fetch_impl.hh (3112:76b70de314b6) fetch_impl.hh (3120:e49afeaf79e9)
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 * Korey Sewell
30 */
31
32#include "config/use_checker.hh"
33
34#include "arch/isa_traits.hh"
35#include "arch/utility.hh"
36#include "cpu/checker/cpu.hh"
37#include "cpu/exetrace.hh"
38#include "cpu/o3/fetch.hh"
39#include "mem/packet.hh"
40#include "mem/request.hh"
41#include "sim/byteswap.hh"
42#include "sim/host.hh"
43#include "sim/root.hh"
44
45#if FULL_SYSTEM
46#include "arch/tlb.hh"
47#include "arch/vtophys.hh"
48#include "base/remote_gdb.hh"
49#include "sim/system.hh"
50#endif // FULL_SYSTEM
51
52#include <algorithm>
53
54template<class Impl>
55Tick
56DefaultFetch<Impl>::IcachePort::recvAtomic(PacketPtr pkt)
57{
58 panic("DefaultFetch doesn't expect recvAtomic callback!");
59 return curTick;
60}
61
62template<class Impl>
63void
64DefaultFetch<Impl>::IcachePort::recvFunctional(PacketPtr pkt)
65{
66 panic("DefaultFetch doesn't expect recvFunctional callback!");
67}
68
69template<class Impl>
70void
71DefaultFetch<Impl>::IcachePort::recvStatusChange(Status status)
72{
73 if (status == RangeChange)
74 return;
75
76 panic("DefaultFetch doesn't expect recvStatusChange callback!");
77}
78
79template<class Impl>
80bool
81DefaultFetch<Impl>::IcachePort::recvTiming(Packet *pkt)
82{
83 fetch->processCacheCompletion(pkt);
84 return true;
85}
86
87template<class Impl>
88void
89DefaultFetch<Impl>::IcachePort::recvRetry()
90{
91 fetch->recvRetry();
92}
93
94template<class Impl>
95DefaultFetch<Impl>::DefaultFetch(Params *params)
96 : mem(params->mem),
97 branchPred(params),
98 decodeToFetchDelay(params->decodeToFetchDelay),
99 renameToFetchDelay(params->renameToFetchDelay),
100 iewToFetchDelay(params->iewToFetchDelay),
101 commitToFetchDelay(params->commitToFetchDelay),
102 fetchWidth(params->fetchWidth),
103 cacheBlocked(false),
104 retryPkt(NULL),
105 retryTid(-1),
106 numThreads(params->numberOfThreads),
107 numFetchingThreads(params->smtNumFetchingThreads),
108 interruptPending(false),
109 drainPending(false),
110 switchedOut(false)
111{
112 if (numThreads > Impl::MaxThreads)
113 fatal("numThreads is not a valid value\n");
114
115 // Set fetch stage's status to inactive.
116 _status = Inactive;
117
118 std::string policy = params->smtFetchPolicy;
119
120 // Convert string to lowercase
121 std::transform(policy.begin(), policy.end(), policy.begin(),
122 (int(*)(int)) tolower);
123
124 // Figure out fetch policy
125 if (policy == "singlethread") {
126 fetchPolicy = SingleThread;
127 if (numThreads > 1)
128 panic("Invalid Fetch Policy for a SMT workload.");
129 } else if (policy == "roundrobin") {
130 fetchPolicy = RoundRobin;
131 DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
132 } else if (policy == "branch") {
133 fetchPolicy = Branch;
134 DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
135 } else if (policy == "iqcount") {
136 fetchPolicy = IQ;
137 DPRINTF(Fetch, "Fetch policy set to IQ count\n");
138 } else if (policy == "lsqcount") {
139 fetchPolicy = LSQ;
140 DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
141 } else {
142 fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
143 " RoundRobin,LSQcount,IQcount}\n");
144 }
145
146 // Size of cache block.
147 cacheBlkSize = 64;
148
149 // Create mask to get rid of offset bits.
150 cacheBlkMask = (cacheBlkSize - 1);
151
152 for (int tid=0; tid < numThreads; tid++) {
153
154 fetchStatus[tid] = Running;
155
156 priorityList.push_back(tid);
157
158 memReq[tid] = NULL;
159
160 // Create space to store a cache line.
161 cacheData[tid] = new uint8_t[cacheBlkSize];
162 cacheDataPC[tid] = 0;
163 cacheDataValid[tid] = false;
164
165 delaySlotInfo[tid].branchSeqNum = -1;
166 delaySlotInfo[tid].numInsts = 0;
167 delaySlotInfo[tid].targetAddr = 0;
168 delaySlotInfo[tid].targetReady = false;
169
170 stalls[tid].decode = false;
171 stalls[tid].rename = false;
172 stalls[tid].iew = false;
173 stalls[tid].commit = false;
174 }
175
176 // Get the size of an instruction.
177 instSize = sizeof(TheISA::MachInst);
178}
179
180template <class Impl>
181std::string
182DefaultFetch<Impl>::name() const
183{
184 return cpu->name() + ".fetch";
185}
186
187template <class Impl>
188void
189DefaultFetch<Impl>::regStats()
190{
191 icacheStallCycles
192 .name(name() + ".icacheStallCycles")
193 .desc("Number of cycles fetch is stalled on an Icache miss")
194 .prereq(icacheStallCycles);
195
196 fetchedInsts
197 .name(name() + ".Insts")
198 .desc("Number of instructions fetch has processed")
199 .prereq(fetchedInsts);
200
201 fetchedBranches
202 .name(name() + ".Branches")
203 .desc("Number of branches that fetch encountered")
204 .prereq(fetchedBranches);
205
206 predictedBranches
207 .name(name() + ".predictedBranches")
208 .desc("Number of branches that fetch has predicted taken")
209 .prereq(predictedBranches);
210
211 fetchCycles
212 .name(name() + ".Cycles")
213 .desc("Number of cycles fetch has run and was not squashing or"
214 " blocked")
215 .prereq(fetchCycles);
216
217 fetchSquashCycles
218 .name(name() + ".SquashCycles")
219 .desc("Number of cycles fetch has spent squashing")
220 .prereq(fetchSquashCycles);
221
222 fetchIdleCycles
223 .name(name() + ".IdleCycles")
224 .desc("Number of cycles fetch was idle")
225 .prereq(fetchIdleCycles);
226
227 fetchBlockedCycles
228 .name(name() + ".BlockedCycles")
229 .desc("Number of cycles fetch has spent blocked")
230 .prereq(fetchBlockedCycles);
231
232 fetchedCacheLines
233 .name(name() + ".CacheLines")
234 .desc("Number of cache lines fetched")
235 .prereq(fetchedCacheLines);
236
237 fetchMiscStallCycles
238 .name(name() + ".MiscStallCycles")
239 .desc("Number of cycles fetch has spent waiting on interrupts, or "
240 "bad addresses, or out of MSHRs")
241 .prereq(fetchMiscStallCycles);
242
243 fetchIcacheSquashes
244 .name(name() + ".IcacheSquashes")
245 .desc("Number of outstanding Icache misses that were squashed")
246 .prereq(fetchIcacheSquashes);
247
248 fetchNisnDist
249 .init(/* base value */ 0,
250 /* last value */ fetchWidth,
251 /* bucket size */ 1)
252 .name(name() + ".rateDist")
253 .desc("Number of instructions fetched each cycle (Total)")
254 .flags(Stats::pdf);
255
256 idleRate
257 .name(name() + ".idleRate")
258 .desc("Percent of cycles fetch was idle")
259 .prereq(idleRate);
260 idleRate = fetchIdleCycles * 100 / cpu->numCycles;
261
262 branchRate
263 .name(name() + ".branchRate")
264 .desc("Number of branch fetches per cycle")
265 .flags(Stats::total);
266 branchRate = fetchedBranches / cpu->numCycles;
267
268 fetchRate
269 .name(name() + ".rate")
270 .desc("Number of inst fetches per cycle")
271 .flags(Stats::total);
272 fetchRate = fetchedInsts / cpu->numCycles;
273
274 branchPred.regStats();
275}
276
277template<class Impl>
278void
279DefaultFetch<Impl>::setCPU(O3CPU *cpu_ptr)
280{
281 DPRINTF(Fetch, "Setting the CPU pointer.\n");
282 cpu = cpu_ptr;
283
284 // Name is finally available, so create the port.
285 icachePort = new IcachePort(this);
286
287#if USE_CHECKER
288 if (cpu->checker) {
289 cpu->checker->setIcachePort(icachePort);
290 }
291#endif
292
293 // Schedule fetch to get the correct PC from the CPU
294 // scheduleFetchStartupEvent(1);
295
296 // Fetch needs to start fetching instructions at the very beginning,
297 // so it must start up in active state.
298 switchToActive();
299}
300
301template<class Impl>
302void
303DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
304{
305 DPRINTF(Fetch, "Setting the time buffer pointer.\n");
306 timeBuffer = time_buffer;
307
308 // Create wires to get information from proper places in time buffer.
309 fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
310 fromRename = timeBuffer->getWire(-renameToFetchDelay);
311 fromIEW = timeBuffer->getWire(-iewToFetchDelay);
312 fromCommit = timeBuffer->getWire(-commitToFetchDelay);
313}
314
315template<class Impl>
316void
317DefaultFetch<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
318{
319 DPRINTF(Fetch, "Setting active threads list pointer.\n");
320 activeThreads = at_ptr;
321}
322
323template<class Impl>
324void
325DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
326{
327 DPRINTF(Fetch, "Setting the fetch queue pointer.\n");
328 fetchQueue = fq_ptr;
329
330 // Create wire to write information to proper place in fetch queue.
331 toDecode = fetchQueue->getWire(0);
332}
333
334template<class Impl>
335void
336DefaultFetch<Impl>::initStage()
337{
338 // Setup PC and nextPC with initial state.
339 for (int tid = 0; tid < numThreads; tid++) {
340 PC[tid] = cpu->readPC(tid);
341 nextPC[tid] = cpu->readNextPC(tid);
342#if ISA_HAS_DELAY_SLOT
343 nextNPC[tid] = cpu->readNextNPC(tid);
344#endif
345 }
346}
347
348template<class Impl>
349void
350DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
351{
352 unsigned tid = pkt->req->getThreadNum();
353
354 DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n",tid);
355
356 // Only change the status if it's still waiting on the icache access
357 // to return.
358 if (fetchStatus[tid] != IcacheWaitResponse ||
359 pkt->req != memReq[tid] ||
360 isSwitchedOut()) {
361 ++fetchIcacheSquashes;
362 delete pkt->req;
363 delete pkt;
364 return;
365 }
366
367 memcpy(cacheData[tid], pkt->getPtr<uint8_t *>(), cacheBlkSize);
368 cacheDataValid[tid] = true;
369
370 if (!drainPending) {
371 // Wake up the CPU (if it went to sleep and was waiting on
372 // this completion event).
373 cpu->wakeCPU();
374
375 DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
376 tid);
377
378 switchToActive();
379 }
380
381 // Only switch to IcacheAccessComplete if we're not stalled as well.
382 if (checkStall(tid)) {
383 fetchStatus[tid] = Blocked;
384 } else {
385 fetchStatus[tid] = IcacheAccessComplete;
386 }
387
388 // Reset the mem req to NULL.
389 delete pkt->req;
390 delete pkt;
391 memReq[tid] = NULL;
392}
393
394template <class Impl>
395bool
396DefaultFetch<Impl>::drain()
397{
398 // Fetch is ready to drain at any time.
399 cpu->signalDrained();
400 drainPending = true;
401 return true;
402}
403
404template <class Impl>
405void
406DefaultFetch<Impl>::resume()
407{
408 drainPending = false;
409}
410
411template <class Impl>
412void
413DefaultFetch<Impl>::switchOut()
414{
415 switchedOut = true;
416 // Branch predictor needs to have its state cleared.
417 branchPred.switchOut();
418}
419
420template <class Impl>
421void
422DefaultFetch<Impl>::takeOverFrom()
423{
424 // Reset all state
425 for (int i = 0; i < Impl::MaxThreads; ++i) {
426 stalls[i].decode = 0;
427 stalls[i].rename = 0;
428 stalls[i].iew = 0;
429 stalls[i].commit = 0;
430 PC[i] = cpu->readPC(i);
431 nextPC[i] = cpu->readNextPC(i);
432#if ISA_HAS_DELAY_SLOT
433 nextNPC[i] = cpu->readNextNPC(i);
434 delaySlotInfo[i].branchSeqNum = -1;
435 delaySlotInfo[i].numInsts = 0;
436 delaySlotInfo[i].targetAddr = 0;
437 delaySlotInfo[i].targetReady = false;
438#endif
439 fetchStatus[i] = Running;
440 }
441 numInst = 0;
442 wroteToTimeBuffer = false;
443 _status = Inactive;
444 switchedOut = false;
445 branchPred.takeOverFrom();
446}
447
448template <class Impl>
449void
450DefaultFetch<Impl>::wakeFromQuiesce()
451{
452 DPRINTF(Fetch, "Waking up from quiesce\n");
453 // Hopefully this is safe
454 // @todo: Allow other threads to wake from quiesce.
455 fetchStatus[0] = Running;
456}
457
458template <class Impl>
459inline void
460DefaultFetch<Impl>::switchToActive()
461{
462 if (_status == Inactive) {
463 DPRINTF(Activity, "Activating stage.\n");
464
465 cpu->activateStage(O3CPU::FetchIdx);
466
467 _status = Active;
468 }
469}
470
471template <class Impl>
472inline void
473DefaultFetch<Impl>::switchToInactive()
474{
475 if (_status == Active) {
476 DPRINTF(Activity, "Deactivating stage.\n");
477
478 cpu->deactivateStage(O3CPU::FetchIdx);
479
480 _status = Inactive;
481 }
482}
483
484template <class Impl>
485bool
486DefaultFetch<Impl>::lookupAndUpdateNextPC(DynInstPtr &inst, Addr &next_PC,
487 Addr &next_NPC)
488{
489 // Do branch prediction check here.
490 // A bit of a misnomer...next_PC is actually the current PC until
491 // this function updates it.
492 bool predict_taken;
493
494 if (!inst->isControl()) {
495#if ISA_HAS_DELAY_SLOT
496 Addr cur_PC = next_PC;
497 next_PC = cur_PC + instSize; //next_NPC;
498 next_NPC = cur_PC + (2 * instSize);//next_NPC + instSize;
499 inst->setPredTarg(next_NPC);
500#else
501 next_PC = next_PC + instSize;
502 inst->setPredTarg(next_PC);
503#endif
504 return false;
505 }
506
507 int tid = inst->threadNumber;
508#if ISA_HAS_DELAY_SLOT
509 Addr pred_PC = next_PC;
510 predict_taken = branchPred.predict(inst, pred_PC, tid);
511
512 if (predict_taken) {
513 DPRINTF(Fetch, "[tid:%i]: Branch predicted to be true.\n", tid);
514 } else {
515 DPRINTF(Fetch, "[tid:%i]: Branch predicted to be false.\n", tid);
516 }
517
518 if (predict_taken) {
519 next_PC = next_NPC;
520 next_NPC = pred_PC;
521
522 // Update delay slot info
523 ++delaySlotInfo[tid].numInsts;
524 delaySlotInfo[tid].targetAddr = pred_PC;
525 DPRINTF(Fetch, "[tid:%i]: %i delay slot inst(s) to process.\n", tid,
526 delaySlotInfo[tid].numInsts);
527 } else { // !predict_taken
528 if (inst->isCondDelaySlot()) {
529 next_PC = pred_PC;
530 // The delay slot is skipped here if there is on
531 // prediction
532 } else {
533 next_PC = next_NPC;
534 // No need to declare a delay slot here since
535 // there is no for the pred. target to jump
536 }
537
538 next_NPC = next_NPC + instSize;
539 }
540#else
541 predict_taken = branchPred.predict(inst, next_PC, tid);
542#endif
543
544 ++fetchedBranches;
545
546 if (predict_taken) {
547 ++predictedBranches;
548 }
549
550 return predict_taken;
551}
552
553template <class Impl>
554bool
555DefaultFetch<Impl>::fetchCacheLine(Addr fetch_PC, Fault &ret_fault, unsigned tid)
556{
557 Fault fault = NoFault;
558
559#if FULL_SYSTEM
560 // Flag to say whether or not address is physical addr.
561 unsigned flags = cpu->inPalMode(fetch_PC) ? PHYSICAL : 0;
562#else
563 unsigned flags = 0;
564#endif // FULL_SYSTEM
565
566 if (cacheBlocked || (interruptPending && flags == 0)) {
567 // Hold off fetch from getting new instructions when:
568 // Cache is blocked, or
569 // while an interrupt is pending and we're not in PAL mode, or
570 // fetch is switched out.
571 return false;
572 }
573
574 // Align the fetch PC so it's at the start of a cache block.
575 fetch_PC = icacheBlockAlignPC(fetch_PC);
576
577 // If we've already got the block, no need to try to fetch it again.
578 if (cacheDataValid[tid] && fetch_PC == cacheDataPC[tid]) {
579 return true;
580 }
581
582 // Setup the memReq to do a read of the first instruction's address.
583 // Set the appropriate read size and flags as well.
584 // Build request here.
585 RequestPtr mem_req = new Request(tid, fetch_PC, cacheBlkSize, flags,
586 fetch_PC, cpu->readCpuId(), tid);
587
588 memReq[tid] = mem_req;
589
590 // Translate the instruction request.
591 fault = cpu->translateInstReq(mem_req, cpu->thread[tid]);
592
593 // In the case of faults, the fetch stage may need to stall and wait
594 // for the ITB miss to be handled.
595
596 // If translation was successful, attempt to read the first
597 // instruction.
598 if (fault == NoFault) {
599#if 0
600 if (cpu->system->memctrl->badaddr(memReq[tid]->paddr) ||
601 memReq[tid]->flags & UNCACHEABLE) {
602 DPRINTF(Fetch, "Fetch: Bad address %#x (hopefully on a "
603 "misspeculating path)!",
604 memReq[tid]->paddr);
605 ret_fault = TheISA::genMachineCheckFault();
606 return false;
607 }
608#endif
609
610 // Build packet here.
611 PacketPtr data_pkt = new Packet(mem_req,
612 Packet::ReadReq, Packet::Broadcast);
613 data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
614
615 cacheDataPC[tid] = fetch_PC;
616 cacheDataValid[tid] = false;
617
618 DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
619
620 fetchedCacheLines++;
621
622 // Now do the timing access to see whether or not the instruction
623 // exists within the cache.
624 if (!icachePort->sendTiming(data_pkt)) {
625 assert(retryPkt == NULL);
626 assert(retryTid == -1);
627 DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
628 fetchStatus[tid] = IcacheWaitRetry;
629 retryPkt = data_pkt;
630 retryTid = tid;
631 cacheBlocked = true;
632 return false;
633 }
634
635 DPRINTF(Fetch, "[tid:%i]: Doing cache access.\n", tid);
636
637 lastIcacheStall[tid] = curTick;
638
639 DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
640 "response.\n", tid);
641
642 fetchStatus[tid] = IcacheWaitResponse;
643 } else {
644 delete mem_req;
645 memReq[tid] = NULL;
646 }
647
648 ret_fault = fault;
649 return true;
650}
651
652template <class Impl>
653inline void
654DefaultFetch<Impl>::doSquash(const Addr &new_PC, unsigned tid)
655{
656 DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %#x.\n",
657 tid, new_PC);
658
659 PC[tid] = new_PC;
660 nextPC[tid] = new_PC + instSize;
661 nextNPC[tid] = new_PC + (2 * instSize);
662
663 // Clear the icache miss if it's outstanding.
664 if (fetchStatus[tid] == IcacheWaitResponse) {
665 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
666 tid);
667 memReq[tid] = NULL;
668 }
669
670 // Get rid of the retrying packet if it was from this thread.
671 if (retryTid == tid) {
672 assert(cacheBlocked);
673 cacheBlocked = false;
674 retryTid = -1;
675 delete retryPkt->req;
676 delete retryPkt;
677 retryPkt = NULL;
678 }
679
680 fetchStatus[tid] = Squashing;
681
682 ++fetchSquashCycles;
683}
684
685template<class Impl>
686void
687DefaultFetch<Impl>::squashFromDecode(const Addr &new_PC,
688 const InstSeqNum &seq_num,
689 unsigned tid)
690{
691 DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n",tid);
692
693 doSquash(new_PC, tid);
694
695#if ISA_HAS_DELAY_SLOT
696 if (seq_num <= delaySlotInfo[tid].branchSeqNum) {
697 delaySlotInfo[tid].numInsts = 0;
698 delaySlotInfo[tid].targetAddr = 0;
699 delaySlotInfo[tid].targetReady = false;
700 }
701#endif
702
703 // Tell the CPU to remove any instructions that are in flight between
704 // fetch and decode.
705 cpu->removeInstsUntil(seq_num, tid);
706}
707
708template<class Impl>
709bool
710DefaultFetch<Impl>::checkStall(unsigned tid) const
711{
712 bool ret_val = false;
713
714 if (cpu->contextSwitch) {
715 DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
716 ret_val = true;
717 } else if (stalls[tid].decode) {
718 DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
719 ret_val = true;
720 } else if (stalls[tid].rename) {
721 DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
722 ret_val = true;
723 } else if (stalls[tid].iew) {
724 DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
725 ret_val = true;
726 } else if (stalls[tid].commit) {
727 DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
728 ret_val = true;
729 }
730
731 return ret_val;
732}
733
734template<class Impl>
735typename DefaultFetch<Impl>::FetchStatus
736DefaultFetch<Impl>::updateFetchStatus()
737{
738 //Check Running
739 std::list<unsigned>::iterator threads = (*activeThreads).begin();
740
741 while (threads != (*activeThreads).end()) {
742
743 unsigned tid = *threads++;
744
745 if (fetchStatus[tid] == Running ||
746 fetchStatus[tid] == Squashing ||
747 fetchStatus[tid] == IcacheAccessComplete) {
748
749 if (_status == Inactive) {
750 DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
751
752 if (fetchStatus[tid] == IcacheAccessComplete) {
753 DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
754 "completion\n",tid);
755 }
756
757 cpu->activateStage(O3CPU::FetchIdx);
758 }
759
760 return Active;
761 }
762 }
763
764 // Stage is switching from active to inactive, notify CPU of it.
765 if (_status == Active) {
766 DPRINTF(Activity, "Deactivating stage.\n");
767
768 cpu->deactivateStage(O3CPU::FetchIdx);
769 }
770
771 return Inactive;
772}
773
774template <class Impl>
775void
776DefaultFetch<Impl>::squash(const Addr &new_PC, const InstSeqNum &seq_num,
777 bool squash_delay_slot, unsigned tid)
778{
779 DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n",tid);
780
781 doSquash(new_PC, tid);
782
783#if ISA_HAS_DELAY_SLOT
784 if (seq_num <= delaySlotInfo[tid].branchSeqNum) {
785 delaySlotInfo[tid].numInsts = 0;
786 delaySlotInfo[tid].targetAddr = 0;
787 delaySlotInfo[tid].targetReady = false;
788 }
789
790 // Tell the CPU to remove any instructions that are not in the ROB.
791 cpu->removeInstsNotInROB(tid, squash_delay_slot, seq_num);
792#else
793 // Tell the CPU to remove any instructions that are not in the ROB.
794 cpu->removeInstsNotInROB(tid, true, 0);
795#endif
796}
797
798template <class Impl>
799void
800DefaultFetch<Impl>::tick()
801{
802 std::list<unsigned>::iterator threads = (*activeThreads).begin();
803 bool status_change = false;
804
805 wroteToTimeBuffer = false;
806
807 while (threads != (*activeThreads).end()) {
808 unsigned tid = *threads++;
809
810 // Check the signals for each thread to determine the proper status
811 // for each thread.
812 bool updated_status = checkSignalsAndUpdate(tid);
813 status_change = status_change || updated_status;
814 }
815
816 DPRINTF(Fetch, "Running stage.\n");
817
818 // Reset the number of the instruction we're fetching.
819 numInst = 0;
820
821#if FULL_SYSTEM
822 if (fromCommit->commitInfo[0].interruptPending) {
823 interruptPending = true;
824 }
825
826 if (fromCommit->commitInfo[0].clearInterrupt) {
827 interruptPending = false;
828 }
829#endif
830
831 for (threadFetched = 0; threadFetched < numFetchingThreads;
832 threadFetched++) {
833 // Fetch each of the actively fetching threads.
834 fetch(status_change);
835 }
836
837 // Record number of instructions fetched this cycle for distribution.
838 fetchNisnDist.sample(numInst);
839
840 if (status_change) {
841 // Change the fetch stage status if there was a status change.
842 _status = updateFetchStatus();
843 }
844
845 // If there was activity this cycle, inform the CPU of it.
846 if (wroteToTimeBuffer || cpu->contextSwitch) {
847 DPRINTF(Activity, "Activity this cycle.\n");
848
849 cpu->activityThisCycle();
850 }
851}
852
853template <class Impl>
854bool
855DefaultFetch<Impl>::checkSignalsAndUpdate(unsigned tid)
856{
857 // Update the per thread stall statuses.
858 if (fromDecode->decodeBlock[tid]) {
859 stalls[tid].decode = true;
860 }
861
862 if (fromDecode->decodeUnblock[tid]) {
863 assert(stalls[tid].decode);
864 assert(!fromDecode->decodeBlock[tid]);
865 stalls[tid].decode = false;
866 }
867
868 if (fromRename->renameBlock[tid]) {
869 stalls[tid].rename = true;
870 }
871
872 if (fromRename->renameUnblock[tid]) {
873 assert(stalls[tid].rename);
874 assert(!fromRename->renameBlock[tid]);
875 stalls[tid].rename = false;
876 }
877
878 if (fromIEW->iewBlock[tid]) {
879 stalls[tid].iew = true;
880 }
881
882 if (fromIEW->iewUnblock[tid]) {
883 assert(stalls[tid].iew);
884 assert(!fromIEW->iewBlock[tid]);
885 stalls[tid].iew = false;
886 }
887
888 if (fromCommit->commitBlock[tid]) {
889 stalls[tid].commit = true;
890 }
891
892 if (fromCommit->commitUnblock[tid]) {
893 assert(stalls[tid].commit);
894 assert(!fromCommit->commitBlock[tid]);
895 stalls[tid].commit = false;
896 }
897
898 // Check squash signals from commit.
899 if (fromCommit->commitInfo[tid].squash) {
900
901 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
902 "from commit.\n",tid);
903
904#if ISA_HAS_DELAY_SLOT
905 InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].bdelayDoneSeqNum;
906#else
907 InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].doneSeqNum;
908#endif
909 // In any case, squash.
910 squash(fromCommit->commitInfo[tid].nextPC,
911 doneSeqNum,
912 fromCommit->commitInfo[tid].squashDelaySlot,
913 tid);
914
915 // Also check if there's a mispredict that happened.
916 if (fromCommit->commitInfo[tid].branchMispredict) {
917 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
918 fromCommit->commitInfo[tid].nextPC,
919 fromCommit->commitInfo[tid].branchTaken,
920 tid);
921 } else {
922 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
923 tid);
924 }
925
926 return true;
927 } else if (fromCommit->commitInfo[tid].doneSeqNum) {
928 // Update the branch predictor if it wasn't a squashed instruction
929 // that was broadcasted.
930 branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
931 }
932
933 // Check ROB squash signals from commit.
934 if (fromCommit->commitInfo[tid].robSquashing) {
935 DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
936
937 // Continue to squash.
938 fetchStatus[tid] = Squashing;
939
940 return true;
941 }
942
943 // Check squash signals from decode.
944 if (fromDecode->decodeInfo[tid].squash) {
945 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
946 "from decode.\n",tid);
947
948 // Update the branch predictor.
949 if (fromDecode->decodeInfo[tid].branchMispredict) {
950 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
951 fromDecode->decodeInfo[tid].nextPC,
952 fromDecode->decodeInfo[tid].branchTaken,
953 tid);
954 } else {
955 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
956 tid);
957 }
958
959 if (fetchStatus[tid] != Squashing) {
960
961#if ISA_HAS_DELAY_SLOT
962 InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].bdelayDoneSeqNum;
963#else
964 InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].doneSeqNum;
965#endif
966 // Squash unless we're already squashing
967 squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
968 doneSeqNum,
969 tid);
970
971 return true;
972 }
973 }
974
975 if (checkStall(tid) && fetchStatus[tid] != IcacheWaitResponse) {
976 DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
977
978 fetchStatus[tid] = Blocked;
979
980 return true;
981 }
982
983 if (fetchStatus[tid] == Blocked ||
984 fetchStatus[tid] == Squashing) {
985 // Switch status to running if fetch isn't being told to block or
986 // squash this cycle.
987 DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
988 tid);
989
990 fetchStatus[tid] = Running;
991
992 return true;
993 }
994
995 // If we've reached this point, we have not gotten any signals that
996 // cause fetch to change its status. Fetch remains the same as before.
997 return false;
998}
999
1000template<class Impl>
1001void
1002DefaultFetch<Impl>::fetch(bool &status_change)
1003{
1004 //////////////////////////////////////////
1005 // Start actual fetch
1006 //////////////////////////////////////////
1007 int tid = getFetchingThread(fetchPolicy);
1008
1009 if (tid == -1 || drainPending) {
1010 DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1011
1012 // Breaks looping condition in tick()
1013 threadFetched = numFetchingThreads;
1014 return;
1015 }
1016
1017 DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1018
1019 // The current PC.
1020 Addr &fetch_PC = PC[tid];
1021
1022 // Fault code for memory access.
1023 Fault fault = NoFault;
1024
1025 // If returning from the delay of a cache miss, then update the status
1026 // to running, otherwise do the cache access. Possibly move this up
1027 // to tick() function.
1028 if (fetchStatus[tid] == IcacheAccessComplete) {
1029 DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n",
1030 tid);
1031
1032 fetchStatus[tid] = Running;
1033 status_change = true;
1034 } else if (fetchStatus[tid] == Running) {
1035 DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1036 "instruction, starting at PC %08p.\n",
1037 tid, fetch_PC);
1038
1039 bool fetch_success = fetchCacheLine(fetch_PC, fault, tid);
1040 if (!fetch_success) {
1041 if (cacheBlocked) {
1042 ++icacheStallCycles;
1043 } else {
1044 ++fetchMiscStallCycles;
1045 }
1046 return;
1047 }
1048 } else {
1049 if (fetchStatus[tid] == Idle) {
1050 ++fetchIdleCycles;
1051 } else if (fetchStatus[tid] == Blocked) {
1052 ++fetchBlockedCycles;
1053 } else if (fetchStatus[tid] == Squashing) {
1054 ++fetchSquashCycles;
1055 } else if (fetchStatus[tid] == IcacheWaitResponse) {
1056 ++icacheStallCycles;
1057 }
1058
1059 // Status is Idle, Squashing, Blocked, or IcacheWaitResponse, so
1060 // fetch should do nothing.
1061 return;
1062 }
1063
1064 ++fetchCycles;
1065
1066 // If we had a stall due to an icache miss, then return.
1067 if (fetchStatus[tid] == IcacheWaitResponse) {
1068 ++icacheStallCycles;
1069 status_change = true;
1070 return;
1071 }
1072
1073 Addr next_PC = fetch_PC;
1074 Addr next_NPC = next_PC + instSize;
1075 InstSeqNum inst_seq;
1076 MachInst inst;
1077 ExtMachInst ext_inst;
1078 // @todo: Fix this hack.
1079 unsigned offset = (fetch_PC & cacheBlkMask) & ~3;
1080
1081 if (fault == NoFault) {
1082 // If the read of the first instruction was successful, then grab the
1083 // instructions from the rest of the cache line and put them into the
1084 // queue heading to decode.
1085
1086 DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1087 "decode.\n",tid);
1088
1089 // Need to keep track of whether or not a predicted branch
1090 // ended this fetch block.
1091 bool predicted_branch = false;
1092
1093 // Need to keep track of whether or not a delay slot
1094 // instruction has been fetched
1095
1096 for (;
1097 offset < cacheBlkSize &&
1098 numInst < fetchWidth &&
1099 (!predicted_branch || delaySlotInfo[tid].numInsts > 0);
1100 ++numInst) {
1101
1102 // Get a sequence number.
1103 inst_seq = cpu->getAndIncrementInstSeq();
1104
1105 // Make sure this is a valid index.
1106 assert(offset <= cacheBlkSize - instSize);
1107
1108 // Get the instruction from the array of the cache line.
1109 inst = TheISA::gtoh(*reinterpret_cast<TheISA::MachInst *>
1110 (&cacheData[tid][offset]));
1111
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 * Korey Sewell
30 */
31
32#include "config/use_checker.hh"
33
34#include "arch/isa_traits.hh"
35#include "arch/utility.hh"
36#include "cpu/checker/cpu.hh"
37#include "cpu/exetrace.hh"
38#include "cpu/o3/fetch.hh"
39#include "mem/packet.hh"
40#include "mem/request.hh"
41#include "sim/byteswap.hh"
42#include "sim/host.hh"
43#include "sim/root.hh"
44
45#if FULL_SYSTEM
46#include "arch/tlb.hh"
47#include "arch/vtophys.hh"
48#include "base/remote_gdb.hh"
49#include "sim/system.hh"
50#endif // FULL_SYSTEM
51
52#include <algorithm>
53
54template<class Impl>
55Tick
56DefaultFetch<Impl>::IcachePort::recvAtomic(PacketPtr pkt)
57{
58 panic("DefaultFetch doesn't expect recvAtomic callback!");
59 return curTick;
60}
61
62template<class Impl>
63void
64DefaultFetch<Impl>::IcachePort::recvFunctional(PacketPtr pkt)
65{
66 panic("DefaultFetch doesn't expect recvFunctional callback!");
67}
68
69template<class Impl>
70void
71DefaultFetch<Impl>::IcachePort::recvStatusChange(Status status)
72{
73 if (status == RangeChange)
74 return;
75
76 panic("DefaultFetch doesn't expect recvStatusChange callback!");
77}
78
79template<class Impl>
80bool
81DefaultFetch<Impl>::IcachePort::recvTiming(Packet *pkt)
82{
83 fetch->processCacheCompletion(pkt);
84 return true;
85}
86
87template<class Impl>
88void
89DefaultFetch<Impl>::IcachePort::recvRetry()
90{
91 fetch->recvRetry();
92}
93
94template<class Impl>
95DefaultFetch<Impl>::DefaultFetch(Params *params)
96 : mem(params->mem),
97 branchPred(params),
98 decodeToFetchDelay(params->decodeToFetchDelay),
99 renameToFetchDelay(params->renameToFetchDelay),
100 iewToFetchDelay(params->iewToFetchDelay),
101 commitToFetchDelay(params->commitToFetchDelay),
102 fetchWidth(params->fetchWidth),
103 cacheBlocked(false),
104 retryPkt(NULL),
105 retryTid(-1),
106 numThreads(params->numberOfThreads),
107 numFetchingThreads(params->smtNumFetchingThreads),
108 interruptPending(false),
109 drainPending(false),
110 switchedOut(false)
111{
112 if (numThreads > Impl::MaxThreads)
113 fatal("numThreads is not a valid value\n");
114
115 // Set fetch stage's status to inactive.
116 _status = Inactive;
117
118 std::string policy = params->smtFetchPolicy;
119
120 // Convert string to lowercase
121 std::transform(policy.begin(), policy.end(), policy.begin(),
122 (int(*)(int)) tolower);
123
124 // Figure out fetch policy
125 if (policy == "singlethread") {
126 fetchPolicy = SingleThread;
127 if (numThreads > 1)
128 panic("Invalid Fetch Policy for a SMT workload.");
129 } else if (policy == "roundrobin") {
130 fetchPolicy = RoundRobin;
131 DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
132 } else if (policy == "branch") {
133 fetchPolicy = Branch;
134 DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
135 } else if (policy == "iqcount") {
136 fetchPolicy = IQ;
137 DPRINTF(Fetch, "Fetch policy set to IQ count\n");
138 } else if (policy == "lsqcount") {
139 fetchPolicy = LSQ;
140 DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
141 } else {
142 fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
143 " RoundRobin,LSQcount,IQcount}\n");
144 }
145
146 // Size of cache block.
147 cacheBlkSize = 64;
148
149 // Create mask to get rid of offset bits.
150 cacheBlkMask = (cacheBlkSize - 1);
151
152 for (int tid=0; tid < numThreads; tid++) {
153
154 fetchStatus[tid] = Running;
155
156 priorityList.push_back(tid);
157
158 memReq[tid] = NULL;
159
160 // Create space to store a cache line.
161 cacheData[tid] = new uint8_t[cacheBlkSize];
162 cacheDataPC[tid] = 0;
163 cacheDataValid[tid] = false;
164
165 delaySlotInfo[tid].branchSeqNum = -1;
166 delaySlotInfo[tid].numInsts = 0;
167 delaySlotInfo[tid].targetAddr = 0;
168 delaySlotInfo[tid].targetReady = false;
169
170 stalls[tid].decode = false;
171 stalls[tid].rename = false;
172 stalls[tid].iew = false;
173 stalls[tid].commit = false;
174 }
175
176 // Get the size of an instruction.
177 instSize = sizeof(TheISA::MachInst);
178}
179
180template <class Impl>
181std::string
182DefaultFetch<Impl>::name() const
183{
184 return cpu->name() + ".fetch";
185}
186
187template <class Impl>
188void
189DefaultFetch<Impl>::regStats()
190{
191 icacheStallCycles
192 .name(name() + ".icacheStallCycles")
193 .desc("Number of cycles fetch is stalled on an Icache miss")
194 .prereq(icacheStallCycles);
195
196 fetchedInsts
197 .name(name() + ".Insts")
198 .desc("Number of instructions fetch has processed")
199 .prereq(fetchedInsts);
200
201 fetchedBranches
202 .name(name() + ".Branches")
203 .desc("Number of branches that fetch encountered")
204 .prereq(fetchedBranches);
205
206 predictedBranches
207 .name(name() + ".predictedBranches")
208 .desc("Number of branches that fetch has predicted taken")
209 .prereq(predictedBranches);
210
211 fetchCycles
212 .name(name() + ".Cycles")
213 .desc("Number of cycles fetch has run and was not squashing or"
214 " blocked")
215 .prereq(fetchCycles);
216
217 fetchSquashCycles
218 .name(name() + ".SquashCycles")
219 .desc("Number of cycles fetch has spent squashing")
220 .prereq(fetchSquashCycles);
221
222 fetchIdleCycles
223 .name(name() + ".IdleCycles")
224 .desc("Number of cycles fetch was idle")
225 .prereq(fetchIdleCycles);
226
227 fetchBlockedCycles
228 .name(name() + ".BlockedCycles")
229 .desc("Number of cycles fetch has spent blocked")
230 .prereq(fetchBlockedCycles);
231
232 fetchedCacheLines
233 .name(name() + ".CacheLines")
234 .desc("Number of cache lines fetched")
235 .prereq(fetchedCacheLines);
236
237 fetchMiscStallCycles
238 .name(name() + ".MiscStallCycles")
239 .desc("Number of cycles fetch has spent waiting on interrupts, or "
240 "bad addresses, or out of MSHRs")
241 .prereq(fetchMiscStallCycles);
242
243 fetchIcacheSquashes
244 .name(name() + ".IcacheSquashes")
245 .desc("Number of outstanding Icache misses that were squashed")
246 .prereq(fetchIcacheSquashes);
247
248 fetchNisnDist
249 .init(/* base value */ 0,
250 /* last value */ fetchWidth,
251 /* bucket size */ 1)
252 .name(name() + ".rateDist")
253 .desc("Number of instructions fetched each cycle (Total)")
254 .flags(Stats::pdf);
255
256 idleRate
257 .name(name() + ".idleRate")
258 .desc("Percent of cycles fetch was idle")
259 .prereq(idleRate);
260 idleRate = fetchIdleCycles * 100 / cpu->numCycles;
261
262 branchRate
263 .name(name() + ".branchRate")
264 .desc("Number of branch fetches per cycle")
265 .flags(Stats::total);
266 branchRate = fetchedBranches / cpu->numCycles;
267
268 fetchRate
269 .name(name() + ".rate")
270 .desc("Number of inst fetches per cycle")
271 .flags(Stats::total);
272 fetchRate = fetchedInsts / cpu->numCycles;
273
274 branchPred.regStats();
275}
276
277template<class Impl>
278void
279DefaultFetch<Impl>::setCPU(O3CPU *cpu_ptr)
280{
281 DPRINTF(Fetch, "Setting the CPU pointer.\n");
282 cpu = cpu_ptr;
283
284 // Name is finally available, so create the port.
285 icachePort = new IcachePort(this);
286
287#if USE_CHECKER
288 if (cpu->checker) {
289 cpu->checker->setIcachePort(icachePort);
290 }
291#endif
292
293 // Schedule fetch to get the correct PC from the CPU
294 // scheduleFetchStartupEvent(1);
295
296 // Fetch needs to start fetching instructions at the very beginning,
297 // so it must start up in active state.
298 switchToActive();
299}
300
301template<class Impl>
302void
303DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
304{
305 DPRINTF(Fetch, "Setting the time buffer pointer.\n");
306 timeBuffer = time_buffer;
307
308 // Create wires to get information from proper places in time buffer.
309 fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
310 fromRename = timeBuffer->getWire(-renameToFetchDelay);
311 fromIEW = timeBuffer->getWire(-iewToFetchDelay);
312 fromCommit = timeBuffer->getWire(-commitToFetchDelay);
313}
314
315template<class Impl>
316void
317DefaultFetch<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
318{
319 DPRINTF(Fetch, "Setting active threads list pointer.\n");
320 activeThreads = at_ptr;
321}
322
323template<class Impl>
324void
325DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
326{
327 DPRINTF(Fetch, "Setting the fetch queue pointer.\n");
328 fetchQueue = fq_ptr;
329
330 // Create wire to write information to proper place in fetch queue.
331 toDecode = fetchQueue->getWire(0);
332}
333
334template<class Impl>
335void
336DefaultFetch<Impl>::initStage()
337{
338 // Setup PC and nextPC with initial state.
339 for (int tid = 0; tid < numThreads; tid++) {
340 PC[tid] = cpu->readPC(tid);
341 nextPC[tid] = cpu->readNextPC(tid);
342#if ISA_HAS_DELAY_SLOT
343 nextNPC[tid] = cpu->readNextNPC(tid);
344#endif
345 }
346}
347
348template<class Impl>
349void
350DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
351{
352 unsigned tid = pkt->req->getThreadNum();
353
354 DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n",tid);
355
356 // Only change the status if it's still waiting on the icache access
357 // to return.
358 if (fetchStatus[tid] != IcacheWaitResponse ||
359 pkt->req != memReq[tid] ||
360 isSwitchedOut()) {
361 ++fetchIcacheSquashes;
362 delete pkt->req;
363 delete pkt;
364 return;
365 }
366
367 memcpy(cacheData[tid], pkt->getPtr<uint8_t *>(), cacheBlkSize);
368 cacheDataValid[tid] = true;
369
370 if (!drainPending) {
371 // Wake up the CPU (if it went to sleep and was waiting on
372 // this completion event).
373 cpu->wakeCPU();
374
375 DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
376 tid);
377
378 switchToActive();
379 }
380
381 // Only switch to IcacheAccessComplete if we're not stalled as well.
382 if (checkStall(tid)) {
383 fetchStatus[tid] = Blocked;
384 } else {
385 fetchStatus[tid] = IcacheAccessComplete;
386 }
387
388 // Reset the mem req to NULL.
389 delete pkt->req;
390 delete pkt;
391 memReq[tid] = NULL;
392}
393
394template <class Impl>
395bool
396DefaultFetch<Impl>::drain()
397{
398 // Fetch is ready to drain at any time.
399 cpu->signalDrained();
400 drainPending = true;
401 return true;
402}
403
404template <class Impl>
405void
406DefaultFetch<Impl>::resume()
407{
408 drainPending = false;
409}
410
411template <class Impl>
412void
413DefaultFetch<Impl>::switchOut()
414{
415 switchedOut = true;
416 // Branch predictor needs to have its state cleared.
417 branchPred.switchOut();
418}
419
420template <class Impl>
421void
422DefaultFetch<Impl>::takeOverFrom()
423{
424 // Reset all state
425 for (int i = 0; i < Impl::MaxThreads; ++i) {
426 stalls[i].decode = 0;
427 stalls[i].rename = 0;
428 stalls[i].iew = 0;
429 stalls[i].commit = 0;
430 PC[i] = cpu->readPC(i);
431 nextPC[i] = cpu->readNextPC(i);
432#if ISA_HAS_DELAY_SLOT
433 nextNPC[i] = cpu->readNextNPC(i);
434 delaySlotInfo[i].branchSeqNum = -1;
435 delaySlotInfo[i].numInsts = 0;
436 delaySlotInfo[i].targetAddr = 0;
437 delaySlotInfo[i].targetReady = false;
438#endif
439 fetchStatus[i] = Running;
440 }
441 numInst = 0;
442 wroteToTimeBuffer = false;
443 _status = Inactive;
444 switchedOut = false;
445 branchPred.takeOverFrom();
446}
447
448template <class Impl>
449void
450DefaultFetch<Impl>::wakeFromQuiesce()
451{
452 DPRINTF(Fetch, "Waking up from quiesce\n");
453 // Hopefully this is safe
454 // @todo: Allow other threads to wake from quiesce.
455 fetchStatus[0] = Running;
456}
457
458template <class Impl>
459inline void
460DefaultFetch<Impl>::switchToActive()
461{
462 if (_status == Inactive) {
463 DPRINTF(Activity, "Activating stage.\n");
464
465 cpu->activateStage(O3CPU::FetchIdx);
466
467 _status = Active;
468 }
469}
470
471template <class Impl>
472inline void
473DefaultFetch<Impl>::switchToInactive()
474{
475 if (_status == Active) {
476 DPRINTF(Activity, "Deactivating stage.\n");
477
478 cpu->deactivateStage(O3CPU::FetchIdx);
479
480 _status = Inactive;
481 }
482}
483
484template <class Impl>
485bool
486DefaultFetch<Impl>::lookupAndUpdateNextPC(DynInstPtr &inst, Addr &next_PC,
487 Addr &next_NPC)
488{
489 // Do branch prediction check here.
490 // A bit of a misnomer...next_PC is actually the current PC until
491 // this function updates it.
492 bool predict_taken;
493
494 if (!inst->isControl()) {
495#if ISA_HAS_DELAY_SLOT
496 Addr cur_PC = next_PC;
497 next_PC = cur_PC + instSize; //next_NPC;
498 next_NPC = cur_PC + (2 * instSize);//next_NPC + instSize;
499 inst->setPredTarg(next_NPC);
500#else
501 next_PC = next_PC + instSize;
502 inst->setPredTarg(next_PC);
503#endif
504 return false;
505 }
506
507 int tid = inst->threadNumber;
508#if ISA_HAS_DELAY_SLOT
509 Addr pred_PC = next_PC;
510 predict_taken = branchPred.predict(inst, pred_PC, tid);
511
512 if (predict_taken) {
513 DPRINTF(Fetch, "[tid:%i]: Branch predicted to be true.\n", tid);
514 } else {
515 DPRINTF(Fetch, "[tid:%i]: Branch predicted to be false.\n", tid);
516 }
517
518 if (predict_taken) {
519 next_PC = next_NPC;
520 next_NPC = pred_PC;
521
522 // Update delay slot info
523 ++delaySlotInfo[tid].numInsts;
524 delaySlotInfo[tid].targetAddr = pred_PC;
525 DPRINTF(Fetch, "[tid:%i]: %i delay slot inst(s) to process.\n", tid,
526 delaySlotInfo[tid].numInsts);
527 } else { // !predict_taken
528 if (inst->isCondDelaySlot()) {
529 next_PC = pred_PC;
530 // The delay slot is skipped here if there is on
531 // prediction
532 } else {
533 next_PC = next_NPC;
534 // No need to declare a delay slot here since
535 // there is no for the pred. target to jump
536 }
537
538 next_NPC = next_NPC + instSize;
539 }
540#else
541 predict_taken = branchPred.predict(inst, next_PC, tid);
542#endif
543
544 ++fetchedBranches;
545
546 if (predict_taken) {
547 ++predictedBranches;
548 }
549
550 return predict_taken;
551}
552
553template <class Impl>
554bool
555DefaultFetch<Impl>::fetchCacheLine(Addr fetch_PC, Fault &ret_fault, unsigned tid)
556{
557 Fault fault = NoFault;
558
559#if FULL_SYSTEM
560 // Flag to say whether or not address is physical addr.
561 unsigned flags = cpu->inPalMode(fetch_PC) ? PHYSICAL : 0;
562#else
563 unsigned flags = 0;
564#endif // FULL_SYSTEM
565
566 if (cacheBlocked || (interruptPending && flags == 0)) {
567 // Hold off fetch from getting new instructions when:
568 // Cache is blocked, or
569 // while an interrupt is pending and we're not in PAL mode, or
570 // fetch is switched out.
571 return false;
572 }
573
574 // Align the fetch PC so it's at the start of a cache block.
575 fetch_PC = icacheBlockAlignPC(fetch_PC);
576
577 // If we've already got the block, no need to try to fetch it again.
578 if (cacheDataValid[tid] && fetch_PC == cacheDataPC[tid]) {
579 return true;
580 }
581
582 // Setup the memReq to do a read of the first instruction's address.
583 // Set the appropriate read size and flags as well.
584 // Build request here.
585 RequestPtr mem_req = new Request(tid, fetch_PC, cacheBlkSize, flags,
586 fetch_PC, cpu->readCpuId(), tid);
587
588 memReq[tid] = mem_req;
589
590 // Translate the instruction request.
591 fault = cpu->translateInstReq(mem_req, cpu->thread[tid]);
592
593 // In the case of faults, the fetch stage may need to stall and wait
594 // for the ITB miss to be handled.
595
596 // If translation was successful, attempt to read the first
597 // instruction.
598 if (fault == NoFault) {
599#if 0
600 if (cpu->system->memctrl->badaddr(memReq[tid]->paddr) ||
601 memReq[tid]->flags & UNCACHEABLE) {
602 DPRINTF(Fetch, "Fetch: Bad address %#x (hopefully on a "
603 "misspeculating path)!",
604 memReq[tid]->paddr);
605 ret_fault = TheISA::genMachineCheckFault();
606 return false;
607 }
608#endif
609
610 // Build packet here.
611 PacketPtr data_pkt = new Packet(mem_req,
612 Packet::ReadReq, Packet::Broadcast);
613 data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
614
615 cacheDataPC[tid] = fetch_PC;
616 cacheDataValid[tid] = false;
617
618 DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
619
620 fetchedCacheLines++;
621
622 // Now do the timing access to see whether or not the instruction
623 // exists within the cache.
624 if (!icachePort->sendTiming(data_pkt)) {
625 assert(retryPkt == NULL);
626 assert(retryTid == -1);
627 DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
628 fetchStatus[tid] = IcacheWaitRetry;
629 retryPkt = data_pkt;
630 retryTid = tid;
631 cacheBlocked = true;
632 return false;
633 }
634
635 DPRINTF(Fetch, "[tid:%i]: Doing cache access.\n", tid);
636
637 lastIcacheStall[tid] = curTick;
638
639 DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
640 "response.\n", tid);
641
642 fetchStatus[tid] = IcacheWaitResponse;
643 } else {
644 delete mem_req;
645 memReq[tid] = NULL;
646 }
647
648 ret_fault = fault;
649 return true;
650}
651
652template <class Impl>
653inline void
654DefaultFetch<Impl>::doSquash(const Addr &new_PC, unsigned tid)
655{
656 DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %#x.\n",
657 tid, new_PC);
658
659 PC[tid] = new_PC;
660 nextPC[tid] = new_PC + instSize;
661 nextNPC[tid] = new_PC + (2 * instSize);
662
663 // Clear the icache miss if it's outstanding.
664 if (fetchStatus[tid] == IcacheWaitResponse) {
665 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
666 tid);
667 memReq[tid] = NULL;
668 }
669
670 // Get rid of the retrying packet if it was from this thread.
671 if (retryTid == tid) {
672 assert(cacheBlocked);
673 cacheBlocked = false;
674 retryTid = -1;
675 delete retryPkt->req;
676 delete retryPkt;
677 retryPkt = NULL;
678 }
679
680 fetchStatus[tid] = Squashing;
681
682 ++fetchSquashCycles;
683}
684
685template<class Impl>
686void
687DefaultFetch<Impl>::squashFromDecode(const Addr &new_PC,
688 const InstSeqNum &seq_num,
689 unsigned tid)
690{
691 DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n",tid);
692
693 doSquash(new_PC, tid);
694
695#if ISA_HAS_DELAY_SLOT
696 if (seq_num <= delaySlotInfo[tid].branchSeqNum) {
697 delaySlotInfo[tid].numInsts = 0;
698 delaySlotInfo[tid].targetAddr = 0;
699 delaySlotInfo[tid].targetReady = false;
700 }
701#endif
702
703 // Tell the CPU to remove any instructions that are in flight between
704 // fetch and decode.
705 cpu->removeInstsUntil(seq_num, tid);
706}
707
708template<class Impl>
709bool
710DefaultFetch<Impl>::checkStall(unsigned tid) const
711{
712 bool ret_val = false;
713
714 if (cpu->contextSwitch) {
715 DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
716 ret_val = true;
717 } else if (stalls[tid].decode) {
718 DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
719 ret_val = true;
720 } else if (stalls[tid].rename) {
721 DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
722 ret_val = true;
723 } else if (stalls[tid].iew) {
724 DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
725 ret_val = true;
726 } else if (stalls[tid].commit) {
727 DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
728 ret_val = true;
729 }
730
731 return ret_val;
732}
733
734template<class Impl>
735typename DefaultFetch<Impl>::FetchStatus
736DefaultFetch<Impl>::updateFetchStatus()
737{
738 //Check Running
739 std::list<unsigned>::iterator threads = (*activeThreads).begin();
740
741 while (threads != (*activeThreads).end()) {
742
743 unsigned tid = *threads++;
744
745 if (fetchStatus[tid] == Running ||
746 fetchStatus[tid] == Squashing ||
747 fetchStatus[tid] == IcacheAccessComplete) {
748
749 if (_status == Inactive) {
750 DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
751
752 if (fetchStatus[tid] == IcacheAccessComplete) {
753 DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
754 "completion\n",tid);
755 }
756
757 cpu->activateStage(O3CPU::FetchIdx);
758 }
759
760 return Active;
761 }
762 }
763
764 // Stage is switching from active to inactive, notify CPU of it.
765 if (_status == Active) {
766 DPRINTF(Activity, "Deactivating stage.\n");
767
768 cpu->deactivateStage(O3CPU::FetchIdx);
769 }
770
771 return Inactive;
772}
773
774template <class Impl>
775void
776DefaultFetch<Impl>::squash(const Addr &new_PC, const InstSeqNum &seq_num,
777 bool squash_delay_slot, unsigned tid)
778{
779 DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n",tid);
780
781 doSquash(new_PC, tid);
782
783#if ISA_HAS_DELAY_SLOT
784 if (seq_num <= delaySlotInfo[tid].branchSeqNum) {
785 delaySlotInfo[tid].numInsts = 0;
786 delaySlotInfo[tid].targetAddr = 0;
787 delaySlotInfo[tid].targetReady = false;
788 }
789
790 // Tell the CPU to remove any instructions that are not in the ROB.
791 cpu->removeInstsNotInROB(tid, squash_delay_slot, seq_num);
792#else
793 // Tell the CPU to remove any instructions that are not in the ROB.
794 cpu->removeInstsNotInROB(tid, true, 0);
795#endif
796}
797
798template <class Impl>
799void
800DefaultFetch<Impl>::tick()
801{
802 std::list<unsigned>::iterator threads = (*activeThreads).begin();
803 bool status_change = false;
804
805 wroteToTimeBuffer = false;
806
807 while (threads != (*activeThreads).end()) {
808 unsigned tid = *threads++;
809
810 // Check the signals for each thread to determine the proper status
811 // for each thread.
812 bool updated_status = checkSignalsAndUpdate(tid);
813 status_change = status_change || updated_status;
814 }
815
816 DPRINTF(Fetch, "Running stage.\n");
817
818 // Reset the number of the instruction we're fetching.
819 numInst = 0;
820
821#if FULL_SYSTEM
822 if (fromCommit->commitInfo[0].interruptPending) {
823 interruptPending = true;
824 }
825
826 if (fromCommit->commitInfo[0].clearInterrupt) {
827 interruptPending = false;
828 }
829#endif
830
831 for (threadFetched = 0; threadFetched < numFetchingThreads;
832 threadFetched++) {
833 // Fetch each of the actively fetching threads.
834 fetch(status_change);
835 }
836
837 // Record number of instructions fetched this cycle for distribution.
838 fetchNisnDist.sample(numInst);
839
840 if (status_change) {
841 // Change the fetch stage status if there was a status change.
842 _status = updateFetchStatus();
843 }
844
845 // If there was activity this cycle, inform the CPU of it.
846 if (wroteToTimeBuffer || cpu->contextSwitch) {
847 DPRINTF(Activity, "Activity this cycle.\n");
848
849 cpu->activityThisCycle();
850 }
851}
852
853template <class Impl>
854bool
855DefaultFetch<Impl>::checkSignalsAndUpdate(unsigned tid)
856{
857 // Update the per thread stall statuses.
858 if (fromDecode->decodeBlock[tid]) {
859 stalls[tid].decode = true;
860 }
861
862 if (fromDecode->decodeUnblock[tid]) {
863 assert(stalls[tid].decode);
864 assert(!fromDecode->decodeBlock[tid]);
865 stalls[tid].decode = false;
866 }
867
868 if (fromRename->renameBlock[tid]) {
869 stalls[tid].rename = true;
870 }
871
872 if (fromRename->renameUnblock[tid]) {
873 assert(stalls[tid].rename);
874 assert(!fromRename->renameBlock[tid]);
875 stalls[tid].rename = false;
876 }
877
878 if (fromIEW->iewBlock[tid]) {
879 stalls[tid].iew = true;
880 }
881
882 if (fromIEW->iewUnblock[tid]) {
883 assert(stalls[tid].iew);
884 assert(!fromIEW->iewBlock[tid]);
885 stalls[tid].iew = false;
886 }
887
888 if (fromCommit->commitBlock[tid]) {
889 stalls[tid].commit = true;
890 }
891
892 if (fromCommit->commitUnblock[tid]) {
893 assert(stalls[tid].commit);
894 assert(!fromCommit->commitBlock[tid]);
895 stalls[tid].commit = false;
896 }
897
898 // Check squash signals from commit.
899 if (fromCommit->commitInfo[tid].squash) {
900
901 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
902 "from commit.\n",tid);
903
904#if ISA_HAS_DELAY_SLOT
905 InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].bdelayDoneSeqNum;
906#else
907 InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].doneSeqNum;
908#endif
909 // In any case, squash.
910 squash(fromCommit->commitInfo[tid].nextPC,
911 doneSeqNum,
912 fromCommit->commitInfo[tid].squashDelaySlot,
913 tid);
914
915 // Also check if there's a mispredict that happened.
916 if (fromCommit->commitInfo[tid].branchMispredict) {
917 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
918 fromCommit->commitInfo[tid].nextPC,
919 fromCommit->commitInfo[tid].branchTaken,
920 tid);
921 } else {
922 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
923 tid);
924 }
925
926 return true;
927 } else if (fromCommit->commitInfo[tid].doneSeqNum) {
928 // Update the branch predictor if it wasn't a squashed instruction
929 // that was broadcasted.
930 branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
931 }
932
933 // Check ROB squash signals from commit.
934 if (fromCommit->commitInfo[tid].robSquashing) {
935 DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
936
937 // Continue to squash.
938 fetchStatus[tid] = Squashing;
939
940 return true;
941 }
942
943 // Check squash signals from decode.
944 if (fromDecode->decodeInfo[tid].squash) {
945 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
946 "from decode.\n",tid);
947
948 // Update the branch predictor.
949 if (fromDecode->decodeInfo[tid].branchMispredict) {
950 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
951 fromDecode->decodeInfo[tid].nextPC,
952 fromDecode->decodeInfo[tid].branchTaken,
953 tid);
954 } else {
955 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
956 tid);
957 }
958
959 if (fetchStatus[tid] != Squashing) {
960
961#if ISA_HAS_DELAY_SLOT
962 InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].bdelayDoneSeqNum;
963#else
964 InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].doneSeqNum;
965#endif
966 // Squash unless we're already squashing
967 squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
968 doneSeqNum,
969 tid);
970
971 return true;
972 }
973 }
974
975 if (checkStall(tid) && fetchStatus[tid] != IcacheWaitResponse) {
976 DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
977
978 fetchStatus[tid] = Blocked;
979
980 return true;
981 }
982
983 if (fetchStatus[tid] == Blocked ||
984 fetchStatus[tid] == Squashing) {
985 // Switch status to running if fetch isn't being told to block or
986 // squash this cycle.
987 DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
988 tid);
989
990 fetchStatus[tid] = Running;
991
992 return true;
993 }
994
995 // If we've reached this point, we have not gotten any signals that
996 // cause fetch to change its status. Fetch remains the same as before.
997 return false;
998}
999
1000template<class Impl>
1001void
1002DefaultFetch<Impl>::fetch(bool &status_change)
1003{
1004 //////////////////////////////////////////
1005 // Start actual fetch
1006 //////////////////////////////////////////
1007 int tid = getFetchingThread(fetchPolicy);
1008
1009 if (tid == -1 || drainPending) {
1010 DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1011
1012 // Breaks looping condition in tick()
1013 threadFetched = numFetchingThreads;
1014 return;
1015 }
1016
1017 DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1018
1019 // The current PC.
1020 Addr &fetch_PC = PC[tid];
1021
1022 // Fault code for memory access.
1023 Fault fault = NoFault;
1024
1025 // If returning from the delay of a cache miss, then update the status
1026 // to running, otherwise do the cache access. Possibly move this up
1027 // to tick() function.
1028 if (fetchStatus[tid] == IcacheAccessComplete) {
1029 DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n",
1030 tid);
1031
1032 fetchStatus[tid] = Running;
1033 status_change = true;
1034 } else if (fetchStatus[tid] == Running) {
1035 DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1036 "instruction, starting at PC %08p.\n",
1037 tid, fetch_PC);
1038
1039 bool fetch_success = fetchCacheLine(fetch_PC, fault, tid);
1040 if (!fetch_success) {
1041 if (cacheBlocked) {
1042 ++icacheStallCycles;
1043 } else {
1044 ++fetchMiscStallCycles;
1045 }
1046 return;
1047 }
1048 } else {
1049 if (fetchStatus[tid] == Idle) {
1050 ++fetchIdleCycles;
1051 } else if (fetchStatus[tid] == Blocked) {
1052 ++fetchBlockedCycles;
1053 } else if (fetchStatus[tid] == Squashing) {
1054 ++fetchSquashCycles;
1055 } else if (fetchStatus[tid] == IcacheWaitResponse) {
1056 ++icacheStallCycles;
1057 }
1058
1059 // Status is Idle, Squashing, Blocked, or IcacheWaitResponse, so
1060 // fetch should do nothing.
1061 return;
1062 }
1063
1064 ++fetchCycles;
1065
1066 // If we had a stall due to an icache miss, then return.
1067 if (fetchStatus[tid] == IcacheWaitResponse) {
1068 ++icacheStallCycles;
1069 status_change = true;
1070 return;
1071 }
1072
1073 Addr next_PC = fetch_PC;
1074 Addr next_NPC = next_PC + instSize;
1075 InstSeqNum inst_seq;
1076 MachInst inst;
1077 ExtMachInst ext_inst;
1078 // @todo: Fix this hack.
1079 unsigned offset = (fetch_PC & cacheBlkMask) & ~3;
1080
1081 if (fault == NoFault) {
1082 // If the read of the first instruction was successful, then grab the
1083 // instructions from the rest of the cache line and put them into the
1084 // queue heading to decode.
1085
1086 DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1087 "decode.\n",tid);
1088
1089 // Need to keep track of whether or not a predicted branch
1090 // ended this fetch block.
1091 bool predicted_branch = false;
1092
1093 // Need to keep track of whether or not a delay slot
1094 // instruction has been fetched
1095
1096 for (;
1097 offset < cacheBlkSize &&
1098 numInst < fetchWidth &&
1099 (!predicted_branch || delaySlotInfo[tid].numInsts > 0);
1100 ++numInst) {
1101
1102 // Get a sequence number.
1103 inst_seq = cpu->getAndIncrementInstSeq();
1104
1105 // Make sure this is a valid index.
1106 assert(offset <= cacheBlkSize - instSize);
1107
1108 // Get the instruction from the array of the cache line.
1109 inst = TheISA::gtoh(*reinterpret_cast<TheISA::MachInst *>
1110 (&cacheData[tid][offset]));
1111
1112 ext_inst = TheISA::makeExtMI(inst, fetch_PC);
1112 ext_inst = TheISA::makeExtMI(inst, cpu->tcBase(tid));
1113
1114 // Create a new DynInst from the instruction fetched.
1115 DynInstPtr instruction = new DynInst(ext_inst, fetch_PC,
1116 next_PC,
1117 inst_seq, cpu);
1118 instruction->setTid(tid);
1119
1120 instruction->setASID(tid);
1121
1122 instruction->setThreadState(cpu->thread[tid]);
1123
1124 DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x created "
1125 "[sn:%lli]\n",
1126 tid, instruction->readPC(), inst_seq);
1127
1128 DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n",
1129 tid, instruction->staticInst->disassemble(fetch_PC));
1130
1131 instruction->traceData =
1132 Trace::getInstRecord(curTick, cpu->tcBase(tid),
1133 instruction->staticInst,
1134 instruction->readPC());
1135
1136 predicted_branch = lookupAndUpdateNextPC(instruction, next_PC,
1137 next_NPC);
1138
1139 // Add instruction to the CPU's list of instructions.
1140 instruction->setInstListIt(cpu->addInst(instruction));
1141
1142 // Write the instruction to the first slot in the queue
1143 // that heads to decode.
1144 toDecode->insts[numInst] = instruction;
1145
1146 toDecode->size++;
1147
1148 // Increment stat of fetched instructions.
1149 ++fetchedInsts;
1150
1151 // Move to the next instruction, unless we have a branch.
1152 fetch_PC = next_PC;
1153
1154 if (instruction->isQuiesce()) {
1155 warn("cycle %lli: Quiesce instruction encountered, halting fetch!",
1156 curTick);
1157 fetchStatus[tid] = QuiescePending;
1158 ++numInst;
1159 status_change = true;
1160 break;
1161 }
1162
1163 offset += instSize;
1164
1165#if ISA_HAS_DELAY_SLOT
1166 if (predicted_branch) {
1167 delaySlotInfo[tid].branchSeqNum = inst_seq;
1168
1169 DPRINTF(Fetch, "[tid:%i]: Delay slot branch set to [sn:%i]\n",
1170 tid, inst_seq);
1171 continue;
1172 } else if (delaySlotInfo[tid].numInsts > 0) {
1173 --delaySlotInfo[tid].numInsts;
1174
1175 // It's OK to set PC to target of branch
1176 if (delaySlotInfo[tid].numInsts == 0) {
1177 delaySlotInfo[tid].targetReady = true;
1178
1179 // Break the looping condition
1180 predicted_branch = true;
1181 }
1182
1183 DPRINTF(Fetch, "[tid:%i]: %i delay slot inst(s) left to"
1184 " process.\n", tid, delaySlotInfo[tid].numInsts);
1185 }
1186#endif
1187 }
1188
1189 if (offset >= cacheBlkSize) {
1190 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1191 "block.\n", tid);
1192 } else if (numInst >= fetchWidth) {
1193 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1194 "for this cycle.\n", tid);
1195 } else if (predicted_branch && delaySlotInfo[tid].numInsts <= 0) {
1196 DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1197 "instruction encountered.\n", tid);
1198 }
1199 }
1200
1201 if (numInst > 0) {
1202 wroteToTimeBuffer = true;
1203 }
1204
1205 // Now that fetching is completed, update the PC to signify what the next
1206 // cycle will be.
1207 if (fault == NoFault) {
1208#if ISA_HAS_DELAY_SLOT
1209 if (delaySlotInfo[tid].targetReady &&
1210 delaySlotInfo[tid].numInsts == 0) {
1211 // Set PC to target
1212 PC[tid] = delaySlotInfo[tid].targetAddr; //next_PC
1213 nextPC[tid] = next_PC + instSize; //next_NPC
1214 nextNPC[tid] = next_PC + (2 * instSize);
1215
1216 delaySlotInfo[tid].targetReady = false;
1217 } else {
1218 PC[tid] = next_PC;
1219 nextPC[tid] = next_NPC;
1220 nextNPC[tid] = next_NPC + instSize;
1221 }
1222
1223 DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n", tid, PC[tid]);
1224#else
1225 DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n",tid, next_PC);
1226 PC[tid] = next_PC;
1227 nextPC[tid] = next_PC + instSize;
1228#endif
1229 } else {
1230 // We shouldn't be in an icache miss and also have a fault (an ITB
1231 // miss)
1232 if (fetchStatus[tid] == IcacheWaitResponse) {
1233 panic("Fetch should have exited prior to this!");
1234 }
1235
1236 // Send the fault to commit. This thread will not do anything
1237 // until commit handles the fault. The only other way it can
1238 // wake up is if a squash comes along and changes the PC.
1239#if FULL_SYSTEM
1240 assert(numInst != fetchWidth);
1241 // Get a sequence number.
1242 inst_seq = cpu->getAndIncrementInstSeq();
1243 // We will use a nop in order to carry the fault.
1244 ext_inst = TheISA::NoopMachInst;
1245
1246 // Create a new DynInst from the dummy nop.
1247 DynInstPtr instruction = new DynInst(ext_inst, fetch_PC,
1248 next_PC,
1249 inst_seq, cpu);
1250 instruction->setPredTarg(next_PC + instSize);
1251 instruction->setTid(tid);
1252
1253 instruction->setASID(tid);
1254
1255 instruction->setThreadState(cpu->thread[tid]);
1256
1257 instruction->traceData = NULL;
1258
1259 instruction->setInstListIt(cpu->addInst(instruction));
1260
1261 instruction->fault = fault;
1262
1263 toDecode->insts[numInst] = instruction;
1264 toDecode->size++;
1265
1266 DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n",tid);
1267
1268 fetchStatus[tid] = TrapPending;
1269 status_change = true;
1270
1271 warn("cycle %lli: fault (%s) detected @ PC %08p", curTick, fault->name(), PC[tid]);
1272#else // !FULL_SYSTEM
1273 warn("cycle %lli: fault (%s) detected @ PC %08p", curTick, fault->name(), PC[tid]);
1274#endif // FULL_SYSTEM
1275 }
1276}
1277
1278template<class Impl>
1279void
1280DefaultFetch<Impl>::recvRetry()
1281{
1282 assert(cacheBlocked);
1283 if (retryPkt != NULL) {
1284 assert(retryTid != -1);
1285 assert(fetchStatus[retryTid] == IcacheWaitRetry);
1286
1287 if (icachePort->sendTiming(retryPkt)) {
1288 fetchStatus[retryTid] = IcacheWaitResponse;
1289 retryPkt = NULL;
1290 retryTid = -1;
1291 cacheBlocked = false;
1292 }
1293 } else {
1294 assert(retryTid == -1);
1295 // Access has been squashed since it was sent out. Just clear
1296 // the cache being blocked.
1297 cacheBlocked = false;
1298 }
1299}
1300
1301///////////////////////////////////////
1302// //
1303// SMT FETCH POLICY MAINTAINED HERE //
1304// //
1305///////////////////////////////////////
1306template<class Impl>
1307int
1308DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1309{
1310 if (numThreads > 1) {
1311 switch (fetch_priority) {
1312
1313 case SingleThread:
1314 return 0;
1315
1316 case RoundRobin:
1317 return roundRobin();
1318
1319 case IQ:
1320 return iqCount();
1321
1322 case LSQ:
1323 return lsqCount();
1324
1325 case Branch:
1326 return branchCount();
1327
1328 default:
1329 return -1;
1330 }
1331 } else {
1332 int tid = *((*activeThreads).begin());
1333
1334 if (fetchStatus[tid] == Running ||
1335 fetchStatus[tid] == IcacheAccessComplete ||
1336 fetchStatus[tid] == Idle) {
1337 return tid;
1338 } else {
1339 return -1;
1340 }
1341 }
1342
1343}
1344
1345
1346template<class Impl>
1347int
1348DefaultFetch<Impl>::roundRobin()
1349{
1350 std::list<unsigned>::iterator pri_iter = priorityList.begin();
1351 std::list<unsigned>::iterator end = priorityList.end();
1352
1353 int high_pri;
1354
1355 while (pri_iter != end) {
1356 high_pri = *pri_iter;
1357
1358 assert(high_pri <= numThreads);
1359
1360 if (fetchStatus[high_pri] == Running ||
1361 fetchStatus[high_pri] == IcacheAccessComplete ||
1362 fetchStatus[high_pri] == Idle) {
1363
1364 priorityList.erase(pri_iter);
1365 priorityList.push_back(high_pri);
1366
1367 return high_pri;
1368 }
1369
1370 pri_iter++;
1371 }
1372
1373 return -1;
1374}
1375
1376template<class Impl>
1377int
1378DefaultFetch<Impl>::iqCount()
1379{
1380 std::priority_queue<unsigned> PQ;
1381
1382 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1383
1384 while (threads != (*activeThreads).end()) {
1385 unsigned tid = *threads++;
1386
1387 PQ.push(fromIEW->iewInfo[tid].iqCount);
1388 }
1389
1390 while (!PQ.empty()) {
1391
1392 unsigned high_pri = PQ.top();
1393
1394 if (fetchStatus[high_pri] == Running ||
1395 fetchStatus[high_pri] == IcacheAccessComplete ||
1396 fetchStatus[high_pri] == Idle)
1397 return high_pri;
1398 else
1399 PQ.pop();
1400
1401 }
1402
1403 return -1;
1404}
1405
1406template<class Impl>
1407int
1408DefaultFetch<Impl>::lsqCount()
1409{
1410 std::priority_queue<unsigned> PQ;
1411
1412
1413 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1414
1415 while (threads != (*activeThreads).end()) {
1416 unsigned tid = *threads++;
1417
1418 PQ.push(fromIEW->iewInfo[tid].ldstqCount);
1419 }
1420
1421 while (!PQ.empty()) {
1422
1423 unsigned high_pri = PQ.top();
1424
1425 if (fetchStatus[high_pri] == Running ||
1426 fetchStatus[high_pri] == IcacheAccessComplete ||
1427 fetchStatus[high_pri] == Idle)
1428 return high_pri;
1429 else
1430 PQ.pop();
1431
1432 }
1433
1434 return -1;
1435}
1436
1437template<class Impl>
1438int
1439DefaultFetch<Impl>::branchCount()
1440{
1441 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1442 panic("Branch Count Fetch policy unimplemented\n");
1443 return *threads;
1444}
1113
1114 // Create a new DynInst from the instruction fetched.
1115 DynInstPtr instruction = new DynInst(ext_inst, fetch_PC,
1116 next_PC,
1117 inst_seq, cpu);
1118 instruction->setTid(tid);
1119
1120 instruction->setASID(tid);
1121
1122 instruction->setThreadState(cpu->thread[tid]);
1123
1124 DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x created "
1125 "[sn:%lli]\n",
1126 tid, instruction->readPC(), inst_seq);
1127
1128 DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n",
1129 tid, instruction->staticInst->disassemble(fetch_PC));
1130
1131 instruction->traceData =
1132 Trace::getInstRecord(curTick, cpu->tcBase(tid),
1133 instruction->staticInst,
1134 instruction->readPC());
1135
1136 predicted_branch = lookupAndUpdateNextPC(instruction, next_PC,
1137 next_NPC);
1138
1139 // Add instruction to the CPU's list of instructions.
1140 instruction->setInstListIt(cpu->addInst(instruction));
1141
1142 // Write the instruction to the first slot in the queue
1143 // that heads to decode.
1144 toDecode->insts[numInst] = instruction;
1145
1146 toDecode->size++;
1147
1148 // Increment stat of fetched instructions.
1149 ++fetchedInsts;
1150
1151 // Move to the next instruction, unless we have a branch.
1152 fetch_PC = next_PC;
1153
1154 if (instruction->isQuiesce()) {
1155 warn("cycle %lli: Quiesce instruction encountered, halting fetch!",
1156 curTick);
1157 fetchStatus[tid] = QuiescePending;
1158 ++numInst;
1159 status_change = true;
1160 break;
1161 }
1162
1163 offset += instSize;
1164
1165#if ISA_HAS_DELAY_SLOT
1166 if (predicted_branch) {
1167 delaySlotInfo[tid].branchSeqNum = inst_seq;
1168
1169 DPRINTF(Fetch, "[tid:%i]: Delay slot branch set to [sn:%i]\n",
1170 tid, inst_seq);
1171 continue;
1172 } else if (delaySlotInfo[tid].numInsts > 0) {
1173 --delaySlotInfo[tid].numInsts;
1174
1175 // It's OK to set PC to target of branch
1176 if (delaySlotInfo[tid].numInsts == 0) {
1177 delaySlotInfo[tid].targetReady = true;
1178
1179 // Break the looping condition
1180 predicted_branch = true;
1181 }
1182
1183 DPRINTF(Fetch, "[tid:%i]: %i delay slot inst(s) left to"
1184 " process.\n", tid, delaySlotInfo[tid].numInsts);
1185 }
1186#endif
1187 }
1188
1189 if (offset >= cacheBlkSize) {
1190 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1191 "block.\n", tid);
1192 } else if (numInst >= fetchWidth) {
1193 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1194 "for this cycle.\n", tid);
1195 } else if (predicted_branch && delaySlotInfo[tid].numInsts <= 0) {
1196 DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1197 "instruction encountered.\n", tid);
1198 }
1199 }
1200
1201 if (numInst > 0) {
1202 wroteToTimeBuffer = true;
1203 }
1204
1205 // Now that fetching is completed, update the PC to signify what the next
1206 // cycle will be.
1207 if (fault == NoFault) {
1208#if ISA_HAS_DELAY_SLOT
1209 if (delaySlotInfo[tid].targetReady &&
1210 delaySlotInfo[tid].numInsts == 0) {
1211 // Set PC to target
1212 PC[tid] = delaySlotInfo[tid].targetAddr; //next_PC
1213 nextPC[tid] = next_PC + instSize; //next_NPC
1214 nextNPC[tid] = next_PC + (2 * instSize);
1215
1216 delaySlotInfo[tid].targetReady = false;
1217 } else {
1218 PC[tid] = next_PC;
1219 nextPC[tid] = next_NPC;
1220 nextNPC[tid] = next_NPC + instSize;
1221 }
1222
1223 DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n", tid, PC[tid]);
1224#else
1225 DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n",tid, next_PC);
1226 PC[tid] = next_PC;
1227 nextPC[tid] = next_PC + instSize;
1228#endif
1229 } else {
1230 // We shouldn't be in an icache miss and also have a fault (an ITB
1231 // miss)
1232 if (fetchStatus[tid] == IcacheWaitResponse) {
1233 panic("Fetch should have exited prior to this!");
1234 }
1235
1236 // Send the fault to commit. This thread will not do anything
1237 // until commit handles the fault. The only other way it can
1238 // wake up is if a squash comes along and changes the PC.
1239#if FULL_SYSTEM
1240 assert(numInst != fetchWidth);
1241 // Get a sequence number.
1242 inst_seq = cpu->getAndIncrementInstSeq();
1243 // We will use a nop in order to carry the fault.
1244 ext_inst = TheISA::NoopMachInst;
1245
1246 // Create a new DynInst from the dummy nop.
1247 DynInstPtr instruction = new DynInst(ext_inst, fetch_PC,
1248 next_PC,
1249 inst_seq, cpu);
1250 instruction->setPredTarg(next_PC + instSize);
1251 instruction->setTid(tid);
1252
1253 instruction->setASID(tid);
1254
1255 instruction->setThreadState(cpu->thread[tid]);
1256
1257 instruction->traceData = NULL;
1258
1259 instruction->setInstListIt(cpu->addInst(instruction));
1260
1261 instruction->fault = fault;
1262
1263 toDecode->insts[numInst] = instruction;
1264 toDecode->size++;
1265
1266 DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n",tid);
1267
1268 fetchStatus[tid] = TrapPending;
1269 status_change = true;
1270
1271 warn("cycle %lli: fault (%s) detected @ PC %08p", curTick, fault->name(), PC[tid]);
1272#else // !FULL_SYSTEM
1273 warn("cycle %lli: fault (%s) detected @ PC %08p", curTick, fault->name(), PC[tid]);
1274#endif // FULL_SYSTEM
1275 }
1276}
1277
1278template<class Impl>
1279void
1280DefaultFetch<Impl>::recvRetry()
1281{
1282 assert(cacheBlocked);
1283 if (retryPkt != NULL) {
1284 assert(retryTid != -1);
1285 assert(fetchStatus[retryTid] == IcacheWaitRetry);
1286
1287 if (icachePort->sendTiming(retryPkt)) {
1288 fetchStatus[retryTid] = IcacheWaitResponse;
1289 retryPkt = NULL;
1290 retryTid = -1;
1291 cacheBlocked = false;
1292 }
1293 } else {
1294 assert(retryTid == -1);
1295 // Access has been squashed since it was sent out. Just clear
1296 // the cache being blocked.
1297 cacheBlocked = false;
1298 }
1299}
1300
1301///////////////////////////////////////
1302// //
1303// SMT FETCH POLICY MAINTAINED HERE //
1304// //
1305///////////////////////////////////////
1306template<class Impl>
1307int
1308DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1309{
1310 if (numThreads > 1) {
1311 switch (fetch_priority) {
1312
1313 case SingleThread:
1314 return 0;
1315
1316 case RoundRobin:
1317 return roundRobin();
1318
1319 case IQ:
1320 return iqCount();
1321
1322 case LSQ:
1323 return lsqCount();
1324
1325 case Branch:
1326 return branchCount();
1327
1328 default:
1329 return -1;
1330 }
1331 } else {
1332 int tid = *((*activeThreads).begin());
1333
1334 if (fetchStatus[tid] == Running ||
1335 fetchStatus[tid] == IcacheAccessComplete ||
1336 fetchStatus[tid] == Idle) {
1337 return tid;
1338 } else {
1339 return -1;
1340 }
1341 }
1342
1343}
1344
1345
1346template<class Impl>
1347int
1348DefaultFetch<Impl>::roundRobin()
1349{
1350 std::list<unsigned>::iterator pri_iter = priorityList.begin();
1351 std::list<unsigned>::iterator end = priorityList.end();
1352
1353 int high_pri;
1354
1355 while (pri_iter != end) {
1356 high_pri = *pri_iter;
1357
1358 assert(high_pri <= numThreads);
1359
1360 if (fetchStatus[high_pri] == Running ||
1361 fetchStatus[high_pri] == IcacheAccessComplete ||
1362 fetchStatus[high_pri] == Idle) {
1363
1364 priorityList.erase(pri_iter);
1365 priorityList.push_back(high_pri);
1366
1367 return high_pri;
1368 }
1369
1370 pri_iter++;
1371 }
1372
1373 return -1;
1374}
1375
1376template<class Impl>
1377int
1378DefaultFetch<Impl>::iqCount()
1379{
1380 std::priority_queue<unsigned> PQ;
1381
1382 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1383
1384 while (threads != (*activeThreads).end()) {
1385 unsigned tid = *threads++;
1386
1387 PQ.push(fromIEW->iewInfo[tid].iqCount);
1388 }
1389
1390 while (!PQ.empty()) {
1391
1392 unsigned high_pri = PQ.top();
1393
1394 if (fetchStatus[high_pri] == Running ||
1395 fetchStatus[high_pri] == IcacheAccessComplete ||
1396 fetchStatus[high_pri] == Idle)
1397 return high_pri;
1398 else
1399 PQ.pop();
1400
1401 }
1402
1403 return -1;
1404}
1405
1406template<class Impl>
1407int
1408DefaultFetch<Impl>::lsqCount()
1409{
1410 std::priority_queue<unsigned> PQ;
1411
1412
1413 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1414
1415 while (threads != (*activeThreads).end()) {
1416 unsigned tid = *threads++;
1417
1418 PQ.push(fromIEW->iewInfo[tid].ldstqCount);
1419 }
1420
1421 while (!PQ.empty()) {
1422
1423 unsigned high_pri = PQ.top();
1424
1425 if (fetchStatus[high_pri] == Running ||
1426 fetchStatus[high_pri] == IcacheAccessComplete ||
1427 fetchStatus[high_pri] == Idle)
1428 return high_pri;
1429 else
1430 PQ.pop();
1431
1432 }
1433
1434 return -1;
1435}
1436
1437template<class Impl>
1438int
1439DefaultFetch<Impl>::branchCount()
1440{
1441 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1442 panic("Branch Count Fetch policy unimplemented\n");
1443 return *threads;
1444}