fetch_impl.hh (3791:f1783bae1afe) fetch_impl.hh (3795:60ecc96c3cee)
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 * Korey Sewell
30 */
31
32#include "config/use_checker.hh"
33
34#include "arch/isa_traits.hh"
35#include "arch/utility.hh"
36#include "cpu/checker/cpu.hh"
37#include "cpu/exetrace.hh"
38#include "cpu/o3/fetch.hh"
39#include "mem/packet.hh"
40#include "mem/request.hh"
41#include "sim/byteswap.hh"
42#include "sim/host.hh"
43#include "sim/root.hh"
44
45#if FULL_SYSTEM
46#include "arch/tlb.hh"
47#include "arch/vtophys.hh"
48#include "sim/system.hh"
49#endif // FULL_SYSTEM
50
51#include <algorithm>
52
53template<class Impl>
54Tick
55DefaultFetch<Impl>::IcachePort::recvAtomic(PacketPtr pkt)
56{
57 panic("DefaultFetch doesn't expect recvAtomic callback!");
58 return curTick;
59}
60
61template<class Impl>
62void
63DefaultFetch<Impl>::IcachePort::recvFunctional(PacketPtr pkt)
64{
65 DPRINTF(Fetch, "DefaultFetch doesn't update its state from a "
66 "functional call.");
67}
68
69template<class Impl>
70void
71DefaultFetch<Impl>::IcachePort::recvStatusChange(Status status)
72{
73 if (status == RangeChange) {
74 if (!snoopRangeSent) {
75 snoopRangeSent = true;
76 sendStatusChange(Port::RangeChange);
77 }
78 return;
79 }
80
81 panic("DefaultFetch doesn't expect recvStatusChange callback!");
82}
83
84template<class Impl>
85bool
86DefaultFetch<Impl>::IcachePort::recvTiming(PacketPtr pkt)
87{
88 DPRINTF(Fetch, "Received timing\n");
89 if (pkt->isResponse()) {
90 fetch->processCacheCompletion(pkt);
91 }
92 //else Snooped a coherence request, just return
93 return true;
94}
95
96template<class Impl>
97void
98DefaultFetch<Impl>::IcachePort::recvRetry()
99{
100 fetch->recvRetry();
101}
102
103template<class Impl>
104DefaultFetch<Impl>::DefaultFetch(Params *params)
105 : branchPred(params),
106 decodeToFetchDelay(params->decodeToFetchDelay),
107 renameToFetchDelay(params->renameToFetchDelay),
108 iewToFetchDelay(params->iewToFetchDelay),
109 commitToFetchDelay(params->commitToFetchDelay),
110 fetchWidth(params->fetchWidth),
111 cacheBlocked(false),
112 retryPkt(NULL),
113 retryTid(-1),
114 numThreads(params->numberOfThreads),
115 numFetchingThreads(params->smtNumFetchingThreads),
116 interruptPending(false),
117 drainPending(false),
118 switchedOut(false)
119{
120 if (numThreads > Impl::MaxThreads)
121 fatal("numThreads is not a valid value\n");
122
123 // Set fetch stage's status to inactive.
124 _status = Inactive;
125
126 std::string policy = params->smtFetchPolicy;
127
128 // Convert string to lowercase
129 std::transform(policy.begin(), policy.end(), policy.begin(),
130 (int(*)(int)) tolower);
131
132 // Figure out fetch policy
133 if (policy == "singlethread") {
134 fetchPolicy = SingleThread;
135 if (numThreads > 1)
136 panic("Invalid Fetch Policy for a SMT workload.");
137 } else if (policy == "roundrobin") {
138 fetchPolicy = RoundRobin;
139 DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
140 } else if (policy == "branch") {
141 fetchPolicy = Branch;
142 DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
143 } else if (policy == "iqcount") {
144 fetchPolicy = IQ;
145 DPRINTF(Fetch, "Fetch policy set to IQ count\n");
146 } else if (policy == "lsqcount") {
147 fetchPolicy = LSQ;
148 DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
149 } else {
150 fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
151 " RoundRobin,LSQcount,IQcount}\n");
152 }
153
154 // Get the size of an instruction.
155 instSize = sizeof(TheISA::MachInst);
156}
157
158template <class Impl>
159std::string
160DefaultFetch<Impl>::name() const
161{
162 return cpu->name() + ".fetch";
163}
164
165template <class Impl>
166void
167DefaultFetch<Impl>::regStats()
168{
169 icacheStallCycles
170 .name(name() + ".icacheStallCycles")
171 .desc("Number of cycles fetch is stalled on an Icache miss")
172 .prereq(icacheStallCycles);
173
174 fetchedInsts
175 .name(name() + ".Insts")
176 .desc("Number of instructions fetch has processed")
177 .prereq(fetchedInsts);
178
179 fetchedBranches
180 .name(name() + ".Branches")
181 .desc("Number of branches that fetch encountered")
182 .prereq(fetchedBranches);
183
184 predictedBranches
185 .name(name() + ".predictedBranches")
186 .desc("Number of branches that fetch has predicted taken")
187 .prereq(predictedBranches);
188
189 fetchCycles
190 .name(name() + ".Cycles")
191 .desc("Number of cycles fetch has run and was not squashing or"
192 " blocked")
193 .prereq(fetchCycles);
194
195 fetchSquashCycles
196 .name(name() + ".SquashCycles")
197 .desc("Number of cycles fetch has spent squashing")
198 .prereq(fetchSquashCycles);
199
200 fetchIdleCycles
201 .name(name() + ".IdleCycles")
202 .desc("Number of cycles fetch was idle")
203 .prereq(fetchIdleCycles);
204
205 fetchBlockedCycles
206 .name(name() + ".BlockedCycles")
207 .desc("Number of cycles fetch has spent blocked")
208 .prereq(fetchBlockedCycles);
209
210 fetchedCacheLines
211 .name(name() + ".CacheLines")
212 .desc("Number of cache lines fetched")
213 .prereq(fetchedCacheLines);
214
215 fetchMiscStallCycles
216 .name(name() + ".MiscStallCycles")
217 .desc("Number of cycles fetch has spent waiting on interrupts, or "
218 "bad addresses, or out of MSHRs")
219 .prereq(fetchMiscStallCycles);
220
221 fetchIcacheSquashes
222 .name(name() + ".IcacheSquashes")
223 .desc("Number of outstanding Icache misses that were squashed")
224 .prereq(fetchIcacheSquashes);
225
226 fetchNisnDist
227 .init(/* base value */ 0,
228 /* last value */ fetchWidth,
229 /* bucket size */ 1)
230 .name(name() + ".rateDist")
231 .desc("Number of instructions fetched each cycle (Total)")
232 .flags(Stats::pdf);
233
234 idleRate
235 .name(name() + ".idleRate")
236 .desc("Percent of cycles fetch was idle")
237 .prereq(idleRate);
238 idleRate = fetchIdleCycles * 100 / cpu->numCycles;
239
240 branchRate
241 .name(name() + ".branchRate")
242 .desc("Number of branch fetches per cycle")
243 .flags(Stats::total);
244 branchRate = fetchedBranches / cpu->numCycles;
245
246 fetchRate
247 .name(name() + ".rate")
248 .desc("Number of inst fetches per cycle")
249 .flags(Stats::total);
250 fetchRate = fetchedInsts / cpu->numCycles;
251
252 branchPred.regStats();
253}
254
255template<class Impl>
256void
257DefaultFetch<Impl>::setCPU(O3CPU *cpu_ptr)
258{
259 DPRINTF(Fetch, "Setting the CPU pointer.\n");
260 cpu = cpu_ptr;
261
262 // Name is finally available, so create the port.
263 icachePort = new IcachePort(this);
264
265 icachePort->snoopRangeSent = false;
266
267#if USE_CHECKER
268 if (cpu->checker) {
269 cpu->checker->setIcachePort(icachePort);
270 }
271#endif
272
273 // Schedule fetch to get the correct PC from the CPU
274 // scheduleFetchStartupEvent(1);
275
276 // Fetch needs to start fetching instructions at the very beginning,
277 // so it must start up in active state.
278 switchToActive();
279}
280
281template<class Impl>
282void
283DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
284{
285 DPRINTF(Fetch, "Setting the time buffer pointer.\n");
286 timeBuffer = time_buffer;
287
288 // Create wires to get information from proper places in time buffer.
289 fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
290 fromRename = timeBuffer->getWire(-renameToFetchDelay);
291 fromIEW = timeBuffer->getWire(-iewToFetchDelay);
292 fromCommit = timeBuffer->getWire(-commitToFetchDelay);
293}
294
295template<class Impl>
296void
297DefaultFetch<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
298{
299 DPRINTF(Fetch, "Setting active threads list pointer.\n");
300 activeThreads = at_ptr;
301}
302
303template<class Impl>
304void
305DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
306{
307 DPRINTF(Fetch, "Setting the fetch queue pointer.\n");
308 fetchQueue = fq_ptr;
309
310 // Create wire to write information to proper place in fetch queue.
311 toDecode = fetchQueue->getWire(0);
312}
313
314template<class Impl>
315void
316DefaultFetch<Impl>::initStage()
317{
318 // Setup PC and nextPC with initial state.
319 for (int tid = 0; tid < numThreads; tid++) {
320 PC[tid] = cpu->readPC(tid);
321 nextPC[tid] = cpu->readNextPC(tid);
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 * Korey Sewell
30 */
31
32#include "config/use_checker.hh"
33
34#include "arch/isa_traits.hh"
35#include "arch/utility.hh"
36#include "cpu/checker/cpu.hh"
37#include "cpu/exetrace.hh"
38#include "cpu/o3/fetch.hh"
39#include "mem/packet.hh"
40#include "mem/request.hh"
41#include "sim/byteswap.hh"
42#include "sim/host.hh"
43#include "sim/root.hh"
44
45#if FULL_SYSTEM
46#include "arch/tlb.hh"
47#include "arch/vtophys.hh"
48#include "sim/system.hh"
49#endif // FULL_SYSTEM
50
51#include <algorithm>
52
53template<class Impl>
54Tick
55DefaultFetch<Impl>::IcachePort::recvAtomic(PacketPtr pkt)
56{
57 panic("DefaultFetch doesn't expect recvAtomic callback!");
58 return curTick;
59}
60
61template<class Impl>
62void
63DefaultFetch<Impl>::IcachePort::recvFunctional(PacketPtr pkt)
64{
65 DPRINTF(Fetch, "DefaultFetch doesn't update its state from a "
66 "functional call.");
67}
68
69template<class Impl>
70void
71DefaultFetch<Impl>::IcachePort::recvStatusChange(Status status)
72{
73 if (status == RangeChange) {
74 if (!snoopRangeSent) {
75 snoopRangeSent = true;
76 sendStatusChange(Port::RangeChange);
77 }
78 return;
79 }
80
81 panic("DefaultFetch doesn't expect recvStatusChange callback!");
82}
83
84template<class Impl>
85bool
86DefaultFetch<Impl>::IcachePort::recvTiming(PacketPtr pkt)
87{
88 DPRINTF(Fetch, "Received timing\n");
89 if (pkt->isResponse()) {
90 fetch->processCacheCompletion(pkt);
91 }
92 //else Snooped a coherence request, just return
93 return true;
94}
95
96template<class Impl>
97void
98DefaultFetch<Impl>::IcachePort::recvRetry()
99{
100 fetch->recvRetry();
101}
102
103template<class Impl>
104DefaultFetch<Impl>::DefaultFetch(Params *params)
105 : branchPred(params),
106 decodeToFetchDelay(params->decodeToFetchDelay),
107 renameToFetchDelay(params->renameToFetchDelay),
108 iewToFetchDelay(params->iewToFetchDelay),
109 commitToFetchDelay(params->commitToFetchDelay),
110 fetchWidth(params->fetchWidth),
111 cacheBlocked(false),
112 retryPkt(NULL),
113 retryTid(-1),
114 numThreads(params->numberOfThreads),
115 numFetchingThreads(params->smtNumFetchingThreads),
116 interruptPending(false),
117 drainPending(false),
118 switchedOut(false)
119{
120 if (numThreads > Impl::MaxThreads)
121 fatal("numThreads is not a valid value\n");
122
123 // Set fetch stage's status to inactive.
124 _status = Inactive;
125
126 std::string policy = params->smtFetchPolicy;
127
128 // Convert string to lowercase
129 std::transform(policy.begin(), policy.end(), policy.begin(),
130 (int(*)(int)) tolower);
131
132 // Figure out fetch policy
133 if (policy == "singlethread") {
134 fetchPolicy = SingleThread;
135 if (numThreads > 1)
136 panic("Invalid Fetch Policy for a SMT workload.");
137 } else if (policy == "roundrobin") {
138 fetchPolicy = RoundRobin;
139 DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
140 } else if (policy == "branch") {
141 fetchPolicy = Branch;
142 DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
143 } else if (policy == "iqcount") {
144 fetchPolicy = IQ;
145 DPRINTF(Fetch, "Fetch policy set to IQ count\n");
146 } else if (policy == "lsqcount") {
147 fetchPolicy = LSQ;
148 DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
149 } else {
150 fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
151 " RoundRobin,LSQcount,IQcount}\n");
152 }
153
154 // Get the size of an instruction.
155 instSize = sizeof(TheISA::MachInst);
156}
157
158template <class Impl>
159std::string
160DefaultFetch<Impl>::name() const
161{
162 return cpu->name() + ".fetch";
163}
164
165template <class Impl>
166void
167DefaultFetch<Impl>::regStats()
168{
169 icacheStallCycles
170 .name(name() + ".icacheStallCycles")
171 .desc("Number of cycles fetch is stalled on an Icache miss")
172 .prereq(icacheStallCycles);
173
174 fetchedInsts
175 .name(name() + ".Insts")
176 .desc("Number of instructions fetch has processed")
177 .prereq(fetchedInsts);
178
179 fetchedBranches
180 .name(name() + ".Branches")
181 .desc("Number of branches that fetch encountered")
182 .prereq(fetchedBranches);
183
184 predictedBranches
185 .name(name() + ".predictedBranches")
186 .desc("Number of branches that fetch has predicted taken")
187 .prereq(predictedBranches);
188
189 fetchCycles
190 .name(name() + ".Cycles")
191 .desc("Number of cycles fetch has run and was not squashing or"
192 " blocked")
193 .prereq(fetchCycles);
194
195 fetchSquashCycles
196 .name(name() + ".SquashCycles")
197 .desc("Number of cycles fetch has spent squashing")
198 .prereq(fetchSquashCycles);
199
200 fetchIdleCycles
201 .name(name() + ".IdleCycles")
202 .desc("Number of cycles fetch was idle")
203 .prereq(fetchIdleCycles);
204
205 fetchBlockedCycles
206 .name(name() + ".BlockedCycles")
207 .desc("Number of cycles fetch has spent blocked")
208 .prereq(fetchBlockedCycles);
209
210 fetchedCacheLines
211 .name(name() + ".CacheLines")
212 .desc("Number of cache lines fetched")
213 .prereq(fetchedCacheLines);
214
215 fetchMiscStallCycles
216 .name(name() + ".MiscStallCycles")
217 .desc("Number of cycles fetch has spent waiting on interrupts, or "
218 "bad addresses, or out of MSHRs")
219 .prereq(fetchMiscStallCycles);
220
221 fetchIcacheSquashes
222 .name(name() + ".IcacheSquashes")
223 .desc("Number of outstanding Icache misses that were squashed")
224 .prereq(fetchIcacheSquashes);
225
226 fetchNisnDist
227 .init(/* base value */ 0,
228 /* last value */ fetchWidth,
229 /* bucket size */ 1)
230 .name(name() + ".rateDist")
231 .desc("Number of instructions fetched each cycle (Total)")
232 .flags(Stats::pdf);
233
234 idleRate
235 .name(name() + ".idleRate")
236 .desc("Percent of cycles fetch was idle")
237 .prereq(idleRate);
238 idleRate = fetchIdleCycles * 100 / cpu->numCycles;
239
240 branchRate
241 .name(name() + ".branchRate")
242 .desc("Number of branch fetches per cycle")
243 .flags(Stats::total);
244 branchRate = fetchedBranches / cpu->numCycles;
245
246 fetchRate
247 .name(name() + ".rate")
248 .desc("Number of inst fetches per cycle")
249 .flags(Stats::total);
250 fetchRate = fetchedInsts / cpu->numCycles;
251
252 branchPred.regStats();
253}
254
255template<class Impl>
256void
257DefaultFetch<Impl>::setCPU(O3CPU *cpu_ptr)
258{
259 DPRINTF(Fetch, "Setting the CPU pointer.\n");
260 cpu = cpu_ptr;
261
262 // Name is finally available, so create the port.
263 icachePort = new IcachePort(this);
264
265 icachePort->snoopRangeSent = false;
266
267#if USE_CHECKER
268 if (cpu->checker) {
269 cpu->checker->setIcachePort(icachePort);
270 }
271#endif
272
273 // Schedule fetch to get the correct PC from the CPU
274 // scheduleFetchStartupEvent(1);
275
276 // Fetch needs to start fetching instructions at the very beginning,
277 // so it must start up in active state.
278 switchToActive();
279}
280
281template<class Impl>
282void
283DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
284{
285 DPRINTF(Fetch, "Setting the time buffer pointer.\n");
286 timeBuffer = time_buffer;
287
288 // Create wires to get information from proper places in time buffer.
289 fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
290 fromRename = timeBuffer->getWire(-renameToFetchDelay);
291 fromIEW = timeBuffer->getWire(-iewToFetchDelay);
292 fromCommit = timeBuffer->getWire(-commitToFetchDelay);
293}
294
295template<class Impl>
296void
297DefaultFetch<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
298{
299 DPRINTF(Fetch, "Setting active threads list pointer.\n");
300 activeThreads = at_ptr;
301}
302
303template<class Impl>
304void
305DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
306{
307 DPRINTF(Fetch, "Setting the fetch queue pointer.\n");
308 fetchQueue = fq_ptr;
309
310 // Create wire to write information to proper place in fetch queue.
311 toDecode = fetchQueue->getWire(0);
312}
313
314template<class Impl>
315void
316DefaultFetch<Impl>::initStage()
317{
318 // Setup PC and nextPC with initial state.
319 for (int tid = 0; tid < numThreads; tid++) {
320 PC[tid] = cpu->readPC(tid);
321 nextPC[tid] = cpu->readNextPC(tid);
322#if ISA_HAS_DELAY_SLOT
323 nextNPC[tid] = cpu->readNextNPC(tid);
322 nextNPC[tid] = cpu->readNextNPC(tid);
324#endif
325 }
326
327 // Size of cache block.
328 cacheBlkSize = icachePort->peerBlockSize();
329
330 // Create mask to get rid of offset bits.
331 cacheBlkMask = (cacheBlkSize - 1);
332
333 for (int tid=0; tid < numThreads; tid++) {
334
335 fetchStatus[tid] = Running;
336
337 priorityList.push_back(tid);
338
339 memReq[tid] = NULL;
340
341 // Create space to store a cache line.
342 cacheData[tid] = new uint8_t[cacheBlkSize];
343 cacheDataPC[tid] = 0;
344 cacheDataValid[tid] = false;
345
346 delaySlotInfo[tid].branchSeqNum = -1;
347 delaySlotInfo[tid].numInsts = 0;
348 delaySlotInfo[tid].targetAddr = 0;
349 delaySlotInfo[tid].targetReady = false;
350
351 stalls[tid].decode = false;
352 stalls[tid].rename = false;
353 stalls[tid].iew = false;
354 stalls[tid].commit = false;
355 }
356}
357
358template<class Impl>
359void
360DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
361{
362 unsigned tid = pkt->req->getThreadNum();
363
364 DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n",tid);
365
366 // Only change the status if it's still waiting on the icache access
367 // to return.
368 if (fetchStatus[tid] != IcacheWaitResponse ||
369 pkt->req != memReq[tid] ||
370 isSwitchedOut()) {
371 ++fetchIcacheSquashes;
372 delete pkt->req;
373 delete pkt;
374 return;
375 }
376
377 memcpy(cacheData[tid], pkt->getPtr<uint8_t *>(), cacheBlkSize);
378 cacheDataValid[tid] = true;
379
380 if (!drainPending) {
381 // Wake up the CPU (if it went to sleep and was waiting on
382 // this completion event).
383 cpu->wakeCPU();
384
385 DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
386 tid);
387
388 switchToActive();
389 }
390
391 // Only switch to IcacheAccessComplete if we're not stalled as well.
392 if (checkStall(tid)) {
393 fetchStatus[tid] = Blocked;
394 } else {
395 fetchStatus[tid] = IcacheAccessComplete;
396 }
397
398 // Reset the mem req to NULL.
399 delete pkt->req;
400 delete pkt;
401 memReq[tid] = NULL;
402}
403
404template <class Impl>
405bool
406DefaultFetch<Impl>::drain()
407{
408 // Fetch is ready to drain at any time.
409 cpu->signalDrained();
410 drainPending = true;
411 return true;
412}
413
414template <class Impl>
415void
416DefaultFetch<Impl>::resume()
417{
418 drainPending = false;
419}
420
421template <class Impl>
422void
423DefaultFetch<Impl>::switchOut()
424{
425 switchedOut = true;
426 // Branch predictor needs to have its state cleared.
427 branchPred.switchOut();
428}
429
430template <class Impl>
431void
432DefaultFetch<Impl>::takeOverFrom()
433{
434 // Reset all state
435 for (int i = 0; i < Impl::MaxThreads; ++i) {
436 stalls[i].decode = 0;
437 stalls[i].rename = 0;
438 stalls[i].iew = 0;
439 stalls[i].commit = 0;
440 PC[i] = cpu->readPC(i);
441 nextPC[i] = cpu->readNextPC(i);
442#if ISA_HAS_DELAY_SLOT
443 nextNPC[i] = cpu->readNextNPC(i);
444 delaySlotInfo[i].branchSeqNum = -1;
445 delaySlotInfo[i].numInsts = 0;
446 delaySlotInfo[i].targetAddr = 0;
447 delaySlotInfo[i].targetReady = false;
448#endif
449 fetchStatus[i] = Running;
450 }
451 numInst = 0;
452 wroteToTimeBuffer = false;
453 _status = Inactive;
454 switchedOut = false;
455 interruptPending = false;
456 branchPred.takeOverFrom();
457}
458
459template <class Impl>
460void
461DefaultFetch<Impl>::wakeFromQuiesce()
462{
463 DPRINTF(Fetch, "Waking up from quiesce\n");
464 // Hopefully this is safe
465 // @todo: Allow other threads to wake from quiesce.
466 fetchStatus[0] = Running;
467}
468
469template <class Impl>
470inline void
471DefaultFetch<Impl>::switchToActive()
472{
473 if (_status == Inactive) {
474 DPRINTF(Activity, "Activating stage.\n");
475
476 cpu->activateStage(O3CPU::FetchIdx);
477
478 _status = Active;
479 }
480}
481
482template <class Impl>
483inline void
484DefaultFetch<Impl>::switchToInactive()
485{
486 if (_status == Active) {
487 DPRINTF(Activity, "Deactivating stage.\n");
488
489 cpu->deactivateStage(O3CPU::FetchIdx);
490
491 _status = Inactive;
492 }
493}
494
495template <class Impl>
496bool
497DefaultFetch<Impl>::lookupAndUpdateNextPC(DynInstPtr &inst, Addr &next_PC,
498 Addr &next_NPC)
499{
500 // Do branch prediction check here.
501 // A bit of a misnomer...next_PC is actually the current PC until
502 // this function updates it.
503 bool predict_taken;
504
505 if (!inst->isControl()) {
506#if ISA_HAS_DELAY_SLOT
323 }
324
325 // Size of cache block.
326 cacheBlkSize = icachePort->peerBlockSize();
327
328 // Create mask to get rid of offset bits.
329 cacheBlkMask = (cacheBlkSize - 1);
330
331 for (int tid=0; tid < numThreads; tid++) {
332
333 fetchStatus[tid] = Running;
334
335 priorityList.push_back(tid);
336
337 memReq[tid] = NULL;
338
339 // Create space to store a cache line.
340 cacheData[tid] = new uint8_t[cacheBlkSize];
341 cacheDataPC[tid] = 0;
342 cacheDataValid[tid] = false;
343
344 delaySlotInfo[tid].branchSeqNum = -1;
345 delaySlotInfo[tid].numInsts = 0;
346 delaySlotInfo[tid].targetAddr = 0;
347 delaySlotInfo[tid].targetReady = false;
348
349 stalls[tid].decode = false;
350 stalls[tid].rename = false;
351 stalls[tid].iew = false;
352 stalls[tid].commit = false;
353 }
354}
355
356template<class Impl>
357void
358DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
359{
360 unsigned tid = pkt->req->getThreadNum();
361
362 DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n",tid);
363
364 // Only change the status if it's still waiting on the icache access
365 // to return.
366 if (fetchStatus[tid] != IcacheWaitResponse ||
367 pkt->req != memReq[tid] ||
368 isSwitchedOut()) {
369 ++fetchIcacheSquashes;
370 delete pkt->req;
371 delete pkt;
372 return;
373 }
374
375 memcpy(cacheData[tid], pkt->getPtr<uint8_t *>(), cacheBlkSize);
376 cacheDataValid[tid] = true;
377
378 if (!drainPending) {
379 // Wake up the CPU (if it went to sleep and was waiting on
380 // this completion event).
381 cpu->wakeCPU();
382
383 DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
384 tid);
385
386 switchToActive();
387 }
388
389 // Only switch to IcacheAccessComplete if we're not stalled as well.
390 if (checkStall(tid)) {
391 fetchStatus[tid] = Blocked;
392 } else {
393 fetchStatus[tid] = IcacheAccessComplete;
394 }
395
396 // Reset the mem req to NULL.
397 delete pkt->req;
398 delete pkt;
399 memReq[tid] = NULL;
400}
401
402template <class Impl>
403bool
404DefaultFetch<Impl>::drain()
405{
406 // Fetch is ready to drain at any time.
407 cpu->signalDrained();
408 drainPending = true;
409 return true;
410}
411
412template <class Impl>
413void
414DefaultFetch<Impl>::resume()
415{
416 drainPending = false;
417}
418
419template <class Impl>
420void
421DefaultFetch<Impl>::switchOut()
422{
423 switchedOut = true;
424 // Branch predictor needs to have its state cleared.
425 branchPred.switchOut();
426}
427
428template <class Impl>
429void
430DefaultFetch<Impl>::takeOverFrom()
431{
432 // Reset all state
433 for (int i = 0; i < Impl::MaxThreads; ++i) {
434 stalls[i].decode = 0;
435 stalls[i].rename = 0;
436 stalls[i].iew = 0;
437 stalls[i].commit = 0;
438 PC[i] = cpu->readPC(i);
439 nextPC[i] = cpu->readNextPC(i);
440#if ISA_HAS_DELAY_SLOT
441 nextNPC[i] = cpu->readNextNPC(i);
442 delaySlotInfo[i].branchSeqNum = -1;
443 delaySlotInfo[i].numInsts = 0;
444 delaySlotInfo[i].targetAddr = 0;
445 delaySlotInfo[i].targetReady = false;
446#endif
447 fetchStatus[i] = Running;
448 }
449 numInst = 0;
450 wroteToTimeBuffer = false;
451 _status = Inactive;
452 switchedOut = false;
453 interruptPending = false;
454 branchPred.takeOverFrom();
455}
456
457template <class Impl>
458void
459DefaultFetch<Impl>::wakeFromQuiesce()
460{
461 DPRINTF(Fetch, "Waking up from quiesce\n");
462 // Hopefully this is safe
463 // @todo: Allow other threads to wake from quiesce.
464 fetchStatus[0] = Running;
465}
466
467template <class Impl>
468inline void
469DefaultFetch<Impl>::switchToActive()
470{
471 if (_status == Inactive) {
472 DPRINTF(Activity, "Activating stage.\n");
473
474 cpu->activateStage(O3CPU::FetchIdx);
475
476 _status = Active;
477 }
478}
479
480template <class Impl>
481inline void
482DefaultFetch<Impl>::switchToInactive()
483{
484 if (_status == Active) {
485 DPRINTF(Activity, "Deactivating stage.\n");
486
487 cpu->deactivateStage(O3CPU::FetchIdx);
488
489 _status = Inactive;
490 }
491}
492
493template <class Impl>
494bool
495DefaultFetch<Impl>::lookupAndUpdateNextPC(DynInstPtr &inst, Addr &next_PC,
496 Addr &next_NPC)
497{
498 // Do branch prediction check here.
499 // A bit of a misnomer...next_PC is actually the current PC until
500 // this function updates it.
501 bool predict_taken;
502
503 if (!inst->isControl()) {
504#if ISA_HAS_DELAY_SLOT
507 Addr cur_PC = next_PC;
508 next_PC = cur_PC + instSize; //next_NPC;
509 next_NPC = cur_PC + (2 * instSize);//next_NPC + instSize;
510 inst->setPredTarg(next_NPC);
505 next_PC = next_NPC;
506 next_NPC = next_NPC + instSize;
507 inst->setPredTarg(next_PC, next_NPC);
511#else
512 next_PC = next_PC + instSize;
508#else
509 next_PC = next_PC + instSize;
513 inst->setPredTarg(next_PC);
510 inst->setPredTarg(next_PC, next_PC + sizeof(TheISA::MachInst));
514#endif
511#endif
512 inst->setPredTaken(false);
515 return false;
516 }
517
518 int tid = inst->threadNumber;
519#if ISA_HAS_DELAY_SLOT
520 Addr pred_PC = next_PC;
521 predict_taken = branchPred.predict(inst, pred_PC, tid);
522
523 if (predict_taken) {
513 return false;
514 }
515
516 int tid = inst->threadNumber;
517#if ISA_HAS_DELAY_SLOT
518 Addr pred_PC = next_PC;
519 predict_taken = branchPred.predict(inst, pred_PC, tid);
520
521 if (predict_taken) {
524 DPRINTF(Fetch, "[tid:%i]: Branch predicted to be true.\n", tid);
522 DPRINTF(Fetch, "[tid:%i]: Branch predicted to be taken.\n", tid);
525 } else {
523 } else {
526 DPRINTF(Fetch, "[tid:%i]: Branch predicted to be false.\n", tid);
524 DPRINTF(Fetch, "[tid:%i]: Branch predicted to be not taken.\n", tid);
527 }
528
525 }
526
527 next_PC = next_NPC;
529 if (predict_taken) {
528 if (predict_taken) {
530 next_PC = next_NPC;
531 next_NPC = pred_PC;
529 next_NPC = pred_PC;
532
533 // Update delay slot info
534 ++delaySlotInfo[tid].numInsts;
535 delaySlotInfo[tid].targetAddr = pred_PC;
536 DPRINTF(Fetch, "[tid:%i]: %i delay slot inst(s) to process.\n", tid,
537 delaySlotInfo[tid].numInsts);
530 // Update delay slot info
531 ++delaySlotInfo[tid].numInsts;
532 delaySlotInfo[tid].targetAddr = pred_PC;
533 DPRINTF(Fetch, "[tid:%i]: %i delay slot inst(s) to process.\n", tid,
534 delaySlotInfo[tid].numInsts);
538 } else { // !predict_taken
539 if (inst->isCondDelaySlot()) {
540 next_PC = pred_PC;
541 // The delay slot is skipped here if there is on
542 // prediction
543 } else {
544 next_PC = next_NPC;
545 // No need to declare a delay slot here since
546 // there is no for the pred. target to jump
547 }
548
535 } else {
549 next_NPC = next_NPC + instSize;
550 }
551#else
552 predict_taken = branchPred.predict(inst, next_PC, tid);
553#endif
536 next_NPC = next_NPC + instSize;
537 }
538#else
539 predict_taken = branchPred.predict(inst, next_PC, tid);
540#endif
541 DPRINTF(Fetch, "[tid:%i]: Branch predicted to go to %#x and then %#x.\n",
542 tid, next_PC, next_NPC);
543 inst->setPredTarg(next_PC, next_NPC);
544 inst->setPredTaken(predict_taken);
554
555 ++fetchedBranches;
556
557 if (predict_taken) {
558 ++predictedBranches;
559 }
560
561 return predict_taken;
562}
563
564template <class Impl>
565bool
566DefaultFetch<Impl>::fetchCacheLine(Addr fetch_PC, Fault &ret_fault, unsigned tid)
567{
568 Fault fault = NoFault;
569
570 //AlphaDep
571 if (cacheBlocked) {
572 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
573 tid);
574 return false;
575 } else if (isSwitchedOut()) {
576 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n",
577 tid);
578 return false;
579 } else if (interruptPending && !(fetch_PC & 0x3)) {
580 // Hold off fetch from getting new instructions when:
581 // Cache is blocked, or
582 // while an interrupt is pending and we're not in PAL mode, or
583 // fetch is switched out.
584 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
585 tid);
586 return false;
587 }
588
589 // Align the fetch PC so it's at the start of a cache block.
590 Addr block_PC = icacheBlockAlignPC(fetch_PC);
591
592 // If we've already got the block, no need to try to fetch it again.
593 if (cacheDataValid[tid] && block_PC == cacheDataPC[tid]) {
594 return true;
595 }
596
597 // Setup the memReq to do a read of the first instruction's address.
598 // Set the appropriate read size and flags as well.
599 // Build request here.
600 RequestPtr mem_req = new Request(tid, block_PC, cacheBlkSize, 0,
601 fetch_PC, cpu->readCpuId(), tid);
602
603 memReq[tid] = mem_req;
604
605 // Translate the instruction request.
606 fault = cpu->translateInstReq(mem_req, cpu->thread[tid]);
607
608 // In the case of faults, the fetch stage may need to stall and wait
609 // for the ITB miss to be handled.
610
611 // If translation was successful, attempt to read the first
612 // instruction.
613 if (fault == NoFault) {
614#if 0
615 if (cpu->system->memctrl->badaddr(memReq[tid]->paddr) ||
616 memReq[tid]->isUncacheable()) {
617 DPRINTF(Fetch, "Fetch: Bad address %#x (hopefully on a "
618 "misspeculating path)!",
619 memReq[tid]->paddr);
620 ret_fault = TheISA::genMachineCheckFault();
621 return false;
622 }
623#endif
624
625 // Build packet here.
626 PacketPtr data_pkt = new Packet(mem_req,
627 Packet::ReadReq, Packet::Broadcast);
628 data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
629
630 cacheDataPC[tid] = block_PC;
631 cacheDataValid[tid] = false;
632
633 DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
634
635 fetchedCacheLines++;
636
637 // Now do the timing access to see whether or not the instruction
638 // exists within the cache.
639 if (!icachePort->sendTiming(data_pkt)) {
640 if (data_pkt->result == Packet::BadAddress) {
641 fault = TheISA::genMachineCheckFault();
642 delete mem_req;
643 memReq[tid] = NULL;
644 }
645 assert(retryPkt == NULL);
646 assert(retryTid == -1);
647 DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
648 fetchStatus[tid] = IcacheWaitRetry;
649 retryPkt = data_pkt;
650 retryTid = tid;
651 cacheBlocked = true;
652 return false;
653 }
654
655 DPRINTF(Fetch, "[tid:%i]: Doing cache access.\n", tid);
656
657 lastIcacheStall[tid] = curTick;
658
659 DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
660 "response.\n", tid);
661
662 fetchStatus[tid] = IcacheWaitResponse;
663 } else {
664 delete mem_req;
665 memReq[tid] = NULL;
666 }
667
668 ret_fault = fault;
669 return true;
670}
671
672template <class Impl>
673inline void
545
546 ++fetchedBranches;
547
548 if (predict_taken) {
549 ++predictedBranches;
550 }
551
552 return predict_taken;
553}
554
555template <class Impl>
556bool
557DefaultFetch<Impl>::fetchCacheLine(Addr fetch_PC, Fault &ret_fault, unsigned tid)
558{
559 Fault fault = NoFault;
560
561 //AlphaDep
562 if (cacheBlocked) {
563 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
564 tid);
565 return false;
566 } else if (isSwitchedOut()) {
567 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n",
568 tid);
569 return false;
570 } else if (interruptPending && !(fetch_PC & 0x3)) {
571 // Hold off fetch from getting new instructions when:
572 // Cache is blocked, or
573 // while an interrupt is pending and we're not in PAL mode, or
574 // fetch is switched out.
575 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
576 tid);
577 return false;
578 }
579
580 // Align the fetch PC so it's at the start of a cache block.
581 Addr block_PC = icacheBlockAlignPC(fetch_PC);
582
583 // If we've already got the block, no need to try to fetch it again.
584 if (cacheDataValid[tid] && block_PC == cacheDataPC[tid]) {
585 return true;
586 }
587
588 // Setup the memReq to do a read of the first instruction's address.
589 // Set the appropriate read size and flags as well.
590 // Build request here.
591 RequestPtr mem_req = new Request(tid, block_PC, cacheBlkSize, 0,
592 fetch_PC, cpu->readCpuId(), tid);
593
594 memReq[tid] = mem_req;
595
596 // Translate the instruction request.
597 fault = cpu->translateInstReq(mem_req, cpu->thread[tid]);
598
599 // In the case of faults, the fetch stage may need to stall and wait
600 // for the ITB miss to be handled.
601
602 // If translation was successful, attempt to read the first
603 // instruction.
604 if (fault == NoFault) {
605#if 0
606 if (cpu->system->memctrl->badaddr(memReq[tid]->paddr) ||
607 memReq[tid]->isUncacheable()) {
608 DPRINTF(Fetch, "Fetch: Bad address %#x (hopefully on a "
609 "misspeculating path)!",
610 memReq[tid]->paddr);
611 ret_fault = TheISA::genMachineCheckFault();
612 return false;
613 }
614#endif
615
616 // Build packet here.
617 PacketPtr data_pkt = new Packet(mem_req,
618 Packet::ReadReq, Packet::Broadcast);
619 data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
620
621 cacheDataPC[tid] = block_PC;
622 cacheDataValid[tid] = false;
623
624 DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
625
626 fetchedCacheLines++;
627
628 // Now do the timing access to see whether or not the instruction
629 // exists within the cache.
630 if (!icachePort->sendTiming(data_pkt)) {
631 if (data_pkt->result == Packet::BadAddress) {
632 fault = TheISA::genMachineCheckFault();
633 delete mem_req;
634 memReq[tid] = NULL;
635 }
636 assert(retryPkt == NULL);
637 assert(retryTid == -1);
638 DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
639 fetchStatus[tid] = IcacheWaitRetry;
640 retryPkt = data_pkt;
641 retryTid = tid;
642 cacheBlocked = true;
643 return false;
644 }
645
646 DPRINTF(Fetch, "[tid:%i]: Doing cache access.\n", tid);
647
648 lastIcacheStall[tid] = curTick;
649
650 DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
651 "response.\n", tid);
652
653 fetchStatus[tid] = IcacheWaitResponse;
654 } else {
655 delete mem_req;
656 memReq[tid] = NULL;
657 }
658
659 ret_fault = fault;
660 return true;
661}
662
663template <class Impl>
664inline void
674DefaultFetch<Impl>::doSquash(const Addr &new_PC, unsigned tid)
665DefaultFetch::doSquash(const Addr &new_PC,
666 const Addr &new_NPC, unsigned tid)
675{
667{
676 DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %#x.\n",
677 tid, new_PC);
668 DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %#x, NPC to: %#x.\n",
669 tid, new_PC, new_NPC);
678
679 PC[tid] = new_PC;
670
671 PC[tid] = new_PC;
680 nextPC[tid] = new_PC + instSize;
681 nextNPC[tid] = new_PC + (2 * instSize);
672 nextPC[tid] = new_NPC;
673 nextNPC[tid] = new_NPC + instSize;
682
683 // Clear the icache miss if it's outstanding.
684 if (fetchStatus[tid] == IcacheWaitResponse) {
685 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
686 tid);
687 memReq[tid] = NULL;
688 }
689
690 // Get rid of the retrying packet if it was from this thread.
691 if (retryTid == tid) {
692 assert(cacheBlocked);
693 cacheBlocked = false;
694 retryTid = -1;
695 delete retryPkt->req;
696 delete retryPkt;
697 retryPkt = NULL;
698 }
699
700 fetchStatus[tid] = Squashing;
701
702 ++fetchSquashCycles;
703}
704
705template<class Impl>
706void
674
675 // Clear the icache miss if it's outstanding.
676 if (fetchStatus[tid] == IcacheWaitResponse) {
677 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
678 tid);
679 memReq[tid] = NULL;
680 }
681
682 // Get rid of the retrying packet if it was from this thread.
683 if (retryTid == tid) {
684 assert(cacheBlocked);
685 cacheBlocked = false;
686 retryTid = -1;
687 delete retryPkt->req;
688 delete retryPkt;
689 retryPkt = NULL;
690 }
691
692 fetchStatus[tid] = Squashing;
693
694 ++fetchSquashCycles;
695}
696
697template<class Impl>
698void
707DefaultFetch::squashFromDecode(const Addr &new_PC,
699DefaultFetch<Impl>::squashFromDecode(const Addr &new_PC, const Addr &new_NPC,
708 const InstSeqNum &seq_num,
709 unsigned tid)
710{
711 DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n",tid);
712
700 const InstSeqNum &seq_num,
701 unsigned tid)
702{
703 DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n",tid);
704
713 doSquash(new_PC, tid);
705 doSquash(new_PC, new_NPC, tid);
714
715#if ISA_HAS_DELAY_SLOT
716 if (seq_num <= delaySlotInfo[tid].branchSeqNum) {
717 delaySlotInfo[tid].numInsts = 0;
718 delaySlotInfo[tid].targetAddr = 0;
719 delaySlotInfo[tid].targetReady = false;
720 }
721#endif
722
723 // Tell the CPU to remove any instructions that are in flight between
724 // fetch and decode.
725 cpu->removeInstsUntil(seq_num, tid);
726}
727
728template<class Impl>
729bool
730DefaultFetch<Impl>::checkStall(unsigned tid) const
731{
732 bool ret_val = false;
733
734 if (cpu->contextSwitch) {
735 DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
736 ret_val = true;
737 } else if (stalls[tid].decode) {
738 DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
739 ret_val = true;
740 } else if (stalls[tid].rename) {
741 DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
742 ret_val = true;
743 } else if (stalls[tid].iew) {
744 DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
745 ret_val = true;
746 } else if (stalls[tid].commit) {
747 DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
748 ret_val = true;
749 }
750
751 return ret_val;
752}
753
754template<class Impl>
755typename DefaultFetch<Impl>::FetchStatus
756DefaultFetch<Impl>::updateFetchStatus()
757{
758 //Check Running
759 std::list<unsigned>::iterator threads = (*activeThreads).begin();
760
761 while (threads != (*activeThreads).end()) {
762
763 unsigned tid = *threads++;
764
765 if (fetchStatus[tid] == Running ||
766 fetchStatus[tid] == Squashing ||
767 fetchStatus[tid] == IcacheAccessComplete) {
768
769 if (_status == Inactive) {
770 DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
771
772 if (fetchStatus[tid] == IcacheAccessComplete) {
773 DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
774 "completion\n",tid);
775 }
776
777 cpu->activateStage(O3CPU::FetchIdx);
778 }
779
780 return Active;
781 }
782 }
783
784 // Stage is switching from active to inactive, notify CPU of it.
785 if (_status == Active) {
786 DPRINTF(Activity, "Deactivating stage.\n");
787
788 cpu->deactivateStage(O3CPU::FetchIdx);
789 }
790
791 return Inactive;
792}
793
794template <class Impl>
795void
706
707#if ISA_HAS_DELAY_SLOT
708 if (seq_num <= delaySlotInfo[tid].branchSeqNum) {
709 delaySlotInfo[tid].numInsts = 0;
710 delaySlotInfo[tid].targetAddr = 0;
711 delaySlotInfo[tid].targetReady = false;
712 }
713#endif
714
715 // Tell the CPU to remove any instructions that are in flight between
716 // fetch and decode.
717 cpu->removeInstsUntil(seq_num, tid);
718}
719
720template<class Impl>
721bool
722DefaultFetch<Impl>::checkStall(unsigned tid) const
723{
724 bool ret_val = false;
725
726 if (cpu->contextSwitch) {
727 DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
728 ret_val = true;
729 } else if (stalls[tid].decode) {
730 DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
731 ret_val = true;
732 } else if (stalls[tid].rename) {
733 DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
734 ret_val = true;
735 } else if (stalls[tid].iew) {
736 DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
737 ret_val = true;
738 } else if (stalls[tid].commit) {
739 DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
740 ret_val = true;
741 }
742
743 return ret_val;
744}
745
746template<class Impl>
747typename DefaultFetch<Impl>::FetchStatus
748DefaultFetch<Impl>::updateFetchStatus()
749{
750 //Check Running
751 std::list<unsigned>::iterator threads = (*activeThreads).begin();
752
753 while (threads != (*activeThreads).end()) {
754
755 unsigned tid = *threads++;
756
757 if (fetchStatus[tid] == Running ||
758 fetchStatus[tid] == Squashing ||
759 fetchStatus[tid] == IcacheAccessComplete) {
760
761 if (_status == Inactive) {
762 DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
763
764 if (fetchStatus[tid] == IcacheAccessComplete) {
765 DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
766 "completion\n",tid);
767 }
768
769 cpu->activateStage(O3CPU::FetchIdx);
770 }
771
772 return Active;
773 }
774 }
775
776 // Stage is switching from active to inactive, notify CPU of it.
777 if (_status == Active) {
778 DPRINTF(Activity, "Deactivating stage.\n");
779
780 cpu->deactivateStage(O3CPU::FetchIdx);
781 }
782
783 return Inactive;
784}
785
786template <class Impl>
787void
796DefaultFetch<Impl>::squash(const Addr &new_PC, const InstSeqNum &seq_num,
788DefaultFetch<Impl>::squash(const Addr &new_PC, const Addr &new_NPC,
789 const InstSeqNum &seq_num,
797 bool squash_delay_slot, unsigned tid)
798{
799 DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n",tid);
800
790 bool squash_delay_slot, unsigned tid)
791{
792 DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n",tid);
793
801 doSquash(new_PC, tid);
794 doSquash(new_PC, new_NPC, tid);
802
803#if ISA_HAS_DELAY_SLOT
804 if (seq_num <= delaySlotInfo[tid].branchSeqNum) {
805 delaySlotInfo[tid].numInsts = 0;
806 delaySlotInfo[tid].targetAddr = 0;
807 delaySlotInfo[tid].targetReady = false;
808 }
809
810 // Tell the CPU to remove any instructions that are not in the ROB.
811 cpu->removeInstsNotInROB(tid, squash_delay_slot, seq_num);
812#else
813 // Tell the CPU to remove any instructions that are not in the ROB.
814 cpu->removeInstsNotInROB(tid, true, 0);
815#endif
816}
817
818template <class Impl>
819void
820DefaultFetch<Impl>::tick()
821{
822 std::list<unsigned>::iterator threads = (*activeThreads).begin();
823 bool status_change = false;
824
825 wroteToTimeBuffer = false;
826
827 while (threads != (*activeThreads).end()) {
828 unsigned tid = *threads++;
829
830 // Check the signals for each thread to determine the proper status
831 // for each thread.
832 bool updated_status = checkSignalsAndUpdate(tid);
833 status_change = status_change || updated_status;
834 }
835
836 DPRINTF(Fetch, "Running stage.\n");
837
838 // Reset the number of the instruction we're fetching.
839 numInst = 0;
840
841#if FULL_SYSTEM
842 if (fromCommit->commitInfo[0].interruptPending) {
843 interruptPending = true;
844 }
845
846 if (fromCommit->commitInfo[0].clearInterrupt) {
847 interruptPending = false;
848 }
849#endif
850
851 for (threadFetched = 0; threadFetched < numFetchingThreads;
852 threadFetched++) {
853 // Fetch each of the actively fetching threads.
854 fetch(status_change);
855 }
856
857 // Record number of instructions fetched this cycle for distribution.
858 fetchNisnDist.sample(numInst);
859
860 if (status_change) {
861 // Change the fetch stage status if there was a status change.
862 _status = updateFetchStatus();
863 }
864
865 // If there was activity this cycle, inform the CPU of it.
866 if (wroteToTimeBuffer || cpu->contextSwitch) {
867 DPRINTF(Activity, "Activity this cycle.\n");
868
869 cpu->activityThisCycle();
870 }
871}
872
873template <class Impl>
874bool
875DefaultFetch<Impl>::checkSignalsAndUpdate(unsigned tid)
876{
877 // Update the per thread stall statuses.
878 if (fromDecode->decodeBlock[tid]) {
879 stalls[tid].decode = true;
880 }
881
882 if (fromDecode->decodeUnblock[tid]) {
883 assert(stalls[tid].decode);
884 assert(!fromDecode->decodeBlock[tid]);
885 stalls[tid].decode = false;
886 }
887
888 if (fromRename->renameBlock[tid]) {
889 stalls[tid].rename = true;
890 }
891
892 if (fromRename->renameUnblock[tid]) {
893 assert(stalls[tid].rename);
894 assert(!fromRename->renameBlock[tid]);
895 stalls[tid].rename = false;
896 }
897
898 if (fromIEW->iewBlock[tid]) {
899 stalls[tid].iew = true;
900 }
901
902 if (fromIEW->iewUnblock[tid]) {
903 assert(stalls[tid].iew);
904 assert(!fromIEW->iewBlock[tid]);
905 stalls[tid].iew = false;
906 }
907
908 if (fromCommit->commitBlock[tid]) {
909 stalls[tid].commit = true;
910 }
911
912 if (fromCommit->commitUnblock[tid]) {
913 assert(stalls[tid].commit);
914 assert(!fromCommit->commitBlock[tid]);
915 stalls[tid].commit = false;
916 }
917
918 // Check squash signals from commit.
919 if (fromCommit->commitInfo[tid].squash) {
920
921 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
922 "from commit.\n",tid);
923
924#if ISA_HAS_DELAY_SLOT
925 InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].bdelayDoneSeqNum;
926#else
927 InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].doneSeqNum;
928#endif
929 // In any case, squash.
930 squash(fromCommit->commitInfo[tid].nextPC,
795
796#if ISA_HAS_DELAY_SLOT
797 if (seq_num <= delaySlotInfo[tid].branchSeqNum) {
798 delaySlotInfo[tid].numInsts = 0;
799 delaySlotInfo[tid].targetAddr = 0;
800 delaySlotInfo[tid].targetReady = false;
801 }
802
803 // Tell the CPU to remove any instructions that are not in the ROB.
804 cpu->removeInstsNotInROB(tid, squash_delay_slot, seq_num);
805#else
806 // Tell the CPU to remove any instructions that are not in the ROB.
807 cpu->removeInstsNotInROB(tid, true, 0);
808#endif
809}
810
811template <class Impl>
812void
813DefaultFetch<Impl>::tick()
814{
815 std::list<unsigned>::iterator threads = (*activeThreads).begin();
816 bool status_change = false;
817
818 wroteToTimeBuffer = false;
819
820 while (threads != (*activeThreads).end()) {
821 unsigned tid = *threads++;
822
823 // Check the signals for each thread to determine the proper status
824 // for each thread.
825 bool updated_status = checkSignalsAndUpdate(tid);
826 status_change = status_change || updated_status;
827 }
828
829 DPRINTF(Fetch, "Running stage.\n");
830
831 // Reset the number of the instruction we're fetching.
832 numInst = 0;
833
834#if FULL_SYSTEM
835 if (fromCommit->commitInfo[0].interruptPending) {
836 interruptPending = true;
837 }
838
839 if (fromCommit->commitInfo[0].clearInterrupt) {
840 interruptPending = false;
841 }
842#endif
843
844 for (threadFetched = 0; threadFetched < numFetchingThreads;
845 threadFetched++) {
846 // Fetch each of the actively fetching threads.
847 fetch(status_change);
848 }
849
850 // Record number of instructions fetched this cycle for distribution.
851 fetchNisnDist.sample(numInst);
852
853 if (status_change) {
854 // Change the fetch stage status if there was a status change.
855 _status = updateFetchStatus();
856 }
857
858 // If there was activity this cycle, inform the CPU of it.
859 if (wroteToTimeBuffer || cpu->contextSwitch) {
860 DPRINTF(Activity, "Activity this cycle.\n");
861
862 cpu->activityThisCycle();
863 }
864}
865
866template <class Impl>
867bool
868DefaultFetch<Impl>::checkSignalsAndUpdate(unsigned tid)
869{
870 // Update the per thread stall statuses.
871 if (fromDecode->decodeBlock[tid]) {
872 stalls[tid].decode = true;
873 }
874
875 if (fromDecode->decodeUnblock[tid]) {
876 assert(stalls[tid].decode);
877 assert(!fromDecode->decodeBlock[tid]);
878 stalls[tid].decode = false;
879 }
880
881 if (fromRename->renameBlock[tid]) {
882 stalls[tid].rename = true;
883 }
884
885 if (fromRename->renameUnblock[tid]) {
886 assert(stalls[tid].rename);
887 assert(!fromRename->renameBlock[tid]);
888 stalls[tid].rename = false;
889 }
890
891 if (fromIEW->iewBlock[tid]) {
892 stalls[tid].iew = true;
893 }
894
895 if (fromIEW->iewUnblock[tid]) {
896 assert(stalls[tid].iew);
897 assert(!fromIEW->iewBlock[tid]);
898 stalls[tid].iew = false;
899 }
900
901 if (fromCommit->commitBlock[tid]) {
902 stalls[tid].commit = true;
903 }
904
905 if (fromCommit->commitUnblock[tid]) {
906 assert(stalls[tid].commit);
907 assert(!fromCommit->commitBlock[tid]);
908 stalls[tid].commit = false;
909 }
910
911 // Check squash signals from commit.
912 if (fromCommit->commitInfo[tid].squash) {
913
914 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
915 "from commit.\n",tid);
916
917#if ISA_HAS_DELAY_SLOT
918 InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].bdelayDoneSeqNum;
919#else
920 InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].doneSeqNum;
921#endif
922 // In any case, squash.
923 squash(fromCommit->commitInfo[tid].nextPC,
924 fromCommit->commitInfo[tid].nextNPC,
931 doneSeqNum,
932 fromCommit->commitInfo[tid].squashDelaySlot,
933 tid);
934
935 // Also check if there's a mispredict that happened.
936 if (fromCommit->commitInfo[tid].branchMispredict) {
937 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
938 fromCommit->commitInfo[tid].nextPC,
939 fromCommit->commitInfo[tid].branchTaken,
940 tid);
941 } else {
942 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
943 tid);
944 }
945
946 return true;
947 } else if (fromCommit->commitInfo[tid].doneSeqNum) {
948 // Update the branch predictor if it wasn't a squashed instruction
949 // that was broadcasted.
950 branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
951 }
952
953 // Check ROB squash signals from commit.
954 if (fromCommit->commitInfo[tid].robSquashing) {
955 DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
956
957 // Continue to squash.
958 fetchStatus[tid] = Squashing;
959
960 return true;
961 }
962
963 // Check squash signals from decode.
964 if (fromDecode->decodeInfo[tid].squash) {
965 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
966 "from decode.\n",tid);
967
968 // Update the branch predictor.
969 if (fromDecode->decodeInfo[tid].branchMispredict) {
970 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
971 fromDecode->decodeInfo[tid].nextPC,
972 fromDecode->decodeInfo[tid].branchTaken,
973 tid);
974 } else {
975 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
976 tid);
977 }
978
979 if (fetchStatus[tid] != Squashing) {
980
981#if ISA_HAS_DELAY_SLOT
982 InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].bdelayDoneSeqNum;
983#else
984 InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].doneSeqNum;
985#endif
986 // Squash unless we're already squashing
987 squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
925 doneSeqNum,
926 fromCommit->commitInfo[tid].squashDelaySlot,
927 tid);
928
929 // Also check if there's a mispredict that happened.
930 if (fromCommit->commitInfo[tid].branchMispredict) {
931 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
932 fromCommit->commitInfo[tid].nextPC,
933 fromCommit->commitInfo[tid].branchTaken,
934 tid);
935 } else {
936 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
937 tid);
938 }
939
940 return true;
941 } else if (fromCommit->commitInfo[tid].doneSeqNum) {
942 // Update the branch predictor if it wasn't a squashed instruction
943 // that was broadcasted.
944 branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
945 }
946
947 // Check ROB squash signals from commit.
948 if (fromCommit->commitInfo[tid].robSquashing) {
949 DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
950
951 // Continue to squash.
952 fetchStatus[tid] = Squashing;
953
954 return true;
955 }
956
957 // Check squash signals from decode.
958 if (fromDecode->decodeInfo[tid].squash) {
959 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
960 "from decode.\n",tid);
961
962 // Update the branch predictor.
963 if (fromDecode->decodeInfo[tid].branchMispredict) {
964 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
965 fromDecode->decodeInfo[tid].nextPC,
966 fromDecode->decodeInfo[tid].branchTaken,
967 tid);
968 } else {
969 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
970 tid);
971 }
972
973 if (fetchStatus[tid] != Squashing) {
974
975#if ISA_HAS_DELAY_SLOT
976 InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].bdelayDoneSeqNum;
977#else
978 InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].doneSeqNum;
979#endif
980 // Squash unless we're already squashing
981 squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
982 fromDecode->decodeInfo[tid].nextNPC,
988 doneSeqNum,
989 tid);
990
991 return true;
992 }
993 }
994
995 if (checkStall(tid) &&
996 fetchStatus[tid] != IcacheWaitResponse &&
997 fetchStatus[tid] != IcacheWaitRetry) {
998 DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
999
1000 fetchStatus[tid] = Blocked;
1001
1002 return true;
1003 }
1004
1005 if (fetchStatus[tid] == Blocked ||
1006 fetchStatus[tid] == Squashing) {
1007 // Switch status to running if fetch isn't being told to block or
1008 // squash this cycle.
1009 DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1010 tid);
1011
1012 fetchStatus[tid] = Running;
1013
1014 return true;
1015 }
1016
1017 // If we've reached this point, we have not gotten any signals that
1018 // cause fetch to change its status. Fetch remains the same as before.
1019 return false;
1020}
1021
1022template<class Impl>
1023void
1024DefaultFetch<Impl>::fetch(bool &status_change)
1025{
1026 //////////////////////////////////////////
1027 // Start actual fetch
1028 //////////////////////////////////////////
1029 int tid = getFetchingThread(fetchPolicy);
1030
1031 if (tid == -1 || drainPending) {
1032 DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1033
1034 // Breaks looping condition in tick()
1035 threadFetched = numFetchingThreads;
1036 return;
1037 }
1038
1039 DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1040
1041 // The current PC.
1042 Addr &fetch_PC = PC[tid];
1043
983 doneSeqNum,
984 tid);
985
986 return true;
987 }
988 }
989
990 if (checkStall(tid) &&
991 fetchStatus[tid] != IcacheWaitResponse &&
992 fetchStatus[tid] != IcacheWaitRetry) {
993 DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
994
995 fetchStatus[tid] = Blocked;
996
997 return true;
998 }
999
1000 if (fetchStatus[tid] == Blocked ||
1001 fetchStatus[tid] == Squashing) {
1002 // Switch status to running if fetch isn't being told to block or
1003 // squash this cycle.
1004 DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1005 tid);
1006
1007 fetchStatus[tid] = Running;
1008
1009 return true;
1010 }
1011
1012 // If we've reached this point, we have not gotten any signals that
1013 // cause fetch to change its status. Fetch remains the same as before.
1014 return false;
1015}
1016
1017template<class Impl>
1018void
1019DefaultFetch<Impl>::fetch(bool &status_change)
1020{
1021 //////////////////////////////////////////
1022 // Start actual fetch
1023 //////////////////////////////////////////
1024 int tid = getFetchingThread(fetchPolicy);
1025
1026 if (tid == -1 || drainPending) {
1027 DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1028
1029 // Breaks looping condition in tick()
1030 threadFetched = numFetchingThreads;
1031 return;
1032 }
1033
1034 DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1035
1036 // The current PC.
1037 Addr &fetch_PC = PC[tid];
1038
1039 Addr &fetch_NPC = nextPC[tid];
1040
1044 // Fault code for memory access.
1045 Fault fault = NoFault;
1046
1047 // If returning from the delay of a cache miss, then update the status
1048 // to running, otherwise do the cache access. Possibly move this up
1049 // to tick() function.
1050 if (fetchStatus[tid] == IcacheAccessComplete) {
1051 DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n",
1052 tid);
1053
1054 fetchStatus[tid] = Running;
1055 status_change = true;
1056 } else if (fetchStatus[tid] == Running) {
1057 DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1058 "instruction, starting at PC %08p.\n",
1059 tid, fetch_PC);
1060
1061 bool fetch_success = fetchCacheLine(fetch_PC, fault, tid);
1062 if (!fetch_success) {
1063 if (cacheBlocked) {
1064 ++icacheStallCycles;
1065 } else {
1066 ++fetchMiscStallCycles;
1067 }
1068 return;
1069 }
1070 } else {
1071 if (fetchStatus[tid] == Idle) {
1072 ++fetchIdleCycles;
1073 DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1074 } else if (fetchStatus[tid] == Blocked) {
1075 ++fetchBlockedCycles;
1076 DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1077 } else if (fetchStatus[tid] == Squashing) {
1078 ++fetchSquashCycles;
1079 DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1080 } else if (fetchStatus[tid] == IcacheWaitResponse) {
1081 ++icacheStallCycles;
1082 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n", tid);
1083 }
1084
1085 // Status is Idle, Squashing, Blocked, or IcacheWaitResponse, so
1086 // fetch should do nothing.
1087 return;
1088 }
1089
1090 ++fetchCycles;
1091
1092 // If we had a stall due to an icache miss, then return.
1093 if (fetchStatus[tid] == IcacheWaitResponse) {
1094 ++icacheStallCycles;
1095 status_change = true;
1096 return;
1097 }
1098
1099 Addr next_PC = fetch_PC;
1041 // Fault code for memory access.
1042 Fault fault = NoFault;
1043
1044 // If returning from the delay of a cache miss, then update the status
1045 // to running, otherwise do the cache access. Possibly move this up
1046 // to tick() function.
1047 if (fetchStatus[tid] == IcacheAccessComplete) {
1048 DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n",
1049 tid);
1050
1051 fetchStatus[tid] = Running;
1052 status_change = true;
1053 } else if (fetchStatus[tid] == Running) {
1054 DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1055 "instruction, starting at PC %08p.\n",
1056 tid, fetch_PC);
1057
1058 bool fetch_success = fetchCacheLine(fetch_PC, fault, tid);
1059 if (!fetch_success) {
1060 if (cacheBlocked) {
1061 ++icacheStallCycles;
1062 } else {
1063 ++fetchMiscStallCycles;
1064 }
1065 return;
1066 }
1067 } else {
1068 if (fetchStatus[tid] == Idle) {
1069 ++fetchIdleCycles;
1070 DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1071 } else if (fetchStatus[tid] == Blocked) {
1072 ++fetchBlockedCycles;
1073 DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1074 } else if (fetchStatus[tid] == Squashing) {
1075 ++fetchSquashCycles;
1076 DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1077 } else if (fetchStatus[tid] == IcacheWaitResponse) {
1078 ++icacheStallCycles;
1079 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n", tid);
1080 }
1081
1082 // Status is Idle, Squashing, Blocked, or IcacheWaitResponse, so
1083 // fetch should do nothing.
1084 return;
1085 }
1086
1087 ++fetchCycles;
1088
1089 // If we had a stall due to an icache miss, then return.
1090 if (fetchStatus[tid] == IcacheWaitResponse) {
1091 ++icacheStallCycles;
1092 status_change = true;
1093 return;
1094 }
1095
1096 Addr next_PC = fetch_PC;
1100 Addr next_NPC = next_PC + instSize;
1097 Addr next_NPC = fetch_NPC;
1098
1101 InstSeqNum inst_seq;
1102 MachInst inst;
1103 ExtMachInst ext_inst;
1104 // @todo: Fix this hack.
1105 unsigned offset = (fetch_PC & cacheBlkMask) & ~3;
1106
1107 if (fault == NoFault) {
1108 // If the read of the first instruction was successful, then grab the
1109 // instructions from the rest of the cache line and put them into the
1110 // queue heading to decode.
1111
1112 DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1113 "decode.\n",tid);
1114
1115 // Need to keep track of whether or not a predicted branch
1116 // ended this fetch block.
1117 bool predicted_branch = false;
1118
1119 // Need to keep track of whether or not a delay slot
1120 // instruction has been fetched
1121
1122 for (;
1123 offset < cacheBlkSize &&
1124 numInst < fetchWidth &&
1125 (!predicted_branch || delaySlotInfo[tid].numInsts > 0);
1126 ++numInst) {
1127
1128 // Get a sequence number.
1129 inst_seq = cpu->getAndIncrementInstSeq();
1130
1131 // Make sure this is a valid index.
1132 assert(offset <= cacheBlkSize - instSize);
1133
1134 // Get the instruction from the array of the cache line.
1135 inst = TheISA::gtoh(*reinterpret_cast<TheISA::MachInst *>
1136 (&cacheData[tid][offset]));
1137
1138#if THE_ISA == ALPHA_ISA
1139 ext_inst = TheISA::makeExtMI(inst, fetch_PC);
1140#elif THE_ISA == SPARC_ISA
1141 ext_inst = TheISA::makeExtMI(inst, cpu->thread[tid]->getTC());
1142#elif THE_ISA == MIPS_ISA
1143 ext_inst = TheISA::makeExtMI(inst, cpu->thread[tid]->getTC());
1144#endif
1145
1146 // Create a new DynInst from the instruction fetched.
1099 InstSeqNum inst_seq;
1100 MachInst inst;
1101 ExtMachInst ext_inst;
1102 // @todo: Fix this hack.
1103 unsigned offset = (fetch_PC & cacheBlkMask) & ~3;
1104
1105 if (fault == NoFault) {
1106 // If the read of the first instruction was successful, then grab the
1107 // instructions from the rest of the cache line and put them into the
1108 // queue heading to decode.
1109
1110 DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1111 "decode.\n",tid);
1112
1113 // Need to keep track of whether or not a predicted branch
1114 // ended this fetch block.
1115 bool predicted_branch = false;
1116
1117 // Need to keep track of whether or not a delay slot
1118 // instruction has been fetched
1119
1120 for (;
1121 offset < cacheBlkSize &&
1122 numInst < fetchWidth &&
1123 (!predicted_branch || delaySlotInfo[tid].numInsts > 0);
1124 ++numInst) {
1125
1126 // Get a sequence number.
1127 inst_seq = cpu->getAndIncrementInstSeq();
1128
1129 // Make sure this is a valid index.
1130 assert(offset <= cacheBlkSize - instSize);
1131
1132 // Get the instruction from the array of the cache line.
1133 inst = TheISA::gtoh(*reinterpret_cast<TheISA::MachInst *>
1134 (&cacheData[tid][offset]));
1135
1136#if THE_ISA == ALPHA_ISA
1137 ext_inst = TheISA::makeExtMI(inst, fetch_PC);
1138#elif THE_ISA == SPARC_ISA
1139 ext_inst = TheISA::makeExtMI(inst, cpu->thread[tid]->getTC());
1140#elif THE_ISA == MIPS_ISA
1141 ext_inst = TheISA::makeExtMI(inst, cpu->thread[tid]->getTC());
1142#endif
1143
1144 // Create a new DynInst from the instruction fetched.
1147 DynInstPtr instruction = new DynInst(ext_inst, fetch_PC,
1148 next_PC,
1145 DynInstPtr instruction = new DynInst(ext_inst,
1146 fetch_PC, fetch_NPC,
1147 next_PC, next_NPC,
1149 inst_seq, cpu);
1150 instruction->setTid(tid);
1151
1152 instruction->setASID(tid);
1153
1154 instruction->setThreadState(cpu->thread[tid]);
1155
1156 DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x created "
1157 "[sn:%lli]\n",
1158 tid, instruction->readPC(), inst_seq);
1159
1160 DPRINTF(Fetch, "[tid:%i]: MachInst is %#x\n", tid, ext_inst);
1161
1162 DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n",
1163 tid, instruction->staticInst->disassemble(fetch_PC));
1164
1165 instruction->traceData =
1166 Trace::getInstRecord(curTick, cpu->tcBase(tid),
1167 instruction->staticInst,
1168 instruction->readPC());
1169
1170 predicted_branch = lookupAndUpdateNextPC(instruction, next_PC,
1171 next_NPC);
1172
1173 // Add instruction to the CPU's list of instructions.
1174 instruction->setInstListIt(cpu->addInst(instruction));
1175
1176 // Write the instruction to the first slot in the queue
1177 // that heads to decode.
1178 toDecode->insts[numInst] = instruction;
1179
1180 toDecode->size++;
1181
1182 // Increment stat of fetched instructions.
1183 ++fetchedInsts;
1184
1185 // Move to the next instruction, unless we have a branch.
1186 fetch_PC = next_PC;
1187
1188 if (instruction->isQuiesce()) {
1189 DPRINTF(Fetch, "Quiesce instruction encountered, halting fetch!",
1190 curTick);
1191 fetchStatus[tid] = QuiescePending;
1192 ++numInst;
1193 status_change = true;
1194 break;
1195 }
1196
1197 offset += instSize;
1198
1199#if ISA_HAS_DELAY_SLOT
1200 if (predicted_branch) {
1201 delaySlotInfo[tid].branchSeqNum = inst_seq;
1202
1203 DPRINTF(Fetch, "[tid:%i]: Delay slot branch set to [sn:%i]\n",
1204 tid, inst_seq);
1205 continue;
1206 } else if (delaySlotInfo[tid].numInsts > 0) {
1207 --delaySlotInfo[tid].numInsts;
1208
1209 // It's OK to set PC to target of branch
1210 if (delaySlotInfo[tid].numInsts == 0) {
1211 delaySlotInfo[tid].targetReady = true;
1212
1213 // Break the looping condition
1214 predicted_branch = true;
1215 }
1216
1217 DPRINTF(Fetch, "[tid:%i]: %i delay slot inst(s) left to"
1218 " process.\n", tid, delaySlotInfo[tid].numInsts);
1219 }
1220#endif
1221 }
1222
1223 if (offset >= cacheBlkSize) {
1224 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1225 "block.\n", tid);
1226 } else if (numInst >= fetchWidth) {
1227 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1228 "for this cycle.\n", tid);
1229 } else if (predicted_branch && delaySlotInfo[tid].numInsts <= 0) {
1230 DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1231 "instruction encountered.\n", tid);
1232 }
1233 }
1234
1235 if (numInst > 0) {
1236 wroteToTimeBuffer = true;
1237 }
1238
1239 // Now that fetching is completed, update the PC to signify what the next
1240 // cycle will be.
1241 if (fault == NoFault) {
1242#if ISA_HAS_DELAY_SLOT
1243 if (delaySlotInfo[tid].targetReady &&
1244 delaySlotInfo[tid].numInsts == 0) {
1245 // Set PC to target
1148 inst_seq, cpu);
1149 instruction->setTid(tid);
1150
1151 instruction->setASID(tid);
1152
1153 instruction->setThreadState(cpu->thread[tid]);
1154
1155 DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x created "
1156 "[sn:%lli]\n",
1157 tid, instruction->readPC(), inst_seq);
1158
1159 DPRINTF(Fetch, "[tid:%i]: MachInst is %#x\n", tid, ext_inst);
1160
1161 DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n",
1162 tid, instruction->staticInst->disassemble(fetch_PC));
1163
1164 instruction->traceData =
1165 Trace::getInstRecord(curTick, cpu->tcBase(tid),
1166 instruction->staticInst,
1167 instruction->readPC());
1168
1169 predicted_branch = lookupAndUpdateNextPC(instruction, next_PC,
1170 next_NPC);
1171
1172 // Add instruction to the CPU's list of instructions.
1173 instruction->setInstListIt(cpu->addInst(instruction));
1174
1175 // Write the instruction to the first slot in the queue
1176 // that heads to decode.
1177 toDecode->insts[numInst] = instruction;
1178
1179 toDecode->size++;
1180
1181 // Increment stat of fetched instructions.
1182 ++fetchedInsts;
1183
1184 // Move to the next instruction, unless we have a branch.
1185 fetch_PC = next_PC;
1186
1187 if (instruction->isQuiesce()) {
1188 DPRINTF(Fetch, "Quiesce instruction encountered, halting fetch!",
1189 curTick);
1190 fetchStatus[tid] = QuiescePending;
1191 ++numInst;
1192 status_change = true;
1193 break;
1194 }
1195
1196 offset += instSize;
1197
1198#if ISA_HAS_DELAY_SLOT
1199 if (predicted_branch) {
1200 delaySlotInfo[tid].branchSeqNum = inst_seq;
1201
1202 DPRINTF(Fetch, "[tid:%i]: Delay slot branch set to [sn:%i]\n",
1203 tid, inst_seq);
1204 continue;
1205 } else if (delaySlotInfo[tid].numInsts > 0) {
1206 --delaySlotInfo[tid].numInsts;
1207
1208 // It's OK to set PC to target of branch
1209 if (delaySlotInfo[tid].numInsts == 0) {
1210 delaySlotInfo[tid].targetReady = true;
1211
1212 // Break the looping condition
1213 predicted_branch = true;
1214 }
1215
1216 DPRINTF(Fetch, "[tid:%i]: %i delay slot inst(s) left to"
1217 " process.\n", tid, delaySlotInfo[tid].numInsts);
1218 }
1219#endif
1220 }
1221
1222 if (offset >= cacheBlkSize) {
1223 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1224 "block.\n", tid);
1225 } else if (numInst >= fetchWidth) {
1226 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1227 "for this cycle.\n", tid);
1228 } else if (predicted_branch && delaySlotInfo[tid].numInsts <= 0) {
1229 DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1230 "instruction encountered.\n", tid);
1231 }
1232 }
1233
1234 if (numInst > 0) {
1235 wroteToTimeBuffer = true;
1236 }
1237
1238 // Now that fetching is completed, update the PC to signify what the next
1239 // cycle will be.
1240 if (fault == NoFault) {
1241#if ISA_HAS_DELAY_SLOT
1242 if (delaySlotInfo[tid].targetReady &&
1243 delaySlotInfo[tid].numInsts == 0) {
1244 // Set PC to target
1246 PC[tid] = delaySlotInfo[tid].targetAddr; //next_PC
1247 nextPC[tid] = next_PC + instSize; //next_NPC
1248 nextNPC[tid] = next_PC + (2 * instSize);
1245 PC[tid] = next_PC;
1246 nextPC[tid] = next_NPC;
1247 nextNPC[tid] = next_NPC + instSize;
1249
1250 delaySlotInfo[tid].targetReady = false;
1251 } else {
1252 PC[tid] = next_PC;
1253 nextPC[tid] = next_NPC;
1254 nextNPC[tid] = next_NPC + instSize;
1255 }
1256
1257 DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n", tid, PC[tid]);
1258#else
1259 DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n",tid, next_PC);
1260 PC[tid] = next_PC;
1261 nextPC[tid] = next_PC + instSize;
1262#endif
1263 } else {
1264 // We shouldn't be in an icache miss and also have a fault (an ITB
1265 // miss)
1266 if (fetchStatus[tid] == IcacheWaitResponse) {
1267 panic("Fetch should have exited prior to this!");
1268 }
1269
1270 // Send the fault to commit. This thread will not do anything
1271 // until commit handles the fault. The only other way it can
1272 // wake up is if a squash comes along and changes the PC.
1273#if FULL_SYSTEM
1274 assert(numInst != fetchWidth);
1275 // Get a sequence number.
1276 inst_seq = cpu->getAndIncrementInstSeq();
1277 // We will use a nop in order to carry the fault.
1278 ext_inst = TheISA::NoopMachInst;
1279
1280 // Create a new DynInst from the dummy nop.
1281 DynInstPtr instruction = new DynInst(ext_inst, fetch_PC,
1282 next_PC,
1283 inst_seq, cpu);
1284 instruction->setPredTarg(next_PC + instSize);
1285 instruction->setTid(tid);
1286
1287 instruction->setASID(tid);
1288
1289 instruction->setThreadState(cpu->thread[tid]);
1290
1291 instruction->traceData = NULL;
1292
1293 instruction->setInstListIt(cpu->addInst(instruction));
1294
1295 instruction->fault = fault;
1296
1297 toDecode->insts[numInst] = instruction;
1298 toDecode->size++;
1299
1300 DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n",tid);
1301
1302 fetchStatus[tid] = TrapPending;
1303 status_change = true;
1304#else // !FULL_SYSTEM
1305 fetchStatus[tid] = TrapPending;
1306 status_change = true;
1307
1308#endif // FULL_SYSTEM
1309 DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %08p",
1310 tid, fault->name(), PC[tid]);
1311 }
1312}
1313
1314template<class Impl>
1315void
1316DefaultFetch<Impl>::recvRetry()
1317{
1318 if (retryPkt != NULL) {
1319 assert(cacheBlocked);
1320 assert(retryTid != -1);
1321 assert(fetchStatus[retryTid] == IcacheWaitRetry);
1322
1323 if (icachePort->sendTiming(retryPkt)) {
1324 fetchStatus[retryTid] = IcacheWaitResponse;
1325 retryPkt = NULL;
1326 retryTid = -1;
1327 cacheBlocked = false;
1328 }
1329 } else {
1330 assert(retryTid == -1);
1331 // Access has been squashed since it was sent out. Just clear
1332 // the cache being blocked.
1333 cacheBlocked = false;
1334 }
1335}
1336
1337///////////////////////////////////////
1338// //
1339// SMT FETCH POLICY MAINTAINED HERE //
1340// //
1341///////////////////////////////////////
1342template<class Impl>
1343int
1344DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1345{
1346 if (numThreads > 1) {
1347 switch (fetch_priority) {
1348
1349 case SingleThread:
1350 return 0;
1351
1352 case RoundRobin:
1353 return roundRobin();
1354
1355 case IQ:
1356 return iqCount();
1357
1358 case LSQ:
1359 return lsqCount();
1360
1361 case Branch:
1362 return branchCount();
1363
1364 default:
1365 return -1;
1366 }
1367 } else {
1368 int tid = *((*activeThreads).begin());
1369
1370 if (fetchStatus[tid] == Running ||
1371 fetchStatus[tid] == IcacheAccessComplete ||
1372 fetchStatus[tid] == Idle) {
1373 return tid;
1374 } else {
1375 return -1;
1376 }
1377 }
1378
1379}
1380
1381
1382template<class Impl>
1383int
1384DefaultFetch<Impl>::roundRobin()
1385{
1386 std::list<unsigned>::iterator pri_iter = priorityList.begin();
1387 std::list<unsigned>::iterator end = priorityList.end();
1388
1389 int high_pri;
1390
1391 while (pri_iter != end) {
1392 high_pri = *pri_iter;
1393
1394 assert(high_pri <= numThreads);
1395
1396 if (fetchStatus[high_pri] == Running ||
1397 fetchStatus[high_pri] == IcacheAccessComplete ||
1398 fetchStatus[high_pri] == Idle) {
1399
1400 priorityList.erase(pri_iter);
1401 priorityList.push_back(high_pri);
1402
1403 return high_pri;
1404 }
1405
1406 pri_iter++;
1407 }
1408
1409 return -1;
1410}
1411
1412template<class Impl>
1413int
1414DefaultFetch<Impl>::iqCount()
1415{
1416 std::priority_queue<unsigned> PQ;
1417
1418 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1419
1420 while (threads != (*activeThreads).end()) {
1421 unsigned tid = *threads++;
1422
1423 PQ.push(fromIEW->iewInfo[tid].iqCount);
1424 }
1425
1426 while (!PQ.empty()) {
1427
1428 unsigned high_pri = PQ.top();
1429
1430 if (fetchStatus[high_pri] == Running ||
1431 fetchStatus[high_pri] == IcacheAccessComplete ||
1432 fetchStatus[high_pri] == Idle)
1433 return high_pri;
1434 else
1435 PQ.pop();
1436
1437 }
1438
1439 return -1;
1440}
1441
1442template<class Impl>
1443int
1444DefaultFetch<Impl>::lsqCount()
1445{
1446 std::priority_queue<unsigned> PQ;
1447
1448
1449 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1450
1451 while (threads != (*activeThreads).end()) {
1452 unsigned tid = *threads++;
1453
1454 PQ.push(fromIEW->iewInfo[tid].ldstqCount);
1455 }
1456
1457 while (!PQ.empty()) {
1458
1459 unsigned high_pri = PQ.top();
1460
1461 if (fetchStatus[high_pri] == Running ||
1462 fetchStatus[high_pri] == IcacheAccessComplete ||
1463 fetchStatus[high_pri] == Idle)
1464 return high_pri;
1465 else
1466 PQ.pop();
1467
1468 }
1469
1470 return -1;
1471}
1472
1473template<class Impl>
1474int
1475DefaultFetch<Impl>::branchCount()
1476{
1477 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1478 panic("Branch Count Fetch policy unimplemented\n");
1479 return *threads;
1480}
1248
1249 delaySlotInfo[tid].targetReady = false;
1250 } else {
1251 PC[tid] = next_PC;
1252 nextPC[tid] = next_NPC;
1253 nextNPC[tid] = next_NPC + instSize;
1254 }
1255
1256 DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n", tid, PC[tid]);
1257#else
1258 DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n",tid, next_PC);
1259 PC[tid] = next_PC;
1260 nextPC[tid] = next_PC + instSize;
1261#endif
1262 } else {
1263 // We shouldn't be in an icache miss and also have a fault (an ITB
1264 // miss)
1265 if (fetchStatus[tid] == IcacheWaitResponse) {
1266 panic("Fetch should have exited prior to this!");
1267 }
1268
1269 // Send the fault to commit. This thread will not do anything
1270 // until commit handles the fault. The only other way it can
1271 // wake up is if a squash comes along and changes the PC.
1272#if FULL_SYSTEM
1273 assert(numInst != fetchWidth);
1274 // Get a sequence number.
1275 inst_seq = cpu->getAndIncrementInstSeq();
1276 // We will use a nop in order to carry the fault.
1277 ext_inst = TheISA::NoopMachInst;
1278
1279 // Create a new DynInst from the dummy nop.
1280 DynInstPtr instruction = new DynInst(ext_inst, fetch_PC,
1281 next_PC,
1282 inst_seq, cpu);
1283 instruction->setPredTarg(next_PC + instSize);
1284 instruction->setTid(tid);
1285
1286 instruction->setASID(tid);
1287
1288 instruction->setThreadState(cpu->thread[tid]);
1289
1290 instruction->traceData = NULL;
1291
1292 instruction->setInstListIt(cpu->addInst(instruction));
1293
1294 instruction->fault = fault;
1295
1296 toDecode->insts[numInst] = instruction;
1297 toDecode->size++;
1298
1299 DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n",tid);
1300
1301 fetchStatus[tid] = TrapPending;
1302 status_change = true;
1303#else // !FULL_SYSTEM
1304 fetchStatus[tid] = TrapPending;
1305 status_change = true;
1306
1307#endif // FULL_SYSTEM
1308 DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %08p",
1309 tid, fault->name(), PC[tid]);
1310 }
1311}
1312
1313template<class Impl>
1314void
1315DefaultFetch<Impl>::recvRetry()
1316{
1317 if (retryPkt != NULL) {
1318 assert(cacheBlocked);
1319 assert(retryTid != -1);
1320 assert(fetchStatus[retryTid] == IcacheWaitRetry);
1321
1322 if (icachePort->sendTiming(retryPkt)) {
1323 fetchStatus[retryTid] = IcacheWaitResponse;
1324 retryPkt = NULL;
1325 retryTid = -1;
1326 cacheBlocked = false;
1327 }
1328 } else {
1329 assert(retryTid == -1);
1330 // Access has been squashed since it was sent out. Just clear
1331 // the cache being blocked.
1332 cacheBlocked = false;
1333 }
1334}
1335
1336///////////////////////////////////////
1337// //
1338// SMT FETCH POLICY MAINTAINED HERE //
1339// //
1340///////////////////////////////////////
1341template<class Impl>
1342int
1343DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1344{
1345 if (numThreads > 1) {
1346 switch (fetch_priority) {
1347
1348 case SingleThread:
1349 return 0;
1350
1351 case RoundRobin:
1352 return roundRobin();
1353
1354 case IQ:
1355 return iqCount();
1356
1357 case LSQ:
1358 return lsqCount();
1359
1360 case Branch:
1361 return branchCount();
1362
1363 default:
1364 return -1;
1365 }
1366 } else {
1367 int tid = *((*activeThreads).begin());
1368
1369 if (fetchStatus[tid] == Running ||
1370 fetchStatus[tid] == IcacheAccessComplete ||
1371 fetchStatus[tid] == Idle) {
1372 return tid;
1373 } else {
1374 return -1;
1375 }
1376 }
1377
1378}
1379
1380
1381template<class Impl>
1382int
1383DefaultFetch<Impl>::roundRobin()
1384{
1385 std::list<unsigned>::iterator pri_iter = priorityList.begin();
1386 std::list<unsigned>::iterator end = priorityList.end();
1387
1388 int high_pri;
1389
1390 while (pri_iter != end) {
1391 high_pri = *pri_iter;
1392
1393 assert(high_pri <= numThreads);
1394
1395 if (fetchStatus[high_pri] == Running ||
1396 fetchStatus[high_pri] == IcacheAccessComplete ||
1397 fetchStatus[high_pri] == Idle) {
1398
1399 priorityList.erase(pri_iter);
1400 priorityList.push_back(high_pri);
1401
1402 return high_pri;
1403 }
1404
1405 pri_iter++;
1406 }
1407
1408 return -1;
1409}
1410
1411template<class Impl>
1412int
1413DefaultFetch<Impl>::iqCount()
1414{
1415 std::priority_queue<unsigned> PQ;
1416
1417 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1418
1419 while (threads != (*activeThreads).end()) {
1420 unsigned tid = *threads++;
1421
1422 PQ.push(fromIEW->iewInfo[tid].iqCount);
1423 }
1424
1425 while (!PQ.empty()) {
1426
1427 unsigned high_pri = PQ.top();
1428
1429 if (fetchStatus[high_pri] == Running ||
1430 fetchStatus[high_pri] == IcacheAccessComplete ||
1431 fetchStatus[high_pri] == Idle)
1432 return high_pri;
1433 else
1434 PQ.pop();
1435
1436 }
1437
1438 return -1;
1439}
1440
1441template<class Impl>
1442int
1443DefaultFetch<Impl>::lsqCount()
1444{
1445 std::priority_queue<unsigned> PQ;
1446
1447
1448 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1449
1450 while (threads != (*activeThreads).end()) {
1451 unsigned tid = *threads++;
1452
1453 PQ.push(fromIEW->iewInfo[tid].ldstqCount);
1454 }
1455
1456 while (!PQ.empty()) {
1457
1458 unsigned high_pri = PQ.top();
1459
1460 if (fetchStatus[high_pri] == Running ||
1461 fetchStatus[high_pri] == IcacheAccessComplete ||
1462 fetchStatus[high_pri] == Idle)
1463 return high_pri;
1464 else
1465 PQ.pop();
1466
1467 }
1468
1469 return -1;
1470}
1471
1472template<class Impl>
1473int
1474DefaultFetch<Impl>::branchCount()
1475{
1476 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1477 panic("Branch Count Fetch policy unimplemented\n");
1478 return *threads;
1479}