fetch_impl.hh (7764:03efcdc3421f) fetch_impl.hh (7823:dac01f14f20f)
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 * Korey Sewell
30 */
31
32#include <algorithm>
33#include <cstring>
34
35#include "arch/isa_traits.hh"
36#include "arch/utility.hh"
37#include "base/types.hh"
38#include "config/the_isa.hh"
39#include "config/use_checker.hh"
40#include "cpu/checker/cpu.hh"
41#include "cpu/exetrace.hh"
42#include "cpu/o3/fetch.hh"
43#include "mem/packet.hh"
44#include "mem/request.hh"
45#include "params/DerivO3CPU.hh"
46#include "sim/byteswap.hh"
47#include "sim/core.hh"
48
49#if FULL_SYSTEM
50#include "arch/tlb.hh"
51#include "arch/vtophys.hh"
52#include "sim/system.hh"
53#endif // FULL_SYSTEM
54
55using namespace std;
56
57template<class Impl>
58void
59DefaultFetch<Impl>::IcachePort::setPeer(Port *port)
60{
61 Port::setPeer(port);
62
63 fetch->setIcache();
64}
65
66template<class Impl>
67Tick
68DefaultFetch<Impl>::IcachePort::recvAtomic(PacketPtr pkt)
69{
70 panic("DefaultFetch doesn't expect recvAtomic callback!");
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 * Korey Sewell
30 */
31
32#include <algorithm>
33#include <cstring>
34
35#include "arch/isa_traits.hh"
36#include "arch/utility.hh"
37#include "base/types.hh"
38#include "config/the_isa.hh"
39#include "config/use_checker.hh"
40#include "cpu/checker/cpu.hh"
41#include "cpu/exetrace.hh"
42#include "cpu/o3/fetch.hh"
43#include "mem/packet.hh"
44#include "mem/request.hh"
45#include "params/DerivO3CPU.hh"
46#include "sim/byteswap.hh"
47#include "sim/core.hh"
48
49#if FULL_SYSTEM
50#include "arch/tlb.hh"
51#include "arch/vtophys.hh"
52#include "sim/system.hh"
53#endif // FULL_SYSTEM
54
55using namespace std;
56
57template<class Impl>
58void
59DefaultFetch<Impl>::IcachePort::setPeer(Port *port)
60{
61 Port::setPeer(port);
62
63 fetch->setIcache();
64}
65
66template<class Impl>
67Tick
68DefaultFetch<Impl>::IcachePort::recvAtomic(PacketPtr pkt)
69{
70 panic("DefaultFetch doesn't expect recvAtomic callback!");
71 return curTick;
71 return curTick();
72}
73
74template<class Impl>
75void
76DefaultFetch<Impl>::IcachePort::recvFunctional(PacketPtr pkt)
77{
78 DPRINTF(Fetch, "DefaultFetch doesn't update its state from a "
79 "functional call.");
80}
81
82template<class Impl>
83void
84DefaultFetch<Impl>::IcachePort::recvStatusChange(Status status)
85{
86 if (status == RangeChange) {
87 if (!snoopRangeSent) {
88 snoopRangeSent = true;
89 sendStatusChange(Port::RangeChange);
90 }
91 return;
92 }
93
94 panic("DefaultFetch doesn't expect recvStatusChange callback!");
95}
96
97template<class Impl>
98bool
99DefaultFetch<Impl>::IcachePort::recvTiming(PacketPtr pkt)
100{
101 DPRINTF(Fetch, "Received timing\n");
102 if (pkt->isResponse()) {
103 fetch->processCacheCompletion(pkt);
104 }
105 //else Snooped a coherence request, just return
106 return true;
107}
108
109template<class Impl>
110void
111DefaultFetch<Impl>::IcachePort::recvRetry()
112{
113 fetch->recvRetry();
114}
115
116template<class Impl>
117DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
118 : cpu(_cpu),
119 branchPred(params),
120 predecoder(NULL),
121 decodeToFetchDelay(params->decodeToFetchDelay),
122 renameToFetchDelay(params->renameToFetchDelay),
123 iewToFetchDelay(params->iewToFetchDelay),
124 commitToFetchDelay(params->commitToFetchDelay),
125 fetchWidth(params->fetchWidth),
126 cacheBlocked(false),
127 retryPkt(NULL),
128 retryTid(InvalidThreadID),
129 numThreads(params->numThreads),
130 numFetchingThreads(params->smtNumFetchingThreads),
131 interruptPending(false),
132 drainPending(false),
133 switchedOut(false)
134{
135 if (numThreads > Impl::MaxThreads)
136 fatal("numThreads (%d) is larger than compiled limit (%d),\n"
137 "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
138 numThreads, static_cast<int>(Impl::MaxThreads));
139
140 // Set fetch stage's status to inactive.
141 _status = Inactive;
142
143 std::string policy = params->smtFetchPolicy;
144
145 // Convert string to lowercase
146 std::transform(policy.begin(), policy.end(), policy.begin(),
147 (int(*)(int)) tolower);
148
149 // Figure out fetch policy
150 if (policy == "singlethread") {
151 fetchPolicy = SingleThread;
152 if (numThreads > 1)
153 panic("Invalid Fetch Policy for a SMT workload.");
154 } else if (policy == "roundrobin") {
155 fetchPolicy = RoundRobin;
156 DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
157 } else if (policy == "branch") {
158 fetchPolicy = Branch;
159 DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
160 } else if (policy == "iqcount") {
161 fetchPolicy = IQ;
162 DPRINTF(Fetch, "Fetch policy set to IQ count\n");
163 } else if (policy == "lsqcount") {
164 fetchPolicy = LSQ;
165 DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
166 } else {
167 fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
168 " RoundRobin,LSQcount,IQcount}\n");
169 }
170
171 // Get the size of an instruction.
172 instSize = sizeof(TheISA::MachInst);
173
174 // Name is finally available, so create the port.
175 icachePort = new IcachePort(this);
176
177 icachePort->snoopRangeSent = false;
178
179#if USE_CHECKER
180 if (cpu->checker) {
181 cpu->checker->setIcachePort(icachePort);
182 }
183#endif
184}
185
186template <class Impl>
187std::string
188DefaultFetch<Impl>::name() const
189{
190 return cpu->name() + ".fetch";
191}
192
193template <class Impl>
194void
195DefaultFetch<Impl>::regStats()
196{
197 icacheStallCycles
198 .name(name() + ".icacheStallCycles")
199 .desc("Number of cycles fetch is stalled on an Icache miss")
200 .prereq(icacheStallCycles);
201
202 fetchedInsts
203 .name(name() + ".Insts")
204 .desc("Number of instructions fetch has processed")
205 .prereq(fetchedInsts);
206
207 fetchedBranches
208 .name(name() + ".Branches")
209 .desc("Number of branches that fetch encountered")
210 .prereq(fetchedBranches);
211
212 predictedBranches
213 .name(name() + ".predictedBranches")
214 .desc("Number of branches that fetch has predicted taken")
215 .prereq(predictedBranches);
216
217 fetchCycles
218 .name(name() + ".Cycles")
219 .desc("Number of cycles fetch has run and was not squashing or"
220 " blocked")
221 .prereq(fetchCycles);
222
223 fetchSquashCycles
224 .name(name() + ".SquashCycles")
225 .desc("Number of cycles fetch has spent squashing")
226 .prereq(fetchSquashCycles);
227
228 fetchIdleCycles
229 .name(name() + ".IdleCycles")
230 .desc("Number of cycles fetch was idle")
231 .prereq(fetchIdleCycles);
232
233 fetchBlockedCycles
234 .name(name() + ".BlockedCycles")
235 .desc("Number of cycles fetch has spent blocked")
236 .prereq(fetchBlockedCycles);
237
238 fetchedCacheLines
239 .name(name() + ".CacheLines")
240 .desc("Number of cache lines fetched")
241 .prereq(fetchedCacheLines);
242
243 fetchMiscStallCycles
244 .name(name() + ".MiscStallCycles")
245 .desc("Number of cycles fetch has spent waiting on interrupts, or "
246 "bad addresses, or out of MSHRs")
247 .prereq(fetchMiscStallCycles);
248
249 fetchIcacheSquashes
250 .name(name() + ".IcacheSquashes")
251 .desc("Number of outstanding Icache misses that were squashed")
252 .prereq(fetchIcacheSquashes);
253
254 fetchNisnDist
255 .init(/* base value */ 0,
256 /* last value */ fetchWidth,
257 /* bucket size */ 1)
258 .name(name() + ".rateDist")
259 .desc("Number of instructions fetched each cycle (Total)")
260 .flags(Stats::pdf);
261
262 idleRate
263 .name(name() + ".idleRate")
264 .desc("Percent of cycles fetch was idle")
265 .prereq(idleRate);
266 idleRate = fetchIdleCycles * 100 / cpu->numCycles;
267
268 branchRate
269 .name(name() + ".branchRate")
270 .desc("Number of branch fetches per cycle")
271 .flags(Stats::total);
272 branchRate = fetchedBranches / cpu->numCycles;
273
274 fetchRate
275 .name(name() + ".rate")
276 .desc("Number of inst fetches per cycle")
277 .flags(Stats::total);
278 fetchRate = fetchedInsts / cpu->numCycles;
279
280 branchPred.regStats();
281}
282
283template<class Impl>
284void
285DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
286{
287 timeBuffer = time_buffer;
288
289 // Create wires to get information from proper places in time buffer.
290 fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
291 fromRename = timeBuffer->getWire(-renameToFetchDelay);
292 fromIEW = timeBuffer->getWire(-iewToFetchDelay);
293 fromCommit = timeBuffer->getWire(-commitToFetchDelay);
294}
295
296template<class Impl>
297void
298DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
299{
300 activeThreads = at_ptr;
301}
302
303template<class Impl>
304void
305DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
306{
307 fetchQueue = fq_ptr;
308
309 // Create wire to write information to proper place in fetch queue.
310 toDecode = fetchQueue->getWire(0);
311}
312
313template<class Impl>
314void
315DefaultFetch<Impl>::initStage()
316{
317 // Setup PC and nextPC with initial state.
318 for (ThreadID tid = 0; tid < numThreads; tid++) {
319 pc[tid] = cpu->pcState(tid);
320 fetchOffset[tid] = 0;
321 macroop[tid] = NULL;
322 }
323
324 for (ThreadID tid = 0; tid < numThreads; tid++) {
325
326 fetchStatus[tid] = Running;
327
328 priorityList.push_back(tid);
329
330 memReq[tid] = NULL;
331
332 stalls[tid].decode = false;
333 stalls[tid].rename = false;
334 stalls[tid].iew = false;
335 stalls[tid].commit = false;
336 }
337
338 // Schedule fetch to get the correct PC from the CPU
339 // scheduleFetchStartupEvent(1);
340
341 // Fetch needs to start fetching instructions at the very beginning,
342 // so it must start up in active state.
343 switchToActive();
344}
345
346template<class Impl>
347void
348DefaultFetch<Impl>::setIcache()
349{
350 // Size of cache block.
351 cacheBlkSize = icachePort->peerBlockSize();
352
353 // Create mask to get rid of offset bits.
354 cacheBlkMask = (cacheBlkSize - 1);
355
356 for (ThreadID tid = 0; tid < numThreads; tid++) {
357 // Create space to store a cache line.
358 cacheData[tid] = new uint8_t[cacheBlkSize];
359 cacheDataPC[tid] = 0;
360 cacheDataValid[tid] = false;
361 }
362}
363
364template<class Impl>
365void
366DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
367{
368 ThreadID tid = pkt->req->threadId();
369
370 DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n",tid);
371
372 assert(!pkt->wasNacked());
373
374 // Only change the status if it's still waiting on the icache access
375 // to return.
376 if (fetchStatus[tid] != IcacheWaitResponse ||
377 pkt->req != memReq[tid] ||
378 isSwitchedOut()) {
379 ++fetchIcacheSquashes;
380 delete pkt->req;
381 delete pkt;
382 return;
383 }
384
385 memcpy(cacheData[tid], pkt->getPtr<uint8_t>(), cacheBlkSize);
386 cacheDataValid[tid] = true;
387
388 if (!drainPending) {
389 // Wake up the CPU (if it went to sleep and was waiting on
390 // this completion event).
391 cpu->wakeCPU();
392
393 DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
394 tid);
395
396 switchToActive();
397 }
398
399 // Only switch to IcacheAccessComplete if we're not stalled as well.
400 if (checkStall(tid)) {
401 fetchStatus[tid] = Blocked;
402 } else {
403 fetchStatus[tid] = IcacheAccessComplete;
404 }
405
406 // Reset the mem req to NULL.
407 delete pkt->req;
408 delete pkt;
409 memReq[tid] = NULL;
410}
411
412template <class Impl>
413bool
414DefaultFetch<Impl>::drain()
415{
416 // Fetch is ready to drain at any time.
417 cpu->signalDrained();
418 drainPending = true;
419 return true;
420}
421
422template <class Impl>
423void
424DefaultFetch<Impl>::resume()
425{
426 drainPending = false;
427}
428
429template <class Impl>
430void
431DefaultFetch<Impl>::switchOut()
432{
433 switchedOut = true;
434 // Branch predictor needs to have its state cleared.
435 branchPred.switchOut();
436}
437
438template <class Impl>
439void
440DefaultFetch<Impl>::takeOverFrom()
441{
442 // Reset all state
443 for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
444 stalls[i].decode = 0;
445 stalls[i].rename = 0;
446 stalls[i].iew = 0;
447 stalls[i].commit = 0;
448 pc[i] = cpu->pcState(i);
449 fetchStatus[i] = Running;
450 }
451 numInst = 0;
452 wroteToTimeBuffer = false;
453 _status = Inactive;
454 switchedOut = false;
455 interruptPending = false;
456 branchPred.takeOverFrom();
457}
458
459template <class Impl>
460void
461DefaultFetch<Impl>::wakeFromQuiesce()
462{
463 DPRINTF(Fetch, "Waking up from quiesce\n");
464 // Hopefully this is safe
465 // @todo: Allow other threads to wake from quiesce.
466 fetchStatus[0] = Running;
467}
468
469template <class Impl>
470inline void
471DefaultFetch<Impl>::switchToActive()
472{
473 if (_status == Inactive) {
474 DPRINTF(Activity, "Activating stage.\n");
475
476 cpu->activateStage(O3CPU::FetchIdx);
477
478 _status = Active;
479 }
480}
481
482template <class Impl>
483inline void
484DefaultFetch<Impl>::switchToInactive()
485{
486 if (_status == Active) {
487 DPRINTF(Activity, "Deactivating stage.\n");
488
489 cpu->deactivateStage(O3CPU::FetchIdx);
490
491 _status = Inactive;
492 }
493}
494
495template <class Impl>
496bool
497DefaultFetch<Impl>::lookupAndUpdateNextPC(
498 DynInstPtr &inst, TheISA::PCState &nextPC)
499{
500 // Do branch prediction check here.
501 // A bit of a misnomer...next_PC is actually the current PC until
502 // this function updates it.
503 bool predict_taken;
504
505 if (!inst->isControl()) {
506 TheISA::advancePC(nextPC, inst->staticInst);
507 inst->setPredTarg(nextPC);
508 inst->setPredTaken(false);
509 return false;
510 }
511
512 ThreadID tid = inst->threadNumber;
513 predict_taken = branchPred.predict(inst, nextPC, tid);
514
515 if (predict_taken) {
516 DPRINTF(Fetch, "[tid:%i]: [sn:%i]: Branch predicted to be taken to %s.\n",
517 tid, inst->seqNum, nextPC);
518 } else {
519 DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n",
520 tid, inst->seqNum);
521 }
522
523 DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n",
524 tid, inst->seqNum, nextPC);
525 inst->setPredTarg(nextPC);
526 inst->setPredTaken(predict_taken);
527
528 ++fetchedBranches;
529
530 if (predict_taken) {
531 ++predictedBranches;
532 }
533
534 return predict_taken;
535}
536
537template <class Impl>
538bool
539DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, Fault &ret_fault, ThreadID tid,
540 Addr pc)
541{
542 Fault fault = NoFault;
543
544 //AlphaDep
545 if (cacheBlocked) {
546 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
547 tid);
548 return false;
549 } else if (isSwitchedOut()) {
550 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n",
551 tid);
552 return false;
553 } else if (interruptPending && !(pc & 0x3)) {
554 // Hold off fetch from getting new instructions when:
555 // Cache is blocked, or
556 // while an interrupt is pending and we're not in PAL mode, or
557 // fetch is switched out.
558 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
559 tid);
560 return false;
561 }
562
563 // Align the fetch address so it's at the start of a cache block.
564 Addr block_PC = icacheBlockAlignPC(vaddr);
565
566 // If we've already got the block, no need to try to fetch it again.
567 if (cacheDataValid[tid] && block_PC == cacheDataPC[tid]) {
568 return true;
569 }
570
571 // Setup the memReq to do a read of the first instruction's address.
572 // Set the appropriate read size and flags as well.
573 // Build request here.
574 RequestPtr mem_req =
575 new Request(tid, block_PC, cacheBlkSize, Request::INST_FETCH,
576 pc, cpu->thread[tid]->contextId(), tid);
577
578 memReq[tid] = mem_req;
579
580 // Translate the instruction request.
581 fault = cpu->itb->translateAtomic(mem_req, cpu->thread[tid]->getTC(),
582 BaseTLB::Execute);
583
584 // In the case of faults, the fetch stage may need to stall and wait
585 // for the ITB miss to be handled.
586
587 // If translation was successful, attempt to read the first
588 // instruction.
589 if (fault == NoFault) {
590#if 0
591 if (cpu->system->memctrl->badaddr(memReq[tid]->paddr) ||
592 memReq[tid]->isUncacheable()) {
593 DPRINTF(Fetch, "Fetch: Bad address %#x (hopefully on a "
594 "misspeculating path)!",
595 memReq[tid]->paddr);
596 ret_fault = TheISA::genMachineCheckFault();
597 return false;
598 }
599#endif
600
601 // Build packet here.
602 PacketPtr data_pkt = new Packet(mem_req,
603 MemCmd::ReadReq, Packet::Broadcast);
604 data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
605
606 cacheDataPC[tid] = block_PC;
607 cacheDataValid[tid] = false;
608
609 DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
610
611 fetchedCacheLines++;
612
613 // Now do the timing access to see whether or not the instruction
614 // exists within the cache.
615 if (!icachePort->sendTiming(data_pkt)) {
616 assert(retryPkt == NULL);
617 assert(retryTid == InvalidThreadID);
618 DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
619 fetchStatus[tid] = IcacheWaitRetry;
620 retryPkt = data_pkt;
621 retryTid = tid;
622 cacheBlocked = true;
623 return false;
624 }
625
626 DPRINTF(Fetch, "[tid:%i]: Doing cache access.\n", tid);
627
72}
73
74template<class Impl>
75void
76DefaultFetch<Impl>::IcachePort::recvFunctional(PacketPtr pkt)
77{
78 DPRINTF(Fetch, "DefaultFetch doesn't update its state from a "
79 "functional call.");
80}
81
82template<class Impl>
83void
84DefaultFetch<Impl>::IcachePort::recvStatusChange(Status status)
85{
86 if (status == RangeChange) {
87 if (!snoopRangeSent) {
88 snoopRangeSent = true;
89 sendStatusChange(Port::RangeChange);
90 }
91 return;
92 }
93
94 panic("DefaultFetch doesn't expect recvStatusChange callback!");
95}
96
97template<class Impl>
98bool
99DefaultFetch<Impl>::IcachePort::recvTiming(PacketPtr pkt)
100{
101 DPRINTF(Fetch, "Received timing\n");
102 if (pkt->isResponse()) {
103 fetch->processCacheCompletion(pkt);
104 }
105 //else Snooped a coherence request, just return
106 return true;
107}
108
109template<class Impl>
110void
111DefaultFetch<Impl>::IcachePort::recvRetry()
112{
113 fetch->recvRetry();
114}
115
116template<class Impl>
117DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
118 : cpu(_cpu),
119 branchPred(params),
120 predecoder(NULL),
121 decodeToFetchDelay(params->decodeToFetchDelay),
122 renameToFetchDelay(params->renameToFetchDelay),
123 iewToFetchDelay(params->iewToFetchDelay),
124 commitToFetchDelay(params->commitToFetchDelay),
125 fetchWidth(params->fetchWidth),
126 cacheBlocked(false),
127 retryPkt(NULL),
128 retryTid(InvalidThreadID),
129 numThreads(params->numThreads),
130 numFetchingThreads(params->smtNumFetchingThreads),
131 interruptPending(false),
132 drainPending(false),
133 switchedOut(false)
134{
135 if (numThreads > Impl::MaxThreads)
136 fatal("numThreads (%d) is larger than compiled limit (%d),\n"
137 "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
138 numThreads, static_cast<int>(Impl::MaxThreads));
139
140 // Set fetch stage's status to inactive.
141 _status = Inactive;
142
143 std::string policy = params->smtFetchPolicy;
144
145 // Convert string to lowercase
146 std::transform(policy.begin(), policy.end(), policy.begin(),
147 (int(*)(int)) tolower);
148
149 // Figure out fetch policy
150 if (policy == "singlethread") {
151 fetchPolicy = SingleThread;
152 if (numThreads > 1)
153 panic("Invalid Fetch Policy for a SMT workload.");
154 } else if (policy == "roundrobin") {
155 fetchPolicy = RoundRobin;
156 DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
157 } else if (policy == "branch") {
158 fetchPolicy = Branch;
159 DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
160 } else if (policy == "iqcount") {
161 fetchPolicy = IQ;
162 DPRINTF(Fetch, "Fetch policy set to IQ count\n");
163 } else if (policy == "lsqcount") {
164 fetchPolicy = LSQ;
165 DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
166 } else {
167 fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
168 " RoundRobin,LSQcount,IQcount}\n");
169 }
170
171 // Get the size of an instruction.
172 instSize = sizeof(TheISA::MachInst);
173
174 // Name is finally available, so create the port.
175 icachePort = new IcachePort(this);
176
177 icachePort->snoopRangeSent = false;
178
179#if USE_CHECKER
180 if (cpu->checker) {
181 cpu->checker->setIcachePort(icachePort);
182 }
183#endif
184}
185
186template <class Impl>
187std::string
188DefaultFetch<Impl>::name() const
189{
190 return cpu->name() + ".fetch";
191}
192
193template <class Impl>
194void
195DefaultFetch<Impl>::regStats()
196{
197 icacheStallCycles
198 .name(name() + ".icacheStallCycles")
199 .desc("Number of cycles fetch is stalled on an Icache miss")
200 .prereq(icacheStallCycles);
201
202 fetchedInsts
203 .name(name() + ".Insts")
204 .desc("Number of instructions fetch has processed")
205 .prereq(fetchedInsts);
206
207 fetchedBranches
208 .name(name() + ".Branches")
209 .desc("Number of branches that fetch encountered")
210 .prereq(fetchedBranches);
211
212 predictedBranches
213 .name(name() + ".predictedBranches")
214 .desc("Number of branches that fetch has predicted taken")
215 .prereq(predictedBranches);
216
217 fetchCycles
218 .name(name() + ".Cycles")
219 .desc("Number of cycles fetch has run and was not squashing or"
220 " blocked")
221 .prereq(fetchCycles);
222
223 fetchSquashCycles
224 .name(name() + ".SquashCycles")
225 .desc("Number of cycles fetch has spent squashing")
226 .prereq(fetchSquashCycles);
227
228 fetchIdleCycles
229 .name(name() + ".IdleCycles")
230 .desc("Number of cycles fetch was idle")
231 .prereq(fetchIdleCycles);
232
233 fetchBlockedCycles
234 .name(name() + ".BlockedCycles")
235 .desc("Number of cycles fetch has spent blocked")
236 .prereq(fetchBlockedCycles);
237
238 fetchedCacheLines
239 .name(name() + ".CacheLines")
240 .desc("Number of cache lines fetched")
241 .prereq(fetchedCacheLines);
242
243 fetchMiscStallCycles
244 .name(name() + ".MiscStallCycles")
245 .desc("Number of cycles fetch has spent waiting on interrupts, or "
246 "bad addresses, or out of MSHRs")
247 .prereq(fetchMiscStallCycles);
248
249 fetchIcacheSquashes
250 .name(name() + ".IcacheSquashes")
251 .desc("Number of outstanding Icache misses that were squashed")
252 .prereq(fetchIcacheSquashes);
253
254 fetchNisnDist
255 .init(/* base value */ 0,
256 /* last value */ fetchWidth,
257 /* bucket size */ 1)
258 .name(name() + ".rateDist")
259 .desc("Number of instructions fetched each cycle (Total)")
260 .flags(Stats::pdf);
261
262 idleRate
263 .name(name() + ".idleRate")
264 .desc("Percent of cycles fetch was idle")
265 .prereq(idleRate);
266 idleRate = fetchIdleCycles * 100 / cpu->numCycles;
267
268 branchRate
269 .name(name() + ".branchRate")
270 .desc("Number of branch fetches per cycle")
271 .flags(Stats::total);
272 branchRate = fetchedBranches / cpu->numCycles;
273
274 fetchRate
275 .name(name() + ".rate")
276 .desc("Number of inst fetches per cycle")
277 .flags(Stats::total);
278 fetchRate = fetchedInsts / cpu->numCycles;
279
280 branchPred.regStats();
281}
282
283template<class Impl>
284void
285DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
286{
287 timeBuffer = time_buffer;
288
289 // Create wires to get information from proper places in time buffer.
290 fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
291 fromRename = timeBuffer->getWire(-renameToFetchDelay);
292 fromIEW = timeBuffer->getWire(-iewToFetchDelay);
293 fromCommit = timeBuffer->getWire(-commitToFetchDelay);
294}
295
296template<class Impl>
297void
298DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
299{
300 activeThreads = at_ptr;
301}
302
303template<class Impl>
304void
305DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
306{
307 fetchQueue = fq_ptr;
308
309 // Create wire to write information to proper place in fetch queue.
310 toDecode = fetchQueue->getWire(0);
311}
312
313template<class Impl>
314void
315DefaultFetch<Impl>::initStage()
316{
317 // Setup PC and nextPC with initial state.
318 for (ThreadID tid = 0; tid < numThreads; tid++) {
319 pc[tid] = cpu->pcState(tid);
320 fetchOffset[tid] = 0;
321 macroop[tid] = NULL;
322 }
323
324 for (ThreadID tid = 0; tid < numThreads; tid++) {
325
326 fetchStatus[tid] = Running;
327
328 priorityList.push_back(tid);
329
330 memReq[tid] = NULL;
331
332 stalls[tid].decode = false;
333 stalls[tid].rename = false;
334 stalls[tid].iew = false;
335 stalls[tid].commit = false;
336 }
337
338 // Schedule fetch to get the correct PC from the CPU
339 // scheduleFetchStartupEvent(1);
340
341 // Fetch needs to start fetching instructions at the very beginning,
342 // so it must start up in active state.
343 switchToActive();
344}
345
346template<class Impl>
347void
348DefaultFetch<Impl>::setIcache()
349{
350 // Size of cache block.
351 cacheBlkSize = icachePort->peerBlockSize();
352
353 // Create mask to get rid of offset bits.
354 cacheBlkMask = (cacheBlkSize - 1);
355
356 for (ThreadID tid = 0; tid < numThreads; tid++) {
357 // Create space to store a cache line.
358 cacheData[tid] = new uint8_t[cacheBlkSize];
359 cacheDataPC[tid] = 0;
360 cacheDataValid[tid] = false;
361 }
362}
363
364template<class Impl>
365void
366DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
367{
368 ThreadID tid = pkt->req->threadId();
369
370 DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n",tid);
371
372 assert(!pkt->wasNacked());
373
374 // Only change the status if it's still waiting on the icache access
375 // to return.
376 if (fetchStatus[tid] != IcacheWaitResponse ||
377 pkt->req != memReq[tid] ||
378 isSwitchedOut()) {
379 ++fetchIcacheSquashes;
380 delete pkt->req;
381 delete pkt;
382 return;
383 }
384
385 memcpy(cacheData[tid], pkt->getPtr<uint8_t>(), cacheBlkSize);
386 cacheDataValid[tid] = true;
387
388 if (!drainPending) {
389 // Wake up the CPU (if it went to sleep and was waiting on
390 // this completion event).
391 cpu->wakeCPU();
392
393 DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
394 tid);
395
396 switchToActive();
397 }
398
399 // Only switch to IcacheAccessComplete if we're not stalled as well.
400 if (checkStall(tid)) {
401 fetchStatus[tid] = Blocked;
402 } else {
403 fetchStatus[tid] = IcacheAccessComplete;
404 }
405
406 // Reset the mem req to NULL.
407 delete pkt->req;
408 delete pkt;
409 memReq[tid] = NULL;
410}
411
412template <class Impl>
413bool
414DefaultFetch<Impl>::drain()
415{
416 // Fetch is ready to drain at any time.
417 cpu->signalDrained();
418 drainPending = true;
419 return true;
420}
421
422template <class Impl>
423void
424DefaultFetch<Impl>::resume()
425{
426 drainPending = false;
427}
428
429template <class Impl>
430void
431DefaultFetch<Impl>::switchOut()
432{
433 switchedOut = true;
434 // Branch predictor needs to have its state cleared.
435 branchPred.switchOut();
436}
437
438template <class Impl>
439void
440DefaultFetch<Impl>::takeOverFrom()
441{
442 // Reset all state
443 for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
444 stalls[i].decode = 0;
445 stalls[i].rename = 0;
446 stalls[i].iew = 0;
447 stalls[i].commit = 0;
448 pc[i] = cpu->pcState(i);
449 fetchStatus[i] = Running;
450 }
451 numInst = 0;
452 wroteToTimeBuffer = false;
453 _status = Inactive;
454 switchedOut = false;
455 interruptPending = false;
456 branchPred.takeOverFrom();
457}
458
459template <class Impl>
460void
461DefaultFetch<Impl>::wakeFromQuiesce()
462{
463 DPRINTF(Fetch, "Waking up from quiesce\n");
464 // Hopefully this is safe
465 // @todo: Allow other threads to wake from quiesce.
466 fetchStatus[0] = Running;
467}
468
469template <class Impl>
470inline void
471DefaultFetch<Impl>::switchToActive()
472{
473 if (_status == Inactive) {
474 DPRINTF(Activity, "Activating stage.\n");
475
476 cpu->activateStage(O3CPU::FetchIdx);
477
478 _status = Active;
479 }
480}
481
482template <class Impl>
483inline void
484DefaultFetch<Impl>::switchToInactive()
485{
486 if (_status == Active) {
487 DPRINTF(Activity, "Deactivating stage.\n");
488
489 cpu->deactivateStage(O3CPU::FetchIdx);
490
491 _status = Inactive;
492 }
493}
494
495template <class Impl>
496bool
497DefaultFetch<Impl>::lookupAndUpdateNextPC(
498 DynInstPtr &inst, TheISA::PCState &nextPC)
499{
500 // Do branch prediction check here.
501 // A bit of a misnomer...next_PC is actually the current PC until
502 // this function updates it.
503 bool predict_taken;
504
505 if (!inst->isControl()) {
506 TheISA::advancePC(nextPC, inst->staticInst);
507 inst->setPredTarg(nextPC);
508 inst->setPredTaken(false);
509 return false;
510 }
511
512 ThreadID tid = inst->threadNumber;
513 predict_taken = branchPred.predict(inst, nextPC, tid);
514
515 if (predict_taken) {
516 DPRINTF(Fetch, "[tid:%i]: [sn:%i]: Branch predicted to be taken to %s.\n",
517 tid, inst->seqNum, nextPC);
518 } else {
519 DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n",
520 tid, inst->seqNum);
521 }
522
523 DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n",
524 tid, inst->seqNum, nextPC);
525 inst->setPredTarg(nextPC);
526 inst->setPredTaken(predict_taken);
527
528 ++fetchedBranches;
529
530 if (predict_taken) {
531 ++predictedBranches;
532 }
533
534 return predict_taken;
535}
536
537template <class Impl>
538bool
539DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, Fault &ret_fault, ThreadID tid,
540 Addr pc)
541{
542 Fault fault = NoFault;
543
544 //AlphaDep
545 if (cacheBlocked) {
546 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
547 tid);
548 return false;
549 } else if (isSwitchedOut()) {
550 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n",
551 tid);
552 return false;
553 } else if (interruptPending && !(pc & 0x3)) {
554 // Hold off fetch from getting new instructions when:
555 // Cache is blocked, or
556 // while an interrupt is pending and we're not in PAL mode, or
557 // fetch is switched out.
558 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
559 tid);
560 return false;
561 }
562
563 // Align the fetch address so it's at the start of a cache block.
564 Addr block_PC = icacheBlockAlignPC(vaddr);
565
566 // If we've already got the block, no need to try to fetch it again.
567 if (cacheDataValid[tid] && block_PC == cacheDataPC[tid]) {
568 return true;
569 }
570
571 // Setup the memReq to do a read of the first instruction's address.
572 // Set the appropriate read size and flags as well.
573 // Build request here.
574 RequestPtr mem_req =
575 new Request(tid, block_PC, cacheBlkSize, Request::INST_FETCH,
576 pc, cpu->thread[tid]->contextId(), tid);
577
578 memReq[tid] = mem_req;
579
580 // Translate the instruction request.
581 fault = cpu->itb->translateAtomic(mem_req, cpu->thread[tid]->getTC(),
582 BaseTLB::Execute);
583
584 // In the case of faults, the fetch stage may need to stall and wait
585 // for the ITB miss to be handled.
586
587 // If translation was successful, attempt to read the first
588 // instruction.
589 if (fault == NoFault) {
590#if 0
591 if (cpu->system->memctrl->badaddr(memReq[tid]->paddr) ||
592 memReq[tid]->isUncacheable()) {
593 DPRINTF(Fetch, "Fetch: Bad address %#x (hopefully on a "
594 "misspeculating path)!",
595 memReq[tid]->paddr);
596 ret_fault = TheISA::genMachineCheckFault();
597 return false;
598 }
599#endif
600
601 // Build packet here.
602 PacketPtr data_pkt = new Packet(mem_req,
603 MemCmd::ReadReq, Packet::Broadcast);
604 data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
605
606 cacheDataPC[tid] = block_PC;
607 cacheDataValid[tid] = false;
608
609 DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
610
611 fetchedCacheLines++;
612
613 // Now do the timing access to see whether or not the instruction
614 // exists within the cache.
615 if (!icachePort->sendTiming(data_pkt)) {
616 assert(retryPkt == NULL);
617 assert(retryTid == InvalidThreadID);
618 DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
619 fetchStatus[tid] = IcacheWaitRetry;
620 retryPkt = data_pkt;
621 retryTid = tid;
622 cacheBlocked = true;
623 return false;
624 }
625
626 DPRINTF(Fetch, "[tid:%i]: Doing cache access.\n", tid);
627
628 lastIcacheStall[tid] = curTick;
628 lastIcacheStall[tid] = curTick();
629
630 DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
631 "response.\n", tid);
632
633 fetchStatus[tid] = IcacheWaitResponse;
634 } else {
635 delete mem_req;
636 memReq[tid] = NULL;
637 }
638
639 ret_fault = fault;
640 return true;
641}
642
643template <class Impl>
644inline void
645DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC, ThreadID tid)
646{
647 DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n",
648 tid, newPC);
649
650 pc[tid] = newPC;
651 fetchOffset[tid] = 0;
652 macroop[tid] = NULL;
653 predecoder.reset();
654
655 // Clear the icache miss if it's outstanding.
656 if (fetchStatus[tid] == IcacheWaitResponse) {
657 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
658 tid);
659 memReq[tid] = NULL;
660 }
661
662 // Get rid of the retrying packet if it was from this thread.
663 if (retryTid == tid) {
664 assert(cacheBlocked);
665 if (retryPkt) {
666 delete retryPkt->req;
667 delete retryPkt;
668 }
669 retryPkt = NULL;
670 retryTid = InvalidThreadID;
671 }
672
673 fetchStatus[tid] = Squashing;
674
675 ++fetchSquashCycles;
676}
677
678template<class Impl>
679void
680DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
681 const InstSeqNum &seq_num, ThreadID tid)
682{
683 DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid);
684
685 doSquash(newPC, tid);
686
687 // Tell the CPU to remove any instructions that are in flight between
688 // fetch and decode.
689 cpu->removeInstsUntil(seq_num, tid);
690}
691
692template<class Impl>
693bool
694DefaultFetch<Impl>::checkStall(ThreadID tid) const
695{
696 bool ret_val = false;
697
698 if (cpu->contextSwitch) {
699 DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
700 ret_val = true;
701 } else if (stalls[tid].decode) {
702 DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
703 ret_val = true;
704 } else if (stalls[tid].rename) {
705 DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
706 ret_val = true;
707 } else if (stalls[tid].iew) {
708 DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
709 ret_val = true;
710 } else if (stalls[tid].commit) {
711 DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
712 ret_val = true;
713 }
714
715 return ret_val;
716}
717
718template<class Impl>
719typename DefaultFetch<Impl>::FetchStatus
720DefaultFetch<Impl>::updateFetchStatus()
721{
722 //Check Running
723 list<ThreadID>::iterator threads = activeThreads->begin();
724 list<ThreadID>::iterator end = activeThreads->end();
725
726 while (threads != end) {
727 ThreadID tid = *threads++;
728
729 if (fetchStatus[tid] == Running ||
730 fetchStatus[tid] == Squashing ||
731 fetchStatus[tid] == IcacheAccessComplete) {
732
733 if (_status == Inactive) {
734 DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
735
736 if (fetchStatus[tid] == IcacheAccessComplete) {
737 DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
738 "completion\n",tid);
739 }
740
741 cpu->activateStage(O3CPU::FetchIdx);
742 }
743
744 return Active;
745 }
746 }
747
748 // Stage is switching from active to inactive, notify CPU of it.
749 if (_status == Active) {
750 DPRINTF(Activity, "Deactivating stage.\n");
751
752 cpu->deactivateStage(O3CPU::FetchIdx);
753 }
754
755 return Inactive;
756}
757
758template <class Impl>
759void
760DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
761 const InstSeqNum &seq_num, ThreadID tid)
762{
763 DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid);
764
765 doSquash(newPC, tid);
766
767 // Tell the CPU to remove any instructions that are not in the ROB.
768 cpu->removeInstsNotInROB(tid);
769}
770
771template <class Impl>
772void
773DefaultFetch<Impl>::tick()
774{
775 list<ThreadID>::iterator threads = activeThreads->begin();
776 list<ThreadID>::iterator end = activeThreads->end();
777 bool status_change = false;
778
779 wroteToTimeBuffer = false;
780
781 while (threads != end) {
782 ThreadID tid = *threads++;
783
784 // Check the signals for each thread to determine the proper status
785 // for each thread.
786 bool updated_status = checkSignalsAndUpdate(tid);
787 status_change = status_change || updated_status;
788 }
789
790 DPRINTF(Fetch, "Running stage.\n");
791
792 // Reset the number of the instruction we're fetching.
793 numInst = 0;
794
795#if FULL_SYSTEM
796 if (fromCommit->commitInfo[0].interruptPending) {
797 interruptPending = true;
798 }
799
800 if (fromCommit->commitInfo[0].clearInterrupt) {
801 interruptPending = false;
802 }
803#endif
804
805 for (threadFetched = 0; threadFetched < numFetchingThreads;
806 threadFetched++) {
807 // Fetch each of the actively fetching threads.
808 fetch(status_change);
809 }
810
811 // Record number of instructions fetched this cycle for distribution.
812 fetchNisnDist.sample(numInst);
813
814 if (status_change) {
815 // Change the fetch stage status if there was a status change.
816 _status = updateFetchStatus();
817 }
818
819 // If there was activity this cycle, inform the CPU of it.
820 if (wroteToTimeBuffer || cpu->contextSwitch) {
821 DPRINTF(Activity, "Activity this cycle.\n");
822
823 cpu->activityThisCycle();
824 }
825}
826
827template <class Impl>
828bool
829DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
830{
831 // Update the per thread stall statuses.
832 if (fromDecode->decodeBlock[tid]) {
833 stalls[tid].decode = true;
834 }
835
836 if (fromDecode->decodeUnblock[tid]) {
837 assert(stalls[tid].decode);
838 assert(!fromDecode->decodeBlock[tid]);
839 stalls[tid].decode = false;
840 }
841
842 if (fromRename->renameBlock[tid]) {
843 stalls[tid].rename = true;
844 }
845
846 if (fromRename->renameUnblock[tid]) {
847 assert(stalls[tid].rename);
848 assert(!fromRename->renameBlock[tid]);
849 stalls[tid].rename = false;
850 }
851
852 if (fromIEW->iewBlock[tid]) {
853 stalls[tid].iew = true;
854 }
855
856 if (fromIEW->iewUnblock[tid]) {
857 assert(stalls[tid].iew);
858 assert(!fromIEW->iewBlock[tid]);
859 stalls[tid].iew = false;
860 }
861
862 if (fromCommit->commitBlock[tid]) {
863 stalls[tid].commit = true;
864 }
865
866 if (fromCommit->commitUnblock[tid]) {
867 assert(stalls[tid].commit);
868 assert(!fromCommit->commitBlock[tid]);
869 stalls[tid].commit = false;
870 }
871
872 // Check squash signals from commit.
873 if (fromCommit->commitInfo[tid].squash) {
874
875 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
876 "from commit.\n",tid);
877 // In any case, squash.
878 squash(fromCommit->commitInfo[tid].pc,
879 fromCommit->commitInfo[tid].doneSeqNum,
880 tid);
881
882 // Also check if there's a mispredict that happened.
883 if (fromCommit->commitInfo[tid].branchMispredict) {
884 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
885 fromCommit->commitInfo[tid].pc,
886 fromCommit->commitInfo[tid].branchTaken,
887 tid);
888 } else {
889 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
890 tid);
891 }
892
893 return true;
894 } else if (fromCommit->commitInfo[tid].doneSeqNum) {
895 // Update the branch predictor if it wasn't a squashed instruction
896 // that was broadcasted.
897 branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
898 }
899
900 // Check ROB squash signals from commit.
901 if (fromCommit->commitInfo[tid].robSquashing) {
902 DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
903
904 // Continue to squash.
905 fetchStatus[tid] = Squashing;
906
907 return true;
908 }
909
910 // Check squash signals from decode.
911 if (fromDecode->decodeInfo[tid].squash) {
912 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
913 "from decode.\n",tid);
914
915 // Update the branch predictor.
916 if (fromDecode->decodeInfo[tid].branchMispredict) {
917 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
918 fromDecode->decodeInfo[tid].nextPC,
919 fromDecode->decodeInfo[tid].branchTaken,
920 tid);
921 } else {
922 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
923 tid);
924 }
925
926 if (fetchStatus[tid] != Squashing) {
927
928 TheISA::PCState nextPC = fromDecode->decodeInfo[tid].nextPC;
929 DPRINTF(Fetch, "Squashing from decode with PC = %s\n", nextPC);
930 // Squash unless we're already squashing
931 squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
932 fromDecode->decodeInfo[tid].doneSeqNum,
933 tid);
934
935 return true;
936 }
937 }
938
939 if (checkStall(tid) &&
940 fetchStatus[tid] != IcacheWaitResponse &&
941 fetchStatus[tid] != IcacheWaitRetry) {
942 DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
943
944 fetchStatus[tid] = Blocked;
945
946 return true;
947 }
948
949 if (fetchStatus[tid] == Blocked ||
950 fetchStatus[tid] == Squashing) {
951 // Switch status to running if fetch isn't being told to block or
952 // squash this cycle.
953 DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
954 tid);
955
956 fetchStatus[tid] = Running;
957
958 return true;
959 }
960
961 // If we've reached this point, we have not gotten any signals that
962 // cause fetch to change its status. Fetch remains the same as before.
963 return false;
964}
965
966template<class Impl>
967typename Impl::DynInstPtr
968DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
969 StaticInstPtr curMacroop, TheISA::PCState thisPC,
970 TheISA::PCState nextPC, bool trace)
971{
972 // Get a sequence number.
973 InstSeqNum seq = cpu->getAndIncrementInstSeq();
974
975 // Create a new DynInst from the instruction fetched.
976 DynInstPtr instruction =
977 new DynInst(staticInst, thisPC, nextPC, seq, cpu);
978 instruction->setTid(tid);
979
980 instruction->setASID(tid);
981
982 instruction->setThreadState(cpu->thread[tid]);
983
984 DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created "
985 "[sn:%lli]\n", tid, thisPC.instAddr(),
986 thisPC.microPC(), seq);
987
988 DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid,
989 instruction->staticInst->
990 disassemble(thisPC.instAddr()));
991
992#if TRACING_ON
993 if (trace) {
994 instruction->traceData =
629
630 DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
631 "response.\n", tid);
632
633 fetchStatus[tid] = IcacheWaitResponse;
634 } else {
635 delete mem_req;
636 memReq[tid] = NULL;
637 }
638
639 ret_fault = fault;
640 return true;
641}
642
643template <class Impl>
644inline void
645DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC, ThreadID tid)
646{
647 DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n",
648 tid, newPC);
649
650 pc[tid] = newPC;
651 fetchOffset[tid] = 0;
652 macroop[tid] = NULL;
653 predecoder.reset();
654
655 // Clear the icache miss if it's outstanding.
656 if (fetchStatus[tid] == IcacheWaitResponse) {
657 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
658 tid);
659 memReq[tid] = NULL;
660 }
661
662 // Get rid of the retrying packet if it was from this thread.
663 if (retryTid == tid) {
664 assert(cacheBlocked);
665 if (retryPkt) {
666 delete retryPkt->req;
667 delete retryPkt;
668 }
669 retryPkt = NULL;
670 retryTid = InvalidThreadID;
671 }
672
673 fetchStatus[tid] = Squashing;
674
675 ++fetchSquashCycles;
676}
677
678template<class Impl>
679void
680DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
681 const InstSeqNum &seq_num, ThreadID tid)
682{
683 DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid);
684
685 doSquash(newPC, tid);
686
687 // Tell the CPU to remove any instructions that are in flight between
688 // fetch and decode.
689 cpu->removeInstsUntil(seq_num, tid);
690}
691
692template<class Impl>
693bool
694DefaultFetch<Impl>::checkStall(ThreadID tid) const
695{
696 bool ret_val = false;
697
698 if (cpu->contextSwitch) {
699 DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
700 ret_val = true;
701 } else if (stalls[tid].decode) {
702 DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
703 ret_val = true;
704 } else if (stalls[tid].rename) {
705 DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
706 ret_val = true;
707 } else if (stalls[tid].iew) {
708 DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
709 ret_val = true;
710 } else if (stalls[tid].commit) {
711 DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
712 ret_val = true;
713 }
714
715 return ret_val;
716}
717
718template<class Impl>
719typename DefaultFetch<Impl>::FetchStatus
720DefaultFetch<Impl>::updateFetchStatus()
721{
722 //Check Running
723 list<ThreadID>::iterator threads = activeThreads->begin();
724 list<ThreadID>::iterator end = activeThreads->end();
725
726 while (threads != end) {
727 ThreadID tid = *threads++;
728
729 if (fetchStatus[tid] == Running ||
730 fetchStatus[tid] == Squashing ||
731 fetchStatus[tid] == IcacheAccessComplete) {
732
733 if (_status == Inactive) {
734 DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
735
736 if (fetchStatus[tid] == IcacheAccessComplete) {
737 DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
738 "completion\n",tid);
739 }
740
741 cpu->activateStage(O3CPU::FetchIdx);
742 }
743
744 return Active;
745 }
746 }
747
748 // Stage is switching from active to inactive, notify CPU of it.
749 if (_status == Active) {
750 DPRINTF(Activity, "Deactivating stage.\n");
751
752 cpu->deactivateStage(O3CPU::FetchIdx);
753 }
754
755 return Inactive;
756}
757
758template <class Impl>
759void
760DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
761 const InstSeqNum &seq_num, ThreadID tid)
762{
763 DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid);
764
765 doSquash(newPC, tid);
766
767 // Tell the CPU to remove any instructions that are not in the ROB.
768 cpu->removeInstsNotInROB(tid);
769}
770
771template <class Impl>
772void
773DefaultFetch<Impl>::tick()
774{
775 list<ThreadID>::iterator threads = activeThreads->begin();
776 list<ThreadID>::iterator end = activeThreads->end();
777 bool status_change = false;
778
779 wroteToTimeBuffer = false;
780
781 while (threads != end) {
782 ThreadID tid = *threads++;
783
784 // Check the signals for each thread to determine the proper status
785 // for each thread.
786 bool updated_status = checkSignalsAndUpdate(tid);
787 status_change = status_change || updated_status;
788 }
789
790 DPRINTF(Fetch, "Running stage.\n");
791
792 // Reset the number of the instruction we're fetching.
793 numInst = 0;
794
795#if FULL_SYSTEM
796 if (fromCommit->commitInfo[0].interruptPending) {
797 interruptPending = true;
798 }
799
800 if (fromCommit->commitInfo[0].clearInterrupt) {
801 interruptPending = false;
802 }
803#endif
804
805 for (threadFetched = 0; threadFetched < numFetchingThreads;
806 threadFetched++) {
807 // Fetch each of the actively fetching threads.
808 fetch(status_change);
809 }
810
811 // Record number of instructions fetched this cycle for distribution.
812 fetchNisnDist.sample(numInst);
813
814 if (status_change) {
815 // Change the fetch stage status if there was a status change.
816 _status = updateFetchStatus();
817 }
818
819 // If there was activity this cycle, inform the CPU of it.
820 if (wroteToTimeBuffer || cpu->contextSwitch) {
821 DPRINTF(Activity, "Activity this cycle.\n");
822
823 cpu->activityThisCycle();
824 }
825}
826
827template <class Impl>
828bool
829DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
830{
831 // Update the per thread stall statuses.
832 if (fromDecode->decodeBlock[tid]) {
833 stalls[tid].decode = true;
834 }
835
836 if (fromDecode->decodeUnblock[tid]) {
837 assert(stalls[tid].decode);
838 assert(!fromDecode->decodeBlock[tid]);
839 stalls[tid].decode = false;
840 }
841
842 if (fromRename->renameBlock[tid]) {
843 stalls[tid].rename = true;
844 }
845
846 if (fromRename->renameUnblock[tid]) {
847 assert(stalls[tid].rename);
848 assert(!fromRename->renameBlock[tid]);
849 stalls[tid].rename = false;
850 }
851
852 if (fromIEW->iewBlock[tid]) {
853 stalls[tid].iew = true;
854 }
855
856 if (fromIEW->iewUnblock[tid]) {
857 assert(stalls[tid].iew);
858 assert(!fromIEW->iewBlock[tid]);
859 stalls[tid].iew = false;
860 }
861
862 if (fromCommit->commitBlock[tid]) {
863 stalls[tid].commit = true;
864 }
865
866 if (fromCommit->commitUnblock[tid]) {
867 assert(stalls[tid].commit);
868 assert(!fromCommit->commitBlock[tid]);
869 stalls[tid].commit = false;
870 }
871
872 // Check squash signals from commit.
873 if (fromCommit->commitInfo[tid].squash) {
874
875 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
876 "from commit.\n",tid);
877 // In any case, squash.
878 squash(fromCommit->commitInfo[tid].pc,
879 fromCommit->commitInfo[tid].doneSeqNum,
880 tid);
881
882 // Also check if there's a mispredict that happened.
883 if (fromCommit->commitInfo[tid].branchMispredict) {
884 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
885 fromCommit->commitInfo[tid].pc,
886 fromCommit->commitInfo[tid].branchTaken,
887 tid);
888 } else {
889 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
890 tid);
891 }
892
893 return true;
894 } else if (fromCommit->commitInfo[tid].doneSeqNum) {
895 // Update the branch predictor if it wasn't a squashed instruction
896 // that was broadcasted.
897 branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
898 }
899
900 // Check ROB squash signals from commit.
901 if (fromCommit->commitInfo[tid].robSquashing) {
902 DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
903
904 // Continue to squash.
905 fetchStatus[tid] = Squashing;
906
907 return true;
908 }
909
910 // Check squash signals from decode.
911 if (fromDecode->decodeInfo[tid].squash) {
912 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
913 "from decode.\n",tid);
914
915 // Update the branch predictor.
916 if (fromDecode->decodeInfo[tid].branchMispredict) {
917 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
918 fromDecode->decodeInfo[tid].nextPC,
919 fromDecode->decodeInfo[tid].branchTaken,
920 tid);
921 } else {
922 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
923 tid);
924 }
925
926 if (fetchStatus[tid] != Squashing) {
927
928 TheISA::PCState nextPC = fromDecode->decodeInfo[tid].nextPC;
929 DPRINTF(Fetch, "Squashing from decode with PC = %s\n", nextPC);
930 // Squash unless we're already squashing
931 squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
932 fromDecode->decodeInfo[tid].doneSeqNum,
933 tid);
934
935 return true;
936 }
937 }
938
939 if (checkStall(tid) &&
940 fetchStatus[tid] != IcacheWaitResponse &&
941 fetchStatus[tid] != IcacheWaitRetry) {
942 DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
943
944 fetchStatus[tid] = Blocked;
945
946 return true;
947 }
948
949 if (fetchStatus[tid] == Blocked ||
950 fetchStatus[tid] == Squashing) {
951 // Switch status to running if fetch isn't being told to block or
952 // squash this cycle.
953 DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
954 tid);
955
956 fetchStatus[tid] = Running;
957
958 return true;
959 }
960
961 // If we've reached this point, we have not gotten any signals that
962 // cause fetch to change its status. Fetch remains the same as before.
963 return false;
964}
965
966template<class Impl>
967typename Impl::DynInstPtr
968DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
969 StaticInstPtr curMacroop, TheISA::PCState thisPC,
970 TheISA::PCState nextPC, bool trace)
971{
972 // Get a sequence number.
973 InstSeqNum seq = cpu->getAndIncrementInstSeq();
974
975 // Create a new DynInst from the instruction fetched.
976 DynInstPtr instruction =
977 new DynInst(staticInst, thisPC, nextPC, seq, cpu);
978 instruction->setTid(tid);
979
980 instruction->setASID(tid);
981
982 instruction->setThreadState(cpu->thread[tid]);
983
984 DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created "
985 "[sn:%lli]\n", tid, thisPC.instAddr(),
986 thisPC.microPC(), seq);
987
988 DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid,
989 instruction->staticInst->
990 disassemble(thisPC.instAddr()));
991
992#if TRACING_ON
993 if (trace) {
994 instruction->traceData =
995 cpu->getTracer()->getInstRecord(curTick, cpu->tcBase(tid),
995 cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
996 instruction->staticInst, thisPC, curMacroop);
997 }
998#else
999 instruction->traceData = NULL;
1000#endif
1001
1002 // Add instruction to the CPU's list of instructions.
1003 instruction->setInstListIt(cpu->addInst(instruction));
1004
1005 // Write the instruction to the first slot in the queue
1006 // that heads to decode.
1007 assert(numInst < fetchWidth);
1008 toDecode->insts[toDecode->size++] = instruction;
1009
1010 return instruction;
1011}
1012
1013template<class Impl>
1014void
1015DefaultFetch<Impl>::fetch(bool &status_change)
1016{
1017 //////////////////////////////////////////
1018 // Start actual fetch
1019 //////////////////////////////////////////
1020 ThreadID tid = getFetchingThread(fetchPolicy);
1021
1022 if (tid == InvalidThreadID || drainPending) {
1023 DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1024
1025 // Breaks looping condition in tick()
1026 threadFetched = numFetchingThreads;
1027 return;
1028 }
1029
1030 DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1031
1032 // The current PC.
1033 TheISA::PCState thisPC = pc[tid];
1034
1035 // Fault code for memory access.
1036 Fault fault = NoFault;
1037
1038 Addr pcOffset = fetchOffset[tid];
1039 Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1040
1041 // If returning from the delay of a cache miss, then update the status
1042 // to running, otherwise do the cache access. Possibly move this up
1043 // to tick() function.
1044 if (fetchStatus[tid] == IcacheAccessComplete) {
1045 DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n",tid);
1046
1047 fetchStatus[tid] = Running;
1048 status_change = true;
1049 } else if (fetchStatus[tid] == Running) {
1050 DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1051 "instruction, starting at PC %#x.\n", tid, fetchAddr);
1052
1053 bool fetch_success = fetchCacheLine(fetchAddr, fault, tid,
1054 thisPC.instAddr());
1055 if (!fetch_success) {
1056 if (cacheBlocked) {
1057 ++icacheStallCycles;
1058 } else {
1059 ++fetchMiscStallCycles;
1060 }
1061 return;
1062 }
1063 } else {
1064 if (fetchStatus[tid] == Idle) {
1065 ++fetchIdleCycles;
1066 DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1067 } else if (fetchStatus[tid] == Blocked) {
1068 ++fetchBlockedCycles;
1069 DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1070 } else if (fetchStatus[tid] == Squashing) {
1071 ++fetchSquashCycles;
1072 DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1073 } else if (fetchStatus[tid] == IcacheWaitResponse) {
1074 ++icacheStallCycles;
1075 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n", tid);
1076 }
1077
1078 // Status is Idle, Squashing, Blocked, or IcacheWaitResponse, so
1079 // fetch should do nothing.
1080 return;
1081 }
1082
1083 ++fetchCycles;
1084
1085 // If we had a stall due to an icache miss, then return.
1086 if (fetchStatus[tid] == IcacheWaitResponse) {
1087 ++icacheStallCycles;
1088 status_change = true;
1089 return;
1090 }
1091
1092 TheISA::PCState nextPC = thisPC;
1093
1094 StaticInstPtr staticInst = NULL;
1095 StaticInstPtr curMacroop = macroop[tid];
1096
1097 if (fault == NoFault) {
1098
1099 // If the read of the first instruction was successful, then grab the
1100 // instructions from the rest of the cache line and put them into the
1101 // queue heading to decode.
1102
1103 DPRINTF(Fetch,
1104 "[tid:%i]: Adding instructions to queue to decode.\n", tid);
1105
1106 // Need to keep track of whether or not a predicted branch
1107 // ended this fetch block.
1108 bool predictedBranch = false;
1109
1110 TheISA::MachInst *cacheInsts =
1111 reinterpret_cast<TheISA::MachInst *>(cacheData[tid]);
1112
1113 const unsigned numInsts = cacheBlkSize / instSize;
1114 unsigned blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1115
1116 // Loop through instruction memory from the cache.
1117 while (blkOffset < numInsts &&
1118 numInst < fetchWidth &&
1119 !predictedBranch) {
1120
1121 // If we need to process more memory, do it now.
1122 if (!curMacroop && !predecoder.extMachInstReady()) {
1123 if (ISA_HAS_DELAY_SLOT && pcOffset == 0) {
1124 // Walk past any annulled delay slot instructions.
1125 Addr pcAddr = thisPC.instAddr() & BaseCPU::PCMask;
1126 while (fetchAddr != pcAddr && blkOffset < numInsts) {
1127 blkOffset++;
1128 fetchAddr += instSize;
1129 }
1130 if (blkOffset >= numInsts)
1131 break;
1132 }
1133 MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1134
1135 predecoder.setTC(cpu->thread[tid]->getTC());
1136 predecoder.moreBytes(thisPC, fetchAddr, inst);
1137
1138 if (predecoder.needMoreBytes()) {
1139 blkOffset++;
1140 fetchAddr += instSize;
1141 pcOffset += instSize;
1142 }
1143 }
1144
1145 // Extract as many instructions and/or microops as we can from
1146 // the memory we've processed so far.
1147 do {
1148 if (!curMacroop) {
1149 if (predecoder.extMachInstReady()) {
1150 ExtMachInst extMachInst;
1151
1152 extMachInst = predecoder.getExtMachInst(thisPC);
1153 pcOffset = 0;
1154 staticInst = StaticInstPtr(extMachInst,
1155 thisPC.instAddr());
1156
1157 // Increment stat of fetched instructions.
1158 ++fetchedInsts;
1159
1160 if (staticInst->isMacroop())
1161 curMacroop = staticInst;
1162 } else {
1163 // We need more bytes for this instruction.
1164 break;
1165 }
1166 }
1167 if (curMacroop) {
1168 staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1169 if (staticInst->isLastMicroop())
1170 curMacroop = NULL;
1171 }
1172
1173 DynInstPtr instruction =
1174 buildInst(tid, staticInst, curMacroop,
1175 thisPC, nextPC, true);
1176
1177 numInst++;
1178
1179 nextPC = thisPC;
1180
1181 // If we're branching after this instruction, quite fetching
1182 // from the same block then.
1183 predictedBranch |= thisPC.branching();
1184 predictedBranch |=
1185 lookupAndUpdateNextPC(instruction, nextPC);
1186 if (predictedBranch) {
1187 DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1188 }
1189
1190 // Move to the next instruction, unless we have a branch.
1191 thisPC = nextPC;
1192
1193 if (instruction->isQuiesce()) {
1194 DPRINTF(Fetch,
1195 "Quiesce instruction encountered, halting fetch!");
1196 fetchStatus[tid] = QuiescePending;
1197 status_change = true;
1198 break;
1199 }
1200 } while ((curMacroop || predecoder.extMachInstReady()) &&
1201 numInst < fetchWidth);
1202 }
1203
1204 if (predictedBranch) {
1205 DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1206 "instruction encountered.\n", tid);
1207 } else if (numInst >= fetchWidth) {
1208 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1209 "for this cycle.\n", tid);
1210 } else if (blkOffset >= cacheBlkSize) {
1211 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1212 "block.\n", tid);
1213 }
1214 }
1215
1216 macroop[tid] = curMacroop;
1217 fetchOffset[tid] = pcOffset;
1218
1219 if (numInst > 0) {
1220 wroteToTimeBuffer = true;
1221 }
1222
1223 // Now that fetching is completed, update the PC to signify what the next
1224 // cycle will be.
1225 if (fault == NoFault) {
1226 pc[tid] = nextPC;
1227 DPRINTF(Fetch, "[tid:%i]: Setting PC to %s.\n", tid, nextPC);
1228 } else {
1229 // We shouldn't be in an icache miss and also have a fault (an ITB
1230 // miss)
1231 if (fetchStatus[tid] == IcacheWaitResponse) {
1232 panic("Fetch should have exited prior to this!");
1233 }
1234
1235 // Send the fault to commit. This thread will not do anything
1236 // until commit handles the fault. The only other way it can
1237 // wake up is if a squash comes along and changes the PC. Send the
1238 // fault on a dummy nop.
1239 staticInst = StaticInstPtr(TheISA::NoopMachInst, thisPC.instAddr());
1240
1241 DynInstPtr instruction =
1242 buildInst(tid, staticInst, NULL, thisPC, nextPC, false);
1243
1244 TheISA::advancePC(nextPC, staticInst);
1245 instruction->setPredTarg(nextPC);
1246 instruction->fault = fault;
1247
1248 DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n",tid);
1249
1250 fetchStatus[tid] = TrapPending;
1251 status_change = true;
1252
1253 DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s",
1254 tid, fault->name(), thisPC);
1255 }
1256}
1257
1258template<class Impl>
1259void
1260DefaultFetch<Impl>::recvRetry()
1261{
1262 if (retryPkt != NULL) {
1263 assert(cacheBlocked);
1264 assert(retryTid != InvalidThreadID);
1265 assert(fetchStatus[retryTid] == IcacheWaitRetry);
1266
1267 if (icachePort->sendTiming(retryPkt)) {
1268 fetchStatus[retryTid] = IcacheWaitResponse;
1269 retryPkt = NULL;
1270 retryTid = InvalidThreadID;
1271 cacheBlocked = false;
1272 }
1273 } else {
1274 assert(retryTid == InvalidThreadID);
1275 // Access has been squashed since it was sent out. Just clear
1276 // the cache being blocked.
1277 cacheBlocked = false;
1278 }
1279}
1280
1281///////////////////////////////////////
1282// //
1283// SMT FETCH POLICY MAINTAINED HERE //
1284// //
1285///////////////////////////////////////
1286template<class Impl>
1287ThreadID
1288DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1289{
1290 if (numThreads > 1) {
1291 switch (fetch_priority) {
1292
1293 case SingleThread:
1294 return 0;
1295
1296 case RoundRobin:
1297 return roundRobin();
1298
1299 case IQ:
1300 return iqCount();
1301
1302 case LSQ:
1303 return lsqCount();
1304
1305 case Branch:
1306 return branchCount();
1307
1308 default:
1309 return InvalidThreadID;
1310 }
1311 } else {
1312 list<ThreadID>::iterator thread = activeThreads->begin();
1313 if (thread == activeThreads->end()) {
1314 return InvalidThreadID;
1315 }
1316
1317 ThreadID tid = *thread;
1318
1319 if (fetchStatus[tid] == Running ||
1320 fetchStatus[tid] == IcacheAccessComplete ||
1321 fetchStatus[tid] == Idle) {
1322 return tid;
1323 } else {
1324 return InvalidThreadID;
1325 }
1326 }
1327}
1328
1329
1330template<class Impl>
1331ThreadID
1332DefaultFetch<Impl>::roundRobin()
1333{
1334 list<ThreadID>::iterator pri_iter = priorityList.begin();
1335 list<ThreadID>::iterator end = priorityList.end();
1336
1337 ThreadID high_pri;
1338
1339 while (pri_iter != end) {
1340 high_pri = *pri_iter;
1341
1342 assert(high_pri <= numThreads);
1343
1344 if (fetchStatus[high_pri] == Running ||
1345 fetchStatus[high_pri] == IcacheAccessComplete ||
1346 fetchStatus[high_pri] == Idle) {
1347
1348 priorityList.erase(pri_iter);
1349 priorityList.push_back(high_pri);
1350
1351 return high_pri;
1352 }
1353
1354 pri_iter++;
1355 }
1356
1357 return InvalidThreadID;
1358}
1359
1360template<class Impl>
1361ThreadID
1362DefaultFetch<Impl>::iqCount()
1363{
1364 std::priority_queue<ThreadID> PQ;
1365
1366 list<ThreadID>::iterator threads = activeThreads->begin();
1367 list<ThreadID>::iterator end = activeThreads->end();
1368
1369 while (threads != end) {
1370 ThreadID tid = *threads++;
1371
1372 PQ.push(fromIEW->iewInfo[tid].iqCount);
1373 }
1374
1375 while (!PQ.empty()) {
1376 ThreadID high_pri = PQ.top();
1377
1378 if (fetchStatus[high_pri] == Running ||
1379 fetchStatus[high_pri] == IcacheAccessComplete ||
1380 fetchStatus[high_pri] == Idle)
1381 return high_pri;
1382 else
1383 PQ.pop();
1384
1385 }
1386
1387 return InvalidThreadID;
1388}
1389
1390template<class Impl>
1391ThreadID
1392DefaultFetch<Impl>::lsqCount()
1393{
1394 std::priority_queue<ThreadID> PQ;
1395
1396 list<ThreadID>::iterator threads = activeThreads->begin();
1397 list<ThreadID>::iterator end = activeThreads->end();
1398
1399 while (threads != end) {
1400 ThreadID tid = *threads++;
1401
1402 PQ.push(fromIEW->iewInfo[tid].ldstqCount);
1403 }
1404
1405 while (!PQ.empty()) {
1406 ThreadID high_pri = PQ.top();
1407
1408 if (fetchStatus[high_pri] == Running ||
1409 fetchStatus[high_pri] == IcacheAccessComplete ||
1410 fetchStatus[high_pri] == Idle)
1411 return high_pri;
1412 else
1413 PQ.pop();
1414 }
1415
1416 return InvalidThreadID;
1417}
1418
1419template<class Impl>
1420ThreadID
1421DefaultFetch<Impl>::branchCount()
1422{
1423#if 0
1424 list<ThreadID>::iterator thread = activeThreads->begin();
1425 assert(thread != activeThreads->end());
1426 ThreadID tid = *thread;
1427#endif
1428
1429 panic("Branch Count Fetch policy unimplemented\n");
1430 return InvalidThreadID;
1431}
996 instruction->staticInst, thisPC, curMacroop);
997 }
998#else
999 instruction->traceData = NULL;
1000#endif
1001
1002 // Add instruction to the CPU's list of instructions.
1003 instruction->setInstListIt(cpu->addInst(instruction));
1004
1005 // Write the instruction to the first slot in the queue
1006 // that heads to decode.
1007 assert(numInst < fetchWidth);
1008 toDecode->insts[toDecode->size++] = instruction;
1009
1010 return instruction;
1011}
1012
1013template<class Impl>
1014void
1015DefaultFetch<Impl>::fetch(bool &status_change)
1016{
1017 //////////////////////////////////////////
1018 // Start actual fetch
1019 //////////////////////////////////////////
1020 ThreadID tid = getFetchingThread(fetchPolicy);
1021
1022 if (tid == InvalidThreadID || drainPending) {
1023 DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1024
1025 // Breaks looping condition in tick()
1026 threadFetched = numFetchingThreads;
1027 return;
1028 }
1029
1030 DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1031
1032 // The current PC.
1033 TheISA::PCState thisPC = pc[tid];
1034
1035 // Fault code for memory access.
1036 Fault fault = NoFault;
1037
1038 Addr pcOffset = fetchOffset[tid];
1039 Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1040
1041 // If returning from the delay of a cache miss, then update the status
1042 // to running, otherwise do the cache access. Possibly move this up
1043 // to tick() function.
1044 if (fetchStatus[tid] == IcacheAccessComplete) {
1045 DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n",tid);
1046
1047 fetchStatus[tid] = Running;
1048 status_change = true;
1049 } else if (fetchStatus[tid] == Running) {
1050 DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1051 "instruction, starting at PC %#x.\n", tid, fetchAddr);
1052
1053 bool fetch_success = fetchCacheLine(fetchAddr, fault, tid,
1054 thisPC.instAddr());
1055 if (!fetch_success) {
1056 if (cacheBlocked) {
1057 ++icacheStallCycles;
1058 } else {
1059 ++fetchMiscStallCycles;
1060 }
1061 return;
1062 }
1063 } else {
1064 if (fetchStatus[tid] == Idle) {
1065 ++fetchIdleCycles;
1066 DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1067 } else if (fetchStatus[tid] == Blocked) {
1068 ++fetchBlockedCycles;
1069 DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1070 } else if (fetchStatus[tid] == Squashing) {
1071 ++fetchSquashCycles;
1072 DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1073 } else if (fetchStatus[tid] == IcacheWaitResponse) {
1074 ++icacheStallCycles;
1075 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n", tid);
1076 }
1077
1078 // Status is Idle, Squashing, Blocked, or IcacheWaitResponse, so
1079 // fetch should do nothing.
1080 return;
1081 }
1082
1083 ++fetchCycles;
1084
1085 // If we had a stall due to an icache miss, then return.
1086 if (fetchStatus[tid] == IcacheWaitResponse) {
1087 ++icacheStallCycles;
1088 status_change = true;
1089 return;
1090 }
1091
1092 TheISA::PCState nextPC = thisPC;
1093
1094 StaticInstPtr staticInst = NULL;
1095 StaticInstPtr curMacroop = macroop[tid];
1096
1097 if (fault == NoFault) {
1098
1099 // If the read of the first instruction was successful, then grab the
1100 // instructions from the rest of the cache line and put them into the
1101 // queue heading to decode.
1102
1103 DPRINTF(Fetch,
1104 "[tid:%i]: Adding instructions to queue to decode.\n", tid);
1105
1106 // Need to keep track of whether or not a predicted branch
1107 // ended this fetch block.
1108 bool predictedBranch = false;
1109
1110 TheISA::MachInst *cacheInsts =
1111 reinterpret_cast<TheISA::MachInst *>(cacheData[tid]);
1112
1113 const unsigned numInsts = cacheBlkSize / instSize;
1114 unsigned blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1115
1116 // Loop through instruction memory from the cache.
1117 while (blkOffset < numInsts &&
1118 numInst < fetchWidth &&
1119 !predictedBranch) {
1120
1121 // If we need to process more memory, do it now.
1122 if (!curMacroop && !predecoder.extMachInstReady()) {
1123 if (ISA_HAS_DELAY_SLOT && pcOffset == 0) {
1124 // Walk past any annulled delay slot instructions.
1125 Addr pcAddr = thisPC.instAddr() & BaseCPU::PCMask;
1126 while (fetchAddr != pcAddr && blkOffset < numInsts) {
1127 blkOffset++;
1128 fetchAddr += instSize;
1129 }
1130 if (blkOffset >= numInsts)
1131 break;
1132 }
1133 MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1134
1135 predecoder.setTC(cpu->thread[tid]->getTC());
1136 predecoder.moreBytes(thisPC, fetchAddr, inst);
1137
1138 if (predecoder.needMoreBytes()) {
1139 blkOffset++;
1140 fetchAddr += instSize;
1141 pcOffset += instSize;
1142 }
1143 }
1144
1145 // Extract as many instructions and/or microops as we can from
1146 // the memory we've processed so far.
1147 do {
1148 if (!curMacroop) {
1149 if (predecoder.extMachInstReady()) {
1150 ExtMachInst extMachInst;
1151
1152 extMachInst = predecoder.getExtMachInst(thisPC);
1153 pcOffset = 0;
1154 staticInst = StaticInstPtr(extMachInst,
1155 thisPC.instAddr());
1156
1157 // Increment stat of fetched instructions.
1158 ++fetchedInsts;
1159
1160 if (staticInst->isMacroop())
1161 curMacroop = staticInst;
1162 } else {
1163 // We need more bytes for this instruction.
1164 break;
1165 }
1166 }
1167 if (curMacroop) {
1168 staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1169 if (staticInst->isLastMicroop())
1170 curMacroop = NULL;
1171 }
1172
1173 DynInstPtr instruction =
1174 buildInst(tid, staticInst, curMacroop,
1175 thisPC, nextPC, true);
1176
1177 numInst++;
1178
1179 nextPC = thisPC;
1180
1181 // If we're branching after this instruction, quite fetching
1182 // from the same block then.
1183 predictedBranch |= thisPC.branching();
1184 predictedBranch |=
1185 lookupAndUpdateNextPC(instruction, nextPC);
1186 if (predictedBranch) {
1187 DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1188 }
1189
1190 // Move to the next instruction, unless we have a branch.
1191 thisPC = nextPC;
1192
1193 if (instruction->isQuiesce()) {
1194 DPRINTF(Fetch,
1195 "Quiesce instruction encountered, halting fetch!");
1196 fetchStatus[tid] = QuiescePending;
1197 status_change = true;
1198 break;
1199 }
1200 } while ((curMacroop || predecoder.extMachInstReady()) &&
1201 numInst < fetchWidth);
1202 }
1203
1204 if (predictedBranch) {
1205 DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1206 "instruction encountered.\n", tid);
1207 } else if (numInst >= fetchWidth) {
1208 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1209 "for this cycle.\n", tid);
1210 } else if (blkOffset >= cacheBlkSize) {
1211 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1212 "block.\n", tid);
1213 }
1214 }
1215
1216 macroop[tid] = curMacroop;
1217 fetchOffset[tid] = pcOffset;
1218
1219 if (numInst > 0) {
1220 wroteToTimeBuffer = true;
1221 }
1222
1223 // Now that fetching is completed, update the PC to signify what the next
1224 // cycle will be.
1225 if (fault == NoFault) {
1226 pc[tid] = nextPC;
1227 DPRINTF(Fetch, "[tid:%i]: Setting PC to %s.\n", tid, nextPC);
1228 } else {
1229 // We shouldn't be in an icache miss and also have a fault (an ITB
1230 // miss)
1231 if (fetchStatus[tid] == IcacheWaitResponse) {
1232 panic("Fetch should have exited prior to this!");
1233 }
1234
1235 // Send the fault to commit. This thread will not do anything
1236 // until commit handles the fault. The only other way it can
1237 // wake up is if a squash comes along and changes the PC. Send the
1238 // fault on a dummy nop.
1239 staticInst = StaticInstPtr(TheISA::NoopMachInst, thisPC.instAddr());
1240
1241 DynInstPtr instruction =
1242 buildInst(tid, staticInst, NULL, thisPC, nextPC, false);
1243
1244 TheISA::advancePC(nextPC, staticInst);
1245 instruction->setPredTarg(nextPC);
1246 instruction->fault = fault;
1247
1248 DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n",tid);
1249
1250 fetchStatus[tid] = TrapPending;
1251 status_change = true;
1252
1253 DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s",
1254 tid, fault->name(), thisPC);
1255 }
1256}
1257
1258template<class Impl>
1259void
1260DefaultFetch<Impl>::recvRetry()
1261{
1262 if (retryPkt != NULL) {
1263 assert(cacheBlocked);
1264 assert(retryTid != InvalidThreadID);
1265 assert(fetchStatus[retryTid] == IcacheWaitRetry);
1266
1267 if (icachePort->sendTiming(retryPkt)) {
1268 fetchStatus[retryTid] = IcacheWaitResponse;
1269 retryPkt = NULL;
1270 retryTid = InvalidThreadID;
1271 cacheBlocked = false;
1272 }
1273 } else {
1274 assert(retryTid == InvalidThreadID);
1275 // Access has been squashed since it was sent out. Just clear
1276 // the cache being blocked.
1277 cacheBlocked = false;
1278 }
1279}
1280
1281///////////////////////////////////////
1282// //
1283// SMT FETCH POLICY MAINTAINED HERE //
1284// //
1285///////////////////////////////////////
1286template<class Impl>
1287ThreadID
1288DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1289{
1290 if (numThreads > 1) {
1291 switch (fetch_priority) {
1292
1293 case SingleThread:
1294 return 0;
1295
1296 case RoundRobin:
1297 return roundRobin();
1298
1299 case IQ:
1300 return iqCount();
1301
1302 case LSQ:
1303 return lsqCount();
1304
1305 case Branch:
1306 return branchCount();
1307
1308 default:
1309 return InvalidThreadID;
1310 }
1311 } else {
1312 list<ThreadID>::iterator thread = activeThreads->begin();
1313 if (thread == activeThreads->end()) {
1314 return InvalidThreadID;
1315 }
1316
1317 ThreadID tid = *thread;
1318
1319 if (fetchStatus[tid] == Running ||
1320 fetchStatus[tid] == IcacheAccessComplete ||
1321 fetchStatus[tid] == Idle) {
1322 return tid;
1323 } else {
1324 return InvalidThreadID;
1325 }
1326 }
1327}
1328
1329
1330template<class Impl>
1331ThreadID
1332DefaultFetch<Impl>::roundRobin()
1333{
1334 list<ThreadID>::iterator pri_iter = priorityList.begin();
1335 list<ThreadID>::iterator end = priorityList.end();
1336
1337 ThreadID high_pri;
1338
1339 while (pri_iter != end) {
1340 high_pri = *pri_iter;
1341
1342 assert(high_pri <= numThreads);
1343
1344 if (fetchStatus[high_pri] == Running ||
1345 fetchStatus[high_pri] == IcacheAccessComplete ||
1346 fetchStatus[high_pri] == Idle) {
1347
1348 priorityList.erase(pri_iter);
1349 priorityList.push_back(high_pri);
1350
1351 return high_pri;
1352 }
1353
1354 pri_iter++;
1355 }
1356
1357 return InvalidThreadID;
1358}
1359
1360template<class Impl>
1361ThreadID
1362DefaultFetch<Impl>::iqCount()
1363{
1364 std::priority_queue<ThreadID> PQ;
1365
1366 list<ThreadID>::iterator threads = activeThreads->begin();
1367 list<ThreadID>::iterator end = activeThreads->end();
1368
1369 while (threads != end) {
1370 ThreadID tid = *threads++;
1371
1372 PQ.push(fromIEW->iewInfo[tid].iqCount);
1373 }
1374
1375 while (!PQ.empty()) {
1376 ThreadID high_pri = PQ.top();
1377
1378 if (fetchStatus[high_pri] == Running ||
1379 fetchStatus[high_pri] == IcacheAccessComplete ||
1380 fetchStatus[high_pri] == Idle)
1381 return high_pri;
1382 else
1383 PQ.pop();
1384
1385 }
1386
1387 return InvalidThreadID;
1388}
1389
1390template<class Impl>
1391ThreadID
1392DefaultFetch<Impl>::lsqCount()
1393{
1394 std::priority_queue<ThreadID> PQ;
1395
1396 list<ThreadID>::iterator threads = activeThreads->begin();
1397 list<ThreadID>::iterator end = activeThreads->end();
1398
1399 while (threads != end) {
1400 ThreadID tid = *threads++;
1401
1402 PQ.push(fromIEW->iewInfo[tid].ldstqCount);
1403 }
1404
1405 while (!PQ.empty()) {
1406 ThreadID high_pri = PQ.top();
1407
1408 if (fetchStatus[high_pri] == Running ||
1409 fetchStatus[high_pri] == IcacheAccessComplete ||
1410 fetchStatus[high_pri] == Idle)
1411 return high_pri;
1412 else
1413 PQ.pop();
1414 }
1415
1416 return InvalidThreadID;
1417}
1418
1419template<class Impl>
1420ThreadID
1421DefaultFetch<Impl>::branchCount()
1422{
1423#if 0
1424 list<ThreadID>::iterator thread = activeThreads->begin();
1425 assert(thread != activeThreads->end());
1426 ThreadID tid = *thread;
1427#endif
1428
1429 panic("Branch Count Fetch policy unimplemented\n");
1430 return InvalidThreadID;
1431}