
975 fetchStatus[tid] = Squashing;
976
977 return true;
978 }
979
980 // Check squash signals from decode.
981 if (fromDecode->decodeInfo[tid].squash) {
982 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
983 "from decode.\n",tid);
984
985 // Update the branch predictor.
986 if (fromDecode->decodeInfo[tid].branchMispredict) {
987 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
988 fromDecode->decodeInfo[tid].nextPC,
989 fromDecode->decodeInfo[tid].branchTaken,
990 tid);
991 } else {
992 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
993 tid);
994 }
995
996 if (fetchStatus[tid] != Squashing) {
997
998 DPRINTF(Fetch, "Squashing from decode with PC = %s\n",
999 fromDecode->decodeInfo[tid].nextPC);
1000 // Squash unless we're already squashing
1001 squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
1002 fromDecode->decodeInfo[tid].squashInst,
1003 fromDecode->decodeInfo[tid].doneSeqNum,
1004 tid);
1005
1006 return true;
1007 }
1008 }
1009
1010 if (checkStall(tid) &&
1011 fetchStatus[tid] != IcacheWaitResponse &&
1012 fetchStatus[tid] != IcacheWaitRetry) {
1013 DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
1014
1015 fetchStatus[tid] = Blocked;
1016
1017 return true;
1018 }
1019
1020 if (fetchStatus[tid] == Blocked ||
1021 fetchStatus[tid] == Squashing) {
1022 // Switch status to running if fetch isn't being told to block or
1023 // squash this cycle.
1024 DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1025 tid);
1026
1027 fetchStatus[tid] = Running;
1028
1029 return true;
1030 }
1031
1032 // If we've reached this point, we have not gotten any signals that
1033 // cause fetch to change its status. Fetch remains the same as before.
1034 return false;
1035}
1036
1037template<class Impl>
1038typename Impl::DynInstPtr
1039DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
1040 StaticInstPtr curMacroop, TheISA::PCState thisPC,
1041 TheISA::PCState nextPC, bool trace)
1042{
1043 // Get a sequence number.
1044 InstSeqNum seq = cpu->getAndIncrementInstSeq();
1045
1046 // Create a new DynInst from the instruction fetched.
1047 DynInstPtr instruction =
1048 new DynInst(staticInst, curMacroop, thisPC, nextPC, seq, cpu);
1049 instruction->setTid(tid);
1050
1051 instruction->setASID(tid);
1052
1053 instruction->setThreadState(cpu->thread[tid]);
1054
1055 DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created "
1056 "[sn:%lli].\n", tid, thisPC.instAddr(),
1057 thisPC.microPC(), seq);
1058
1059 DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid,
1060 instruction->staticInst->
1061 disassemble(thisPC.instAddr()));
1062
1063#if TRACING_ON
1064 if (trace) {
1065 instruction->traceData =
1066 cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
1067 instruction->staticInst, thisPC, curMacroop);
1068 }
1069#else
1070 instruction->traceData = NULL;
1071#endif
1072
1073 // Add instruction to the CPU's list of instructions.
1074 instruction->setInstListIt(cpu->addInst(instruction));
1075
1076 // Write the instruction to the first slot in the queue
1077 // that heads to decode.
1078 assert(numInst < fetchWidth);
1079 toDecode->insts[toDecode->size++] = instruction;
1080
1081 // Keep track of if we can take an interrupt at this boundary
1082 delayedCommit[tid] = instruction->isDelayedCommit();
1083
1084 return instruction;
1085}
1086
1087template<class Impl>
1088void
1089DefaultFetch<Impl>::fetch(bool &status_change)
1090{
1091 //////////////////////////////////////////
1092 // Start actual fetch
1093 //////////////////////////////////////////
1094 ThreadID tid = getFetchingThread(fetchPolicy);
1095
1096 if (tid == InvalidThreadID || drainPending) {
1097 // Breaks looping condition in tick()
1098 threadFetched = numFetchingThreads;
1099
1100 if (numThreads == 1) { // @todo Per-thread stats
1101 profileStall(0);
1102 }
1103
1104 return;
1105 }
1106
1107 DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1108
1109 // The current PC.
1110 TheISA::PCState thisPC = pc[tid];
1111
1112 Addr pcOffset = fetchOffset[tid];
1113 Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1114
1115 bool inRom = isRomMicroPC(thisPC.microPC());
1116
1117 // If returning from the delay of a cache miss, then update the status
1118 // to running, otherwise do the cache access. Possibly move this up
1119 // to tick() function.
1120 if (fetchStatus[tid] == IcacheAccessComplete) {
1121 DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n", tid);
1122
1123 fetchStatus[tid] = Running;
1124 status_change = true;
1125 } else if (fetchStatus[tid] == Running) {
1126 // Align the fetch PC so its at the start of a cache block.
1127 Addr block_PC = icacheBlockAlignPC(fetchAddr);
1128
1129 // If buffer is no longer valid or fetchAddr has moved to point
1130 // to the next cache block, AND we have no remaining ucode
1131 // from a macro-op, then start fetch from icache.
1132 if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])
1133 && !inRom && !macroop[tid]) {
1134 DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1135 "instruction, starting at PC %s.\n", tid, thisPC);
1136
1137 fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1138
1139 if (fetchStatus[tid] == IcacheWaitResponse)
1140 ++icacheStallCycles;
1141 else if (fetchStatus[tid] == ItlbWait)
1142 ++fetchTlbCycles;
1143 else
1144 ++fetchMiscStallCycles;
1145 return;
1146 } else if ((checkInterrupt(thisPC.instAddr()) && !delayedCommit[tid])
1147 || isSwitchedOut()) {
1148 // Stall CPU if an interrupt is posted and we're not issuing
1149 // an delayed commit micro-op currently (delayed commit instructions
1150 // are not interruptable by interrupts, only faults)
1151 ++fetchMiscStallCycles;
1152 DPRINTF(Fetch, "[tid:%i]: Fetch is stalled!\n", tid);
1153 return;
1154 }
1155 } else {
1156 if (fetchStatus[tid] == Idle) {
1157 ++fetchIdleCycles;
1158 DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1159 }
1160
1161 // Status is Idle, so fetch should do nothing.
1162 return;
1163 }
1164
1165 ++fetchCycles;
1166
1167 TheISA::PCState nextPC = thisPC;
1168
1169 StaticInstPtr staticInst = NULL;
1170 StaticInstPtr curMacroop = macroop[tid];
1171
1172 // If the read of the first instruction was successful, then grab the
1173 // instructions from the rest of the cache line and put them into the
1174 // queue heading to decode.
1175
1176 DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1177 "decode.\n", tid);
1178
1179 // Need to keep track of whether or not a predicted branch
1180 // ended this fetch block.
1181 bool predictedBranch = false;
1182
1183 TheISA::MachInst *cacheInsts =
1184 reinterpret_cast<TheISA::MachInst *>(cacheData[tid]);
1185
1186 const unsigned numInsts = cacheBlkSize / instSize;
1187 unsigned blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1188
1189 // Loop through instruction memory from the cache.
1190 // Keep issuing while fetchWidth is available and branch is not
1191 // predicted taken
1192 while (numInst < fetchWidth && !predictedBranch) {
1193
1194 // We need to process more memory if we aren't going to get a
1195 // StaticInst from the rom, the current macroop, or what's already
1196 // in the predecoder.
1197 bool needMem = !inRom && !curMacroop && !predecoder.extMachInstReady();
1198 fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1199 Addr block_PC = icacheBlockAlignPC(fetchAddr);
1200
1201 if (needMem) {
1202 // If buffer is no longer valid or fetchAddr has moved to point
1203 // to the next cache block then start fetch from icache.
1204 if (!cacheDataValid[tid] || block_PC != cacheDataPC[tid])
1205 break;
1206
1207 if (blkOffset >= numInsts) {
1208 // We need to process more memory, but we've run out of the
1209 // current block.
1210 break;
1211 }
1212
1213 if (ISA_HAS_DELAY_SLOT && pcOffset == 0) {
1214 // Walk past any annulled delay slot instructions.
1215 Addr pcAddr = thisPC.instAddr() & BaseCPU::PCMask;
1216 while (fetchAddr != pcAddr && blkOffset < numInsts) {
1217 blkOffset++;
1218 fetchAddr += instSize;
1219 }
1220 if (blkOffset >= numInsts)
1221 break;
1222 }
1223 MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1224
1225 predecoder.setTC(cpu->thread[tid]->getTC());
1226 predecoder.moreBytes(thisPC, fetchAddr, inst);
1227
1228 if (predecoder.needMoreBytes()) {
1229 blkOffset++;
1230 fetchAddr += instSize;
1231 pcOffset += instSize;
1232 }
1233 }
1234
1235 // Extract as many instructions and/or microops as we can from
1236 // the memory we've processed so far.
1237 do {
1238 if (!(curMacroop || inRom)) {
1239 if (predecoder.extMachInstReady()) {
1240 ExtMachInst extMachInst =
1241 predecoder.getExtMachInst(thisPC);
1242 staticInst =
1243 decoder.decode(extMachInst, thisPC.instAddr());
1244
1245 // Increment stat of fetched instructions.
1246 ++fetchedInsts;
1247
1248 if (staticInst->isMacroop()) {
1249 curMacroop = staticInst;
1250 } else {
1251 pcOffset = 0;
1252 }
1253 } else {
1254 // We need more bytes for this instruction so blkOffset and
1255 // pcOffset will be updated
1256 break;
1257 }
1258 }
1259 // Whether we're moving to a new macroop because we're at the
1260 // end of the current one, or the branch predictor incorrectly
1261 // thinks we are...
1262 bool newMacro = false;
1263 if (curMacroop || inRom) {
1264 if (inRom) {
1265 staticInst = cpu->microcodeRom.fetchMicroop(
1266 thisPC.microPC(), curMacroop);
1267 } else {
1268 staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1269 }
1270 newMacro |= staticInst->isLastMicroop();
1271 }
1272
1273 DynInstPtr instruction =
1274 buildInst(tid, staticInst, curMacroop,
1275 thisPC, nextPC, true);
1276
1277 numInst++;
1278
1279#if TRACING_ON
1280 instruction->fetchTick = curTick();
1281#endif
1282
1283 nextPC = thisPC;
1284
1285 // If we're branching after this instruction, quite fetching
1286 // from the same block then.
1287 predictedBranch |= thisPC.branching();
1288 predictedBranch |=
1289 lookupAndUpdateNextPC(instruction, nextPC);
1290 if (predictedBranch) {
1291 DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1292 }
1293
1294 newMacro |= thisPC.instAddr() != nextPC.instAddr();
1295
1296 // Move to the next instruction, unless we have a branch.
1297 thisPC = nextPC;
1298 inRom = isRomMicroPC(thisPC.microPC());
1299
1300 if (newMacro) {
1301 fetchAddr = thisPC.instAddr() & BaseCPU::PCMask;
1302 blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1303 pcOffset = 0;
1304 curMacroop = NULL;
1305 }
1306
1307 if (instruction->isQuiesce()) {
1308 DPRINTF(Fetch,
1309 "Quiesce instruction encountered, halting fetch!");
1310 fetchStatus[tid] = QuiescePending;
1311 status_change = true;
1312 break;
1313 }
1314 } while ((curMacroop || predecoder.extMachInstReady()) &&
1315 numInst < fetchWidth);
1316 }
1317
1318 if (predictedBranch) {
1319 DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1320 "instruction encountered.\n", tid);
1321 } else if (numInst >= fetchWidth) {
1322 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1323 "for this cycle.\n", tid);
1324 } else if (blkOffset >= cacheBlkSize) {
1325 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1326 "block.\n", tid);
1327 }
1328
1329 macroop[tid] = curMacroop;
1330 fetchOffset[tid] = pcOffset;
1331
1332 if (numInst > 0) {
1333 wroteToTimeBuffer = true;
1334 }
1335
1336 pc[tid] = thisPC;
1337
1338 // pipeline a fetch if we're crossing a cache boundary and not in
1339 // a state that would preclude fetching
1340 fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1341 Addr block_PC = icacheBlockAlignPC(fetchAddr);
1342 issuePipelinedIfetch[tid] = block_PC != cacheDataPC[tid] &&
1343 fetchStatus[tid] != IcacheWaitResponse &&
1344 fetchStatus[tid] != ItlbWait &&
1345 fetchStatus[tid] != IcacheWaitRetry &&
1346 fetchStatus[tid] != QuiescePending &&
1347 !curMacroop;
1348}
1349
1350template<class Impl>
1351void
1352DefaultFetch<Impl>::recvRetry()
1353{
1354 if (retryPkt != NULL) {
1355 assert(cacheBlocked);
1356 assert(retryTid != InvalidThreadID);
1357 assert(fetchStatus[retryTid] == IcacheWaitRetry);
1358
625 assert(retryPkt == NULL);
626 assert(retryTid == InvalidThreadID);
627 DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
628
629 fetchStatus[tid] = IcacheWaitRetry;
630 retryPkt = data_pkt;
631 retryTid = tid;
632 cacheBlocked = true;
633 } else {
634 DPRINTF(Fetch, "[tid:%i]: Doing Icache access.\n", tid);
635 DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
636 "response.\n", tid);
637
638 lastIcacheStall[tid] = curTick();
639 fetchStatus[tid] = IcacheWaitResponse;
640 }
641 } else {
642 if (!(numInst < fetchWidth)) {
643 assert(!finishTranslationEvent.scheduled());
644 finishTranslationEvent.setFault(fault);
645 finishTranslationEvent.setReq(mem_req);
646 cpu->schedule(finishTranslationEvent, cpu->nextCycle(curTick() + cpu->ticks(1)));
647 return;
648 }
649 DPRINTF(Fetch, "[tid:%i] Got back req with addr %#x but expected %#x\n",
650 tid, mem_req->getVaddr(), memReq[tid]->getVaddr());
651 // Translation faulted, icache request won't be sent.
652 delete mem_req;
653 memReq[tid] = NULL;
654
655 // Send the fault to commit. This thread will not do anything
656 // until commit handles the fault. The only other way it can
657 // wake up is if a squash comes along and changes the PC.
658 TheISA::PCState fetchPC = pc[tid];
659
660 DPRINTF(Fetch, "[tid:%i]: Translation faulted, building noop.\n", tid);
661 // We will use a nop in ordier to carry the fault.
662 DynInstPtr instruction = buildInst(tid,
663 decoder.decode(TheISA::NoopMachInst, fetchPC.instAddr()),
664 NULL, fetchPC, fetchPC, false);
665
666 instruction->setPredTarg(fetchPC);
667 instruction->fault = fault;
668 wroteToTimeBuffer = true;
669
670 DPRINTF(Activity, "Activity this cycle.\n");
671 cpu->activityThisCycle();
672
673 fetchStatus[tid] = TrapPending;
674
675 DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n", tid);
676 DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s.\n",
677 tid, fault->name(), pc[tid]);
678 }
679 _status = updateFetchStatus();
680}
681
682template <class Impl>
683inline void
684DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC,
685 const DynInstPtr squashInst, ThreadID tid)
686{
687 DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n",
688 tid, newPC);
689
690 pc[tid] = newPC;
691 fetchOffset[tid] = 0;
692 if (squashInst && squashInst->pcState().instAddr() == newPC.instAddr())
693 macroop[tid] = squashInst->macroop;
694 else
695 macroop[tid] = NULL;
696 predecoder.reset();
697
698 // Clear the icache miss if it's outstanding.
699 if (fetchStatus[tid] == IcacheWaitResponse) {
700 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
701 tid);
702 memReq[tid] = NULL;
703 } else if (fetchStatus[tid] == ItlbWait) {
704 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding ITLB miss.\n",
705 tid);
706 memReq[tid] = NULL;
707 }
708
709 // Get rid of the retrying packet if it was from this thread.
710 if (retryTid == tid) {
711 assert(cacheBlocked);
712 if (retryPkt) {
713 delete retryPkt->req;
714 delete retryPkt;
715 }
716 retryPkt = NULL;
717 retryTid = InvalidThreadID;
718 }
719
720 fetchStatus[tid] = Squashing;
721
722 // microops are being squashed, it is not known wheather the
723 // youngest non-squashed microop was marked delayed commit
724 // or not. Setting the flag to true ensures that the
725 // interrupts are not handled when they cannot be, though
726 // some opportunities to handle interrupts may be missed.
727 delayedCommit[tid] = true;
728
729 ++fetchSquashCycles;
730}
731
732template<class Impl>
733void
734DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
735 const DynInstPtr squashInst,
736 const InstSeqNum seq_num, ThreadID tid)
737{
738 DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid);
739
740 doSquash(newPC, squashInst, tid);
741
742 // Tell the CPU to remove any instructions that are in flight between
743 // fetch and decode.
744 cpu->removeInstsUntil(seq_num, tid);
745}
746
747template<class Impl>
748bool
749DefaultFetch<Impl>::checkStall(ThreadID tid) const
750{
751 bool ret_val = false;
752
753 if (cpu->contextSwitch) {
754 DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
755 ret_val = true;
756 } else if (stalls[tid].decode) {
757 DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
758 ret_val = true;
759 } else if (stalls[tid].rename) {
760 DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
761 ret_val = true;
762 } else if (stalls[tid].iew) {
763 DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
764 ret_val = true;
765 } else if (stalls[tid].commit) {
766 DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
767 ret_val = true;
768 }
769
770 return ret_val;
771}
772
773template<class Impl>
774typename DefaultFetch<Impl>::FetchStatus
775DefaultFetch<Impl>::updateFetchStatus()
776{
777 //Check Running
778 list<ThreadID>::iterator threads = activeThreads->begin();
779 list<ThreadID>::iterator end = activeThreads->end();
780
781 while (threads != end) {
782 ThreadID tid = *threads++;
783
784 if (fetchStatus[tid] == Running ||
785 fetchStatus[tid] == Squashing ||
786 fetchStatus[tid] == IcacheAccessComplete) {
787
788 if (_status == Inactive) {
789 DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
790
791 if (fetchStatus[tid] == IcacheAccessComplete) {
792 DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
793 "completion\n",tid);
794 }
795
796 cpu->activateStage(O3CPU::FetchIdx);
797 }
798
799 return Active;
800 }
801 }
802
803 // Stage is switching from active to inactive, notify CPU of it.
804 if (_status == Active) {
805 DPRINTF(Activity, "Deactivating stage.\n");
806
807 cpu->deactivateStage(O3CPU::FetchIdx);
808 }
809
810 return Inactive;
811}
812
813template <class Impl>
814void
815DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
816 const InstSeqNum seq_num, DynInstPtr squashInst,
817 ThreadID tid)
818{
819 DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid);
820
821 doSquash(newPC, squashInst, tid);
822
823 // Tell the CPU to remove any instructions that are not in the ROB.
824 cpu->removeInstsNotInROB(tid);
825}
826
827template <class Impl>
828void
829DefaultFetch<Impl>::tick()
830{
831 list<ThreadID>::iterator threads = activeThreads->begin();
832 list<ThreadID>::iterator end = activeThreads->end();
833 bool status_change = false;
834
835 wroteToTimeBuffer = false;
836
837 for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
838 issuePipelinedIfetch[i] = false;
839 }
840
841 while (threads != end) {
842 ThreadID tid = *threads++;
843
844 // Check the signals for each thread to determine the proper status
845 // for each thread.
846 bool updated_status = checkSignalsAndUpdate(tid);
847 status_change = status_change || updated_status;
848 }
849
850 DPRINTF(Fetch, "Running stage.\n");
851
852 if (FullSystem) {
853 if (fromCommit->commitInfo[0].interruptPending) {
854 interruptPending = true;
855 }
856
857 if (fromCommit->commitInfo[0].clearInterrupt) {
858 interruptPending = false;
859 }
860 }
861
862 for (threadFetched = 0; threadFetched < numFetchingThreads;
863 threadFetched++) {
864 // Fetch each of the actively fetching threads.
865 fetch(status_change);
866 }
867
868 // Record number of instructions fetched this cycle for distribution.
869 fetchNisnDist.sample(numInst);
870
871 if (status_change) {
872 // Change the fetch stage status if there was a status change.
873 _status = updateFetchStatus();
874 }
875
876 // If there was activity this cycle, inform the CPU of it.
877 if (wroteToTimeBuffer || cpu->contextSwitch) {
878 DPRINTF(Activity, "Activity this cycle.\n");
879
880 cpu->activityThisCycle();
881 }
882
883 // Issue the next I-cache request if possible.
884 for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
885 if (issuePipelinedIfetch[i]) {
886 pipelineIcacheAccesses(i);
887 }
888 }
889
890 // Reset the number of the instruction we've fetched.
891 numInst = 0;
892}
893
894template <class Impl>
895bool
896DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
897{
898 // Update the per thread stall statuses.
899 if (fromDecode->decodeBlock[tid]) {
900 stalls[tid].decode = true;
901 }
902
903 if (fromDecode->decodeUnblock[tid]) {
904 assert(stalls[tid].decode);
905 assert(!fromDecode->decodeBlock[tid]);
906 stalls[tid].decode = false;
907 }
908
909 if (fromRename->renameBlock[tid]) {
910 stalls[tid].rename = true;
911 }
912
913 if (fromRename->renameUnblock[tid]) {
914 assert(stalls[tid].rename);
915 assert(!fromRename->renameBlock[tid]);
916 stalls[tid].rename = false;
917 }
918
919 if (fromIEW->iewBlock[tid]) {
920 stalls[tid].iew = true;
921 }
922
923 if (fromIEW->iewUnblock[tid]) {
924 assert(stalls[tid].iew);
925 assert(!fromIEW->iewBlock[tid]);
926 stalls[tid].iew = false;
927 }
928
929 if (fromCommit->commitBlock[tid]) {
930 stalls[tid].commit = true;
931 }
932
933 if (fromCommit->commitUnblock[tid]) {
934 assert(stalls[tid].commit);
935 assert(!fromCommit->commitBlock[tid]);
936 stalls[tid].commit = false;
937 }
938
939 // Check squash signals from commit.
940 if (fromCommit->commitInfo[tid].squash) {
941
942 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
943 "from commit.\n",tid);
944 // In any case, squash.
945 squash(fromCommit->commitInfo[tid].pc,
946 fromCommit->commitInfo[tid].doneSeqNum,
947 fromCommit->commitInfo[tid].squashInst, tid);
948
949 // If it was a branch mispredict on a control instruction, update the
950 // branch predictor with that instruction, otherwise just kill the
951 // invalid state we generated in after sequence number
952 if (fromCommit->commitInfo[tid].mispredictInst &&
953 fromCommit->commitInfo[tid].mispredictInst->isControl()) {
954 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
955 fromCommit->commitInfo[tid].pc,
956 fromCommit->commitInfo[tid].branchTaken,
957 tid);
958 } else {
959 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
960 tid);
961 }
962
963 return true;
964 } else if (fromCommit->commitInfo[tid].doneSeqNum) {
965 // Update the branch predictor if it wasn't a squashed instruction
966 // that was broadcasted.
967 branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
968 }
969
970 // Check ROB squash signals from commit.
971 if (fromCommit->commitInfo[tid].robSquashing) {
972 DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
973
974 // Continue to squash.
975 fetchStatus[tid] = Squashing;
976
977 return true;
978 }
979
980 // Check squash signals from decode.
981 if (fromDecode->decodeInfo[tid].squash) {
982 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
983 "from decode.\n",tid);
984
985 // Update the branch predictor.
986 if (fromDecode->decodeInfo[tid].branchMispredict) {
987 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
988 fromDecode->decodeInfo[tid].nextPC,
989 fromDecode->decodeInfo[tid].branchTaken,
990 tid);
991 } else {
992 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
993 tid);
994 }
995
996 if (fetchStatus[tid] != Squashing) {
997
998 DPRINTF(Fetch, "Squashing from decode with PC = %s\n",
999 fromDecode->decodeInfo[tid].nextPC);
1000 // Squash unless we're already squashing
1001 squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
1002 fromDecode->decodeInfo[tid].squashInst,
1003 fromDecode->decodeInfo[tid].doneSeqNum,
1004 tid);
1005
1006 return true;
1007 }
1008 }
1009
1010 if (checkStall(tid) &&
1011 fetchStatus[tid] != IcacheWaitResponse &&
1012 fetchStatus[tid] != IcacheWaitRetry) {
1013 DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
1014
1015 fetchStatus[tid] = Blocked;
1016
1017 return true;
1018 }
1019
1020 if (fetchStatus[tid] == Blocked ||
1021 fetchStatus[tid] == Squashing) {
1022 // Switch status to running if fetch isn't being told to block or
1023 // squash this cycle.
1024 DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1025 tid);
1026
1027 fetchStatus[tid] = Running;
1028
1029 return true;
1030 }
1031
1032 // If we've reached this point, we have not gotten any signals that
1033 // cause fetch to change its status. Fetch remains the same as before.
1034 return false;
1035}
1036
1037template<class Impl>
1038typename Impl::DynInstPtr
1039DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
1040 StaticInstPtr curMacroop, TheISA::PCState thisPC,
1041 TheISA::PCState nextPC, bool trace)
1042{
1043 // Get a sequence number.
1044 InstSeqNum seq = cpu->getAndIncrementInstSeq();
1045
1046 // Create a new DynInst from the instruction fetched.
1047 DynInstPtr instruction =
1048 new DynInst(staticInst, curMacroop, thisPC, nextPC, seq, cpu);
1049 instruction->setTid(tid);
1050
1051 instruction->setASID(tid);
1052
1053 instruction->setThreadState(cpu->thread[tid]);
1054
1055 DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created "
1056 "[sn:%lli].\n", tid, thisPC.instAddr(),
1057 thisPC.microPC(), seq);
1058
1059 DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid,
1060 instruction->staticInst->
1061 disassemble(thisPC.instAddr()));
1062
1063#if TRACING_ON
1064 if (trace) {
1065 instruction->traceData =
1066 cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
1067 instruction->staticInst, thisPC, curMacroop);
1068 }
1069#else
1070 instruction->traceData = NULL;
1071#endif
1072
1073 // Add instruction to the CPU's list of instructions.
1074 instruction->setInstListIt(cpu->addInst(instruction));
1075
1076 // Write the instruction to the first slot in the queue
1077 // that heads to decode.
1078 assert(numInst < fetchWidth);
1079 toDecode->insts[toDecode->size++] = instruction;
1080
1081 // Keep track of if we can take an interrupt at this boundary
1082 delayedCommit[tid] = instruction->isDelayedCommit();
1083
1084 return instruction;
1085}
1086
1087template<class Impl>
1088void
1089DefaultFetch<Impl>::fetch(bool &status_change)
1090{
1091 //////////////////////////////////////////
1092 // Start actual fetch
1093 //////////////////////////////////////////
1094 ThreadID tid = getFetchingThread(fetchPolicy);
1095
1096 if (tid == InvalidThreadID || drainPending) {
1097 // Breaks looping condition in tick()
1098 threadFetched = numFetchingThreads;
1099
1100 if (numThreads == 1) { // @todo Per-thread stats
1101 profileStall(0);
1102 }
1103
1104 return;
1105 }
1106
1107 DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1108
1109 // The current PC.
1110 TheISA::PCState thisPC = pc[tid];
1111
1112 Addr pcOffset = fetchOffset[tid];
1113 Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1114
1115 bool inRom = isRomMicroPC(thisPC.microPC());
1116
1117 // If returning from the delay of a cache miss, then update the status
1118 // to running, otherwise do the cache access. Possibly move this up
1119 // to tick() function.
1120 if (fetchStatus[tid] == IcacheAccessComplete) {
1121 DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n", tid);
1122
1123 fetchStatus[tid] = Running;
1124 status_change = true;
1125 } else if (fetchStatus[tid] == Running) {
1126 // Align the fetch PC so its at the start of a cache block.
1127 Addr block_PC = icacheBlockAlignPC(fetchAddr);
1128
1129 // If buffer is no longer valid or fetchAddr has moved to point
1130 // to the next cache block, AND we have no remaining ucode
1131 // from a macro-op, then start fetch from icache.
1132 if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])
1133 && !inRom && !macroop[tid]) {
1134 DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1135 "instruction, starting at PC %s.\n", tid, thisPC);
1136
1137 fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1138
1139 if (fetchStatus[tid] == IcacheWaitResponse)
1140 ++icacheStallCycles;
1141 else if (fetchStatus[tid] == ItlbWait)
1142 ++fetchTlbCycles;
1143 else
1144 ++fetchMiscStallCycles;
1145 return;
1146 } else if ((checkInterrupt(thisPC.instAddr()) && !delayedCommit[tid])
1147 || isSwitchedOut()) {
1148 // Stall CPU if an interrupt is posted and we're not issuing
1149 // an delayed commit micro-op currently (delayed commit instructions
1150 // are not interruptable by interrupts, only faults)
1151 ++fetchMiscStallCycles;
1152 DPRINTF(Fetch, "[tid:%i]: Fetch is stalled!\n", tid);
1153 return;
1154 }
1155 } else {
1156 if (fetchStatus[tid] == Idle) {
1157 ++fetchIdleCycles;
1158 DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1159 }
1160
1161 // Status is Idle, so fetch should do nothing.
1162 return;
1163 }
1164
1165 ++fetchCycles;
1166
1167 TheISA::PCState nextPC = thisPC;
1168
1169 StaticInstPtr staticInst = NULL;
1170 StaticInstPtr curMacroop = macroop[tid];
1171
1172 // If the read of the first instruction was successful, then grab the
1173 // instructions from the rest of the cache line and put them into the
1174 // queue heading to decode.
1175
1176 DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1177 "decode.\n", tid);
1178
1179 // Need to keep track of whether or not a predicted branch
1180 // ended this fetch block.
1181 bool predictedBranch = false;
1182
1183 TheISA::MachInst *cacheInsts =
1184 reinterpret_cast<TheISA::MachInst *>(cacheData[tid]);
1185
1186 const unsigned numInsts = cacheBlkSize / instSize;
1187 unsigned blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1188
1189 // Loop through instruction memory from the cache.
1190 // Keep issuing while fetchWidth is available and branch is not
1191 // predicted taken
1192 while (numInst < fetchWidth && !predictedBranch) {
1193
1194 // We need to process more memory if we aren't going to get a
1195 // StaticInst from the rom, the current macroop, or what's already
1196 // in the predecoder.
1197 bool needMem = !inRom && !curMacroop && !predecoder.extMachInstReady();
1198 fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1199 Addr block_PC = icacheBlockAlignPC(fetchAddr);
1200
1201 if (needMem) {
1202 // If buffer is no longer valid or fetchAddr has moved to point
1203 // to the next cache block then start fetch from icache.
1204 if (!cacheDataValid[tid] || block_PC != cacheDataPC[tid])
1205 break;
1206
1207 if (blkOffset >= numInsts) {
1208 // We need to process more memory, but we've run out of the
1209 // current block.
1210 break;
1211 }
1212
1213 if (ISA_HAS_DELAY_SLOT && pcOffset == 0) {
1214 // Walk past any annulled delay slot instructions.
1215 Addr pcAddr = thisPC.instAddr() & BaseCPU::PCMask;
1216 while (fetchAddr != pcAddr && blkOffset < numInsts) {
1217 blkOffset++;
1218 fetchAddr += instSize;
1219 }
1220 if (blkOffset >= numInsts)
1221 break;
1222 }
1223 MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1224
1225 predecoder.setTC(cpu->thread[tid]->getTC());
1226 predecoder.moreBytes(thisPC, fetchAddr, inst);
1227
1228 if (predecoder.needMoreBytes()) {
1229 blkOffset++;
1230 fetchAddr += instSize;
1231 pcOffset += instSize;
1232 }
1233 }
1234
1235 // Extract as many instructions and/or microops as we can from
1236 // the memory we've processed so far.
1237 do {
1238 if (!(curMacroop || inRom)) {
1239 if (predecoder.extMachInstReady()) {
1240 ExtMachInst extMachInst =
1241 predecoder.getExtMachInst(thisPC);
1242 staticInst =
1243 decoder.decode(extMachInst, thisPC.instAddr());
1244
1245 // Increment stat of fetched instructions.
1246 ++fetchedInsts;
1247
1248 if (staticInst->isMacroop()) {
1249 curMacroop = staticInst;
1250 } else {
1251 pcOffset = 0;
1252 }
1253 } else {
1254 // We need more bytes for this instruction so blkOffset and
1255 // pcOffset will be updated
1256 break;
1257 }
1258 }
1259 // Whether we're moving to a new macroop because we're at the
1260 // end of the current one, or the branch predictor incorrectly
1261 // thinks we are...
1262 bool newMacro = false;
1263 if (curMacroop || inRom) {
1264 if (inRom) {
1265 staticInst = cpu->microcodeRom.fetchMicroop(
1266 thisPC.microPC(), curMacroop);
1267 } else {
1268 staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1269 }
1270 newMacro |= staticInst->isLastMicroop();
1271 }
1272
1273 DynInstPtr instruction =
1274 buildInst(tid, staticInst, curMacroop,
1275 thisPC, nextPC, true);
1276
1277 numInst++;
1278
1279#if TRACING_ON
1280 instruction->fetchTick = curTick();
1281#endif
1282
1283 nextPC = thisPC;
1284
1285 // If we're branching after this instruction, quite fetching
1286 // from the same block then.
1287 predictedBranch |= thisPC.branching();
1288 predictedBranch |=
1289 lookupAndUpdateNextPC(instruction, nextPC);
1290 if (predictedBranch) {
1291 DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1292 }
1293
1294 newMacro |= thisPC.instAddr() != nextPC.instAddr();
1295
1296 // Move to the next instruction, unless we have a branch.
1297 thisPC = nextPC;
1298 inRom = isRomMicroPC(thisPC.microPC());
1299
1300 if (newMacro) {
1301 fetchAddr = thisPC.instAddr() & BaseCPU::PCMask;
1302 blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1303 pcOffset = 0;
1304 curMacroop = NULL;
1305 }
1306
1307 if (instruction->isQuiesce()) {
1308 DPRINTF(Fetch,
1309 "Quiesce instruction encountered, halting fetch!");
1310 fetchStatus[tid] = QuiescePending;
1311 status_change = true;
1312 break;
1313 }
1314 } while ((curMacroop || predecoder.extMachInstReady()) &&
1315 numInst < fetchWidth);
1316 }
1317
1318 if (predictedBranch) {
1319 DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1320 "instruction encountered.\n", tid);
1321 } else if (numInst >= fetchWidth) {
1322 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1323 "for this cycle.\n", tid);
1324 } else if (blkOffset >= cacheBlkSize) {
1325 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1326 "block.\n", tid);
1327 }
1328
1329 macroop[tid] = curMacroop;
1330 fetchOffset[tid] = pcOffset;
1331
1332 if (numInst > 0) {
1333 wroteToTimeBuffer = true;
1334 }
1335
1336 pc[tid] = thisPC;
1337
1338 // pipeline a fetch if we're crossing a cache boundary and not in
1339 // a state that would preclude fetching
1340 fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1341 Addr block_PC = icacheBlockAlignPC(fetchAddr);
1342 issuePipelinedIfetch[tid] = block_PC != cacheDataPC[tid] &&
1343 fetchStatus[tid] != IcacheWaitResponse &&
1344 fetchStatus[tid] != ItlbWait &&
1345 fetchStatus[tid] != IcacheWaitRetry &&
1346 fetchStatus[tid] != QuiescePending &&
1347 !curMacroop;
1348}
1349
1350template<class Impl>
1351void
1352DefaultFetch<Impl>::recvRetry()
1353{
1354 if (retryPkt != NULL) {
1355 assert(cacheBlocked);
1356 assert(retryTid != InvalidThreadID);
1357 assert(fetchStatus[retryTid] == IcacheWaitRetry);
1358
1359 if (cpu->getInstPort().sendTiming(retryPkt)) {
1359 if (cpu->getInstPort().sendTimingReq(retryPkt)) {
1360 fetchStatus[retryTid] = IcacheWaitResponse;
1361 retryPkt = NULL;
1362 retryTid = InvalidThreadID;
1363 cacheBlocked = false;
1364 }
1365 } else {
1366 assert(retryTid == InvalidThreadID);
1367 // Access has been squashed since it was sent out. Just clear
1368 // the cache being blocked.
1369 cacheBlocked = false;
1370 }
1371}
1372
1373///////////////////////////////////////
1374// //
1375// SMT FETCH POLICY MAINTAINED HERE //
1376// //
1377///////////////////////////////////////
1378template<class Impl>
1379ThreadID
1380DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1381{
1382 if (numThreads > 1) {
1383 switch (fetch_priority) {
1384
1385 case SingleThread:
1386 return 0;
1387
1388 case RoundRobin:
1389 return roundRobin();
1390
1391 case IQ:
1392 return iqCount();
1393
1394 case LSQ:
1395 return lsqCount();
1396
1397 case Branch:
1398 return branchCount();
1399
1400 default:
1401 return InvalidThreadID;
1402 }
1403 } else {
1404 list<ThreadID>::iterator thread = activeThreads->begin();
1405 if (thread == activeThreads->end()) {
1406 return InvalidThreadID;
1407 }
1408
1409 ThreadID tid = *thread;
1410
1411 if (fetchStatus[tid] == Running ||
1412 fetchStatus[tid] == IcacheAccessComplete ||
1413 fetchStatus[tid] == Idle) {
1414 return tid;
1415 } else {
1416 return InvalidThreadID;
1417 }
1418 }
1419}
1420
1421
1422template<class Impl>
1423ThreadID
1424DefaultFetch<Impl>::roundRobin()
1425{
1426 list<ThreadID>::iterator pri_iter = priorityList.begin();
1427 list<ThreadID>::iterator end = priorityList.end();
1428
1429 ThreadID high_pri;
1430
1431 while (pri_iter != end) {
1432 high_pri = *pri_iter;
1433
1434 assert(high_pri <= numThreads);
1435
1436 if (fetchStatus[high_pri] == Running ||
1437 fetchStatus[high_pri] == IcacheAccessComplete ||
1438 fetchStatus[high_pri] == Idle) {
1439
1440 priorityList.erase(pri_iter);
1441 priorityList.push_back(high_pri);
1442
1443 return high_pri;
1444 }
1445
1446 pri_iter++;
1447 }
1448
1449 return InvalidThreadID;
1450}
1451
1452template<class Impl>
1453ThreadID
1454DefaultFetch<Impl>::iqCount()
1455{
1456 std::priority_queue<unsigned> PQ;
1457 std::map<unsigned, ThreadID> threadMap;
1458
1459 list<ThreadID>::iterator threads = activeThreads->begin();
1460 list<ThreadID>::iterator end = activeThreads->end();
1461
1462 while (threads != end) {
1463 ThreadID tid = *threads++;
1464 unsigned iqCount = fromIEW->iewInfo[tid].iqCount;
1465
1466 PQ.push(iqCount);
1467 threadMap[iqCount] = tid;
1468 }
1469
1470 while (!PQ.empty()) {
1471 ThreadID high_pri = threadMap[PQ.top()];
1472
1473 if (fetchStatus[high_pri] == Running ||
1474 fetchStatus[high_pri] == IcacheAccessComplete ||
1475 fetchStatus[high_pri] == Idle)
1476 return high_pri;
1477 else
1478 PQ.pop();
1479
1480 }
1481
1482 return InvalidThreadID;
1483}
1484
1485template<class Impl>
1486ThreadID
1487DefaultFetch<Impl>::lsqCount()
1488{
1489 std::priority_queue<unsigned> PQ;
1490 std::map<unsigned, ThreadID> threadMap;
1491
1492 list<ThreadID>::iterator threads = activeThreads->begin();
1493 list<ThreadID>::iterator end = activeThreads->end();
1494
1495 while (threads != end) {
1496 ThreadID tid = *threads++;
1497 unsigned ldstqCount = fromIEW->iewInfo[tid].ldstqCount;
1498
1499 PQ.push(ldstqCount);
1500 threadMap[ldstqCount] = tid;
1501 }
1502
1503 while (!PQ.empty()) {
1504 ThreadID high_pri = threadMap[PQ.top()];
1505
1506 if (fetchStatus[high_pri] == Running ||
1507 fetchStatus[high_pri] == IcacheAccessComplete ||
1508 fetchStatus[high_pri] == Idle)
1509 return high_pri;
1510 else
1511 PQ.pop();
1512 }
1513
1514 return InvalidThreadID;
1515}
1516
1517template<class Impl>
1518ThreadID
1519DefaultFetch<Impl>::branchCount()
1520{
1521#if 0
1522 list<ThreadID>::iterator thread = activeThreads->begin();
1523 assert(thread != activeThreads->end());
1524 ThreadID tid = *thread;
1525#endif
1526
1527 panic("Branch Count Fetch policy unimplemented\n");
1528 return InvalidThreadID;
1529}
1530
1531template<class Impl>
1532void
1533DefaultFetch<Impl>::pipelineIcacheAccesses(ThreadID tid)
1534{
1535 if (!issuePipelinedIfetch[tid]) {
1536 return;
1537 }
1538
1539 // The next PC to access.
1540 TheISA::PCState thisPC = pc[tid];
1541
1542 if (isRomMicroPC(thisPC.microPC())) {
1543 return;
1544 }
1545
1546 Addr pcOffset = fetchOffset[tid];
1547 Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1548
1549 // Align the fetch PC so its at the start of a cache block.
1550 Addr block_PC = icacheBlockAlignPC(fetchAddr);
1551
1552 // Unless buffer already got the block, fetch it from icache.
1553 if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])) {
1554 DPRINTF(Fetch, "[tid:%i]: Issuing a pipelined I-cache access, "
1555 "starting at PC %s.\n", tid, thisPC);
1556
1557 fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1558 }
1559}
1560
1561template<class Impl>
1562void
1563DefaultFetch<Impl>::profileStall(ThreadID tid) {
1564 DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1565
1566 // @todo Per-thread stats
1567
1568 if (drainPending) {
1569 ++fetchPendingDrainCycles;
1570 DPRINTF(Fetch, "Fetch is waiting for a drain!\n");
1571 } else if (activeThreads->empty()) {
1572 ++fetchNoActiveThreadStallCycles;
1573 DPRINTF(Fetch, "Fetch has no active thread!\n");
1574 } else if (fetchStatus[tid] == Blocked) {
1575 ++fetchBlockedCycles;
1576 DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1577 } else if (fetchStatus[tid] == Squashing) {
1578 ++fetchSquashCycles;
1579 DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1580 } else if (fetchStatus[tid] == IcacheWaitResponse) {
1581 ++icacheStallCycles;
1582 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n",
1583 tid);
1584 } else if (fetchStatus[tid] == ItlbWait) {
1585 ++fetchTlbCycles;
1586 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting ITLB walk to "
1587 "finish!\n", tid);
1588 } else if (fetchStatus[tid] == TrapPending) {
1589 ++fetchPendingTrapStallCycles;
1590 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending trap!\n",
1591 tid);
1592 } else if (fetchStatus[tid] == QuiescePending) {
1593 ++fetchPendingQuiesceStallCycles;
1594 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending quiesce "
1595 "instruction!\n", tid);
1596 } else if (fetchStatus[tid] == IcacheWaitRetry) {
1597 ++fetchIcacheWaitRetryStallCycles;
1598 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for an I-cache retry!\n",
1599 tid);
1600 } else if (fetchStatus[tid] == NoGoodAddr) {
1601 DPRINTF(Fetch, "[tid:%i]: Fetch predicted non-executable address\n",
1602 tid);
1603 } else {
1604 DPRINTF(Fetch, "[tid:%i]: Unexpected fetch stall reason (Status: %i).\n",
1605 tid, fetchStatus[tid]);
1606 }
1607}
1360 fetchStatus[retryTid] = IcacheWaitResponse;
1361 retryPkt = NULL;
1362 retryTid = InvalidThreadID;
1363 cacheBlocked = false;
1364 }
1365 } else {
1366 assert(retryTid == InvalidThreadID);
1367 // Access has been squashed since it was sent out. Just clear
1368 // the cache being blocked.
1369 cacheBlocked = false;
1370 }
1371}
1372
1373///////////////////////////////////////
1374// //
1375// SMT FETCH POLICY MAINTAINED HERE //
1376// //
1377///////////////////////////////////////
1378template<class Impl>
1379ThreadID
1380DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1381{
1382 if (numThreads > 1) {
1383 switch (fetch_priority) {
1384
1385 case SingleThread:
1386 return 0;
1387
1388 case RoundRobin:
1389 return roundRobin();
1390
1391 case IQ:
1392 return iqCount();
1393
1394 case LSQ:
1395 return lsqCount();
1396
1397 case Branch:
1398 return branchCount();
1399
1400 default:
1401 return InvalidThreadID;
1402 }
1403 } else {
1404 list<ThreadID>::iterator thread = activeThreads->begin();
1405 if (thread == activeThreads->end()) {
1406 return InvalidThreadID;
1407 }
1408
1409 ThreadID tid = *thread;
1410
1411 if (fetchStatus[tid] == Running ||
1412 fetchStatus[tid] == IcacheAccessComplete ||
1413 fetchStatus[tid] == Idle) {
1414 return tid;
1415 } else {
1416 return InvalidThreadID;
1417 }
1418 }
1419}
1420
1421
1422template<class Impl>
1423ThreadID
1424DefaultFetch<Impl>::roundRobin()
1425{
1426 list<ThreadID>::iterator pri_iter = priorityList.begin();
1427 list<ThreadID>::iterator end = priorityList.end();
1428
1429 ThreadID high_pri;
1430
1431 while (pri_iter != end) {
1432 high_pri = *pri_iter;
1433
1434 assert(high_pri <= numThreads);
1435
1436 if (fetchStatus[high_pri] == Running ||
1437 fetchStatus[high_pri] == IcacheAccessComplete ||
1438 fetchStatus[high_pri] == Idle) {
1439
1440 priorityList.erase(pri_iter);
1441 priorityList.push_back(high_pri);
1442
1443 return high_pri;
1444 }
1445
1446 pri_iter++;
1447 }
1448
1449 return InvalidThreadID;
1450}
1451
1452template<class Impl>
1453ThreadID
1454DefaultFetch<Impl>::iqCount()
1455{
1456 std::priority_queue<unsigned> PQ;
1457 std::map<unsigned, ThreadID> threadMap;
1458
1459 list<ThreadID>::iterator threads = activeThreads->begin();
1460 list<ThreadID>::iterator end = activeThreads->end();
1461
1462 while (threads != end) {
1463 ThreadID tid = *threads++;
1464 unsigned iqCount = fromIEW->iewInfo[tid].iqCount;
1465
1466 PQ.push(iqCount);
1467 threadMap[iqCount] = tid;
1468 }
1469
1470 while (!PQ.empty()) {
1471 ThreadID high_pri = threadMap[PQ.top()];
1472
1473 if (fetchStatus[high_pri] == Running ||
1474 fetchStatus[high_pri] == IcacheAccessComplete ||
1475 fetchStatus[high_pri] == Idle)
1476 return high_pri;
1477 else
1478 PQ.pop();
1479
1480 }
1481
1482 return InvalidThreadID;
1483}
1484
1485template<class Impl>
1486ThreadID
1487DefaultFetch<Impl>::lsqCount()
1488{
1489 std::priority_queue<unsigned> PQ;
1490 std::map<unsigned, ThreadID> threadMap;
1491
1492 list<ThreadID>::iterator threads = activeThreads->begin();
1493 list<ThreadID>::iterator end = activeThreads->end();
1494
1495 while (threads != end) {
1496 ThreadID tid = *threads++;
1497 unsigned ldstqCount = fromIEW->iewInfo[tid].ldstqCount;
1498
1499 PQ.push(ldstqCount);
1500 threadMap[ldstqCount] = tid;
1501 }
1502
1503 while (!PQ.empty()) {
1504 ThreadID high_pri = threadMap[PQ.top()];
1505
1506 if (fetchStatus[high_pri] == Running ||
1507 fetchStatus[high_pri] == IcacheAccessComplete ||
1508 fetchStatus[high_pri] == Idle)
1509 return high_pri;
1510 else
1511 PQ.pop();
1512 }
1513
1514 return InvalidThreadID;
1515}
1516
1517template<class Impl>
1518ThreadID
1519DefaultFetch<Impl>::branchCount()
1520{
1521#if 0
1522 list<ThreadID>::iterator thread = activeThreads->begin();
1523 assert(thread != activeThreads->end());
1524 ThreadID tid = *thread;
1525#endif
1526
1527 panic("Branch Count Fetch policy unimplemented\n");
1528 return InvalidThreadID;
1529}
1530
1531template<class Impl>
1532void
1533DefaultFetch<Impl>::pipelineIcacheAccesses(ThreadID tid)
1534{
1535 if (!issuePipelinedIfetch[tid]) {
1536 return;
1537 }
1538
1539 // The next PC to access.
1540 TheISA::PCState thisPC = pc[tid];
1541
1542 if (isRomMicroPC(thisPC.microPC())) {
1543 return;
1544 }
1545
1546 Addr pcOffset = fetchOffset[tid];
1547 Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1548
1549 // Align the fetch PC so its at the start of a cache block.
1550 Addr block_PC = icacheBlockAlignPC(fetchAddr);
1551
1552 // Unless buffer already got the block, fetch it from icache.
1553 if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])) {
1554 DPRINTF(Fetch, "[tid:%i]: Issuing a pipelined I-cache access, "
1555 "starting at PC %s.\n", tid, thisPC);
1556
1557 fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1558 }
1559}
1560
1561template<class Impl>
1562void
1563DefaultFetch<Impl>::profileStall(ThreadID tid) {
1564 DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1565
1566 // @todo Per-thread stats
1567
1568 if (drainPending) {
1569 ++fetchPendingDrainCycles;
1570 DPRINTF(Fetch, "Fetch is waiting for a drain!\n");
1571 } else if (activeThreads->empty()) {
1572 ++fetchNoActiveThreadStallCycles;
1573 DPRINTF(Fetch, "Fetch has no active thread!\n");
1574 } else if (fetchStatus[tid] == Blocked) {
1575 ++fetchBlockedCycles;
1576 DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1577 } else if (fetchStatus[tid] == Squashing) {
1578 ++fetchSquashCycles;
1579 DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1580 } else if (fetchStatus[tid] == IcacheWaitResponse) {
1581 ++icacheStallCycles;
1582 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n",
1583 tid);
1584 } else if (fetchStatus[tid] == ItlbWait) {
1585 ++fetchTlbCycles;
1586 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting ITLB walk to "
1587 "finish!\n", tid);
1588 } else if (fetchStatus[tid] == TrapPending) {
1589 ++fetchPendingTrapStallCycles;
1590 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending trap!\n",
1591 tid);
1592 } else if (fetchStatus[tid] == QuiescePending) {
1593 ++fetchPendingQuiesceStallCycles;
1594 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending quiesce "
1595 "instruction!\n", tid);
1596 } else if (fetchStatus[tid] == IcacheWaitRetry) {
1597 ++fetchIcacheWaitRetryStallCycles;
1598 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for an I-cache retry!\n",
1599 tid);
1600 } else if (fetchStatus[tid] == NoGoodAddr) {
1601 DPRINTF(Fetch, "[tid:%i]: Fetch predicted non-executable address\n",
1602 tid);
1603 } else {
1604 DPRINTF(Fetch, "[tid:%i]: Unexpected fetch stall reason (Status: %i).\n",
1605 tid, fetchStatus[tid]);
1606 }
1607}