fetch_impl.hh (8832:247fee427324) fetch_impl.hh (8850:ed91b534ed04)
1/*
2 * Copyright (c) 2010-2011 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 * Korey Sewell
42 */
43
44#include <algorithm>
45#include <cstring>
46#include <list>
47#include <map>
48#include <queue>
49
50#include "arch/isa_traits.hh"
51#include "arch/tlb.hh"
52#include "arch/utility.hh"
53#include "arch/vtophys.hh"
54#include "base/types.hh"
55#include "config/the_isa.hh"
56#include "config/use_checker.hh"
57#include "cpu/base.hh"
58#include "cpu/o3/fetch.hh"
59#include "cpu/exetrace.hh"
60#include "debug/Activity.hh"
61#include "debug/Fetch.hh"
62#include "mem/packet.hh"
63#include "mem/request.hh"
64#include "params/DerivO3CPU.hh"
65#include "sim/byteswap.hh"
66#include "sim/core.hh"
67#include "sim/eventq.hh"
68#include "sim/full_system.hh"
69#include "sim/system.hh"
70
71#if USE_CHECKER
72#include "cpu/checker/cpu.hh"
73#endif // USE_CHECKER
74
75using namespace std;
76
77template<class Impl>
78DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
79 : cpu(_cpu),
80 branchPred(params),
81 predecoder(NULL),
82 numInst(0),
83 decodeToFetchDelay(params->decodeToFetchDelay),
84 renameToFetchDelay(params->renameToFetchDelay),
85 iewToFetchDelay(params->iewToFetchDelay),
86 commitToFetchDelay(params->commitToFetchDelay),
87 fetchWidth(params->fetchWidth),
88 cacheBlocked(false),
89 retryPkt(NULL),
90 retryTid(InvalidThreadID),
91 numThreads(params->numThreads),
92 numFetchingThreads(params->smtNumFetchingThreads),
93 interruptPending(false),
94 drainPending(false),
95 switchedOut(false),
96 finishTranslationEvent(this)
97{
98 if (numThreads > Impl::MaxThreads)
99 fatal("numThreads (%d) is larger than compiled limit (%d),\n"
100 "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
101 numThreads, static_cast<int>(Impl::MaxThreads));
102
103 // Set fetch stage's status to inactive.
104 _status = Inactive;
105
106 std::string policy = params->smtFetchPolicy;
107
108 // Convert string to lowercase
109 std::transform(policy.begin(), policy.end(), policy.begin(),
110 (int(*)(int)) tolower);
111
112 // Figure out fetch policy
113 if (policy == "singlethread") {
114 fetchPolicy = SingleThread;
115 if (numThreads > 1)
116 panic("Invalid Fetch Policy for a SMT workload.");
117 } else if (policy == "roundrobin") {
118 fetchPolicy = RoundRobin;
119 DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
120 } else if (policy == "branch") {
121 fetchPolicy = Branch;
122 DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
123 } else if (policy == "iqcount") {
124 fetchPolicy = IQ;
125 DPRINTF(Fetch, "Fetch policy set to IQ count\n");
126 } else if (policy == "lsqcount") {
127 fetchPolicy = LSQ;
128 DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
129 } else {
130 fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
131 " RoundRobin,LSQcount,IQcount}\n");
132 }
133
134 // Get the size of an instruction.
135 instSize = sizeof(TheISA::MachInst);
136}
137
138template <class Impl>
139std::string
140DefaultFetch<Impl>::name() const
141{
142 return cpu->name() + ".fetch";
143}
144
145template <class Impl>
146void
147DefaultFetch<Impl>::regStats()
148{
149 icacheStallCycles
150 .name(name() + ".icacheStallCycles")
151 .desc("Number of cycles fetch is stalled on an Icache miss")
152 .prereq(icacheStallCycles);
153
154 fetchedInsts
155 .name(name() + ".Insts")
156 .desc("Number of instructions fetch has processed")
157 .prereq(fetchedInsts);
158
159 fetchedBranches
160 .name(name() + ".Branches")
161 .desc("Number of branches that fetch encountered")
162 .prereq(fetchedBranches);
163
164 predictedBranches
165 .name(name() + ".predictedBranches")
166 .desc("Number of branches that fetch has predicted taken")
167 .prereq(predictedBranches);
168
169 fetchCycles
170 .name(name() + ".Cycles")
171 .desc("Number of cycles fetch has run and was not squashing or"
172 " blocked")
173 .prereq(fetchCycles);
174
175 fetchSquashCycles
176 .name(name() + ".SquashCycles")
177 .desc("Number of cycles fetch has spent squashing")
178 .prereq(fetchSquashCycles);
179
180 fetchTlbCycles
181 .name(name() + ".TlbCycles")
182 .desc("Number of cycles fetch has spent waiting for tlb")
183 .prereq(fetchTlbCycles);
184
185 fetchIdleCycles
186 .name(name() + ".IdleCycles")
187 .desc("Number of cycles fetch was idle")
188 .prereq(fetchIdleCycles);
189
190 fetchBlockedCycles
191 .name(name() + ".BlockedCycles")
192 .desc("Number of cycles fetch has spent blocked")
193 .prereq(fetchBlockedCycles);
194
195 fetchedCacheLines
196 .name(name() + ".CacheLines")
197 .desc("Number of cache lines fetched")
198 .prereq(fetchedCacheLines);
199
200 fetchMiscStallCycles
201 .name(name() + ".MiscStallCycles")
202 .desc("Number of cycles fetch has spent waiting on interrupts, or "
203 "bad addresses, or out of MSHRs")
204 .prereq(fetchMiscStallCycles);
205
206 fetchPendingDrainCycles
207 .name(name() + ".PendingDrainCycles")
208 .desc("Number of cycles fetch has spent waiting on pipes to drain")
209 .prereq(fetchPendingDrainCycles);
210
211 fetchNoActiveThreadStallCycles
212 .name(name() + ".NoActiveThreadStallCycles")
213 .desc("Number of stall cycles due to no active thread to fetch from")
214 .prereq(fetchNoActiveThreadStallCycles);
215
216 fetchPendingTrapStallCycles
217 .name(name() + ".PendingTrapStallCycles")
218 .desc("Number of stall cycles due to pending traps")
219 .prereq(fetchPendingTrapStallCycles);
220
221 fetchPendingQuiesceStallCycles
222 .name(name() + ".PendingQuiesceStallCycles")
223 .desc("Number of stall cycles due to pending quiesce instructions")
224 .prereq(fetchPendingQuiesceStallCycles);
225
226 fetchIcacheWaitRetryStallCycles
227 .name(name() + ".IcacheWaitRetryStallCycles")
228 .desc("Number of stall cycles due to full MSHR")
229 .prereq(fetchIcacheWaitRetryStallCycles);
230
231 fetchIcacheSquashes
232 .name(name() + ".IcacheSquashes")
233 .desc("Number of outstanding Icache misses that were squashed")
234 .prereq(fetchIcacheSquashes);
235
236 fetchTlbSquashes
237 .name(name() + ".ItlbSquashes")
238 .desc("Number of outstanding ITLB misses that were squashed")
239 .prereq(fetchTlbSquashes);
240
241 fetchNisnDist
242 .init(/* base value */ 0,
243 /* last value */ fetchWidth,
244 /* bucket size */ 1)
245 .name(name() + ".rateDist")
246 .desc("Number of instructions fetched each cycle (Total)")
247 .flags(Stats::pdf);
248
249 idleRate
250 .name(name() + ".idleRate")
251 .desc("Percent of cycles fetch was idle")
252 .prereq(idleRate);
253 idleRate = fetchIdleCycles * 100 / cpu->numCycles;
254
255 branchRate
256 .name(name() + ".branchRate")
257 .desc("Number of branch fetches per cycle")
258 .flags(Stats::total);
259 branchRate = fetchedBranches / cpu->numCycles;
260
261 fetchRate
262 .name(name() + ".rate")
263 .desc("Number of inst fetches per cycle")
264 .flags(Stats::total);
265 fetchRate = fetchedInsts / cpu->numCycles;
266
267 branchPred.regStats();
268}
269
270template<class Impl>
271void
272DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
273{
274 timeBuffer = time_buffer;
275
276 // Create wires to get information from proper places in time buffer.
277 fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
278 fromRename = timeBuffer->getWire(-renameToFetchDelay);
279 fromIEW = timeBuffer->getWire(-iewToFetchDelay);
280 fromCommit = timeBuffer->getWire(-commitToFetchDelay);
281}
282
283template<class Impl>
284void
285DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
286{
287 activeThreads = at_ptr;
288}
289
290template<class Impl>
291void
292DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
293{
294 fetchQueue = fq_ptr;
295
296 // Create wire to write information to proper place in fetch queue.
297 toDecode = fetchQueue->getWire(0);
298}
299
300template<class Impl>
301void
302DefaultFetch<Impl>::initStage()
303{
304 // Setup PC and nextPC with initial state.
305 for (ThreadID tid = 0; tid < numThreads; tid++) {
306 pc[tid] = cpu->pcState(tid);
307 fetchOffset[tid] = 0;
308 macroop[tid] = NULL;
309 delayedCommit[tid] = false;
310 }
311
312 for (ThreadID tid = 0; tid < numThreads; tid++) {
313
314 fetchStatus[tid] = Running;
315
316 priorityList.push_back(tid);
317
318 memReq[tid] = NULL;
319
320 stalls[tid].decode = false;
321 stalls[tid].rename = false;
322 stalls[tid].iew = false;
323 stalls[tid].commit = false;
324 }
325
326 // Schedule fetch to get the correct PC from the CPU
327 // scheduleFetchStartupEvent(1);
328
329 // Fetch needs to start fetching instructions at the very beginning,
330 // so it must start up in active state.
331 switchToActive();
332}
333
334template<class Impl>
335void
336DefaultFetch<Impl>::setIcache()
337{
1/*
2 * Copyright (c) 2010-2011 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 * Korey Sewell
42 */
43
44#include <algorithm>
45#include <cstring>
46#include <list>
47#include <map>
48#include <queue>
49
50#include "arch/isa_traits.hh"
51#include "arch/tlb.hh"
52#include "arch/utility.hh"
53#include "arch/vtophys.hh"
54#include "base/types.hh"
55#include "config/the_isa.hh"
56#include "config/use_checker.hh"
57#include "cpu/base.hh"
58#include "cpu/o3/fetch.hh"
59#include "cpu/exetrace.hh"
60#include "debug/Activity.hh"
61#include "debug/Fetch.hh"
62#include "mem/packet.hh"
63#include "mem/request.hh"
64#include "params/DerivO3CPU.hh"
65#include "sim/byteswap.hh"
66#include "sim/core.hh"
67#include "sim/eventq.hh"
68#include "sim/full_system.hh"
69#include "sim/system.hh"
70
71#if USE_CHECKER
72#include "cpu/checker/cpu.hh"
73#endif // USE_CHECKER
74
75using namespace std;
76
77template<class Impl>
78DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
79 : cpu(_cpu),
80 branchPred(params),
81 predecoder(NULL),
82 numInst(0),
83 decodeToFetchDelay(params->decodeToFetchDelay),
84 renameToFetchDelay(params->renameToFetchDelay),
85 iewToFetchDelay(params->iewToFetchDelay),
86 commitToFetchDelay(params->commitToFetchDelay),
87 fetchWidth(params->fetchWidth),
88 cacheBlocked(false),
89 retryPkt(NULL),
90 retryTid(InvalidThreadID),
91 numThreads(params->numThreads),
92 numFetchingThreads(params->smtNumFetchingThreads),
93 interruptPending(false),
94 drainPending(false),
95 switchedOut(false),
96 finishTranslationEvent(this)
97{
98 if (numThreads > Impl::MaxThreads)
99 fatal("numThreads (%d) is larger than compiled limit (%d),\n"
100 "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
101 numThreads, static_cast<int>(Impl::MaxThreads));
102
103 // Set fetch stage's status to inactive.
104 _status = Inactive;
105
106 std::string policy = params->smtFetchPolicy;
107
108 // Convert string to lowercase
109 std::transform(policy.begin(), policy.end(), policy.begin(),
110 (int(*)(int)) tolower);
111
112 // Figure out fetch policy
113 if (policy == "singlethread") {
114 fetchPolicy = SingleThread;
115 if (numThreads > 1)
116 panic("Invalid Fetch Policy for a SMT workload.");
117 } else if (policy == "roundrobin") {
118 fetchPolicy = RoundRobin;
119 DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
120 } else if (policy == "branch") {
121 fetchPolicy = Branch;
122 DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
123 } else if (policy == "iqcount") {
124 fetchPolicy = IQ;
125 DPRINTF(Fetch, "Fetch policy set to IQ count\n");
126 } else if (policy == "lsqcount") {
127 fetchPolicy = LSQ;
128 DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
129 } else {
130 fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
131 " RoundRobin,LSQcount,IQcount}\n");
132 }
133
134 // Get the size of an instruction.
135 instSize = sizeof(TheISA::MachInst);
136}
137
138template <class Impl>
139std::string
140DefaultFetch<Impl>::name() const
141{
142 return cpu->name() + ".fetch";
143}
144
145template <class Impl>
146void
147DefaultFetch<Impl>::regStats()
148{
149 icacheStallCycles
150 .name(name() + ".icacheStallCycles")
151 .desc("Number of cycles fetch is stalled on an Icache miss")
152 .prereq(icacheStallCycles);
153
154 fetchedInsts
155 .name(name() + ".Insts")
156 .desc("Number of instructions fetch has processed")
157 .prereq(fetchedInsts);
158
159 fetchedBranches
160 .name(name() + ".Branches")
161 .desc("Number of branches that fetch encountered")
162 .prereq(fetchedBranches);
163
164 predictedBranches
165 .name(name() + ".predictedBranches")
166 .desc("Number of branches that fetch has predicted taken")
167 .prereq(predictedBranches);
168
169 fetchCycles
170 .name(name() + ".Cycles")
171 .desc("Number of cycles fetch has run and was not squashing or"
172 " blocked")
173 .prereq(fetchCycles);
174
175 fetchSquashCycles
176 .name(name() + ".SquashCycles")
177 .desc("Number of cycles fetch has spent squashing")
178 .prereq(fetchSquashCycles);
179
180 fetchTlbCycles
181 .name(name() + ".TlbCycles")
182 .desc("Number of cycles fetch has spent waiting for tlb")
183 .prereq(fetchTlbCycles);
184
185 fetchIdleCycles
186 .name(name() + ".IdleCycles")
187 .desc("Number of cycles fetch was idle")
188 .prereq(fetchIdleCycles);
189
190 fetchBlockedCycles
191 .name(name() + ".BlockedCycles")
192 .desc("Number of cycles fetch has spent blocked")
193 .prereq(fetchBlockedCycles);
194
195 fetchedCacheLines
196 .name(name() + ".CacheLines")
197 .desc("Number of cache lines fetched")
198 .prereq(fetchedCacheLines);
199
200 fetchMiscStallCycles
201 .name(name() + ".MiscStallCycles")
202 .desc("Number of cycles fetch has spent waiting on interrupts, or "
203 "bad addresses, or out of MSHRs")
204 .prereq(fetchMiscStallCycles);
205
206 fetchPendingDrainCycles
207 .name(name() + ".PendingDrainCycles")
208 .desc("Number of cycles fetch has spent waiting on pipes to drain")
209 .prereq(fetchPendingDrainCycles);
210
211 fetchNoActiveThreadStallCycles
212 .name(name() + ".NoActiveThreadStallCycles")
213 .desc("Number of stall cycles due to no active thread to fetch from")
214 .prereq(fetchNoActiveThreadStallCycles);
215
216 fetchPendingTrapStallCycles
217 .name(name() + ".PendingTrapStallCycles")
218 .desc("Number of stall cycles due to pending traps")
219 .prereq(fetchPendingTrapStallCycles);
220
221 fetchPendingQuiesceStallCycles
222 .name(name() + ".PendingQuiesceStallCycles")
223 .desc("Number of stall cycles due to pending quiesce instructions")
224 .prereq(fetchPendingQuiesceStallCycles);
225
226 fetchIcacheWaitRetryStallCycles
227 .name(name() + ".IcacheWaitRetryStallCycles")
228 .desc("Number of stall cycles due to full MSHR")
229 .prereq(fetchIcacheWaitRetryStallCycles);
230
231 fetchIcacheSquashes
232 .name(name() + ".IcacheSquashes")
233 .desc("Number of outstanding Icache misses that were squashed")
234 .prereq(fetchIcacheSquashes);
235
236 fetchTlbSquashes
237 .name(name() + ".ItlbSquashes")
238 .desc("Number of outstanding ITLB misses that were squashed")
239 .prereq(fetchTlbSquashes);
240
241 fetchNisnDist
242 .init(/* base value */ 0,
243 /* last value */ fetchWidth,
244 /* bucket size */ 1)
245 .name(name() + ".rateDist")
246 .desc("Number of instructions fetched each cycle (Total)")
247 .flags(Stats::pdf);
248
249 idleRate
250 .name(name() + ".idleRate")
251 .desc("Percent of cycles fetch was idle")
252 .prereq(idleRate);
253 idleRate = fetchIdleCycles * 100 / cpu->numCycles;
254
255 branchRate
256 .name(name() + ".branchRate")
257 .desc("Number of branch fetches per cycle")
258 .flags(Stats::total);
259 branchRate = fetchedBranches / cpu->numCycles;
260
261 fetchRate
262 .name(name() + ".rate")
263 .desc("Number of inst fetches per cycle")
264 .flags(Stats::total);
265 fetchRate = fetchedInsts / cpu->numCycles;
266
267 branchPred.regStats();
268}
269
270template<class Impl>
271void
272DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
273{
274 timeBuffer = time_buffer;
275
276 // Create wires to get information from proper places in time buffer.
277 fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
278 fromRename = timeBuffer->getWire(-renameToFetchDelay);
279 fromIEW = timeBuffer->getWire(-iewToFetchDelay);
280 fromCommit = timeBuffer->getWire(-commitToFetchDelay);
281}
282
283template<class Impl>
284void
285DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
286{
287 activeThreads = at_ptr;
288}
289
290template<class Impl>
291void
292DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
293{
294 fetchQueue = fq_ptr;
295
296 // Create wire to write information to proper place in fetch queue.
297 toDecode = fetchQueue->getWire(0);
298}
299
300template<class Impl>
301void
302DefaultFetch<Impl>::initStage()
303{
304 // Setup PC and nextPC with initial state.
305 for (ThreadID tid = 0; tid < numThreads; tid++) {
306 pc[tid] = cpu->pcState(tid);
307 fetchOffset[tid] = 0;
308 macroop[tid] = NULL;
309 delayedCommit[tid] = false;
310 }
311
312 for (ThreadID tid = 0; tid < numThreads; tid++) {
313
314 fetchStatus[tid] = Running;
315
316 priorityList.push_back(tid);
317
318 memReq[tid] = NULL;
319
320 stalls[tid].decode = false;
321 stalls[tid].rename = false;
322 stalls[tid].iew = false;
323 stalls[tid].commit = false;
324 }
325
326 // Schedule fetch to get the correct PC from the CPU
327 // scheduleFetchStartupEvent(1);
328
329 // Fetch needs to start fetching instructions at the very beginning,
330 // so it must start up in active state.
331 switchToActive();
332}
333
334template<class Impl>
335void
336DefaultFetch<Impl>::setIcache()
337{
338 assert(cpu->getIcachePort()->isConnected());
338 assert(cpu->getInstPort().isConnected());
339
340 // Size of cache block.
339
340 // Size of cache block.
341 cacheBlkSize = cpu->getIcachePort()->peerBlockSize();
341 cacheBlkSize = cpu->getInstPort().peerBlockSize();
342
343 // Create mask to get rid of offset bits.
344 cacheBlkMask = (cacheBlkSize - 1);
345
346 for (ThreadID tid = 0; tid < numThreads; tid++) {
347 // Create space to store a cache line.
348 cacheData[tid] = new uint8_t[cacheBlkSize];
349 cacheDataPC[tid] = 0;
350 cacheDataValid[tid] = false;
351 }
352}
353
354template<class Impl>
355void
356DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
357{
358 ThreadID tid = pkt->req->threadId();
359
360 DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n", tid);
361
362 assert(!pkt->wasNacked());
363
364 // Only change the status if it's still waiting on the icache access
365 // to return.
366 if (fetchStatus[tid] != IcacheWaitResponse ||
367 pkt->req != memReq[tid] ||
368 isSwitchedOut()) {
369 ++fetchIcacheSquashes;
370 delete pkt->req;
371 delete pkt;
372 return;
373 }
374
375 memcpy(cacheData[tid], pkt->getPtr<uint8_t>(), cacheBlkSize);
376 cacheDataValid[tid] = true;
377
378 if (!drainPending) {
379 // Wake up the CPU (if it went to sleep and was waiting on
380 // this completion event).
381 cpu->wakeCPU();
382
383 DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
384 tid);
385
386 switchToActive();
387 }
388
389 // Only switch to IcacheAccessComplete if we're not stalled as well.
390 if (checkStall(tid)) {
391 fetchStatus[tid] = Blocked;
392 } else {
393 fetchStatus[tid] = IcacheAccessComplete;
394 }
395
396 // Reset the mem req to NULL.
397 delete pkt->req;
398 delete pkt;
399 memReq[tid] = NULL;
400}
401
402template <class Impl>
403bool
404DefaultFetch<Impl>::drain()
405{
406 // Fetch is ready to drain at any time.
407 cpu->signalDrained();
408 drainPending = true;
409 return true;
410}
411
412template <class Impl>
413void
414DefaultFetch<Impl>::resume()
415{
416 drainPending = false;
417}
418
419template <class Impl>
420void
421DefaultFetch<Impl>::switchOut()
422{
423 switchedOut = true;
424 // Branch predictor needs to have its state cleared.
425 branchPred.switchOut();
426}
427
428template <class Impl>
429void
430DefaultFetch<Impl>::takeOverFrom()
431{
432 // the instruction port is now connected so we can get the block
433 // size
434 setIcache();
435
436 // Reset all state
437 for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
438 stalls[i].decode = 0;
439 stalls[i].rename = 0;
440 stalls[i].iew = 0;
441 stalls[i].commit = 0;
442 pc[i] = cpu->pcState(i);
443 fetchStatus[i] = Running;
444 }
445 numInst = 0;
446 wroteToTimeBuffer = false;
447 _status = Inactive;
448 switchedOut = false;
449 interruptPending = false;
450 branchPred.takeOverFrom();
451}
452
453template <class Impl>
454void
455DefaultFetch<Impl>::wakeFromQuiesce()
456{
457 DPRINTF(Fetch, "Waking up from quiesce\n");
458 // Hopefully this is safe
459 // @todo: Allow other threads to wake from quiesce.
460 fetchStatus[0] = Running;
461}
462
463template <class Impl>
464inline void
465DefaultFetch<Impl>::switchToActive()
466{
467 if (_status == Inactive) {
468 DPRINTF(Activity, "Activating stage.\n");
469
470 cpu->activateStage(O3CPU::FetchIdx);
471
472 _status = Active;
473 }
474}
475
476template <class Impl>
477inline void
478DefaultFetch<Impl>::switchToInactive()
479{
480 if (_status == Active) {
481 DPRINTF(Activity, "Deactivating stage.\n");
482
483 cpu->deactivateStage(O3CPU::FetchIdx);
484
485 _status = Inactive;
486 }
487}
488
489template <class Impl>
490bool
491DefaultFetch<Impl>::lookupAndUpdateNextPC(
492 DynInstPtr &inst, TheISA::PCState &nextPC)
493{
494 // Do branch prediction check here.
495 // A bit of a misnomer...next_PC is actually the current PC until
496 // this function updates it.
497 bool predict_taken;
498
499 if (!inst->isControl()) {
500 TheISA::advancePC(nextPC, inst->staticInst);
501 inst->setPredTarg(nextPC);
502 inst->setPredTaken(false);
503 return false;
504 }
505
506 ThreadID tid = inst->threadNumber;
507 predict_taken = branchPred.predict(inst, nextPC, tid);
508
509 if (predict_taken) {
510 DPRINTF(Fetch, "[tid:%i]: [sn:%i]: Branch predicted to be taken to %s.\n",
511 tid, inst->seqNum, nextPC);
512 } else {
513 DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n",
514 tid, inst->seqNum);
515 }
516
517 DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n",
518 tid, inst->seqNum, nextPC);
519 inst->setPredTarg(nextPC);
520 inst->setPredTaken(predict_taken);
521
522 ++fetchedBranches;
523
524 if (predict_taken) {
525 ++predictedBranches;
526 }
527
528 return predict_taken;
529}
530
531template <class Impl>
532bool
533DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, ThreadID tid, Addr pc)
534{
535 Fault fault = NoFault;
536
537 // @todo: not sure if these should block translation.
538 //AlphaDep
539 if (cacheBlocked) {
540 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
541 tid);
542 return false;
543 } else if (isSwitchedOut()) {
544 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n",
545 tid);
546 return false;
547 } else if (checkInterrupt(pc) && !delayedCommit[tid]) {
548 // Hold off fetch from getting new instructions when:
549 // Cache is blocked, or
550 // while an interrupt is pending and we're not in PAL mode, or
551 // fetch is switched out.
552 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
553 tid);
554 return false;
555 }
556
557 // Align the fetch address so it's at the start of a cache block.
558 Addr block_PC = icacheBlockAlignPC(vaddr);
559
560 DPRINTF(Fetch, "[tid:%i] Fetching cache line %#x for addr %#x\n",
561 tid, block_PC, vaddr);
562
563 // Setup the memReq to do a read of the first instruction's address.
564 // Set the appropriate read size and flags as well.
565 // Build request here.
566 RequestPtr mem_req =
567 new Request(tid, block_PC, cacheBlkSize, Request::INST_FETCH,
568 cpu->instMasterId(), pc, cpu->thread[tid]->contextId(), tid);
569
570 memReq[tid] = mem_req;
571
572 // Initiate translation of the icache block
573 fetchStatus[tid] = ItlbWait;
574 FetchTranslation *trans = new FetchTranslation(this);
575 cpu->itb->translateTiming(mem_req, cpu->thread[tid]->getTC(),
576 trans, BaseTLB::Execute);
577 return true;
578}
579
580template <class Impl>
581void
582DefaultFetch<Impl>::finishTranslation(Fault fault, RequestPtr mem_req)
583{
584 ThreadID tid = mem_req->threadId();
585 Addr block_PC = mem_req->getVaddr();
586
587 // Wake up CPU if it was idle
588 cpu->wakeCPU();
589
590 if (fetchStatus[tid] != ItlbWait || mem_req != memReq[tid] ||
591 mem_req->getVaddr() != memReq[tid]->getVaddr() || isSwitchedOut()) {
592 DPRINTF(Fetch, "[tid:%i] Ignoring itlb completed after squash\n",
593 tid);
594 ++fetchTlbSquashes;
595 delete mem_req;
596 return;
597 }
598
599
600 // If translation was successful, attempt to read the icache block.
601 if (fault == NoFault) {
602 // Check that we're not going off into random memory
603 // If we have, just wait around for commit to squash something and put
604 // us on the right track
605 if (!cpu->system->isMemory(mem_req->getPaddr())) {
606 warn("Address %#x is outside of physical memory, stopping fetch\n",
607 mem_req->getPaddr());
608 fetchStatus[tid] = NoGoodAddr;
609 delete mem_req;
610 memReq[tid] = NULL;
611 return;
612 }
613
614 // Build packet here.
615 PacketPtr data_pkt = new Packet(mem_req,
616 MemCmd::ReadReq, Packet::Broadcast);
617 data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
618
619 cacheDataPC[tid] = block_PC;
620 cacheDataValid[tid] = false;
621 DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
622
623 fetchedCacheLines++;
624
625 // Access the cache.
342
343 // Create mask to get rid of offset bits.
344 cacheBlkMask = (cacheBlkSize - 1);
345
346 for (ThreadID tid = 0; tid < numThreads; tid++) {
347 // Create space to store a cache line.
348 cacheData[tid] = new uint8_t[cacheBlkSize];
349 cacheDataPC[tid] = 0;
350 cacheDataValid[tid] = false;
351 }
352}
353
354template<class Impl>
355void
356DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
357{
358 ThreadID tid = pkt->req->threadId();
359
360 DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n", tid);
361
362 assert(!pkt->wasNacked());
363
364 // Only change the status if it's still waiting on the icache access
365 // to return.
366 if (fetchStatus[tid] != IcacheWaitResponse ||
367 pkt->req != memReq[tid] ||
368 isSwitchedOut()) {
369 ++fetchIcacheSquashes;
370 delete pkt->req;
371 delete pkt;
372 return;
373 }
374
375 memcpy(cacheData[tid], pkt->getPtr<uint8_t>(), cacheBlkSize);
376 cacheDataValid[tid] = true;
377
378 if (!drainPending) {
379 // Wake up the CPU (if it went to sleep and was waiting on
380 // this completion event).
381 cpu->wakeCPU();
382
383 DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
384 tid);
385
386 switchToActive();
387 }
388
389 // Only switch to IcacheAccessComplete if we're not stalled as well.
390 if (checkStall(tid)) {
391 fetchStatus[tid] = Blocked;
392 } else {
393 fetchStatus[tid] = IcacheAccessComplete;
394 }
395
396 // Reset the mem req to NULL.
397 delete pkt->req;
398 delete pkt;
399 memReq[tid] = NULL;
400}
401
402template <class Impl>
403bool
404DefaultFetch<Impl>::drain()
405{
406 // Fetch is ready to drain at any time.
407 cpu->signalDrained();
408 drainPending = true;
409 return true;
410}
411
412template <class Impl>
413void
414DefaultFetch<Impl>::resume()
415{
416 drainPending = false;
417}
418
419template <class Impl>
420void
421DefaultFetch<Impl>::switchOut()
422{
423 switchedOut = true;
424 // Branch predictor needs to have its state cleared.
425 branchPred.switchOut();
426}
427
428template <class Impl>
429void
430DefaultFetch<Impl>::takeOverFrom()
431{
432 // the instruction port is now connected so we can get the block
433 // size
434 setIcache();
435
436 // Reset all state
437 for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
438 stalls[i].decode = 0;
439 stalls[i].rename = 0;
440 stalls[i].iew = 0;
441 stalls[i].commit = 0;
442 pc[i] = cpu->pcState(i);
443 fetchStatus[i] = Running;
444 }
445 numInst = 0;
446 wroteToTimeBuffer = false;
447 _status = Inactive;
448 switchedOut = false;
449 interruptPending = false;
450 branchPred.takeOverFrom();
451}
452
453template <class Impl>
454void
455DefaultFetch<Impl>::wakeFromQuiesce()
456{
457 DPRINTF(Fetch, "Waking up from quiesce\n");
458 // Hopefully this is safe
459 // @todo: Allow other threads to wake from quiesce.
460 fetchStatus[0] = Running;
461}
462
463template <class Impl>
464inline void
465DefaultFetch<Impl>::switchToActive()
466{
467 if (_status == Inactive) {
468 DPRINTF(Activity, "Activating stage.\n");
469
470 cpu->activateStage(O3CPU::FetchIdx);
471
472 _status = Active;
473 }
474}
475
476template <class Impl>
477inline void
478DefaultFetch<Impl>::switchToInactive()
479{
480 if (_status == Active) {
481 DPRINTF(Activity, "Deactivating stage.\n");
482
483 cpu->deactivateStage(O3CPU::FetchIdx);
484
485 _status = Inactive;
486 }
487}
488
489template <class Impl>
490bool
491DefaultFetch<Impl>::lookupAndUpdateNextPC(
492 DynInstPtr &inst, TheISA::PCState &nextPC)
493{
494 // Do branch prediction check here.
495 // A bit of a misnomer...next_PC is actually the current PC until
496 // this function updates it.
497 bool predict_taken;
498
499 if (!inst->isControl()) {
500 TheISA::advancePC(nextPC, inst->staticInst);
501 inst->setPredTarg(nextPC);
502 inst->setPredTaken(false);
503 return false;
504 }
505
506 ThreadID tid = inst->threadNumber;
507 predict_taken = branchPred.predict(inst, nextPC, tid);
508
509 if (predict_taken) {
510 DPRINTF(Fetch, "[tid:%i]: [sn:%i]: Branch predicted to be taken to %s.\n",
511 tid, inst->seqNum, nextPC);
512 } else {
513 DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n",
514 tid, inst->seqNum);
515 }
516
517 DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n",
518 tid, inst->seqNum, nextPC);
519 inst->setPredTarg(nextPC);
520 inst->setPredTaken(predict_taken);
521
522 ++fetchedBranches;
523
524 if (predict_taken) {
525 ++predictedBranches;
526 }
527
528 return predict_taken;
529}
530
531template <class Impl>
532bool
533DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, ThreadID tid, Addr pc)
534{
535 Fault fault = NoFault;
536
537 // @todo: not sure if these should block translation.
538 //AlphaDep
539 if (cacheBlocked) {
540 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
541 tid);
542 return false;
543 } else if (isSwitchedOut()) {
544 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n",
545 tid);
546 return false;
547 } else if (checkInterrupt(pc) && !delayedCommit[tid]) {
548 // Hold off fetch from getting new instructions when:
549 // Cache is blocked, or
550 // while an interrupt is pending and we're not in PAL mode, or
551 // fetch is switched out.
552 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
553 tid);
554 return false;
555 }
556
557 // Align the fetch address so it's at the start of a cache block.
558 Addr block_PC = icacheBlockAlignPC(vaddr);
559
560 DPRINTF(Fetch, "[tid:%i] Fetching cache line %#x for addr %#x\n",
561 tid, block_PC, vaddr);
562
563 // Setup the memReq to do a read of the first instruction's address.
564 // Set the appropriate read size and flags as well.
565 // Build request here.
566 RequestPtr mem_req =
567 new Request(tid, block_PC, cacheBlkSize, Request::INST_FETCH,
568 cpu->instMasterId(), pc, cpu->thread[tid]->contextId(), tid);
569
570 memReq[tid] = mem_req;
571
572 // Initiate translation of the icache block
573 fetchStatus[tid] = ItlbWait;
574 FetchTranslation *trans = new FetchTranslation(this);
575 cpu->itb->translateTiming(mem_req, cpu->thread[tid]->getTC(),
576 trans, BaseTLB::Execute);
577 return true;
578}
579
580template <class Impl>
581void
582DefaultFetch<Impl>::finishTranslation(Fault fault, RequestPtr mem_req)
583{
584 ThreadID tid = mem_req->threadId();
585 Addr block_PC = mem_req->getVaddr();
586
587 // Wake up CPU if it was idle
588 cpu->wakeCPU();
589
590 if (fetchStatus[tid] != ItlbWait || mem_req != memReq[tid] ||
591 mem_req->getVaddr() != memReq[tid]->getVaddr() || isSwitchedOut()) {
592 DPRINTF(Fetch, "[tid:%i] Ignoring itlb completed after squash\n",
593 tid);
594 ++fetchTlbSquashes;
595 delete mem_req;
596 return;
597 }
598
599
600 // If translation was successful, attempt to read the icache block.
601 if (fault == NoFault) {
602 // Check that we're not going off into random memory
603 // If we have, just wait around for commit to squash something and put
604 // us on the right track
605 if (!cpu->system->isMemory(mem_req->getPaddr())) {
606 warn("Address %#x is outside of physical memory, stopping fetch\n",
607 mem_req->getPaddr());
608 fetchStatus[tid] = NoGoodAddr;
609 delete mem_req;
610 memReq[tid] = NULL;
611 return;
612 }
613
614 // Build packet here.
615 PacketPtr data_pkt = new Packet(mem_req,
616 MemCmd::ReadReq, Packet::Broadcast);
617 data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
618
619 cacheDataPC[tid] = block_PC;
620 cacheDataValid[tid] = false;
621 DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
622
623 fetchedCacheLines++;
624
625 // Access the cache.
626 if (!cpu->getIcachePort()->sendTiming(data_pkt)) {
626 if (!cpu->getInstPort().sendTiming(data_pkt)) {
627 assert(retryPkt == NULL);
628 assert(retryTid == InvalidThreadID);
629 DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
630
631 fetchStatus[tid] = IcacheWaitRetry;
632 retryPkt = data_pkt;
633 retryTid = tid;
634 cacheBlocked = true;
635 } else {
636 DPRINTF(Fetch, "[tid:%i]: Doing Icache access.\n", tid);
637 DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
638 "response.\n", tid);
639
640 lastIcacheStall[tid] = curTick();
641 fetchStatus[tid] = IcacheWaitResponse;
642 }
643 } else {
644 if (!(numInst < fetchWidth)) {
645 assert(!finishTranslationEvent.scheduled());
646 finishTranslationEvent.setFault(fault);
647 finishTranslationEvent.setReq(mem_req);
648 cpu->schedule(finishTranslationEvent, cpu->nextCycle(curTick() + cpu->ticks(1)));
649 return;
650 }
651 DPRINTF(Fetch, "[tid:%i] Got back req with addr %#x but expected %#x\n",
652 tid, mem_req->getVaddr(), memReq[tid]->getVaddr());
653 // Translation faulted, icache request won't be sent.
654 delete mem_req;
655 memReq[tid] = NULL;
656
657 // Send the fault to commit. This thread will not do anything
658 // until commit handles the fault. The only other way it can
659 // wake up is if a squash comes along and changes the PC.
660 TheISA::PCState fetchPC = pc[tid];
661
662 DPRINTF(Fetch, "[tid:%i]: Translation faulted, building noop.\n", tid);
663 // We will use a nop in ordier to carry the fault.
664 DynInstPtr instruction = buildInst(tid,
665 decoder.decode(TheISA::NoopMachInst, fetchPC.instAddr()),
666 NULL, fetchPC, fetchPC, false);
667
668 instruction->setPredTarg(fetchPC);
669 instruction->fault = fault;
670 wroteToTimeBuffer = true;
671
672 DPRINTF(Activity, "Activity this cycle.\n");
673 cpu->activityThisCycle();
674
675 fetchStatus[tid] = TrapPending;
676
677 DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n", tid);
678 DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s.\n",
679 tid, fault->name(), pc[tid]);
680 }
681 _status = updateFetchStatus();
682}
683
684template <class Impl>
685inline void
686DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC,
687 const DynInstPtr squashInst, ThreadID tid)
688{
689 DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n",
690 tid, newPC);
691
692 pc[tid] = newPC;
693 fetchOffset[tid] = 0;
694 if (squashInst && squashInst->pcState().instAddr() == newPC.instAddr())
695 macroop[tid] = squashInst->macroop;
696 else
697 macroop[tid] = NULL;
698 predecoder.reset();
699
700 // Clear the icache miss if it's outstanding.
701 if (fetchStatus[tid] == IcacheWaitResponse) {
702 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
703 tid);
704 memReq[tid] = NULL;
705 } else if (fetchStatus[tid] == ItlbWait) {
706 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding ITLB miss.\n",
707 tid);
708 memReq[tid] = NULL;
709 }
710
711 // Get rid of the retrying packet if it was from this thread.
712 if (retryTid == tid) {
713 assert(cacheBlocked);
714 if (retryPkt) {
715 delete retryPkt->req;
716 delete retryPkt;
717 }
718 retryPkt = NULL;
719 retryTid = InvalidThreadID;
720 }
721
722 fetchStatus[tid] = Squashing;
723
724 // microops are being squashed, it is not known wheather the
725 // youngest non-squashed microop was marked delayed commit
726 // or not. Setting the flag to true ensures that the
727 // interrupts are not handled when they cannot be, though
728 // some opportunities to handle interrupts may be missed.
729 delayedCommit[tid] = true;
730
731 ++fetchSquashCycles;
732}
733
734template<class Impl>
735void
736DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
737 const DynInstPtr squashInst,
738 const InstSeqNum seq_num, ThreadID tid)
739{
740 DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid);
741
742 doSquash(newPC, squashInst, tid);
743
744 // Tell the CPU to remove any instructions that are in flight between
745 // fetch and decode.
746 cpu->removeInstsUntil(seq_num, tid);
747}
748
749template<class Impl>
750bool
751DefaultFetch<Impl>::checkStall(ThreadID tid) const
752{
753 bool ret_val = false;
754
755 if (cpu->contextSwitch) {
756 DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
757 ret_val = true;
758 } else if (stalls[tid].decode) {
759 DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
760 ret_val = true;
761 } else if (stalls[tid].rename) {
762 DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
763 ret_val = true;
764 } else if (stalls[tid].iew) {
765 DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
766 ret_val = true;
767 } else if (stalls[tid].commit) {
768 DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
769 ret_val = true;
770 }
771
772 return ret_val;
773}
774
775template<class Impl>
776typename DefaultFetch<Impl>::FetchStatus
777DefaultFetch<Impl>::updateFetchStatus()
778{
779 //Check Running
780 list<ThreadID>::iterator threads = activeThreads->begin();
781 list<ThreadID>::iterator end = activeThreads->end();
782
783 while (threads != end) {
784 ThreadID tid = *threads++;
785
786 if (fetchStatus[tid] == Running ||
787 fetchStatus[tid] == Squashing ||
788 fetchStatus[tid] == IcacheAccessComplete) {
789
790 if (_status == Inactive) {
791 DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
792
793 if (fetchStatus[tid] == IcacheAccessComplete) {
794 DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
795 "completion\n",tid);
796 }
797
798 cpu->activateStage(O3CPU::FetchIdx);
799 }
800
801 return Active;
802 }
803 }
804
805 // Stage is switching from active to inactive, notify CPU of it.
806 if (_status == Active) {
807 DPRINTF(Activity, "Deactivating stage.\n");
808
809 cpu->deactivateStage(O3CPU::FetchIdx);
810 }
811
812 return Inactive;
813}
814
815template <class Impl>
816void
817DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
818 const InstSeqNum seq_num, DynInstPtr squashInst,
819 ThreadID tid)
820{
821 DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid);
822
823 doSquash(newPC, squashInst, tid);
824
825 // Tell the CPU to remove any instructions that are not in the ROB.
826 cpu->removeInstsNotInROB(tid);
827}
828
829template <class Impl>
830void
831DefaultFetch<Impl>::tick()
832{
833 list<ThreadID>::iterator threads = activeThreads->begin();
834 list<ThreadID>::iterator end = activeThreads->end();
835 bool status_change = false;
836
837 wroteToTimeBuffer = false;
838
839 for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
840 issuePipelinedIfetch[i] = false;
841 }
842
843 while (threads != end) {
844 ThreadID tid = *threads++;
845
846 // Check the signals for each thread to determine the proper status
847 // for each thread.
848 bool updated_status = checkSignalsAndUpdate(tid);
849 status_change = status_change || updated_status;
850 }
851
852 DPRINTF(Fetch, "Running stage.\n");
853
854 if (FullSystem) {
855 if (fromCommit->commitInfo[0].interruptPending) {
856 interruptPending = true;
857 }
858
859 if (fromCommit->commitInfo[0].clearInterrupt) {
860 interruptPending = false;
861 }
862 }
863
864 for (threadFetched = 0; threadFetched < numFetchingThreads;
865 threadFetched++) {
866 // Fetch each of the actively fetching threads.
867 fetch(status_change);
868 }
869
870 // Record number of instructions fetched this cycle for distribution.
871 fetchNisnDist.sample(numInst);
872
873 if (status_change) {
874 // Change the fetch stage status if there was a status change.
875 _status = updateFetchStatus();
876 }
877
878 // If there was activity this cycle, inform the CPU of it.
879 if (wroteToTimeBuffer || cpu->contextSwitch) {
880 DPRINTF(Activity, "Activity this cycle.\n");
881
882 cpu->activityThisCycle();
883 }
884
885 // Issue the next I-cache request if possible.
886 for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
887 if (issuePipelinedIfetch[i]) {
888 pipelineIcacheAccesses(i);
889 }
890 }
891
892 // Reset the number of the instruction we've fetched.
893 numInst = 0;
894}
895
896template <class Impl>
897bool
898DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
899{
900 // Update the per thread stall statuses.
901 if (fromDecode->decodeBlock[tid]) {
902 stalls[tid].decode = true;
903 }
904
905 if (fromDecode->decodeUnblock[tid]) {
906 assert(stalls[tid].decode);
907 assert(!fromDecode->decodeBlock[tid]);
908 stalls[tid].decode = false;
909 }
910
911 if (fromRename->renameBlock[tid]) {
912 stalls[tid].rename = true;
913 }
914
915 if (fromRename->renameUnblock[tid]) {
916 assert(stalls[tid].rename);
917 assert(!fromRename->renameBlock[tid]);
918 stalls[tid].rename = false;
919 }
920
921 if (fromIEW->iewBlock[tid]) {
922 stalls[tid].iew = true;
923 }
924
925 if (fromIEW->iewUnblock[tid]) {
926 assert(stalls[tid].iew);
927 assert(!fromIEW->iewBlock[tid]);
928 stalls[tid].iew = false;
929 }
930
931 if (fromCommit->commitBlock[tid]) {
932 stalls[tid].commit = true;
933 }
934
935 if (fromCommit->commitUnblock[tid]) {
936 assert(stalls[tid].commit);
937 assert(!fromCommit->commitBlock[tid]);
938 stalls[tid].commit = false;
939 }
940
941 // Check squash signals from commit.
942 if (fromCommit->commitInfo[tid].squash) {
943
944 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
945 "from commit.\n",tid);
946 // In any case, squash.
947 squash(fromCommit->commitInfo[tid].pc,
948 fromCommit->commitInfo[tid].doneSeqNum,
949 fromCommit->commitInfo[tid].squashInst, tid);
950
951 // If it was a branch mispredict on a control instruction, update the
952 // branch predictor with that instruction, otherwise just kill the
953 // invalid state we generated in after sequence number
954 if (fromCommit->commitInfo[tid].mispredictInst &&
955 fromCommit->commitInfo[tid].mispredictInst->isControl()) {
956 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
957 fromCommit->commitInfo[tid].pc,
958 fromCommit->commitInfo[tid].branchTaken,
959 tid);
960 } else {
961 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
962 tid);
963 }
964
965 return true;
966 } else if (fromCommit->commitInfo[tid].doneSeqNum) {
967 // Update the branch predictor if it wasn't a squashed instruction
968 // that was broadcasted.
969 branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
970 }
971
972 // Check ROB squash signals from commit.
973 if (fromCommit->commitInfo[tid].robSquashing) {
974 DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
975
976 // Continue to squash.
977 fetchStatus[tid] = Squashing;
978
979 return true;
980 }
981
982 // Check squash signals from decode.
983 if (fromDecode->decodeInfo[tid].squash) {
984 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
985 "from decode.\n",tid);
986
987 // Update the branch predictor.
988 if (fromDecode->decodeInfo[tid].branchMispredict) {
989 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
990 fromDecode->decodeInfo[tid].nextPC,
991 fromDecode->decodeInfo[tid].branchTaken,
992 tid);
993 } else {
994 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
995 tid);
996 }
997
998 if (fetchStatus[tid] != Squashing) {
999
1000 DPRINTF(Fetch, "Squashing from decode with PC = %s\n",
1001 fromDecode->decodeInfo[tid].nextPC);
1002 // Squash unless we're already squashing
1003 squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
1004 fromDecode->decodeInfo[tid].squashInst,
1005 fromDecode->decodeInfo[tid].doneSeqNum,
1006 tid);
1007
1008 return true;
1009 }
1010 }
1011
1012 if (checkStall(tid) &&
1013 fetchStatus[tid] != IcacheWaitResponse &&
1014 fetchStatus[tid] != IcacheWaitRetry) {
1015 DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
1016
1017 fetchStatus[tid] = Blocked;
1018
1019 return true;
1020 }
1021
1022 if (fetchStatus[tid] == Blocked ||
1023 fetchStatus[tid] == Squashing) {
1024 // Switch status to running if fetch isn't being told to block or
1025 // squash this cycle.
1026 DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1027 tid);
1028
1029 fetchStatus[tid] = Running;
1030
1031 return true;
1032 }
1033
1034 // If we've reached this point, we have not gotten any signals that
1035 // cause fetch to change its status. Fetch remains the same as before.
1036 return false;
1037}
1038
1039template<class Impl>
1040typename Impl::DynInstPtr
1041DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
1042 StaticInstPtr curMacroop, TheISA::PCState thisPC,
1043 TheISA::PCState nextPC, bool trace)
1044{
1045 // Get a sequence number.
1046 InstSeqNum seq = cpu->getAndIncrementInstSeq();
1047
1048 // Create a new DynInst from the instruction fetched.
1049 DynInstPtr instruction =
1050 new DynInst(staticInst, curMacroop, thisPC, nextPC, seq, cpu);
1051 instruction->setTid(tid);
1052
1053 instruction->setASID(tid);
1054
1055 instruction->setThreadState(cpu->thread[tid]);
1056
1057 DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created "
1058 "[sn:%lli].\n", tid, thisPC.instAddr(),
1059 thisPC.microPC(), seq);
1060
1061 DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid,
1062 instruction->staticInst->
1063 disassemble(thisPC.instAddr()));
1064
1065#if TRACING_ON
1066 if (trace) {
1067 instruction->traceData =
1068 cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
1069 instruction->staticInst, thisPC, curMacroop);
1070 }
1071#else
1072 instruction->traceData = NULL;
1073#endif
1074
1075 // Add instruction to the CPU's list of instructions.
1076 instruction->setInstListIt(cpu->addInst(instruction));
1077
1078 // Write the instruction to the first slot in the queue
1079 // that heads to decode.
1080 assert(numInst < fetchWidth);
1081 toDecode->insts[toDecode->size++] = instruction;
1082
1083 // Keep track of if we can take an interrupt at this boundary
1084 delayedCommit[tid] = instruction->isDelayedCommit();
1085
1086 return instruction;
1087}
1088
1089template<class Impl>
1090void
1091DefaultFetch<Impl>::fetch(bool &status_change)
1092{
1093 //////////////////////////////////////////
1094 // Start actual fetch
1095 //////////////////////////////////////////
1096 ThreadID tid = getFetchingThread(fetchPolicy);
1097
1098 if (tid == InvalidThreadID || drainPending) {
1099 // Breaks looping condition in tick()
1100 threadFetched = numFetchingThreads;
1101
1102 if (numThreads == 1) { // @todo Per-thread stats
1103 profileStall(0);
1104 }
1105
1106 return;
1107 }
1108
1109 DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1110
1111 // The current PC.
1112 TheISA::PCState thisPC = pc[tid];
1113
1114 Addr pcOffset = fetchOffset[tid];
1115 Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1116
1117 bool inRom = isRomMicroPC(thisPC.microPC());
1118
1119 // If returning from the delay of a cache miss, then update the status
1120 // to running, otherwise do the cache access. Possibly move this up
1121 // to tick() function.
1122 if (fetchStatus[tid] == IcacheAccessComplete) {
1123 DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n", tid);
1124
1125 fetchStatus[tid] = Running;
1126 status_change = true;
1127 } else if (fetchStatus[tid] == Running) {
1128 // Align the fetch PC so its at the start of a cache block.
1129 Addr block_PC = icacheBlockAlignPC(fetchAddr);
1130
1131 // If buffer is no longer valid or fetchAddr has moved to point
1132 // to the next cache block, AND we have no remaining ucode
1133 // from a macro-op, then start fetch from icache.
1134 if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])
1135 && !inRom && !macroop[tid]) {
1136 DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1137 "instruction, starting at PC %s.\n", tid, thisPC);
1138
1139 fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1140
1141 if (fetchStatus[tid] == IcacheWaitResponse)
1142 ++icacheStallCycles;
1143 else if (fetchStatus[tid] == ItlbWait)
1144 ++fetchTlbCycles;
1145 else
1146 ++fetchMiscStallCycles;
1147 return;
1148 } else if ((checkInterrupt(thisPC.instAddr()) && !delayedCommit[tid])
1149 || isSwitchedOut()) {
1150 // Stall CPU if an interrupt is posted and we're not issuing
1151 // an delayed commit micro-op currently (delayed commit instructions
1152 // are not interruptable by interrupts, only faults)
1153 ++fetchMiscStallCycles;
1154 DPRINTF(Fetch, "[tid:%i]: Fetch is stalled!\n", tid);
1155 return;
1156 }
1157 } else {
1158 if (fetchStatus[tid] == Idle) {
1159 ++fetchIdleCycles;
1160 DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1161 }
1162
1163 // Status is Idle, so fetch should do nothing.
1164 return;
1165 }
1166
1167 ++fetchCycles;
1168
1169 TheISA::PCState nextPC = thisPC;
1170
1171 StaticInstPtr staticInst = NULL;
1172 StaticInstPtr curMacroop = macroop[tid];
1173
1174 // If the read of the first instruction was successful, then grab the
1175 // instructions from the rest of the cache line and put them into the
1176 // queue heading to decode.
1177
1178 DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1179 "decode.\n", tid);
1180
1181 // Need to keep track of whether or not a predicted branch
1182 // ended this fetch block.
1183 bool predictedBranch = false;
1184
1185 TheISA::MachInst *cacheInsts =
1186 reinterpret_cast<TheISA::MachInst *>(cacheData[tid]);
1187
1188 const unsigned numInsts = cacheBlkSize / instSize;
1189 unsigned blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1190
1191 // Loop through instruction memory from the cache.
1192 // Keep issuing while fetchWidth is available and branch is not
1193 // predicted taken
1194 while (numInst < fetchWidth && !predictedBranch) {
1195
1196 // We need to process more memory if we aren't going to get a
1197 // StaticInst from the rom, the current macroop, or what's already
1198 // in the predecoder.
1199 bool needMem = !inRom && !curMacroop && !predecoder.extMachInstReady();
1200 fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1201 Addr block_PC = icacheBlockAlignPC(fetchAddr);
1202
1203 if (needMem) {
1204 // If buffer is no longer valid or fetchAddr has moved to point
1205 // to the next cache block then start fetch from icache.
1206 if (!cacheDataValid[tid] || block_PC != cacheDataPC[tid])
1207 break;
1208
1209 if (blkOffset >= numInsts) {
1210 // We need to process more memory, but we've run out of the
1211 // current block.
1212 break;
1213 }
1214
1215 if (ISA_HAS_DELAY_SLOT && pcOffset == 0) {
1216 // Walk past any annulled delay slot instructions.
1217 Addr pcAddr = thisPC.instAddr() & BaseCPU::PCMask;
1218 while (fetchAddr != pcAddr && blkOffset < numInsts) {
1219 blkOffset++;
1220 fetchAddr += instSize;
1221 }
1222 if (blkOffset >= numInsts)
1223 break;
1224 }
1225 MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1226
1227 predecoder.setTC(cpu->thread[tid]->getTC());
1228 predecoder.moreBytes(thisPC, fetchAddr, inst);
1229
1230 if (predecoder.needMoreBytes()) {
1231 blkOffset++;
1232 fetchAddr += instSize;
1233 pcOffset += instSize;
1234 }
1235 }
1236
1237 // Extract as many instructions and/or microops as we can from
1238 // the memory we've processed so far.
1239 do {
1240 if (!(curMacroop || inRom)) {
1241 if (predecoder.extMachInstReady()) {
1242 ExtMachInst extMachInst =
1243 predecoder.getExtMachInst(thisPC);
1244 staticInst =
1245 decoder.decode(extMachInst, thisPC.instAddr());
1246
1247 // Increment stat of fetched instructions.
1248 ++fetchedInsts;
1249
1250 if (staticInst->isMacroop()) {
1251 curMacroop = staticInst;
1252 } else {
1253 pcOffset = 0;
1254 }
1255 } else {
1256 // We need more bytes for this instruction so blkOffset and
1257 // pcOffset will be updated
1258 break;
1259 }
1260 }
1261 // Whether we're moving to a new macroop because we're at the
1262 // end of the current one, or the branch predictor incorrectly
1263 // thinks we are...
1264 bool newMacro = false;
1265 if (curMacroop || inRom) {
1266 if (inRom) {
1267 staticInst = cpu->microcodeRom.fetchMicroop(
1268 thisPC.microPC(), curMacroop);
1269 } else {
1270 staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1271 }
1272 newMacro |= staticInst->isLastMicroop();
1273 }
1274
1275 DynInstPtr instruction =
1276 buildInst(tid, staticInst, curMacroop,
1277 thisPC, nextPC, true);
1278
1279 numInst++;
1280
1281#if TRACING_ON
1282 instruction->fetchTick = curTick();
1283#endif
1284
1285 nextPC = thisPC;
1286
1287 // If we're branching after this instruction, quite fetching
1288 // from the same block then.
1289 predictedBranch |= thisPC.branching();
1290 predictedBranch |=
1291 lookupAndUpdateNextPC(instruction, nextPC);
1292 if (predictedBranch) {
1293 DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1294 }
1295
1296 newMacro |= thisPC.instAddr() != nextPC.instAddr();
1297
1298 // Move to the next instruction, unless we have a branch.
1299 thisPC = nextPC;
1300 inRom = isRomMicroPC(thisPC.microPC());
1301
1302 if (newMacro) {
1303 fetchAddr = thisPC.instAddr() & BaseCPU::PCMask;
1304 blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1305 pcOffset = 0;
1306 curMacroop = NULL;
1307 }
1308
1309 if (instruction->isQuiesce()) {
1310 DPRINTF(Fetch,
1311 "Quiesce instruction encountered, halting fetch!");
1312 fetchStatus[tid] = QuiescePending;
1313 status_change = true;
1314 break;
1315 }
1316 } while ((curMacroop || predecoder.extMachInstReady()) &&
1317 numInst < fetchWidth);
1318 }
1319
1320 if (predictedBranch) {
1321 DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1322 "instruction encountered.\n", tid);
1323 } else if (numInst >= fetchWidth) {
1324 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1325 "for this cycle.\n", tid);
1326 } else if (blkOffset >= cacheBlkSize) {
1327 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1328 "block.\n", tid);
1329 }
1330
1331 macroop[tid] = curMacroop;
1332 fetchOffset[tid] = pcOffset;
1333
1334 if (numInst > 0) {
1335 wroteToTimeBuffer = true;
1336 }
1337
1338 pc[tid] = thisPC;
1339
1340 // pipeline a fetch if we're crossing a cache boundary and not in
1341 // a state that would preclude fetching
1342 fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1343 Addr block_PC = icacheBlockAlignPC(fetchAddr);
1344 issuePipelinedIfetch[tid] = block_PC != cacheDataPC[tid] &&
1345 fetchStatus[tid] != IcacheWaitResponse &&
1346 fetchStatus[tid] != ItlbWait &&
1347 fetchStatus[tid] != IcacheWaitRetry &&
1348 fetchStatus[tid] != QuiescePending &&
1349 !curMacroop;
1350}
1351
1352template<class Impl>
1353void
1354DefaultFetch<Impl>::recvRetry()
1355{
1356 if (retryPkt != NULL) {
1357 assert(cacheBlocked);
1358 assert(retryTid != InvalidThreadID);
1359 assert(fetchStatus[retryTid] == IcacheWaitRetry);
1360
627 assert(retryPkt == NULL);
628 assert(retryTid == InvalidThreadID);
629 DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
630
631 fetchStatus[tid] = IcacheWaitRetry;
632 retryPkt = data_pkt;
633 retryTid = tid;
634 cacheBlocked = true;
635 } else {
636 DPRINTF(Fetch, "[tid:%i]: Doing Icache access.\n", tid);
637 DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
638 "response.\n", tid);
639
640 lastIcacheStall[tid] = curTick();
641 fetchStatus[tid] = IcacheWaitResponse;
642 }
643 } else {
644 if (!(numInst < fetchWidth)) {
645 assert(!finishTranslationEvent.scheduled());
646 finishTranslationEvent.setFault(fault);
647 finishTranslationEvent.setReq(mem_req);
648 cpu->schedule(finishTranslationEvent, cpu->nextCycle(curTick() + cpu->ticks(1)));
649 return;
650 }
651 DPRINTF(Fetch, "[tid:%i] Got back req with addr %#x but expected %#x\n",
652 tid, mem_req->getVaddr(), memReq[tid]->getVaddr());
653 // Translation faulted, icache request won't be sent.
654 delete mem_req;
655 memReq[tid] = NULL;
656
657 // Send the fault to commit. This thread will not do anything
658 // until commit handles the fault. The only other way it can
659 // wake up is if a squash comes along and changes the PC.
660 TheISA::PCState fetchPC = pc[tid];
661
662 DPRINTF(Fetch, "[tid:%i]: Translation faulted, building noop.\n", tid);
663 // We will use a nop in ordier to carry the fault.
664 DynInstPtr instruction = buildInst(tid,
665 decoder.decode(TheISA::NoopMachInst, fetchPC.instAddr()),
666 NULL, fetchPC, fetchPC, false);
667
668 instruction->setPredTarg(fetchPC);
669 instruction->fault = fault;
670 wroteToTimeBuffer = true;
671
672 DPRINTF(Activity, "Activity this cycle.\n");
673 cpu->activityThisCycle();
674
675 fetchStatus[tid] = TrapPending;
676
677 DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n", tid);
678 DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s.\n",
679 tid, fault->name(), pc[tid]);
680 }
681 _status = updateFetchStatus();
682}
683
684template <class Impl>
685inline void
686DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC,
687 const DynInstPtr squashInst, ThreadID tid)
688{
689 DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n",
690 tid, newPC);
691
692 pc[tid] = newPC;
693 fetchOffset[tid] = 0;
694 if (squashInst && squashInst->pcState().instAddr() == newPC.instAddr())
695 macroop[tid] = squashInst->macroop;
696 else
697 macroop[tid] = NULL;
698 predecoder.reset();
699
700 // Clear the icache miss if it's outstanding.
701 if (fetchStatus[tid] == IcacheWaitResponse) {
702 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
703 tid);
704 memReq[tid] = NULL;
705 } else if (fetchStatus[tid] == ItlbWait) {
706 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding ITLB miss.\n",
707 tid);
708 memReq[tid] = NULL;
709 }
710
711 // Get rid of the retrying packet if it was from this thread.
712 if (retryTid == tid) {
713 assert(cacheBlocked);
714 if (retryPkt) {
715 delete retryPkt->req;
716 delete retryPkt;
717 }
718 retryPkt = NULL;
719 retryTid = InvalidThreadID;
720 }
721
722 fetchStatus[tid] = Squashing;
723
724 // microops are being squashed, it is not known wheather the
725 // youngest non-squashed microop was marked delayed commit
726 // or not. Setting the flag to true ensures that the
727 // interrupts are not handled when they cannot be, though
728 // some opportunities to handle interrupts may be missed.
729 delayedCommit[tid] = true;
730
731 ++fetchSquashCycles;
732}
733
734template<class Impl>
735void
736DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
737 const DynInstPtr squashInst,
738 const InstSeqNum seq_num, ThreadID tid)
739{
740 DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid);
741
742 doSquash(newPC, squashInst, tid);
743
744 // Tell the CPU to remove any instructions that are in flight between
745 // fetch and decode.
746 cpu->removeInstsUntil(seq_num, tid);
747}
748
749template<class Impl>
750bool
751DefaultFetch<Impl>::checkStall(ThreadID tid) const
752{
753 bool ret_val = false;
754
755 if (cpu->contextSwitch) {
756 DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
757 ret_val = true;
758 } else if (stalls[tid].decode) {
759 DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
760 ret_val = true;
761 } else if (stalls[tid].rename) {
762 DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
763 ret_val = true;
764 } else if (stalls[tid].iew) {
765 DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
766 ret_val = true;
767 } else if (stalls[tid].commit) {
768 DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
769 ret_val = true;
770 }
771
772 return ret_val;
773}
774
775template<class Impl>
776typename DefaultFetch<Impl>::FetchStatus
777DefaultFetch<Impl>::updateFetchStatus()
778{
779 //Check Running
780 list<ThreadID>::iterator threads = activeThreads->begin();
781 list<ThreadID>::iterator end = activeThreads->end();
782
783 while (threads != end) {
784 ThreadID tid = *threads++;
785
786 if (fetchStatus[tid] == Running ||
787 fetchStatus[tid] == Squashing ||
788 fetchStatus[tid] == IcacheAccessComplete) {
789
790 if (_status == Inactive) {
791 DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
792
793 if (fetchStatus[tid] == IcacheAccessComplete) {
794 DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
795 "completion\n",tid);
796 }
797
798 cpu->activateStage(O3CPU::FetchIdx);
799 }
800
801 return Active;
802 }
803 }
804
805 // Stage is switching from active to inactive, notify CPU of it.
806 if (_status == Active) {
807 DPRINTF(Activity, "Deactivating stage.\n");
808
809 cpu->deactivateStage(O3CPU::FetchIdx);
810 }
811
812 return Inactive;
813}
814
815template <class Impl>
816void
817DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
818 const InstSeqNum seq_num, DynInstPtr squashInst,
819 ThreadID tid)
820{
821 DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid);
822
823 doSquash(newPC, squashInst, tid);
824
825 // Tell the CPU to remove any instructions that are not in the ROB.
826 cpu->removeInstsNotInROB(tid);
827}
828
829template <class Impl>
830void
831DefaultFetch<Impl>::tick()
832{
833 list<ThreadID>::iterator threads = activeThreads->begin();
834 list<ThreadID>::iterator end = activeThreads->end();
835 bool status_change = false;
836
837 wroteToTimeBuffer = false;
838
839 for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
840 issuePipelinedIfetch[i] = false;
841 }
842
843 while (threads != end) {
844 ThreadID tid = *threads++;
845
846 // Check the signals for each thread to determine the proper status
847 // for each thread.
848 bool updated_status = checkSignalsAndUpdate(tid);
849 status_change = status_change || updated_status;
850 }
851
852 DPRINTF(Fetch, "Running stage.\n");
853
854 if (FullSystem) {
855 if (fromCommit->commitInfo[0].interruptPending) {
856 interruptPending = true;
857 }
858
859 if (fromCommit->commitInfo[0].clearInterrupt) {
860 interruptPending = false;
861 }
862 }
863
864 for (threadFetched = 0; threadFetched < numFetchingThreads;
865 threadFetched++) {
866 // Fetch each of the actively fetching threads.
867 fetch(status_change);
868 }
869
870 // Record number of instructions fetched this cycle for distribution.
871 fetchNisnDist.sample(numInst);
872
873 if (status_change) {
874 // Change the fetch stage status if there was a status change.
875 _status = updateFetchStatus();
876 }
877
878 // If there was activity this cycle, inform the CPU of it.
879 if (wroteToTimeBuffer || cpu->contextSwitch) {
880 DPRINTF(Activity, "Activity this cycle.\n");
881
882 cpu->activityThisCycle();
883 }
884
885 // Issue the next I-cache request if possible.
886 for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
887 if (issuePipelinedIfetch[i]) {
888 pipelineIcacheAccesses(i);
889 }
890 }
891
892 // Reset the number of the instruction we've fetched.
893 numInst = 0;
894}
895
896template <class Impl>
897bool
898DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
899{
900 // Update the per thread stall statuses.
901 if (fromDecode->decodeBlock[tid]) {
902 stalls[tid].decode = true;
903 }
904
905 if (fromDecode->decodeUnblock[tid]) {
906 assert(stalls[tid].decode);
907 assert(!fromDecode->decodeBlock[tid]);
908 stalls[tid].decode = false;
909 }
910
911 if (fromRename->renameBlock[tid]) {
912 stalls[tid].rename = true;
913 }
914
915 if (fromRename->renameUnblock[tid]) {
916 assert(stalls[tid].rename);
917 assert(!fromRename->renameBlock[tid]);
918 stalls[tid].rename = false;
919 }
920
921 if (fromIEW->iewBlock[tid]) {
922 stalls[tid].iew = true;
923 }
924
925 if (fromIEW->iewUnblock[tid]) {
926 assert(stalls[tid].iew);
927 assert(!fromIEW->iewBlock[tid]);
928 stalls[tid].iew = false;
929 }
930
931 if (fromCommit->commitBlock[tid]) {
932 stalls[tid].commit = true;
933 }
934
935 if (fromCommit->commitUnblock[tid]) {
936 assert(stalls[tid].commit);
937 assert(!fromCommit->commitBlock[tid]);
938 stalls[tid].commit = false;
939 }
940
941 // Check squash signals from commit.
942 if (fromCommit->commitInfo[tid].squash) {
943
944 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
945 "from commit.\n",tid);
946 // In any case, squash.
947 squash(fromCommit->commitInfo[tid].pc,
948 fromCommit->commitInfo[tid].doneSeqNum,
949 fromCommit->commitInfo[tid].squashInst, tid);
950
951 // If it was a branch mispredict on a control instruction, update the
952 // branch predictor with that instruction, otherwise just kill the
953 // invalid state we generated in after sequence number
954 if (fromCommit->commitInfo[tid].mispredictInst &&
955 fromCommit->commitInfo[tid].mispredictInst->isControl()) {
956 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
957 fromCommit->commitInfo[tid].pc,
958 fromCommit->commitInfo[tid].branchTaken,
959 tid);
960 } else {
961 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
962 tid);
963 }
964
965 return true;
966 } else if (fromCommit->commitInfo[tid].doneSeqNum) {
967 // Update the branch predictor if it wasn't a squashed instruction
968 // that was broadcasted.
969 branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
970 }
971
972 // Check ROB squash signals from commit.
973 if (fromCommit->commitInfo[tid].robSquashing) {
974 DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
975
976 // Continue to squash.
977 fetchStatus[tid] = Squashing;
978
979 return true;
980 }
981
982 // Check squash signals from decode.
983 if (fromDecode->decodeInfo[tid].squash) {
984 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
985 "from decode.\n",tid);
986
987 // Update the branch predictor.
988 if (fromDecode->decodeInfo[tid].branchMispredict) {
989 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
990 fromDecode->decodeInfo[tid].nextPC,
991 fromDecode->decodeInfo[tid].branchTaken,
992 tid);
993 } else {
994 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
995 tid);
996 }
997
998 if (fetchStatus[tid] != Squashing) {
999
1000 DPRINTF(Fetch, "Squashing from decode with PC = %s\n",
1001 fromDecode->decodeInfo[tid].nextPC);
1002 // Squash unless we're already squashing
1003 squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
1004 fromDecode->decodeInfo[tid].squashInst,
1005 fromDecode->decodeInfo[tid].doneSeqNum,
1006 tid);
1007
1008 return true;
1009 }
1010 }
1011
1012 if (checkStall(tid) &&
1013 fetchStatus[tid] != IcacheWaitResponse &&
1014 fetchStatus[tid] != IcacheWaitRetry) {
1015 DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
1016
1017 fetchStatus[tid] = Blocked;
1018
1019 return true;
1020 }
1021
1022 if (fetchStatus[tid] == Blocked ||
1023 fetchStatus[tid] == Squashing) {
1024 // Switch status to running if fetch isn't being told to block or
1025 // squash this cycle.
1026 DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1027 tid);
1028
1029 fetchStatus[tid] = Running;
1030
1031 return true;
1032 }
1033
1034 // If we've reached this point, we have not gotten any signals that
1035 // cause fetch to change its status. Fetch remains the same as before.
1036 return false;
1037}
1038
1039template<class Impl>
1040typename Impl::DynInstPtr
1041DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
1042 StaticInstPtr curMacroop, TheISA::PCState thisPC,
1043 TheISA::PCState nextPC, bool trace)
1044{
1045 // Get a sequence number.
1046 InstSeqNum seq = cpu->getAndIncrementInstSeq();
1047
1048 // Create a new DynInst from the instruction fetched.
1049 DynInstPtr instruction =
1050 new DynInst(staticInst, curMacroop, thisPC, nextPC, seq, cpu);
1051 instruction->setTid(tid);
1052
1053 instruction->setASID(tid);
1054
1055 instruction->setThreadState(cpu->thread[tid]);
1056
1057 DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created "
1058 "[sn:%lli].\n", tid, thisPC.instAddr(),
1059 thisPC.microPC(), seq);
1060
1061 DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid,
1062 instruction->staticInst->
1063 disassemble(thisPC.instAddr()));
1064
1065#if TRACING_ON
1066 if (trace) {
1067 instruction->traceData =
1068 cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
1069 instruction->staticInst, thisPC, curMacroop);
1070 }
1071#else
1072 instruction->traceData = NULL;
1073#endif
1074
1075 // Add instruction to the CPU's list of instructions.
1076 instruction->setInstListIt(cpu->addInst(instruction));
1077
1078 // Write the instruction to the first slot in the queue
1079 // that heads to decode.
1080 assert(numInst < fetchWidth);
1081 toDecode->insts[toDecode->size++] = instruction;
1082
1083 // Keep track of if we can take an interrupt at this boundary
1084 delayedCommit[tid] = instruction->isDelayedCommit();
1085
1086 return instruction;
1087}
1088
1089template<class Impl>
1090void
1091DefaultFetch<Impl>::fetch(bool &status_change)
1092{
1093 //////////////////////////////////////////
1094 // Start actual fetch
1095 //////////////////////////////////////////
1096 ThreadID tid = getFetchingThread(fetchPolicy);
1097
1098 if (tid == InvalidThreadID || drainPending) {
1099 // Breaks looping condition in tick()
1100 threadFetched = numFetchingThreads;
1101
1102 if (numThreads == 1) { // @todo Per-thread stats
1103 profileStall(0);
1104 }
1105
1106 return;
1107 }
1108
1109 DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1110
1111 // The current PC.
1112 TheISA::PCState thisPC = pc[tid];
1113
1114 Addr pcOffset = fetchOffset[tid];
1115 Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1116
1117 bool inRom = isRomMicroPC(thisPC.microPC());
1118
1119 // If returning from the delay of a cache miss, then update the status
1120 // to running, otherwise do the cache access. Possibly move this up
1121 // to tick() function.
1122 if (fetchStatus[tid] == IcacheAccessComplete) {
1123 DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n", tid);
1124
1125 fetchStatus[tid] = Running;
1126 status_change = true;
1127 } else if (fetchStatus[tid] == Running) {
1128 // Align the fetch PC so its at the start of a cache block.
1129 Addr block_PC = icacheBlockAlignPC(fetchAddr);
1130
1131 // If buffer is no longer valid or fetchAddr has moved to point
1132 // to the next cache block, AND we have no remaining ucode
1133 // from a macro-op, then start fetch from icache.
1134 if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])
1135 && !inRom && !macroop[tid]) {
1136 DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1137 "instruction, starting at PC %s.\n", tid, thisPC);
1138
1139 fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1140
1141 if (fetchStatus[tid] == IcacheWaitResponse)
1142 ++icacheStallCycles;
1143 else if (fetchStatus[tid] == ItlbWait)
1144 ++fetchTlbCycles;
1145 else
1146 ++fetchMiscStallCycles;
1147 return;
1148 } else if ((checkInterrupt(thisPC.instAddr()) && !delayedCommit[tid])
1149 || isSwitchedOut()) {
1150 // Stall CPU if an interrupt is posted and we're not issuing
1151 // an delayed commit micro-op currently (delayed commit instructions
1152 // are not interruptable by interrupts, only faults)
1153 ++fetchMiscStallCycles;
1154 DPRINTF(Fetch, "[tid:%i]: Fetch is stalled!\n", tid);
1155 return;
1156 }
1157 } else {
1158 if (fetchStatus[tid] == Idle) {
1159 ++fetchIdleCycles;
1160 DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1161 }
1162
1163 // Status is Idle, so fetch should do nothing.
1164 return;
1165 }
1166
1167 ++fetchCycles;
1168
1169 TheISA::PCState nextPC = thisPC;
1170
1171 StaticInstPtr staticInst = NULL;
1172 StaticInstPtr curMacroop = macroop[tid];
1173
1174 // If the read of the first instruction was successful, then grab the
1175 // instructions from the rest of the cache line and put them into the
1176 // queue heading to decode.
1177
1178 DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1179 "decode.\n", tid);
1180
1181 // Need to keep track of whether or not a predicted branch
1182 // ended this fetch block.
1183 bool predictedBranch = false;
1184
1185 TheISA::MachInst *cacheInsts =
1186 reinterpret_cast<TheISA::MachInst *>(cacheData[tid]);
1187
1188 const unsigned numInsts = cacheBlkSize / instSize;
1189 unsigned blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1190
1191 // Loop through instruction memory from the cache.
1192 // Keep issuing while fetchWidth is available and branch is not
1193 // predicted taken
1194 while (numInst < fetchWidth && !predictedBranch) {
1195
1196 // We need to process more memory if we aren't going to get a
1197 // StaticInst from the rom, the current macroop, or what's already
1198 // in the predecoder.
1199 bool needMem = !inRom && !curMacroop && !predecoder.extMachInstReady();
1200 fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1201 Addr block_PC = icacheBlockAlignPC(fetchAddr);
1202
1203 if (needMem) {
1204 // If buffer is no longer valid or fetchAddr has moved to point
1205 // to the next cache block then start fetch from icache.
1206 if (!cacheDataValid[tid] || block_PC != cacheDataPC[tid])
1207 break;
1208
1209 if (blkOffset >= numInsts) {
1210 // We need to process more memory, but we've run out of the
1211 // current block.
1212 break;
1213 }
1214
1215 if (ISA_HAS_DELAY_SLOT && pcOffset == 0) {
1216 // Walk past any annulled delay slot instructions.
1217 Addr pcAddr = thisPC.instAddr() & BaseCPU::PCMask;
1218 while (fetchAddr != pcAddr && blkOffset < numInsts) {
1219 blkOffset++;
1220 fetchAddr += instSize;
1221 }
1222 if (blkOffset >= numInsts)
1223 break;
1224 }
1225 MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1226
1227 predecoder.setTC(cpu->thread[tid]->getTC());
1228 predecoder.moreBytes(thisPC, fetchAddr, inst);
1229
1230 if (predecoder.needMoreBytes()) {
1231 blkOffset++;
1232 fetchAddr += instSize;
1233 pcOffset += instSize;
1234 }
1235 }
1236
1237 // Extract as many instructions and/or microops as we can from
1238 // the memory we've processed so far.
1239 do {
1240 if (!(curMacroop || inRom)) {
1241 if (predecoder.extMachInstReady()) {
1242 ExtMachInst extMachInst =
1243 predecoder.getExtMachInst(thisPC);
1244 staticInst =
1245 decoder.decode(extMachInst, thisPC.instAddr());
1246
1247 // Increment stat of fetched instructions.
1248 ++fetchedInsts;
1249
1250 if (staticInst->isMacroop()) {
1251 curMacroop = staticInst;
1252 } else {
1253 pcOffset = 0;
1254 }
1255 } else {
1256 // We need more bytes for this instruction so blkOffset and
1257 // pcOffset will be updated
1258 break;
1259 }
1260 }
1261 // Whether we're moving to a new macroop because we're at the
1262 // end of the current one, or the branch predictor incorrectly
1263 // thinks we are...
1264 bool newMacro = false;
1265 if (curMacroop || inRom) {
1266 if (inRom) {
1267 staticInst = cpu->microcodeRom.fetchMicroop(
1268 thisPC.microPC(), curMacroop);
1269 } else {
1270 staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1271 }
1272 newMacro |= staticInst->isLastMicroop();
1273 }
1274
1275 DynInstPtr instruction =
1276 buildInst(tid, staticInst, curMacroop,
1277 thisPC, nextPC, true);
1278
1279 numInst++;
1280
1281#if TRACING_ON
1282 instruction->fetchTick = curTick();
1283#endif
1284
1285 nextPC = thisPC;
1286
1287 // If we're branching after this instruction, quite fetching
1288 // from the same block then.
1289 predictedBranch |= thisPC.branching();
1290 predictedBranch |=
1291 lookupAndUpdateNextPC(instruction, nextPC);
1292 if (predictedBranch) {
1293 DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1294 }
1295
1296 newMacro |= thisPC.instAddr() != nextPC.instAddr();
1297
1298 // Move to the next instruction, unless we have a branch.
1299 thisPC = nextPC;
1300 inRom = isRomMicroPC(thisPC.microPC());
1301
1302 if (newMacro) {
1303 fetchAddr = thisPC.instAddr() & BaseCPU::PCMask;
1304 blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1305 pcOffset = 0;
1306 curMacroop = NULL;
1307 }
1308
1309 if (instruction->isQuiesce()) {
1310 DPRINTF(Fetch,
1311 "Quiesce instruction encountered, halting fetch!");
1312 fetchStatus[tid] = QuiescePending;
1313 status_change = true;
1314 break;
1315 }
1316 } while ((curMacroop || predecoder.extMachInstReady()) &&
1317 numInst < fetchWidth);
1318 }
1319
1320 if (predictedBranch) {
1321 DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1322 "instruction encountered.\n", tid);
1323 } else if (numInst >= fetchWidth) {
1324 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1325 "for this cycle.\n", tid);
1326 } else if (blkOffset >= cacheBlkSize) {
1327 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1328 "block.\n", tid);
1329 }
1330
1331 macroop[tid] = curMacroop;
1332 fetchOffset[tid] = pcOffset;
1333
1334 if (numInst > 0) {
1335 wroteToTimeBuffer = true;
1336 }
1337
1338 pc[tid] = thisPC;
1339
1340 // pipeline a fetch if we're crossing a cache boundary and not in
1341 // a state that would preclude fetching
1342 fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1343 Addr block_PC = icacheBlockAlignPC(fetchAddr);
1344 issuePipelinedIfetch[tid] = block_PC != cacheDataPC[tid] &&
1345 fetchStatus[tid] != IcacheWaitResponse &&
1346 fetchStatus[tid] != ItlbWait &&
1347 fetchStatus[tid] != IcacheWaitRetry &&
1348 fetchStatus[tid] != QuiescePending &&
1349 !curMacroop;
1350}
1351
1352template<class Impl>
1353void
1354DefaultFetch<Impl>::recvRetry()
1355{
1356 if (retryPkt != NULL) {
1357 assert(cacheBlocked);
1358 assert(retryTid != InvalidThreadID);
1359 assert(fetchStatus[retryTid] == IcacheWaitRetry);
1360
1361 if (cpu->getIcachePort()->sendTiming(retryPkt)) {
1361 if (cpu->getInstPort().sendTiming(retryPkt)) {
1362 fetchStatus[retryTid] = IcacheWaitResponse;
1363 retryPkt = NULL;
1364 retryTid = InvalidThreadID;
1365 cacheBlocked = false;
1366 }
1367 } else {
1368 assert(retryTid == InvalidThreadID);
1369 // Access has been squashed since it was sent out. Just clear
1370 // the cache being blocked.
1371 cacheBlocked = false;
1372 }
1373}
1374
1375///////////////////////////////////////
1376// //
1377// SMT FETCH POLICY MAINTAINED HERE //
1378// //
1379///////////////////////////////////////
1380template<class Impl>
1381ThreadID
1382DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1383{
1384 if (numThreads > 1) {
1385 switch (fetch_priority) {
1386
1387 case SingleThread:
1388 return 0;
1389
1390 case RoundRobin:
1391 return roundRobin();
1392
1393 case IQ:
1394 return iqCount();
1395
1396 case LSQ:
1397 return lsqCount();
1398
1399 case Branch:
1400 return branchCount();
1401
1402 default:
1403 return InvalidThreadID;
1404 }
1405 } else {
1406 list<ThreadID>::iterator thread = activeThreads->begin();
1407 if (thread == activeThreads->end()) {
1408 return InvalidThreadID;
1409 }
1410
1411 ThreadID tid = *thread;
1412
1413 if (fetchStatus[tid] == Running ||
1414 fetchStatus[tid] == IcacheAccessComplete ||
1415 fetchStatus[tid] == Idle) {
1416 return tid;
1417 } else {
1418 return InvalidThreadID;
1419 }
1420 }
1421}
1422
1423
1424template<class Impl>
1425ThreadID
1426DefaultFetch<Impl>::roundRobin()
1427{
1428 list<ThreadID>::iterator pri_iter = priorityList.begin();
1429 list<ThreadID>::iterator end = priorityList.end();
1430
1431 ThreadID high_pri;
1432
1433 while (pri_iter != end) {
1434 high_pri = *pri_iter;
1435
1436 assert(high_pri <= numThreads);
1437
1438 if (fetchStatus[high_pri] == Running ||
1439 fetchStatus[high_pri] == IcacheAccessComplete ||
1440 fetchStatus[high_pri] == Idle) {
1441
1442 priorityList.erase(pri_iter);
1443 priorityList.push_back(high_pri);
1444
1445 return high_pri;
1446 }
1447
1448 pri_iter++;
1449 }
1450
1451 return InvalidThreadID;
1452}
1453
1454template<class Impl>
1455ThreadID
1456DefaultFetch<Impl>::iqCount()
1457{
1458 std::priority_queue<unsigned> PQ;
1459 std::map<unsigned, ThreadID> threadMap;
1460
1461 list<ThreadID>::iterator threads = activeThreads->begin();
1462 list<ThreadID>::iterator end = activeThreads->end();
1463
1464 while (threads != end) {
1465 ThreadID tid = *threads++;
1466 unsigned iqCount = fromIEW->iewInfo[tid].iqCount;
1467
1468 PQ.push(iqCount);
1469 threadMap[iqCount] = tid;
1470 }
1471
1472 while (!PQ.empty()) {
1473 ThreadID high_pri = threadMap[PQ.top()];
1474
1475 if (fetchStatus[high_pri] == Running ||
1476 fetchStatus[high_pri] == IcacheAccessComplete ||
1477 fetchStatus[high_pri] == Idle)
1478 return high_pri;
1479 else
1480 PQ.pop();
1481
1482 }
1483
1484 return InvalidThreadID;
1485}
1486
1487template<class Impl>
1488ThreadID
1489DefaultFetch<Impl>::lsqCount()
1490{
1491 std::priority_queue<unsigned> PQ;
1492 std::map<unsigned, ThreadID> threadMap;
1493
1494 list<ThreadID>::iterator threads = activeThreads->begin();
1495 list<ThreadID>::iterator end = activeThreads->end();
1496
1497 while (threads != end) {
1498 ThreadID tid = *threads++;
1499 unsigned ldstqCount = fromIEW->iewInfo[tid].ldstqCount;
1500
1501 PQ.push(ldstqCount);
1502 threadMap[ldstqCount] = tid;
1503 }
1504
1505 while (!PQ.empty()) {
1506 ThreadID high_pri = threadMap[PQ.top()];
1507
1508 if (fetchStatus[high_pri] == Running ||
1509 fetchStatus[high_pri] == IcacheAccessComplete ||
1510 fetchStatus[high_pri] == Idle)
1511 return high_pri;
1512 else
1513 PQ.pop();
1514 }
1515
1516 return InvalidThreadID;
1517}
1518
1519template<class Impl>
1520ThreadID
1521DefaultFetch<Impl>::branchCount()
1522{
1523#if 0
1524 list<ThreadID>::iterator thread = activeThreads->begin();
1525 assert(thread != activeThreads->end());
1526 ThreadID tid = *thread;
1527#endif
1528
1529 panic("Branch Count Fetch policy unimplemented\n");
1530 return InvalidThreadID;
1531}
1532
1533template<class Impl>
1534void
1535DefaultFetch<Impl>::pipelineIcacheAccesses(ThreadID tid)
1536{
1537 if (!issuePipelinedIfetch[tid]) {
1538 return;
1539 }
1540
1541 // The next PC to access.
1542 TheISA::PCState thisPC = pc[tid];
1543
1544 if (isRomMicroPC(thisPC.microPC())) {
1545 return;
1546 }
1547
1548 Addr pcOffset = fetchOffset[tid];
1549 Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1550
1551 // Align the fetch PC so its at the start of a cache block.
1552 Addr block_PC = icacheBlockAlignPC(fetchAddr);
1553
1554 // Unless buffer already got the block, fetch it from icache.
1555 if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])) {
1556 DPRINTF(Fetch, "[tid:%i]: Issuing a pipelined I-cache access, "
1557 "starting at PC %s.\n", tid, thisPC);
1558
1559 fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1560 }
1561}
1562
1563template<class Impl>
1564void
1565DefaultFetch<Impl>::profileStall(ThreadID tid) {
1566 DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1567
1568 // @todo Per-thread stats
1569
1570 if (drainPending) {
1571 ++fetchPendingDrainCycles;
1572 DPRINTF(Fetch, "Fetch is waiting for a drain!\n");
1573 } else if (activeThreads->empty()) {
1574 ++fetchNoActiveThreadStallCycles;
1575 DPRINTF(Fetch, "Fetch has no active thread!\n");
1576 } else if (fetchStatus[tid] == Blocked) {
1577 ++fetchBlockedCycles;
1578 DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1579 } else if (fetchStatus[tid] == Squashing) {
1580 ++fetchSquashCycles;
1581 DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1582 } else if (fetchStatus[tid] == IcacheWaitResponse) {
1583 ++icacheStallCycles;
1584 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n",
1585 tid);
1586 } else if (fetchStatus[tid] == ItlbWait) {
1587 ++fetchTlbCycles;
1588 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting ITLB walk to "
1589 "finish!\n", tid);
1590 } else if (fetchStatus[tid] == TrapPending) {
1591 ++fetchPendingTrapStallCycles;
1592 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending trap!\n",
1593 tid);
1594 } else if (fetchStatus[tid] == QuiescePending) {
1595 ++fetchPendingQuiesceStallCycles;
1596 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending quiesce "
1597 "instruction!\n", tid);
1598 } else if (fetchStatus[tid] == IcacheWaitRetry) {
1599 ++fetchIcacheWaitRetryStallCycles;
1600 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for an I-cache retry!\n",
1601 tid);
1602 } else if (fetchStatus[tid] == NoGoodAddr) {
1603 DPRINTF(Fetch, "[tid:%i]: Fetch predicted non-executable address\n",
1604 tid);
1605 } else {
1606 DPRINTF(Fetch, "[tid:%i]: Unexpected fetch stall reason (Status: %i).\n",
1607 tid, fetchStatus[tid]);
1608 }
1609}
1362 fetchStatus[retryTid] = IcacheWaitResponse;
1363 retryPkt = NULL;
1364 retryTid = InvalidThreadID;
1365 cacheBlocked = false;
1366 }
1367 } else {
1368 assert(retryTid == InvalidThreadID);
1369 // Access has been squashed since it was sent out. Just clear
1370 // the cache being blocked.
1371 cacheBlocked = false;
1372 }
1373}
1374
1375///////////////////////////////////////
1376// //
1377// SMT FETCH POLICY MAINTAINED HERE //
1378// //
1379///////////////////////////////////////
1380template<class Impl>
1381ThreadID
1382DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1383{
1384 if (numThreads > 1) {
1385 switch (fetch_priority) {
1386
1387 case SingleThread:
1388 return 0;
1389
1390 case RoundRobin:
1391 return roundRobin();
1392
1393 case IQ:
1394 return iqCount();
1395
1396 case LSQ:
1397 return lsqCount();
1398
1399 case Branch:
1400 return branchCount();
1401
1402 default:
1403 return InvalidThreadID;
1404 }
1405 } else {
1406 list<ThreadID>::iterator thread = activeThreads->begin();
1407 if (thread == activeThreads->end()) {
1408 return InvalidThreadID;
1409 }
1410
1411 ThreadID tid = *thread;
1412
1413 if (fetchStatus[tid] == Running ||
1414 fetchStatus[tid] == IcacheAccessComplete ||
1415 fetchStatus[tid] == Idle) {
1416 return tid;
1417 } else {
1418 return InvalidThreadID;
1419 }
1420 }
1421}
1422
1423
1424template<class Impl>
1425ThreadID
1426DefaultFetch<Impl>::roundRobin()
1427{
1428 list<ThreadID>::iterator pri_iter = priorityList.begin();
1429 list<ThreadID>::iterator end = priorityList.end();
1430
1431 ThreadID high_pri;
1432
1433 while (pri_iter != end) {
1434 high_pri = *pri_iter;
1435
1436 assert(high_pri <= numThreads);
1437
1438 if (fetchStatus[high_pri] == Running ||
1439 fetchStatus[high_pri] == IcacheAccessComplete ||
1440 fetchStatus[high_pri] == Idle) {
1441
1442 priorityList.erase(pri_iter);
1443 priorityList.push_back(high_pri);
1444
1445 return high_pri;
1446 }
1447
1448 pri_iter++;
1449 }
1450
1451 return InvalidThreadID;
1452}
1453
1454template<class Impl>
1455ThreadID
1456DefaultFetch<Impl>::iqCount()
1457{
1458 std::priority_queue<unsigned> PQ;
1459 std::map<unsigned, ThreadID> threadMap;
1460
1461 list<ThreadID>::iterator threads = activeThreads->begin();
1462 list<ThreadID>::iterator end = activeThreads->end();
1463
1464 while (threads != end) {
1465 ThreadID tid = *threads++;
1466 unsigned iqCount = fromIEW->iewInfo[tid].iqCount;
1467
1468 PQ.push(iqCount);
1469 threadMap[iqCount] = tid;
1470 }
1471
1472 while (!PQ.empty()) {
1473 ThreadID high_pri = threadMap[PQ.top()];
1474
1475 if (fetchStatus[high_pri] == Running ||
1476 fetchStatus[high_pri] == IcacheAccessComplete ||
1477 fetchStatus[high_pri] == Idle)
1478 return high_pri;
1479 else
1480 PQ.pop();
1481
1482 }
1483
1484 return InvalidThreadID;
1485}
1486
1487template<class Impl>
1488ThreadID
1489DefaultFetch<Impl>::lsqCount()
1490{
1491 std::priority_queue<unsigned> PQ;
1492 std::map<unsigned, ThreadID> threadMap;
1493
1494 list<ThreadID>::iterator threads = activeThreads->begin();
1495 list<ThreadID>::iterator end = activeThreads->end();
1496
1497 while (threads != end) {
1498 ThreadID tid = *threads++;
1499 unsigned ldstqCount = fromIEW->iewInfo[tid].ldstqCount;
1500
1501 PQ.push(ldstqCount);
1502 threadMap[ldstqCount] = tid;
1503 }
1504
1505 while (!PQ.empty()) {
1506 ThreadID high_pri = threadMap[PQ.top()];
1507
1508 if (fetchStatus[high_pri] == Running ||
1509 fetchStatus[high_pri] == IcacheAccessComplete ||
1510 fetchStatus[high_pri] == Idle)
1511 return high_pri;
1512 else
1513 PQ.pop();
1514 }
1515
1516 return InvalidThreadID;
1517}
1518
1519template<class Impl>
1520ThreadID
1521DefaultFetch<Impl>::branchCount()
1522{
1523#if 0
1524 list<ThreadID>::iterator thread = activeThreads->begin();
1525 assert(thread != activeThreads->end());
1526 ThreadID tid = *thread;
1527#endif
1528
1529 panic("Branch Count Fetch policy unimplemented\n");
1530 return InvalidThreadID;
1531}
1532
1533template<class Impl>
1534void
1535DefaultFetch<Impl>::pipelineIcacheAccesses(ThreadID tid)
1536{
1537 if (!issuePipelinedIfetch[tid]) {
1538 return;
1539 }
1540
1541 // The next PC to access.
1542 TheISA::PCState thisPC = pc[tid];
1543
1544 if (isRomMicroPC(thisPC.microPC())) {
1545 return;
1546 }
1547
1548 Addr pcOffset = fetchOffset[tid];
1549 Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1550
1551 // Align the fetch PC so its at the start of a cache block.
1552 Addr block_PC = icacheBlockAlignPC(fetchAddr);
1553
1554 // Unless buffer already got the block, fetch it from icache.
1555 if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])) {
1556 DPRINTF(Fetch, "[tid:%i]: Issuing a pipelined I-cache access, "
1557 "starting at PC %s.\n", tid, thisPC);
1558
1559 fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1560 }
1561}
1562
1563template<class Impl>
1564void
1565DefaultFetch<Impl>::profileStall(ThreadID tid) {
1566 DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1567
1568 // @todo Per-thread stats
1569
1570 if (drainPending) {
1571 ++fetchPendingDrainCycles;
1572 DPRINTF(Fetch, "Fetch is waiting for a drain!\n");
1573 } else if (activeThreads->empty()) {
1574 ++fetchNoActiveThreadStallCycles;
1575 DPRINTF(Fetch, "Fetch has no active thread!\n");
1576 } else if (fetchStatus[tid] == Blocked) {
1577 ++fetchBlockedCycles;
1578 DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1579 } else if (fetchStatus[tid] == Squashing) {
1580 ++fetchSquashCycles;
1581 DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1582 } else if (fetchStatus[tid] == IcacheWaitResponse) {
1583 ++icacheStallCycles;
1584 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n",
1585 tid);
1586 } else if (fetchStatus[tid] == ItlbWait) {
1587 ++fetchTlbCycles;
1588 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting ITLB walk to "
1589 "finish!\n", tid);
1590 } else if (fetchStatus[tid] == TrapPending) {
1591 ++fetchPendingTrapStallCycles;
1592 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending trap!\n",
1593 tid);
1594 } else if (fetchStatus[tid] == QuiescePending) {
1595 ++fetchPendingQuiesceStallCycles;
1596 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending quiesce "
1597 "instruction!\n", tid);
1598 } else if (fetchStatus[tid] == IcacheWaitRetry) {
1599 ++fetchIcacheWaitRetryStallCycles;
1600 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for an I-cache retry!\n",
1601 tid);
1602 } else if (fetchStatus[tid] == NoGoodAddr) {
1603 DPRINTF(Fetch, "[tid:%i]: Fetch predicted non-executable address\n",
1604 tid);
1605 } else {
1606 DPRINTF(Fetch, "[tid:%i]: Unexpected fetch stall reason (Status: %i).\n",
1607 tid, fetchStatus[tid]);
1608 }
1609}