fetch_impl.hh (10020:2f33cb012383) fetch_impl.hh (10023:91faf6649de0)
1/*
2 * Copyright (c) 2010-2013 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 * Korey Sewell
42 */
43
44#ifndef __CPU_O3_FETCH_IMPL_HH__
45#define __CPU_O3_FETCH_IMPL_HH__
46
47#include <algorithm>
48#include <cstring>
49#include <list>
50#include <map>
51#include <queue>
52
53#include "arch/isa_traits.hh"
54#include "arch/tlb.hh"
55#include "arch/utility.hh"
56#include "arch/vtophys.hh"
57#include "base/types.hh"
58#include "config/the_isa.hh"
59#include "cpu/base.hh"
60//#include "cpu/checker/cpu.hh"
61#include "cpu/o3/fetch.hh"
62#include "cpu/exetrace.hh"
63#include "debug/Activity.hh"
64#include "debug/Drain.hh"
65#include "debug/Fetch.hh"
66#include "debug/O3PipeView.hh"
67#include "mem/packet.hh"
68#include "params/DerivO3CPU.hh"
69#include "sim/byteswap.hh"
70#include "sim/core.hh"
71#include "sim/eventq.hh"
72#include "sim/full_system.hh"
73#include "sim/system.hh"
74
75using namespace std;
76
77template<class Impl>
78DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
79 : cpu(_cpu),
80 decodeToFetchDelay(params->decodeToFetchDelay),
81 renameToFetchDelay(params->renameToFetchDelay),
82 iewToFetchDelay(params->iewToFetchDelay),
83 commitToFetchDelay(params->commitToFetchDelay),
84 fetchWidth(params->fetchWidth),
85 retryPkt(NULL),
86 retryTid(InvalidThreadID),
87 cacheBlkSize(cpu->cacheLineSize()),
88 fetchBufferSize(params->fetchBufferSize),
89 fetchBufferMask(fetchBufferSize - 1),
90 numThreads(params->numThreads),
91 numFetchingThreads(params->smtNumFetchingThreads),
92 finishTranslationEvent(this)
93{
94 if (numThreads > Impl::MaxThreads)
95 fatal("numThreads (%d) is larger than compiled limit (%d),\n"
96 "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
97 numThreads, static_cast<int>(Impl::MaxThreads));
98 if (fetchWidth > Impl::MaxWidth)
99 fatal("fetchWidth (%d) is larger than compiled limit (%d),\n"
100 "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
101 fetchWidth, static_cast<int>(Impl::MaxWidth));
102 if (fetchBufferSize > cacheBlkSize)
103 fatal("fetch buffer size (%u bytes) is greater than the cache "
104 "block size (%u bytes)\n", fetchBufferSize, cacheBlkSize);
105 if (cacheBlkSize % fetchBufferSize)
106 fatal("cache block (%u bytes) is not a multiple of the "
107 "fetch buffer (%u bytes)\n", cacheBlkSize, fetchBufferSize);
108
109 std::string policy = params->smtFetchPolicy;
110
111 // Convert string to lowercase
112 std::transform(policy.begin(), policy.end(), policy.begin(),
113 (int(*)(int)) tolower);
114
115 // Figure out fetch policy
116 if (policy == "singlethread") {
117 fetchPolicy = SingleThread;
118 if (numThreads > 1)
119 panic("Invalid Fetch Policy for a SMT workload.");
120 } else if (policy == "roundrobin") {
121 fetchPolicy = RoundRobin;
122 DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
123 } else if (policy == "branch") {
124 fetchPolicy = Branch;
125 DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
126 } else if (policy == "iqcount") {
127 fetchPolicy = IQ;
128 DPRINTF(Fetch, "Fetch policy set to IQ count\n");
129 } else if (policy == "lsqcount") {
130 fetchPolicy = LSQ;
131 DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
132 } else {
133 fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
134 " RoundRobin,LSQcount,IQcount}\n");
135 }
136
137 // Get the size of an instruction.
138 instSize = sizeof(TheISA::MachInst);
139
140 for (int i = 0; i < Impl::MaxThreads; i++) {
141 decoder[i] = NULL;
142 fetchBuffer[i] = NULL;
143 fetchBufferPC[i] = 0;
144 fetchBufferValid[i] = false;
145 }
146
147 branchPred = params->branchPred;
148
149 for (ThreadID tid = 0; tid < numThreads; tid++) {
150 decoder[tid] = new TheISA::Decoder;
151 // Create space to buffer the cache line data,
152 // which may not hold the entire cache line.
153 fetchBuffer[tid] = new uint8_t[fetchBufferSize];
154 }
155}
156
157template <class Impl>
158std::string
159DefaultFetch<Impl>::name() const
160{
161 return cpu->name() + ".fetch";
162}
163
164template <class Impl>
165void
1/*
2 * Copyright (c) 2010-2013 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 * Korey Sewell
42 */
43
44#ifndef __CPU_O3_FETCH_IMPL_HH__
45#define __CPU_O3_FETCH_IMPL_HH__
46
47#include <algorithm>
48#include <cstring>
49#include <list>
50#include <map>
51#include <queue>
52
53#include "arch/isa_traits.hh"
54#include "arch/tlb.hh"
55#include "arch/utility.hh"
56#include "arch/vtophys.hh"
57#include "base/types.hh"
58#include "config/the_isa.hh"
59#include "cpu/base.hh"
60//#include "cpu/checker/cpu.hh"
61#include "cpu/o3/fetch.hh"
62#include "cpu/exetrace.hh"
63#include "debug/Activity.hh"
64#include "debug/Drain.hh"
65#include "debug/Fetch.hh"
66#include "debug/O3PipeView.hh"
67#include "mem/packet.hh"
68#include "params/DerivO3CPU.hh"
69#include "sim/byteswap.hh"
70#include "sim/core.hh"
71#include "sim/eventq.hh"
72#include "sim/full_system.hh"
73#include "sim/system.hh"
74
75using namespace std;
76
77template<class Impl>
78DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
79 : cpu(_cpu),
80 decodeToFetchDelay(params->decodeToFetchDelay),
81 renameToFetchDelay(params->renameToFetchDelay),
82 iewToFetchDelay(params->iewToFetchDelay),
83 commitToFetchDelay(params->commitToFetchDelay),
84 fetchWidth(params->fetchWidth),
85 retryPkt(NULL),
86 retryTid(InvalidThreadID),
87 cacheBlkSize(cpu->cacheLineSize()),
88 fetchBufferSize(params->fetchBufferSize),
89 fetchBufferMask(fetchBufferSize - 1),
90 numThreads(params->numThreads),
91 numFetchingThreads(params->smtNumFetchingThreads),
92 finishTranslationEvent(this)
93{
94 if (numThreads > Impl::MaxThreads)
95 fatal("numThreads (%d) is larger than compiled limit (%d),\n"
96 "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
97 numThreads, static_cast<int>(Impl::MaxThreads));
98 if (fetchWidth > Impl::MaxWidth)
99 fatal("fetchWidth (%d) is larger than compiled limit (%d),\n"
100 "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
101 fetchWidth, static_cast<int>(Impl::MaxWidth));
102 if (fetchBufferSize > cacheBlkSize)
103 fatal("fetch buffer size (%u bytes) is greater than the cache "
104 "block size (%u bytes)\n", fetchBufferSize, cacheBlkSize);
105 if (cacheBlkSize % fetchBufferSize)
106 fatal("cache block (%u bytes) is not a multiple of the "
107 "fetch buffer (%u bytes)\n", cacheBlkSize, fetchBufferSize);
108
109 std::string policy = params->smtFetchPolicy;
110
111 // Convert string to lowercase
112 std::transform(policy.begin(), policy.end(), policy.begin(),
113 (int(*)(int)) tolower);
114
115 // Figure out fetch policy
116 if (policy == "singlethread") {
117 fetchPolicy = SingleThread;
118 if (numThreads > 1)
119 panic("Invalid Fetch Policy for a SMT workload.");
120 } else if (policy == "roundrobin") {
121 fetchPolicy = RoundRobin;
122 DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
123 } else if (policy == "branch") {
124 fetchPolicy = Branch;
125 DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
126 } else if (policy == "iqcount") {
127 fetchPolicy = IQ;
128 DPRINTF(Fetch, "Fetch policy set to IQ count\n");
129 } else if (policy == "lsqcount") {
130 fetchPolicy = LSQ;
131 DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
132 } else {
133 fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
134 " RoundRobin,LSQcount,IQcount}\n");
135 }
136
137 // Get the size of an instruction.
138 instSize = sizeof(TheISA::MachInst);
139
140 for (int i = 0; i < Impl::MaxThreads; i++) {
141 decoder[i] = NULL;
142 fetchBuffer[i] = NULL;
143 fetchBufferPC[i] = 0;
144 fetchBufferValid[i] = false;
145 }
146
147 branchPred = params->branchPred;
148
149 for (ThreadID tid = 0; tid < numThreads; tid++) {
150 decoder[tid] = new TheISA::Decoder;
151 // Create space to buffer the cache line data,
152 // which may not hold the entire cache line.
153 fetchBuffer[tid] = new uint8_t[fetchBufferSize];
154 }
155}
156
157template <class Impl>
158std::string
159DefaultFetch<Impl>::name() const
160{
161 return cpu->name() + ".fetch";
162}
163
164template <class Impl>
165void
166DefaultFetch<Impl>::regProbePoints()
167{
168 ppFetch = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Fetch");
169}
170
171template <class Impl>
172void
166DefaultFetch<Impl>::regStats()
167{
168 icacheStallCycles
169 .name(name() + ".icacheStallCycles")
170 .desc("Number of cycles fetch is stalled on an Icache miss")
171 .prereq(icacheStallCycles);
172
173 fetchedInsts
174 .name(name() + ".Insts")
175 .desc("Number of instructions fetch has processed")
176 .prereq(fetchedInsts);
177
178 fetchedBranches
179 .name(name() + ".Branches")
180 .desc("Number of branches that fetch encountered")
181 .prereq(fetchedBranches);
182
183 predictedBranches
184 .name(name() + ".predictedBranches")
185 .desc("Number of branches that fetch has predicted taken")
186 .prereq(predictedBranches);
187
188 fetchCycles
189 .name(name() + ".Cycles")
190 .desc("Number of cycles fetch has run and was not squashing or"
191 " blocked")
192 .prereq(fetchCycles);
193
194 fetchSquashCycles
195 .name(name() + ".SquashCycles")
196 .desc("Number of cycles fetch has spent squashing")
197 .prereq(fetchSquashCycles);
198
199 fetchTlbCycles
200 .name(name() + ".TlbCycles")
201 .desc("Number of cycles fetch has spent waiting for tlb")
202 .prereq(fetchTlbCycles);
203
204 fetchIdleCycles
205 .name(name() + ".IdleCycles")
206 .desc("Number of cycles fetch was idle")
207 .prereq(fetchIdleCycles);
208
209 fetchBlockedCycles
210 .name(name() + ".BlockedCycles")
211 .desc("Number of cycles fetch has spent blocked")
212 .prereq(fetchBlockedCycles);
213
214 fetchedCacheLines
215 .name(name() + ".CacheLines")
216 .desc("Number of cache lines fetched")
217 .prereq(fetchedCacheLines);
218
219 fetchMiscStallCycles
220 .name(name() + ".MiscStallCycles")
221 .desc("Number of cycles fetch has spent waiting on interrupts, or "
222 "bad addresses, or out of MSHRs")
223 .prereq(fetchMiscStallCycles);
224
225 fetchPendingDrainCycles
226 .name(name() + ".PendingDrainCycles")
227 .desc("Number of cycles fetch has spent waiting on pipes to drain")
228 .prereq(fetchPendingDrainCycles);
229
230 fetchNoActiveThreadStallCycles
231 .name(name() + ".NoActiveThreadStallCycles")
232 .desc("Number of stall cycles due to no active thread to fetch from")
233 .prereq(fetchNoActiveThreadStallCycles);
234
235 fetchPendingTrapStallCycles
236 .name(name() + ".PendingTrapStallCycles")
237 .desc("Number of stall cycles due to pending traps")
238 .prereq(fetchPendingTrapStallCycles);
239
240 fetchPendingQuiesceStallCycles
241 .name(name() + ".PendingQuiesceStallCycles")
242 .desc("Number of stall cycles due to pending quiesce instructions")
243 .prereq(fetchPendingQuiesceStallCycles);
244
245 fetchIcacheWaitRetryStallCycles
246 .name(name() + ".IcacheWaitRetryStallCycles")
247 .desc("Number of stall cycles due to full MSHR")
248 .prereq(fetchIcacheWaitRetryStallCycles);
249
250 fetchIcacheSquashes
251 .name(name() + ".IcacheSquashes")
252 .desc("Number of outstanding Icache misses that were squashed")
253 .prereq(fetchIcacheSquashes);
254
255 fetchTlbSquashes
256 .name(name() + ".ItlbSquashes")
257 .desc("Number of outstanding ITLB misses that were squashed")
258 .prereq(fetchTlbSquashes);
259
260 fetchNisnDist
261 .init(/* base value */ 0,
262 /* last value */ fetchWidth,
263 /* bucket size */ 1)
264 .name(name() + ".rateDist")
265 .desc("Number of instructions fetched each cycle (Total)")
266 .flags(Stats::pdf);
267
268 idleRate
269 .name(name() + ".idleRate")
270 .desc("Percent of cycles fetch was idle")
271 .prereq(idleRate);
272 idleRate = fetchIdleCycles * 100 / cpu->numCycles;
273
274 branchRate
275 .name(name() + ".branchRate")
276 .desc("Number of branch fetches per cycle")
277 .flags(Stats::total);
278 branchRate = fetchedBranches / cpu->numCycles;
279
280 fetchRate
281 .name(name() + ".rate")
282 .desc("Number of inst fetches per cycle")
283 .flags(Stats::total);
284 fetchRate = fetchedInsts / cpu->numCycles;
285}
286
287template<class Impl>
288void
289DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
290{
291 timeBuffer = time_buffer;
292
293 // Create wires to get information from proper places in time buffer.
294 fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
295 fromRename = timeBuffer->getWire(-renameToFetchDelay);
296 fromIEW = timeBuffer->getWire(-iewToFetchDelay);
297 fromCommit = timeBuffer->getWire(-commitToFetchDelay);
298}
299
300template<class Impl>
301void
302DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
303{
304 activeThreads = at_ptr;
305}
306
307template<class Impl>
308void
309DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
310{
311 fetchQueue = fq_ptr;
312
313 // Create wire to write information to proper place in fetch queue.
314 toDecode = fetchQueue->getWire(0);
315}
316
317template<class Impl>
318void
319DefaultFetch<Impl>::startupStage()
320{
321 assert(priorityList.empty());
322 resetStage();
323
324 // Fetch needs to start fetching instructions at the very beginning,
325 // so it must start up in active state.
326 switchToActive();
327}
328
329template<class Impl>
330void
331DefaultFetch<Impl>::resetStage()
332{
333 numInst = 0;
334 interruptPending = false;
335 cacheBlocked = false;
336
337 priorityList.clear();
338
339 // Setup PC and nextPC with initial state.
340 for (ThreadID tid = 0; tid < numThreads; ++tid) {
341 fetchStatus[tid] = Running;
342 pc[tid] = cpu->pcState(tid);
343 fetchOffset[tid] = 0;
344 macroop[tid] = NULL;
345
346 delayedCommit[tid] = false;
347 memReq[tid] = NULL;
348
349 stalls[tid].decode = false;
350 stalls[tid].rename = false;
351 stalls[tid].iew = false;
352 stalls[tid].commit = false;
353 stalls[tid].drain = false;
354
355 fetchBufferPC[tid] = 0;
356 fetchBufferValid[tid] = false;
357
358 priorityList.push_back(tid);
359 }
360
361 wroteToTimeBuffer = false;
362 _status = Inactive;
363}
364
365template<class Impl>
366void
367DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
368{
369 ThreadID tid = pkt->req->threadId();
370
371 DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n", tid);
372 assert(!cpu->switchedOut());
373
374 // Only change the status if it's still waiting on the icache access
375 // to return.
376 if (fetchStatus[tid] != IcacheWaitResponse ||
377 pkt->req != memReq[tid]) {
378 ++fetchIcacheSquashes;
379 delete pkt->req;
380 delete pkt;
381 return;
382 }
383
384 memcpy(fetchBuffer[tid], pkt->getPtr<uint8_t>(), fetchBufferSize);
385 fetchBufferValid[tid] = true;
386
387 // Wake up the CPU (if it went to sleep and was waiting on
388 // this completion event).
389 cpu->wakeCPU();
390
391 DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
392 tid);
393
394 switchToActive();
395
396 // Only switch to IcacheAccessComplete if we're not stalled as well.
397 if (checkStall(tid)) {
398 fetchStatus[tid] = Blocked;
399 } else {
400 fetchStatus[tid] = IcacheAccessComplete;
401 }
402
403 pkt->req->setAccessLatency();
173DefaultFetch<Impl>::regStats()
174{
175 icacheStallCycles
176 .name(name() + ".icacheStallCycles")
177 .desc("Number of cycles fetch is stalled on an Icache miss")
178 .prereq(icacheStallCycles);
179
180 fetchedInsts
181 .name(name() + ".Insts")
182 .desc("Number of instructions fetch has processed")
183 .prereq(fetchedInsts);
184
185 fetchedBranches
186 .name(name() + ".Branches")
187 .desc("Number of branches that fetch encountered")
188 .prereq(fetchedBranches);
189
190 predictedBranches
191 .name(name() + ".predictedBranches")
192 .desc("Number of branches that fetch has predicted taken")
193 .prereq(predictedBranches);
194
195 fetchCycles
196 .name(name() + ".Cycles")
197 .desc("Number of cycles fetch has run and was not squashing or"
198 " blocked")
199 .prereq(fetchCycles);
200
201 fetchSquashCycles
202 .name(name() + ".SquashCycles")
203 .desc("Number of cycles fetch has spent squashing")
204 .prereq(fetchSquashCycles);
205
206 fetchTlbCycles
207 .name(name() + ".TlbCycles")
208 .desc("Number of cycles fetch has spent waiting for tlb")
209 .prereq(fetchTlbCycles);
210
211 fetchIdleCycles
212 .name(name() + ".IdleCycles")
213 .desc("Number of cycles fetch was idle")
214 .prereq(fetchIdleCycles);
215
216 fetchBlockedCycles
217 .name(name() + ".BlockedCycles")
218 .desc("Number of cycles fetch has spent blocked")
219 .prereq(fetchBlockedCycles);
220
221 fetchedCacheLines
222 .name(name() + ".CacheLines")
223 .desc("Number of cache lines fetched")
224 .prereq(fetchedCacheLines);
225
226 fetchMiscStallCycles
227 .name(name() + ".MiscStallCycles")
228 .desc("Number of cycles fetch has spent waiting on interrupts, or "
229 "bad addresses, or out of MSHRs")
230 .prereq(fetchMiscStallCycles);
231
232 fetchPendingDrainCycles
233 .name(name() + ".PendingDrainCycles")
234 .desc("Number of cycles fetch has spent waiting on pipes to drain")
235 .prereq(fetchPendingDrainCycles);
236
237 fetchNoActiveThreadStallCycles
238 .name(name() + ".NoActiveThreadStallCycles")
239 .desc("Number of stall cycles due to no active thread to fetch from")
240 .prereq(fetchNoActiveThreadStallCycles);
241
242 fetchPendingTrapStallCycles
243 .name(name() + ".PendingTrapStallCycles")
244 .desc("Number of stall cycles due to pending traps")
245 .prereq(fetchPendingTrapStallCycles);
246
247 fetchPendingQuiesceStallCycles
248 .name(name() + ".PendingQuiesceStallCycles")
249 .desc("Number of stall cycles due to pending quiesce instructions")
250 .prereq(fetchPendingQuiesceStallCycles);
251
252 fetchIcacheWaitRetryStallCycles
253 .name(name() + ".IcacheWaitRetryStallCycles")
254 .desc("Number of stall cycles due to full MSHR")
255 .prereq(fetchIcacheWaitRetryStallCycles);
256
257 fetchIcacheSquashes
258 .name(name() + ".IcacheSquashes")
259 .desc("Number of outstanding Icache misses that were squashed")
260 .prereq(fetchIcacheSquashes);
261
262 fetchTlbSquashes
263 .name(name() + ".ItlbSquashes")
264 .desc("Number of outstanding ITLB misses that were squashed")
265 .prereq(fetchTlbSquashes);
266
267 fetchNisnDist
268 .init(/* base value */ 0,
269 /* last value */ fetchWidth,
270 /* bucket size */ 1)
271 .name(name() + ".rateDist")
272 .desc("Number of instructions fetched each cycle (Total)")
273 .flags(Stats::pdf);
274
275 idleRate
276 .name(name() + ".idleRate")
277 .desc("Percent of cycles fetch was idle")
278 .prereq(idleRate);
279 idleRate = fetchIdleCycles * 100 / cpu->numCycles;
280
281 branchRate
282 .name(name() + ".branchRate")
283 .desc("Number of branch fetches per cycle")
284 .flags(Stats::total);
285 branchRate = fetchedBranches / cpu->numCycles;
286
287 fetchRate
288 .name(name() + ".rate")
289 .desc("Number of inst fetches per cycle")
290 .flags(Stats::total);
291 fetchRate = fetchedInsts / cpu->numCycles;
292}
293
294template<class Impl>
295void
296DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
297{
298 timeBuffer = time_buffer;
299
300 // Create wires to get information from proper places in time buffer.
301 fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
302 fromRename = timeBuffer->getWire(-renameToFetchDelay);
303 fromIEW = timeBuffer->getWire(-iewToFetchDelay);
304 fromCommit = timeBuffer->getWire(-commitToFetchDelay);
305}
306
307template<class Impl>
308void
309DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
310{
311 activeThreads = at_ptr;
312}
313
314template<class Impl>
315void
316DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
317{
318 fetchQueue = fq_ptr;
319
320 // Create wire to write information to proper place in fetch queue.
321 toDecode = fetchQueue->getWire(0);
322}
323
324template<class Impl>
325void
326DefaultFetch<Impl>::startupStage()
327{
328 assert(priorityList.empty());
329 resetStage();
330
331 // Fetch needs to start fetching instructions at the very beginning,
332 // so it must start up in active state.
333 switchToActive();
334}
335
336template<class Impl>
337void
338DefaultFetch<Impl>::resetStage()
339{
340 numInst = 0;
341 interruptPending = false;
342 cacheBlocked = false;
343
344 priorityList.clear();
345
346 // Setup PC and nextPC with initial state.
347 for (ThreadID tid = 0; tid < numThreads; ++tid) {
348 fetchStatus[tid] = Running;
349 pc[tid] = cpu->pcState(tid);
350 fetchOffset[tid] = 0;
351 macroop[tid] = NULL;
352
353 delayedCommit[tid] = false;
354 memReq[tid] = NULL;
355
356 stalls[tid].decode = false;
357 stalls[tid].rename = false;
358 stalls[tid].iew = false;
359 stalls[tid].commit = false;
360 stalls[tid].drain = false;
361
362 fetchBufferPC[tid] = 0;
363 fetchBufferValid[tid] = false;
364
365 priorityList.push_back(tid);
366 }
367
368 wroteToTimeBuffer = false;
369 _status = Inactive;
370}
371
372template<class Impl>
373void
374DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
375{
376 ThreadID tid = pkt->req->threadId();
377
378 DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n", tid);
379 assert(!cpu->switchedOut());
380
381 // Only change the status if it's still waiting on the icache access
382 // to return.
383 if (fetchStatus[tid] != IcacheWaitResponse ||
384 pkt->req != memReq[tid]) {
385 ++fetchIcacheSquashes;
386 delete pkt->req;
387 delete pkt;
388 return;
389 }
390
391 memcpy(fetchBuffer[tid], pkt->getPtr<uint8_t>(), fetchBufferSize);
392 fetchBufferValid[tid] = true;
393
394 // Wake up the CPU (if it went to sleep and was waiting on
395 // this completion event).
396 cpu->wakeCPU();
397
398 DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
399 tid);
400
401 switchToActive();
402
403 // Only switch to IcacheAccessComplete if we're not stalled as well.
404 if (checkStall(tid)) {
405 fetchStatus[tid] = Blocked;
406 } else {
407 fetchStatus[tid] = IcacheAccessComplete;
408 }
409
410 pkt->req->setAccessLatency();
411 cpu->ppInstAccessComplete->notify(pkt);
404 // Reset the mem req to NULL.
405 delete pkt->req;
406 delete pkt;
407 memReq[tid] = NULL;
408}
409
410template <class Impl>
411void
412DefaultFetch<Impl>::drainResume()
413{
414 for (ThreadID i = 0; i < Impl::MaxThreads; ++i)
415 stalls[i].drain = false;
416}
417
418template <class Impl>
419void
420DefaultFetch<Impl>::drainSanityCheck() const
421{
422 assert(isDrained());
423 assert(retryPkt == NULL);
424 assert(retryTid == InvalidThreadID);
425 assert(cacheBlocked == false);
426 assert(interruptPending == false);
427
428 for (ThreadID i = 0; i < numThreads; ++i) {
429 assert(!memReq[i]);
430 assert(!stalls[i].decode);
431 assert(!stalls[i].rename);
432 assert(!stalls[i].iew);
433 assert(!stalls[i].commit);
434 assert(fetchStatus[i] == Idle || stalls[i].drain);
435 }
436
437 branchPred->drainSanityCheck();
438}
439
440template <class Impl>
441bool
442DefaultFetch<Impl>::isDrained() const
443{
444 /* Make sure that threads are either idle of that the commit stage
445 * has signaled that draining has completed by setting the drain
446 * stall flag. This effectively forces the pipeline to be disabled
447 * until the whole system is drained (simulation may continue to
448 * drain other components).
449 */
450 for (ThreadID i = 0; i < numThreads; ++i) {
451 if (!(fetchStatus[i] == Idle ||
452 (fetchStatus[i] == Blocked && stalls[i].drain)))
453 return false;
454 }
455
456 /* The pipeline might start up again in the middle of the drain
457 * cycle if the finish translation event is scheduled, so make
458 * sure that's not the case.
459 */
460 return !finishTranslationEvent.scheduled();
461}
462
463template <class Impl>
464void
465DefaultFetch<Impl>::takeOverFrom()
466{
467 assert(cpu->getInstPort().isConnected());
468 resetStage();
469
470}
471
472template <class Impl>
473void
474DefaultFetch<Impl>::drainStall(ThreadID tid)
475{
476 assert(cpu->isDraining());
477 assert(!stalls[tid].drain);
478 DPRINTF(Drain, "%i: Thread drained.\n", tid);
479 stalls[tid].drain = true;
480}
481
482template <class Impl>
483void
484DefaultFetch<Impl>::wakeFromQuiesce()
485{
486 DPRINTF(Fetch, "Waking up from quiesce\n");
487 // Hopefully this is safe
488 // @todo: Allow other threads to wake from quiesce.
489 fetchStatus[0] = Running;
490}
491
492template <class Impl>
493inline void
494DefaultFetch<Impl>::switchToActive()
495{
496 if (_status == Inactive) {
497 DPRINTF(Activity, "Activating stage.\n");
498
499 cpu->activateStage(O3CPU::FetchIdx);
500
501 _status = Active;
502 }
503}
504
505template <class Impl>
506inline void
507DefaultFetch<Impl>::switchToInactive()
508{
509 if (_status == Active) {
510 DPRINTF(Activity, "Deactivating stage.\n");
511
512 cpu->deactivateStage(O3CPU::FetchIdx);
513
514 _status = Inactive;
515 }
516}
517
518template <class Impl>
519bool
520DefaultFetch<Impl>::lookupAndUpdateNextPC(
521 DynInstPtr &inst, TheISA::PCState &nextPC)
522{
523 // Do branch prediction check here.
524 // A bit of a misnomer...next_PC is actually the current PC until
525 // this function updates it.
526 bool predict_taken;
527
528 if (!inst->isControl()) {
529 TheISA::advancePC(nextPC, inst->staticInst);
530 inst->setPredTarg(nextPC);
531 inst->setPredTaken(false);
532 return false;
533 }
534
535 ThreadID tid = inst->threadNumber;
536 predict_taken = branchPred->predict(inst->staticInst, inst->seqNum,
537 nextPC, tid);
538
539 if (predict_taken) {
540 DPRINTF(Fetch, "[tid:%i]: [sn:%i]: Branch predicted to be taken to %s.\n",
541 tid, inst->seqNum, nextPC);
542 } else {
543 DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n",
544 tid, inst->seqNum);
545 }
546
547 DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n",
548 tid, inst->seqNum, nextPC);
549 inst->setPredTarg(nextPC);
550 inst->setPredTaken(predict_taken);
551
552 ++fetchedBranches;
553
554 if (predict_taken) {
555 ++predictedBranches;
556 }
557
558 return predict_taken;
559}
560
561template <class Impl>
562bool
563DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, ThreadID tid, Addr pc)
564{
565 Fault fault = NoFault;
566
567 assert(!cpu->switchedOut());
568
569 // @todo: not sure if these should block translation.
570 //AlphaDep
571 if (cacheBlocked) {
572 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
573 tid);
574 return false;
575 } else if (checkInterrupt(pc) && !delayedCommit[tid]) {
576 // Hold off fetch from getting new instructions when:
577 // Cache is blocked, or
578 // while an interrupt is pending and we're not in PAL mode, or
579 // fetch is switched out.
580 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
581 tid);
582 return false;
583 }
584
585 // Align the fetch address to the start of a fetch buffer segment.
586 Addr fetchBufferBlockPC = fetchBufferAlignPC(vaddr);
587
588 DPRINTF(Fetch, "[tid:%i] Fetching cache line %#x for addr %#x\n",
589 tid, fetchBufferBlockPC, vaddr);
590
591 // Setup the memReq to do a read of the first instruction's address.
592 // Set the appropriate read size and flags as well.
593 // Build request here.
594 RequestPtr mem_req =
595 new Request(tid, fetchBufferBlockPC, fetchBufferSize,
596 Request::INST_FETCH, cpu->instMasterId(), pc,
597 cpu->thread[tid]->contextId(), tid);
598
599 memReq[tid] = mem_req;
600
601 // Initiate translation of the icache block
602 fetchStatus[tid] = ItlbWait;
603 FetchTranslation *trans = new FetchTranslation(this);
604 cpu->itb->translateTiming(mem_req, cpu->thread[tid]->getTC(),
605 trans, BaseTLB::Execute);
606 return true;
607}
608
609template <class Impl>
610void
611DefaultFetch<Impl>::finishTranslation(Fault fault, RequestPtr mem_req)
612{
613 ThreadID tid = mem_req->threadId();
614 Addr fetchBufferBlockPC = mem_req->getVaddr();
615
616 assert(!cpu->switchedOut());
617
618 // Wake up CPU if it was idle
619 cpu->wakeCPU();
620
621 if (fetchStatus[tid] != ItlbWait || mem_req != memReq[tid] ||
622 mem_req->getVaddr() != memReq[tid]->getVaddr()) {
623 DPRINTF(Fetch, "[tid:%i] Ignoring itlb completed after squash\n",
624 tid);
625 ++fetchTlbSquashes;
626 delete mem_req;
627 return;
628 }
629
630
631 // If translation was successful, attempt to read the icache block.
632 if (fault == NoFault) {
633 // Check that we're not going off into random memory
634 // If we have, just wait around for commit to squash something and put
635 // us on the right track
636 if (!cpu->system->isMemAddr(mem_req->getPaddr())) {
637 warn("Address %#x is outside of physical memory, stopping fetch\n",
638 mem_req->getPaddr());
639 fetchStatus[tid] = NoGoodAddr;
640 delete mem_req;
641 memReq[tid] = NULL;
642 return;
643 }
644
645 // Build packet here.
646 PacketPtr data_pkt = new Packet(mem_req, MemCmd::ReadReq);
647 data_pkt->dataDynamicArray(new uint8_t[fetchBufferSize]);
648
649 fetchBufferPC[tid] = fetchBufferBlockPC;
650 fetchBufferValid[tid] = false;
651 DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
652
653 fetchedCacheLines++;
654
655 // Access the cache.
656 if (!cpu->getInstPort().sendTimingReq(data_pkt)) {
657 assert(retryPkt == NULL);
658 assert(retryTid == InvalidThreadID);
659 DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
660
661 fetchStatus[tid] = IcacheWaitRetry;
662 retryPkt = data_pkt;
663 retryTid = tid;
664 cacheBlocked = true;
665 } else {
666 DPRINTF(Fetch, "[tid:%i]: Doing Icache access.\n", tid);
667 DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
668 "response.\n", tid);
412 // Reset the mem req to NULL.
413 delete pkt->req;
414 delete pkt;
415 memReq[tid] = NULL;
416}
417
418template <class Impl>
419void
420DefaultFetch<Impl>::drainResume()
421{
422 for (ThreadID i = 0; i < Impl::MaxThreads; ++i)
423 stalls[i].drain = false;
424}
425
426template <class Impl>
427void
428DefaultFetch<Impl>::drainSanityCheck() const
429{
430 assert(isDrained());
431 assert(retryPkt == NULL);
432 assert(retryTid == InvalidThreadID);
433 assert(cacheBlocked == false);
434 assert(interruptPending == false);
435
436 for (ThreadID i = 0; i < numThreads; ++i) {
437 assert(!memReq[i]);
438 assert(!stalls[i].decode);
439 assert(!stalls[i].rename);
440 assert(!stalls[i].iew);
441 assert(!stalls[i].commit);
442 assert(fetchStatus[i] == Idle || stalls[i].drain);
443 }
444
445 branchPred->drainSanityCheck();
446}
447
448template <class Impl>
449bool
450DefaultFetch<Impl>::isDrained() const
451{
452 /* Make sure that threads are either idle of that the commit stage
453 * has signaled that draining has completed by setting the drain
454 * stall flag. This effectively forces the pipeline to be disabled
455 * until the whole system is drained (simulation may continue to
456 * drain other components).
457 */
458 for (ThreadID i = 0; i < numThreads; ++i) {
459 if (!(fetchStatus[i] == Idle ||
460 (fetchStatus[i] == Blocked && stalls[i].drain)))
461 return false;
462 }
463
464 /* The pipeline might start up again in the middle of the drain
465 * cycle if the finish translation event is scheduled, so make
466 * sure that's not the case.
467 */
468 return !finishTranslationEvent.scheduled();
469}
470
471template <class Impl>
472void
473DefaultFetch<Impl>::takeOverFrom()
474{
475 assert(cpu->getInstPort().isConnected());
476 resetStage();
477
478}
479
480template <class Impl>
481void
482DefaultFetch<Impl>::drainStall(ThreadID tid)
483{
484 assert(cpu->isDraining());
485 assert(!stalls[tid].drain);
486 DPRINTF(Drain, "%i: Thread drained.\n", tid);
487 stalls[tid].drain = true;
488}
489
490template <class Impl>
491void
492DefaultFetch<Impl>::wakeFromQuiesce()
493{
494 DPRINTF(Fetch, "Waking up from quiesce\n");
495 // Hopefully this is safe
496 // @todo: Allow other threads to wake from quiesce.
497 fetchStatus[0] = Running;
498}
499
500template <class Impl>
501inline void
502DefaultFetch<Impl>::switchToActive()
503{
504 if (_status == Inactive) {
505 DPRINTF(Activity, "Activating stage.\n");
506
507 cpu->activateStage(O3CPU::FetchIdx);
508
509 _status = Active;
510 }
511}
512
513template <class Impl>
514inline void
515DefaultFetch<Impl>::switchToInactive()
516{
517 if (_status == Active) {
518 DPRINTF(Activity, "Deactivating stage.\n");
519
520 cpu->deactivateStage(O3CPU::FetchIdx);
521
522 _status = Inactive;
523 }
524}
525
526template <class Impl>
527bool
528DefaultFetch<Impl>::lookupAndUpdateNextPC(
529 DynInstPtr &inst, TheISA::PCState &nextPC)
530{
531 // Do branch prediction check here.
532 // A bit of a misnomer...next_PC is actually the current PC until
533 // this function updates it.
534 bool predict_taken;
535
536 if (!inst->isControl()) {
537 TheISA::advancePC(nextPC, inst->staticInst);
538 inst->setPredTarg(nextPC);
539 inst->setPredTaken(false);
540 return false;
541 }
542
543 ThreadID tid = inst->threadNumber;
544 predict_taken = branchPred->predict(inst->staticInst, inst->seqNum,
545 nextPC, tid);
546
547 if (predict_taken) {
548 DPRINTF(Fetch, "[tid:%i]: [sn:%i]: Branch predicted to be taken to %s.\n",
549 tid, inst->seqNum, nextPC);
550 } else {
551 DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n",
552 tid, inst->seqNum);
553 }
554
555 DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n",
556 tid, inst->seqNum, nextPC);
557 inst->setPredTarg(nextPC);
558 inst->setPredTaken(predict_taken);
559
560 ++fetchedBranches;
561
562 if (predict_taken) {
563 ++predictedBranches;
564 }
565
566 return predict_taken;
567}
568
569template <class Impl>
570bool
571DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, ThreadID tid, Addr pc)
572{
573 Fault fault = NoFault;
574
575 assert(!cpu->switchedOut());
576
577 // @todo: not sure if these should block translation.
578 //AlphaDep
579 if (cacheBlocked) {
580 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
581 tid);
582 return false;
583 } else if (checkInterrupt(pc) && !delayedCommit[tid]) {
584 // Hold off fetch from getting new instructions when:
585 // Cache is blocked, or
586 // while an interrupt is pending and we're not in PAL mode, or
587 // fetch is switched out.
588 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
589 tid);
590 return false;
591 }
592
593 // Align the fetch address to the start of a fetch buffer segment.
594 Addr fetchBufferBlockPC = fetchBufferAlignPC(vaddr);
595
596 DPRINTF(Fetch, "[tid:%i] Fetching cache line %#x for addr %#x\n",
597 tid, fetchBufferBlockPC, vaddr);
598
599 // Setup the memReq to do a read of the first instruction's address.
600 // Set the appropriate read size and flags as well.
601 // Build request here.
602 RequestPtr mem_req =
603 new Request(tid, fetchBufferBlockPC, fetchBufferSize,
604 Request::INST_FETCH, cpu->instMasterId(), pc,
605 cpu->thread[tid]->contextId(), tid);
606
607 memReq[tid] = mem_req;
608
609 // Initiate translation of the icache block
610 fetchStatus[tid] = ItlbWait;
611 FetchTranslation *trans = new FetchTranslation(this);
612 cpu->itb->translateTiming(mem_req, cpu->thread[tid]->getTC(),
613 trans, BaseTLB::Execute);
614 return true;
615}
616
617template <class Impl>
618void
619DefaultFetch<Impl>::finishTranslation(Fault fault, RequestPtr mem_req)
620{
621 ThreadID tid = mem_req->threadId();
622 Addr fetchBufferBlockPC = mem_req->getVaddr();
623
624 assert(!cpu->switchedOut());
625
626 // Wake up CPU if it was idle
627 cpu->wakeCPU();
628
629 if (fetchStatus[tid] != ItlbWait || mem_req != memReq[tid] ||
630 mem_req->getVaddr() != memReq[tid]->getVaddr()) {
631 DPRINTF(Fetch, "[tid:%i] Ignoring itlb completed after squash\n",
632 tid);
633 ++fetchTlbSquashes;
634 delete mem_req;
635 return;
636 }
637
638
639 // If translation was successful, attempt to read the icache block.
640 if (fault == NoFault) {
641 // Check that we're not going off into random memory
642 // If we have, just wait around for commit to squash something and put
643 // us on the right track
644 if (!cpu->system->isMemAddr(mem_req->getPaddr())) {
645 warn("Address %#x is outside of physical memory, stopping fetch\n",
646 mem_req->getPaddr());
647 fetchStatus[tid] = NoGoodAddr;
648 delete mem_req;
649 memReq[tid] = NULL;
650 return;
651 }
652
653 // Build packet here.
654 PacketPtr data_pkt = new Packet(mem_req, MemCmd::ReadReq);
655 data_pkt->dataDynamicArray(new uint8_t[fetchBufferSize]);
656
657 fetchBufferPC[tid] = fetchBufferBlockPC;
658 fetchBufferValid[tid] = false;
659 DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
660
661 fetchedCacheLines++;
662
663 // Access the cache.
664 if (!cpu->getInstPort().sendTimingReq(data_pkt)) {
665 assert(retryPkt == NULL);
666 assert(retryTid == InvalidThreadID);
667 DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
668
669 fetchStatus[tid] = IcacheWaitRetry;
670 retryPkt = data_pkt;
671 retryTid = tid;
672 cacheBlocked = true;
673 } else {
674 DPRINTF(Fetch, "[tid:%i]: Doing Icache access.\n", tid);
675 DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
676 "response.\n", tid);
669
670 lastIcacheStall[tid] = curTick();
671 fetchStatus[tid] = IcacheWaitResponse;
672 }
673 } else {
674 if (!(numInst < fetchWidth)) {
675 assert(!finishTranslationEvent.scheduled());
676 finishTranslationEvent.setFault(fault);
677 finishTranslationEvent.setReq(mem_req);
678 cpu->schedule(finishTranslationEvent,
679 cpu->clockEdge(Cycles(1)));
680 return;
681 }
682 DPRINTF(Fetch, "[tid:%i] Got back req with addr %#x but expected %#x\n",
683 tid, mem_req->getVaddr(), memReq[tid]->getVaddr());
684 // Translation faulted, icache request won't be sent.
685 delete mem_req;
686 memReq[tid] = NULL;
687
688 // Send the fault to commit. This thread will not do anything
689 // until commit handles the fault. The only other way it can
690 // wake up is if a squash comes along and changes the PC.
691 TheISA::PCState fetchPC = pc[tid];
692
693 DPRINTF(Fetch, "[tid:%i]: Translation faulted, building noop.\n", tid);
694 // We will use a nop in ordier to carry the fault.
695 DynInstPtr instruction = buildInst(tid,
696 decoder[tid]->decode(TheISA::NoopMachInst, fetchPC.instAddr()),
697 NULL, fetchPC, fetchPC, false);
698
699 instruction->setPredTarg(fetchPC);
700 instruction->fault = fault;
701 wroteToTimeBuffer = true;
702
703 DPRINTF(Activity, "Activity this cycle.\n");
704 cpu->activityThisCycle();
705
706 fetchStatus[tid] = TrapPending;
707
708 DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n", tid);
709 DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s.\n",
710 tid, fault->name(), pc[tid]);
711 }
712 _status = updateFetchStatus();
713}
714
715template <class Impl>
716inline void
717DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC,
718 const DynInstPtr squashInst, ThreadID tid)
719{
720 DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n",
721 tid, newPC);
722
723 pc[tid] = newPC;
724 fetchOffset[tid] = 0;
725 if (squashInst && squashInst->pcState().instAddr() == newPC.instAddr())
726 macroop[tid] = squashInst->macroop;
727 else
728 macroop[tid] = NULL;
729 decoder[tid]->reset();
730
731 // Clear the icache miss if it's outstanding.
732 if (fetchStatus[tid] == IcacheWaitResponse) {
733 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
734 tid);
735 memReq[tid] = NULL;
736 } else if (fetchStatus[tid] == ItlbWait) {
737 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding ITLB miss.\n",
738 tid);
739 memReq[tid] = NULL;
740 }
741
742 // Get rid of the retrying packet if it was from this thread.
743 if (retryTid == tid) {
744 assert(cacheBlocked);
745 if (retryPkt) {
746 delete retryPkt->req;
747 delete retryPkt;
748 }
749 retryPkt = NULL;
750 retryTid = InvalidThreadID;
751 }
752
753 fetchStatus[tid] = Squashing;
754
755 // microops are being squashed, it is not known wheather the
756 // youngest non-squashed microop was marked delayed commit
757 // or not. Setting the flag to true ensures that the
758 // interrupts are not handled when they cannot be, though
759 // some opportunities to handle interrupts may be missed.
760 delayedCommit[tid] = true;
761
762 ++fetchSquashCycles;
763}
764
765template<class Impl>
766void
767DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
768 const DynInstPtr squashInst,
769 const InstSeqNum seq_num, ThreadID tid)
770{
771 DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid);
772
773 doSquash(newPC, squashInst, tid);
774
775 // Tell the CPU to remove any instructions that are in flight between
776 // fetch and decode.
777 cpu->removeInstsUntil(seq_num, tid);
778}
779
780template<class Impl>
781bool
782DefaultFetch<Impl>::checkStall(ThreadID tid) const
783{
784 bool ret_val = false;
785
786 if (cpu->contextSwitch) {
787 DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
788 ret_val = true;
789 } else if (stalls[tid].drain) {
790 assert(cpu->isDraining());
791 DPRINTF(Fetch,"[tid:%i]: Drain stall detected.\n",tid);
792 ret_val = true;
793 } else if (stalls[tid].decode) {
794 DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
795 ret_val = true;
796 } else if (stalls[tid].rename) {
797 DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
798 ret_val = true;
799 } else if (stalls[tid].iew) {
800 DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
801 ret_val = true;
802 } else if (stalls[tid].commit) {
803 DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
804 ret_val = true;
805 }
806
807 return ret_val;
808}
809
810template<class Impl>
811typename DefaultFetch<Impl>::FetchStatus
812DefaultFetch<Impl>::updateFetchStatus()
813{
814 //Check Running
815 list<ThreadID>::iterator threads = activeThreads->begin();
816 list<ThreadID>::iterator end = activeThreads->end();
817
818 while (threads != end) {
819 ThreadID tid = *threads++;
820
821 if (fetchStatus[tid] == Running ||
822 fetchStatus[tid] == Squashing ||
823 fetchStatus[tid] == IcacheAccessComplete) {
824
825 if (_status == Inactive) {
826 DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
827
828 if (fetchStatus[tid] == IcacheAccessComplete) {
829 DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
830 "completion\n",tid);
831 }
832
833 cpu->activateStage(O3CPU::FetchIdx);
834 }
835
836 return Active;
837 }
838 }
839
840 // Stage is switching from active to inactive, notify CPU of it.
841 if (_status == Active) {
842 DPRINTF(Activity, "Deactivating stage.\n");
843
844 cpu->deactivateStage(O3CPU::FetchIdx);
845 }
846
847 return Inactive;
848}
849
850template <class Impl>
851void
852DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
853 const InstSeqNum seq_num, DynInstPtr squashInst,
854 ThreadID tid)
855{
856 DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid);
857
858 doSquash(newPC, squashInst, tid);
859
860 // Tell the CPU to remove any instructions that are not in the ROB.
861 cpu->removeInstsNotInROB(tid);
862}
863
864template <class Impl>
865void
866DefaultFetch<Impl>::tick()
867{
868 list<ThreadID>::iterator threads = activeThreads->begin();
869 list<ThreadID>::iterator end = activeThreads->end();
870 bool status_change = false;
871
872 wroteToTimeBuffer = false;
873
874 for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
875 issuePipelinedIfetch[i] = false;
876 }
877
878 while (threads != end) {
879 ThreadID tid = *threads++;
880
881 // Check the signals for each thread to determine the proper status
882 // for each thread.
883 bool updated_status = checkSignalsAndUpdate(tid);
884 status_change = status_change || updated_status;
885 }
886
887 DPRINTF(Fetch, "Running stage.\n");
888
889 if (FullSystem) {
890 if (fromCommit->commitInfo[0].interruptPending) {
891 interruptPending = true;
892 }
893
894 if (fromCommit->commitInfo[0].clearInterrupt) {
895 interruptPending = false;
896 }
897 }
898
899 for (threadFetched = 0; threadFetched < numFetchingThreads;
900 threadFetched++) {
901 // Fetch each of the actively fetching threads.
902 fetch(status_change);
903 }
904
905 // Record number of instructions fetched this cycle for distribution.
906 fetchNisnDist.sample(numInst);
907
908 if (status_change) {
909 // Change the fetch stage status if there was a status change.
910 _status = updateFetchStatus();
911 }
912
913 // If there was activity this cycle, inform the CPU of it.
914 if (wroteToTimeBuffer || cpu->contextSwitch) {
915 DPRINTF(Activity, "Activity this cycle.\n");
916
917 cpu->activityThisCycle();
918 }
919
920 // Issue the next I-cache request if possible.
921 for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
922 if (issuePipelinedIfetch[i]) {
923 pipelineIcacheAccesses(i);
924 }
925 }
926
927 // Reset the number of the instruction we've fetched.
928 numInst = 0;
929}
930
931template <class Impl>
932bool
933DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
934{
935 // Update the per thread stall statuses.
936 if (fromDecode->decodeBlock[tid]) {
937 stalls[tid].decode = true;
938 }
939
940 if (fromDecode->decodeUnblock[tid]) {
941 assert(stalls[tid].decode);
942 assert(!fromDecode->decodeBlock[tid]);
943 stalls[tid].decode = false;
944 }
945
946 if (fromRename->renameBlock[tid]) {
947 stalls[tid].rename = true;
948 }
949
950 if (fromRename->renameUnblock[tid]) {
951 assert(stalls[tid].rename);
952 assert(!fromRename->renameBlock[tid]);
953 stalls[tid].rename = false;
954 }
955
956 if (fromIEW->iewBlock[tid]) {
957 stalls[tid].iew = true;
958 }
959
960 if (fromIEW->iewUnblock[tid]) {
961 assert(stalls[tid].iew);
962 assert(!fromIEW->iewBlock[tid]);
963 stalls[tid].iew = false;
964 }
965
966 if (fromCommit->commitBlock[tid]) {
967 stalls[tid].commit = true;
968 }
969
970 if (fromCommit->commitUnblock[tid]) {
971 assert(stalls[tid].commit);
972 assert(!fromCommit->commitBlock[tid]);
973 stalls[tid].commit = false;
974 }
975
976 // Check squash signals from commit.
977 if (fromCommit->commitInfo[tid].squash) {
978
979 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
980 "from commit.\n",tid);
981 // In any case, squash.
982 squash(fromCommit->commitInfo[tid].pc,
983 fromCommit->commitInfo[tid].doneSeqNum,
984 fromCommit->commitInfo[tid].squashInst, tid);
985
986 // If it was a branch mispredict on a control instruction, update the
987 // branch predictor with that instruction, otherwise just kill the
988 // invalid state we generated in after sequence number
989 if (fromCommit->commitInfo[tid].mispredictInst &&
990 fromCommit->commitInfo[tid].mispredictInst->isControl()) {
991 branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
992 fromCommit->commitInfo[tid].pc,
993 fromCommit->commitInfo[tid].branchTaken,
994 tid);
995 } else {
996 branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
997 tid);
998 }
999
1000 return true;
1001 } else if (fromCommit->commitInfo[tid].doneSeqNum) {
1002 // Update the branch predictor if it wasn't a squashed instruction
1003 // that was broadcasted.
1004 branchPred->update(fromCommit->commitInfo[tid].doneSeqNum, tid);
1005 }
1006
1007 // Check ROB squash signals from commit.
1008 if (fromCommit->commitInfo[tid].robSquashing) {
1009 DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
1010
1011 // Continue to squash.
1012 fetchStatus[tid] = Squashing;
1013
1014 return true;
1015 }
1016
1017 // Check squash signals from decode.
1018 if (fromDecode->decodeInfo[tid].squash) {
1019 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
1020 "from decode.\n",tid);
1021
1022 // Update the branch predictor.
1023 if (fromDecode->decodeInfo[tid].branchMispredict) {
1024 branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1025 fromDecode->decodeInfo[tid].nextPC,
1026 fromDecode->decodeInfo[tid].branchTaken,
1027 tid);
1028 } else {
1029 branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1030 tid);
1031 }
1032
1033 if (fetchStatus[tid] != Squashing) {
1034
1035 DPRINTF(Fetch, "Squashing from decode with PC = %s\n",
1036 fromDecode->decodeInfo[tid].nextPC);
1037 // Squash unless we're already squashing
1038 squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
1039 fromDecode->decodeInfo[tid].squashInst,
1040 fromDecode->decodeInfo[tid].doneSeqNum,
1041 tid);
1042
1043 return true;
1044 }
1045 }
1046
1047 if (checkStall(tid) &&
1048 fetchStatus[tid] != IcacheWaitResponse &&
1049 fetchStatus[tid] != IcacheWaitRetry &&
1050 fetchStatus[tid] != ItlbWait &&
1051 fetchStatus[tid] != QuiescePending) {
1052 DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
1053
1054 fetchStatus[tid] = Blocked;
1055
1056 return true;
1057 }
1058
1059 if (fetchStatus[tid] == Blocked ||
1060 fetchStatus[tid] == Squashing) {
1061 // Switch status to running if fetch isn't being told to block or
1062 // squash this cycle.
1063 DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1064 tid);
1065
1066 fetchStatus[tid] = Running;
1067
1068 return true;
1069 }
1070
1071 // If we've reached this point, we have not gotten any signals that
1072 // cause fetch to change its status. Fetch remains the same as before.
1073 return false;
1074}
1075
1076template<class Impl>
1077typename Impl::DynInstPtr
1078DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
1079 StaticInstPtr curMacroop, TheISA::PCState thisPC,
1080 TheISA::PCState nextPC, bool trace)
1081{
1082 // Get a sequence number.
1083 InstSeqNum seq = cpu->getAndIncrementInstSeq();
1084
1085 // Create a new DynInst from the instruction fetched.
1086 DynInstPtr instruction =
1087 new DynInst(staticInst, curMacroop, thisPC, nextPC, seq, cpu);
1088 instruction->setTid(tid);
1089
1090 instruction->setASID(tid);
1091
1092 instruction->setThreadState(cpu->thread[tid]);
1093
1094 DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created "
1095 "[sn:%lli].\n", tid, thisPC.instAddr(),
1096 thisPC.microPC(), seq);
1097
1098 DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid,
1099 instruction->staticInst->
1100 disassemble(thisPC.instAddr()));
1101
1102#if TRACING_ON
1103 if (trace) {
1104 instruction->traceData =
1105 cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
1106 instruction->staticInst, thisPC, curMacroop);
1107 }
1108#else
1109 instruction->traceData = NULL;
1110#endif
1111
1112 // Add instruction to the CPU's list of instructions.
1113 instruction->setInstListIt(cpu->addInst(instruction));
1114
1115 // Write the instruction to the first slot in the queue
1116 // that heads to decode.
1117 assert(numInst < fetchWidth);
1118 toDecode->insts[toDecode->size++] = instruction;
1119
1120 // Keep track of if we can take an interrupt at this boundary
1121 delayedCommit[tid] = instruction->isDelayedCommit();
1122
1123 return instruction;
1124}
1125
1126template<class Impl>
1127void
1128DefaultFetch<Impl>::fetch(bool &status_change)
1129{
1130 //////////////////////////////////////////
1131 // Start actual fetch
1132 //////////////////////////////////////////
1133 ThreadID tid = getFetchingThread(fetchPolicy);
1134
1135 assert(!cpu->switchedOut());
1136
1137 if (tid == InvalidThreadID) {
1138 // Breaks looping condition in tick()
1139 threadFetched = numFetchingThreads;
1140
1141 if (numThreads == 1) { // @todo Per-thread stats
1142 profileStall(0);
1143 }
1144
1145 return;
1146 }
1147
1148 DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1149
1150 // The current PC.
1151 TheISA::PCState thisPC = pc[tid];
1152
1153 Addr pcOffset = fetchOffset[tid];
1154 Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1155
1156 bool inRom = isRomMicroPC(thisPC.microPC());
1157
1158 // If returning from the delay of a cache miss, then update the status
1159 // to running, otherwise do the cache access. Possibly move this up
1160 // to tick() function.
1161 if (fetchStatus[tid] == IcacheAccessComplete) {
1162 DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n", tid);
1163
1164 fetchStatus[tid] = Running;
1165 status_change = true;
1166 } else if (fetchStatus[tid] == Running) {
1167 // Align the fetch PC so its at the start of a fetch buffer segment.
1168 Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1169
1170 // If buffer is no longer valid or fetchAddr has moved to point
1171 // to the next cache block, AND we have no remaining ucode
1172 // from a macro-op, then start fetch from icache.
1173 if (!(fetchBufferValid[tid] && fetchBufferBlockPC == fetchBufferPC[tid])
1174 && !inRom && !macroop[tid]) {
1175 DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1176 "instruction, starting at PC %s.\n", tid, thisPC);
1177
1178 fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1179
1180 if (fetchStatus[tid] == IcacheWaitResponse)
1181 ++icacheStallCycles;
1182 else if (fetchStatus[tid] == ItlbWait)
1183 ++fetchTlbCycles;
1184 else
1185 ++fetchMiscStallCycles;
1186 return;
1187 } else if ((checkInterrupt(thisPC.instAddr()) && !delayedCommit[tid])) {
1188 // Stall CPU if an interrupt is posted and we're not issuing
1189 // an delayed commit micro-op currently (delayed commit instructions
1190 // are not interruptable by interrupts, only faults)
1191 ++fetchMiscStallCycles;
1192 DPRINTF(Fetch, "[tid:%i]: Fetch is stalled!\n", tid);
1193 return;
1194 }
1195 } else {
1196 if (fetchStatus[tid] == Idle) {
1197 ++fetchIdleCycles;
1198 DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1199 }
1200
1201 // Status is Idle, so fetch should do nothing.
1202 return;
1203 }
1204
1205 ++fetchCycles;
1206
1207 TheISA::PCState nextPC = thisPC;
1208
1209 StaticInstPtr staticInst = NULL;
1210 StaticInstPtr curMacroop = macroop[tid];
1211
1212 // If the read of the first instruction was successful, then grab the
1213 // instructions from the rest of the cache line and put them into the
1214 // queue heading to decode.
1215
1216 DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1217 "decode.\n", tid);
1218
1219 // Need to keep track of whether or not a predicted branch
1220 // ended this fetch block.
1221 bool predictedBranch = false;
1222
1223 TheISA::MachInst *cacheInsts =
1224 reinterpret_cast<TheISA::MachInst *>(fetchBuffer[tid]);
1225
1226 const unsigned numInsts = fetchBufferSize / instSize;
1227 unsigned blkOffset = (fetchAddr - fetchBufferPC[tid]) / instSize;
1228
1229 // Loop through instruction memory from the cache.
1230 // Keep issuing while fetchWidth is available and branch is not
1231 // predicted taken
1232 while (numInst < fetchWidth && !predictedBranch) {
1233
1234 // We need to process more memory if we aren't going to get a
1235 // StaticInst from the rom, the current macroop, or what's already
1236 // in the decoder.
1237 bool needMem = !inRom && !curMacroop &&
1238 !decoder[tid]->instReady();
1239 fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1240 Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1241
1242 if (needMem) {
1243 // If buffer is no longer valid or fetchAddr has moved to point
1244 // to the next cache block then start fetch from icache.
1245 if (!fetchBufferValid[tid] ||
1246 fetchBufferBlockPC != fetchBufferPC[tid])
1247 break;
1248
1249 if (blkOffset >= numInsts) {
1250 // We need to process more memory, but we've run out of the
1251 // current block.
1252 break;
1253 }
1254
1255 if (ISA_HAS_DELAY_SLOT && pcOffset == 0) {
1256 // Walk past any annulled delay slot instructions.
1257 Addr pcAddr = thisPC.instAddr() & BaseCPU::PCMask;
1258 while (fetchAddr != pcAddr && blkOffset < numInsts) {
1259 blkOffset++;
1260 fetchAddr += instSize;
1261 }
1262 if (blkOffset >= numInsts)
1263 break;
1264 }
1265
1266 MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1267 decoder[tid]->moreBytes(thisPC, fetchAddr, inst);
1268
1269 if (decoder[tid]->needMoreBytes()) {
1270 blkOffset++;
1271 fetchAddr += instSize;
1272 pcOffset += instSize;
1273 }
1274 }
1275
1276 // Extract as many instructions and/or microops as we can from
1277 // the memory we've processed so far.
1278 do {
1279 if (!(curMacroop || inRom)) {
1280 if (decoder[tid]->instReady()) {
1281 staticInst = decoder[tid]->decode(thisPC);
1282
1283 // Increment stat of fetched instructions.
1284 ++fetchedInsts;
1285
1286 if (staticInst->isMacroop()) {
1287 curMacroop = staticInst;
1288 } else {
1289 pcOffset = 0;
1290 }
1291 } else {
1292 // We need more bytes for this instruction so blkOffset and
1293 // pcOffset will be updated
1294 break;
1295 }
1296 }
1297 // Whether we're moving to a new macroop because we're at the
1298 // end of the current one, or the branch predictor incorrectly
1299 // thinks we are...
1300 bool newMacro = false;
1301 if (curMacroop || inRom) {
1302 if (inRom) {
1303 staticInst = cpu->microcodeRom.fetchMicroop(
1304 thisPC.microPC(), curMacroop);
1305 } else {
1306 staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1307 }
1308 newMacro |= staticInst->isLastMicroop();
1309 }
1310
1311 DynInstPtr instruction =
1312 buildInst(tid, staticInst, curMacroop,
1313 thisPC, nextPC, true);
1314
677 lastIcacheStall[tid] = curTick();
678 fetchStatus[tid] = IcacheWaitResponse;
679 }
680 } else {
681 if (!(numInst < fetchWidth)) {
682 assert(!finishTranslationEvent.scheduled());
683 finishTranslationEvent.setFault(fault);
684 finishTranslationEvent.setReq(mem_req);
685 cpu->schedule(finishTranslationEvent,
686 cpu->clockEdge(Cycles(1)));
687 return;
688 }
689 DPRINTF(Fetch, "[tid:%i] Got back req with addr %#x but expected %#x\n",
690 tid, mem_req->getVaddr(), memReq[tid]->getVaddr());
691 // Translation faulted, icache request won't be sent.
692 delete mem_req;
693 memReq[tid] = NULL;
694
695 // Send the fault to commit. This thread will not do anything
696 // until commit handles the fault. The only other way it can
697 // wake up is if a squash comes along and changes the PC.
698 TheISA::PCState fetchPC = pc[tid];
699
700 DPRINTF(Fetch, "[tid:%i]: Translation faulted, building noop.\n", tid);
701 // We will use a nop in ordier to carry the fault.
702 DynInstPtr instruction = buildInst(tid,
703 decoder[tid]->decode(TheISA::NoopMachInst, fetchPC.instAddr()),
704 NULL, fetchPC, fetchPC, false);
705
706 instruction->setPredTarg(fetchPC);
707 instruction->fault = fault;
708 wroteToTimeBuffer = true;
709
710 DPRINTF(Activity, "Activity this cycle.\n");
711 cpu->activityThisCycle();
712
713 fetchStatus[tid] = TrapPending;
714
715 DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n", tid);
716 DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s.\n",
717 tid, fault->name(), pc[tid]);
718 }
719 _status = updateFetchStatus();
720}
721
722template <class Impl>
723inline void
724DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC,
725 const DynInstPtr squashInst, ThreadID tid)
726{
727 DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n",
728 tid, newPC);
729
730 pc[tid] = newPC;
731 fetchOffset[tid] = 0;
732 if (squashInst && squashInst->pcState().instAddr() == newPC.instAddr())
733 macroop[tid] = squashInst->macroop;
734 else
735 macroop[tid] = NULL;
736 decoder[tid]->reset();
737
738 // Clear the icache miss if it's outstanding.
739 if (fetchStatus[tid] == IcacheWaitResponse) {
740 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
741 tid);
742 memReq[tid] = NULL;
743 } else if (fetchStatus[tid] == ItlbWait) {
744 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding ITLB miss.\n",
745 tid);
746 memReq[tid] = NULL;
747 }
748
749 // Get rid of the retrying packet if it was from this thread.
750 if (retryTid == tid) {
751 assert(cacheBlocked);
752 if (retryPkt) {
753 delete retryPkt->req;
754 delete retryPkt;
755 }
756 retryPkt = NULL;
757 retryTid = InvalidThreadID;
758 }
759
760 fetchStatus[tid] = Squashing;
761
762 // microops are being squashed, it is not known wheather the
763 // youngest non-squashed microop was marked delayed commit
764 // or not. Setting the flag to true ensures that the
765 // interrupts are not handled when they cannot be, though
766 // some opportunities to handle interrupts may be missed.
767 delayedCommit[tid] = true;
768
769 ++fetchSquashCycles;
770}
771
772template<class Impl>
773void
774DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
775 const DynInstPtr squashInst,
776 const InstSeqNum seq_num, ThreadID tid)
777{
778 DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid);
779
780 doSquash(newPC, squashInst, tid);
781
782 // Tell the CPU to remove any instructions that are in flight between
783 // fetch and decode.
784 cpu->removeInstsUntil(seq_num, tid);
785}
786
787template<class Impl>
788bool
789DefaultFetch<Impl>::checkStall(ThreadID tid) const
790{
791 bool ret_val = false;
792
793 if (cpu->contextSwitch) {
794 DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
795 ret_val = true;
796 } else if (stalls[tid].drain) {
797 assert(cpu->isDraining());
798 DPRINTF(Fetch,"[tid:%i]: Drain stall detected.\n",tid);
799 ret_val = true;
800 } else if (stalls[tid].decode) {
801 DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
802 ret_val = true;
803 } else if (stalls[tid].rename) {
804 DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
805 ret_val = true;
806 } else if (stalls[tid].iew) {
807 DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
808 ret_val = true;
809 } else if (stalls[tid].commit) {
810 DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
811 ret_val = true;
812 }
813
814 return ret_val;
815}
816
817template<class Impl>
818typename DefaultFetch<Impl>::FetchStatus
819DefaultFetch<Impl>::updateFetchStatus()
820{
821 //Check Running
822 list<ThreadID>::iterator threads = activeThreads->begin();
823 list<ThreadID>::iterator end = activeThreads->end();
824
825 while (threads != end) {
826 ThreadID tid = *threads++;
827
828 if (fetchStatus[tid] == Running ||
829 fetchStatus[tid] == Squashing ||
830 fetchStatus[tid] == IcacheAccessComplete) {
831
832 if (_status == Inactive) {
833 DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
834
835 if (fetchStatus[tid] == IcacheAccessComplete) {
836 DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
837 "completion\n",tid);
838 }
839
840 cpu->activateStage(O3CPU::FetchIdx);
841 }
842
843 return Active;
844 }
845 }
846
847 // Stage is switching from active to inactive, notify CPU of it.
848 if (_status == Active) {
849 DPRINTF(Activity, "Deactivating stage.\n");
850
851 cpu->deactivateStage(O3CPU::FetchIdx);
852 }
853
854 return Inactive;
855}
856
857template <class Impl>
858void
859DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
860 const InstSeqNum seq_num, DynInstPtr squashInst,
861 ThreadID tid)
862{
863 DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid);
864
865 doSquash(newPC, squashInst, tid);
866
867 // Tell the CPU to remove any instructions that are not in the ROB.
868 cpu->removeInstsNotInROB(tid);
869}
870
871template <class Impl>
872void
873DefaultFetch<Impl>::tick()
874{
875 list<ThreadID>::iterator threads = activeThreads->begin();
876 list<ThreadID>::iterator end = activeThreads->end();
877 bool status_change = false;
878
879 wroteToTimeBuffer = false;
880
881 for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
882 issuePipelinedIfetch[i] = false;
883 }
884
885 while (threads != end) {
886 ThreadID tid = *threads++;
887
888 // Check the signals for each thread to determine the proper status
889 // for each thread.
890 bool updated_status = checkSignalsAndUpdate(tid);
891 status_change = status_change || updated_status;
892 }
893
894 DPRINTF(Fetch, "Running stage.\n");
895
896 if (FullSystem) {
897 if (fromCommit->commitInfo[0].interruptPending) {
898 interruptPending = true;
899 }
900
901 if (fromCommit->commitInfo[0].clearInterrupt) {
902 interruptPending = false;
903 }
904 }
905
906 for (threadFetched = 0; threadFetched < numFetchingThreads;
907 threadFetched++) {
908 // Fetch each of the actively fetching threads.
909 fetch(status_change);
910 }
911
912 // Record number of instructions fetched this cycle for distribution.
913 fetchNisnDist.sample(numInst);
914
915 if (status_change) {
916 // Change the fetch stage status if there was a status change.
917 _status = updateFetchStatus();
918 }
919
920 // If there was activity this cycle, inform the CPU of it.
921 if (wroteToTimeBuffer || cpu->contextSwitch) {
922 DPRINTF(Activity, "Activity this cycle.\n");
923
924 cpu->activityThisCycle();
925 }
926
927 // Issue the next I-cache request if possible.
928 for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
929 if (issuePipelinedIfetch[i]) {
930 pipelineIcacheAccesses(i);
931 }
932 }
933
934 // Reset the number of the instruction we've fetched.
935 numInst = 0;
936}
937
938template <class Impl>
939bool
940DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
941{
942 // Update the per thread stall statuses.
943 if (fromDecode->decodeBlock[tid]) {
944 stalls[tid].decode = true;
945 }
946
947 if (fromDecode->decodeUnblock[tid]) {
948 assert(stalls[tid].decode);
949 assert(!fromDecode->decodeBlock[tid]);
950 stalls[tid].decode = false;
951 }
952
953 if (fromRename->renameBlock[tid]) {
954 stalls[tid].rename = true;
955 }
956
957 if (fromRename->renameUnblock[tid]) {
958 assert(stalls[tid].rename);
959 assert(!fromRename->renameBlock[tid]);
960 stalls[tid].rename = false;
961 }
962
963 if (fromIEW->iewBlock[tid]) {
964 stalls[tid].iew = true;
965 }
966
967 if (fromIEW->iewUnblock[tid]) {
968 assert(stalls[tid].iew);
969 assert(!fromIEW->iewBlock[tid]);
970 stalls[tid].iew = false;
971 }
972
973 if (fromCommit->commitBlock[tid]) {
974 stalls[tid].commit = true;
975 }
976
977 if (fromCommit->commitUnblock[tid]) {
978 assert(stalls[tid].commit);
979 assert(!fromCommit->commitBlock[tid]);
980 stalls[tid].commit = false;
981 }
982
983 // Check squash signals from commit.
984 if (fromCommit->commitInfo[tid].squash) {
985
986 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
987 "from commit.\n",tid);
988 // In any case, squash.
989 squash(fromCommit->commitInfo[tid].pc,
990 fromCommit->commitInfo[tid].doneSeqNum,
991 fromCommit->commitInfo[tid].squashInst, tid);
992
993 // If it was a branch mispredict on a control instruction, update the
994 // branch predictor with that instruction, otherwise just kill the
995 // invalid state we generated in after sequence number
996 if (fromCommit->commitInfo[tid].mispredictInst &&
997 fromCommit->commitInfo[tid].mispredictInst->isControl()) {
998 branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
999 fromCommit->commitInfo[tid].pc,
1000 fromCommit->commitInfo[tid].branchTaken,
1001 tid);
1002 } else {
1003 branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
1004 tid);
1005 }
1006
1007 return true;
1008 } else if (fromCommit->commitInfo[tid].doneSeqNum) {
1009 // Update the branch predictor if it wasn't a squashed instruction
1010 // that was broadcasted.
1011 branchPred->update(fromCommit->commitInfo[tid].doneSeqNum, tid);
1012 }
1013
1014 // Check ROB squash signals from commit.
1015 if (fromCommit->commitInfo[tid].robSquashing) {
1016 DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
1017
1018 // Continue to squash.
1019 fetchStatus[tid] = Squashing;
1020
1021 return true;
1022 }
1023
1024 // Check squash signals from decode.
1025 if (fromDecode->decodeInfo[tid].squash) {
1026 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
1027 "from decode.\n",tid);
1028
1029 // Update the branch predictor.
1030 if (fromDecode->decodeInfo[tid].branchMispredict) {
1031 branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1032 fromDecode->decodeInfo[tid].nextPC,
1033 fromDecode->decodeInfo[tid].branchTaken,
1034 tid);
1035 } else {
1036 branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1037 tid);
1038 }
1039
1040 if (fetchStatus[tid] != Squashing) {
1041
1042 DPRINTF(Fetch, "Squashing from decode with PC = %s\n",
1043 fromDecode->decodeInfo[tid].nextPC);
1044 // Squash unless we're already squashing
1045 squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
1046 fromDecode->decodeInfo[tid].squashInst,
1047 fromDecode->decodeInfo[tid].doneSeqNum,
1048 tid);
1049
1050 return true;
1051 }
1052 }
1053
1054 if (checkStall(tid) &&
1055 fetchStatus[tid] != IcacheWaitResponse &&
1056 fetchStatus[tid] != IcacheWaitRetry &&
1057 fetchStatus[tid] != ItlbWait &&
1058 fetchStatus[tid] != QuiescePending) {
1059 DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
1060
1061 fetchStatus[tid] = Blocked;
1062
1063 return true;
1064 }
1065
1066 if (fetchStatus[tid] == Blocked ||
1067 fetchStatus[tid] == Squashing) {
1068 // Switch status to running if fetch isn't being told to block or
1069 // squash this cycle.
1070 DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1071 tid);
1072
1073 fetchStatus[tid] = Running;
1074
1075 return true;
1076 }
1077
1078 // If we've reached this point, we have not gotten any signals that
1079 // cause fetch to change its status. Fetch remains the same as before.
1080 return false;
1081}
1082
1083template<class Impl>
1084typename Impl::DynInstPtr
1085DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
1086 StaticInstPtr curMacroop, TheISA::PCState thisPC,
1087 TheISA::PCState nextPC, bool trace)
1088{
1089 // Get a sequence number.
1090 InstSeqNum seq = cpu->getAndIncrementInstSeq();
1091
1092 // Create a new DynInst from the instruction fetched.
1093 DynInstPtr instruction =
1094 new DynInst(staticInst, curMacroop, thisPC, nextPC, seq, cpu);
1095 instruction->setTid(tid);
1096
1097 instruction->setASID(tid);
1098
1099 instruction->setThreadState(cpu->thread[tid]);
1100
1101 DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created "
1102 "[sn:%lli].\n", tid, thisPC.instAddr(),
1103 thisPC.microPC(), seq);
1104
1105 DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid,
1106 instruction->staticInst->
1107 disassemble(thisPC.instAddr()));
1108
1109#if TRACING_ON
1110 if (trace) {
1111 instruction->traceData =
1112 cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
1113 instruction->staticInst, thisPC, curMacroop);
1114 }
1115#else
1116 instruction->traceData = NULL;
1117#endif
1118
1119 // Add instruction to the CPU's list of instructions.
1120 instruction->setInstListIt(cpu->addInst(instruction));
1121
1122 // Write the instruction to the first slot in the queue
1123 // that heads to decode.
1124 assert(numInst < fetchWidth);
1125 toDecode->insts[toDecode->size++] = instruction;
1126
1127 // Keep track of if we can take an interrupt at this boundary
1128 delayedCommit[tid] = instruction->isDelayedCommit();
1129
1130 return instruction;
1131}
1132
1133template<class Impl>
1134void
1135DefaultFetch<Impl>::fetch(bool &status_change)
1136{
1137 //////////////////////////////////////////
1138 // Start actual fetch
1139 //////////////////////////////////////////
1140 ThreadID tid = getFetchingThread(fetchPolicy);
1141
1142 assert(!cpu->switchedOut());
1143
1144 if (tid == InvalidThreadID) {
1145 // Breaks looping condition in tick()
1146 threadFetched = numFetchingThreads;
1147
1148 if (numThreads == 1) { // @todo Per-thread stats
1149 profileStall(0);
1150 }
1151
1152 return;
1153 }
1154
1155 DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1156
1157 // The current PC.
1158 TheISA::PCState thisPC = pc[tid];
1159
1160 Addr pcOffset = fetchOffset[tid];
1161 Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1162
1163 bool inRom = isRomMicroPC(thisPC.microPC());
1164
1165 // If returning from the delay of a cache miss, then update the status
1166 // to running, otherwise do the cache access. Possibly move this up
1167 // to tick() function.
1168 if (fetchStatus[tid] == IcacheAccessComplete) {
1169 DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n", tid);
1170
1171 fetchStatus[tid] = Running;
1172 status_change = true;
1173 } else if (fetchStatus[tid] == Running) {
1174 // Align the fetch PC so its at the start of a fetch buffer segment.
1175 Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1176
1177 // If buffer is no longer valid or fetchAddr has moved to point
1178 // to the next cache block, AND we have no remaining ucode
1179 // from a macro-op, then start fetch from icache.
1180 if (!(fetchBufferValid[tid] && fetchBufferBlockPC == fetchBufferPC[tid])
1181 && !inRom && !macroop[tid]) {
1182 DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1183 "instruction, starting at PC %s.\n", tid, thisPC);
1184
1185 fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1186
1187 if (fetchStatus[tid] == IcacheWaitResponse)
1188 ++icacheStallCycles;
1189 else if (fetchStatus[tid] == ItlbWait)
1190 ++fetchTlbCycles;
1191 else
1192 ++fetchMiscStallCycles;
1193 return;
1194 } else if ((checkInterrupt(thisPC.instAddr()) && !delayedCommit[tid])) {
1195 // Stall CPU if an interrupt is posted and we're not issuing
1196 // an delayed commit micro-op currently (delayed commit instructions
1197 // are not interruptable by interrupts, only faults)
1198 ++fetchMiscStallCycles;
1199 DPRINTF(Fetch, "[tid:%i]: Fetch is stalled!\n", tid);
1200 return;
1201 }
1202 } else {
1203 if (fetchStatus[tid] == Idle) {
1204 ++fetchIdleCycles;
1205 DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1206 }
1207
1208 // Status is Idle, so fetch should do nothing.
1209 return;
1210 }
1211
1212 ++fetchCycles;
1213
1214 TheISA::PCState nextPC = thisPC;
1215
1216 StaticInstPtr staticInst = NULL;
1217 StaticInstPtr curMacroop = macroop[tid];
1218
1219 // If the read of the first instruction was successful, then grab the
1220 // instructions from the rest of the cache line and put them into the
1221 // queue heading to decode.
1222
1223 DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1224 "decode.\n", tid);
1225
1226 // Need to keep track of whether or not a predicted branch
1227 // ended this fetch block.
1228 bool predictedBranch = false;
1229
1230 TheISA::MachInst *cacheInsts =
1231 reinterpret_cast<TheISA::MachInst *>(fetchBuffer[tid]);
1232
1233 const unsigned numInsts = fetchBufferSize / instSize;
1234 unsigned blkOffset = (fetchAddr - fetchBufferPC[tid]) / instSize;
1235
1236 // Loop through instruction memory from the cache.
1237 // Keep issuing while fetchWidth is available and branch is not
1238 // predicted taken
1239 while (numInst < fetchWidth && !predictedBranch) {
1240
1241 // We need to process more memory if we aren't going to get a
1242 // StaticInst from the rom, the current macroop, or what's already
1243 // in the decoder.
1244 bool needMem = !inRom && !curMacroop &&
1245 !decoder[tid]->instReady();
1246 fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1247 Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1248
1249 if (needMem) {
1250 // If buffer is no longer valid or fetchAddr has moved to point
1251 // to the next cache block then start fetch from icache.
1252 if (!fetchBufferValid[tid] ||
1253 fetchBufferBlockPC != fetchBufferPC[tid])
1254 break;
1255
1256 if (blkOffset >= numInsts) {
1257 // We need to process more memory, but we've run out of the
1258 // current block.
1259 break;
1260 }
1261
1262 if (ISA_HAS_DELAY_SLOT && pcOffset == 0) {
1263 // Walk past any annulled delay slot instructions.
1264 Addr pcAddr = thisPC.instAddr() & BaseCPU::PCMask;
1265 while (fetchAddr != pcAddr && blkOffset < numInsts) {
1266 blkOffset++;
1267 fetchAddr += instSize;
1268 }
1269 if (blkOffset >= numInsts)
1270 break;
1271 }
1272
1273 MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1274 decoder[tid]->moreBytes(thisPC, fetchAddr, inst);
1275
1276 if (decoder[tid]->needMoreBytes()) {
1277 blkOffset++;
1278 fetchAddr += instSize;
1279 pcOffset += instSize;
1280 }
1281 }
1282
1283 // Extract as many instructions and/or microops as we can from
1284 // the memory we've processed so far.
1285 do {
1286 if (!(curMacroop || inRom)) {
1287 if (decoder[tid]->instReady()) {
1288 staticInst = decoder[tid]->decode(thisPC);
1289
1290 // Increment stat of fetched instructions.
1291 ++fetchedInsts;
1292
1293 if (staticInst->isMacroop()) {
1294 curMacroop = staticInst;
1295 } else {
1296 pcOffset = 0;
1297 }
1298 } else {
1299 // We need more bytes for this instruction so blkOffset and
1300 // pcOffset will be updated
1301 break;
1302 }
1303 }
1304 // Whether we're moving to a new macroop because we're at the
1305 // end of the current one, or the branch predictor incorrectly
1306 // thinks we are...
1307 bool newMacro = false;
1308 if (curMacroop || inRom) {
1309 if (inRom) {
1310 staticInst = cpu->microcodeRom.fetchMicroop(
1311 thisPC.microPC(), curMacroop);
1312 } else {
1313 staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1314 }
1315 newMacro |= staticInst->isLastMicroop();
1316 }
1317
1318 DynInstPtr instruction =
1319 buildInst(tid, staticInst, curMacroop,
1320 thisPC, nextPC, true);
1321
1322 ppFetch->notify(instruction);
1315 numInst++;
1316
1317#if TRACING_ON
1318 if (DTRACE(O3PipeView)) {
1319 instruction->fetchTick = curTick();
1320 }
1321#endif
1322
1323 nextPC = thisPC;
1324
1325 // If we're branching after this instruction, quite fetching
1326 // from the same block then.
1327 predictedBranch |= thisPC.branching();
1328 predictedBranch |=
1329 lookupAndUpdateNextPC(instruction, nextPC);
1330 if (predictedBranch) {
1331 DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1332 }
1333
1334 newMacro |= thisPC.instAddr() != nextPC.instAddr();
1335
1336 // Move to the next instruction, unless we have a branch.
1337 thisPC = nextPC;
1338 inRom = isRomMicroPC(thisPC.microPC());
1339
1340 if (newMacro) {
1341 fetchAddr = thisPC.instAddr() & BaseCPU::PCMask;
1342 blkOffset = (fetchAddr - fetchBufferPC[tid]) / instSize;
1343 pcOffset = 0;
1344 curMacroop = NULL;
1345 }
1346
1347 if (instruction->isQuiesce()) {
1348 DPRINTF(Fetch,
1349 "Quiesce instruction encountered, halting fetch!");
1350 fetchStatus[tid] = QuiescePending;
1351 status_change = true;
1352 break;
1353 }
1354 } while ((curMacroop || decoder[tid]->instReady()) &&
1355 numInst < fetchWidth);
1356 }
1357
1358 if (predictedBranch) {
1359 DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1360 "instruction encountered.\n", tid);
1361 } else if (numInst >= fetchWidth) {
1362 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1363 "for this cycle.\n", tid);
1364 } else if (blkOffset >= fetchBufferSize) {
1365 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of the"
1366 "fetch buffer.\n", tid);
1367 }
1368
1369 macroop[tid] = curMacroop;
1370 fetchOffset[tid] = pcOffset;
1371
1372 if (numInst > 0) {
1373 wroteToTimeBuffer = true;
1374 }
1375
1376 pc[tid] = thisPC;
1377
1378 // pipeline a fetch if we're crossing a fetch buffer boundary and not in
1379 // a state that would preclude fetching
1380 fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1381 Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1382 issuePipelinedIfetch[tid] = fetchBufferBlockPC != fetchBufferPC[tid] &&
1383 fetchStatus[tid] != IcacheWaitResponse &&
1384 fetchStatus[tid] != ItlbWait &&
1385 fetchStatus[tid] != IcacheWaitRetry &&
1386 fetchStatus[tid] != QuiescePending &&
1387 !curMacroop;
1388}
1389
1390template<class Impl>
1391void
1392DefaultFetch<Impl>::recvRetry()
1393{
1394 if (retryPkt != NULL) {
1395 assert(cacheBlocked);
1396 assert(retryTid != InvalidThreadID);
1397 assert(fetchStatus[retryTid] == IcacheWaitRetry);
1398
1399 if (cpu->getInstPort().sendTimingReq(retryPkt)) {
1400 fetchStatus[retryTid] = IcacheWaitResponse;
1401 retryPkt = NULL;
1402 retryTid = InvalidThreadID;
1403 cacheBlocked = false;
1404 }
1405 } else {
1406 assert(retryTid == InvalidThreadID);
1407 // Access has been squashed since it was sent out. Just clear
1408 // the cache being blocked.
1409 cacheBlocked = false;
1410 }
1411}
1412
1413///////////////////////////////////////
1414// //
1415// SMT FETCH POLICY MAINTAINED HERE //
1416// //
1417///////////////////////////////////////
1418template<class Impl>
1419ThreadID
1420DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1421{
1422 if (numThreads > 1) {
1423 switch (fetch_priority) {
1424
1425 case SingleThread:
1426 return 0;
1427
1428 case RoundRobin:
1429 return roundRobin();
1430
1431 case IQ:
1432 return iqCount();
1433
1434 case LSQ:
1435 return lsqCount();
1436
1437 case Branch:
1438 return branchCount();
1439
1440 default:
1441 return InvalidThreadID;
1442 }
1443 } else {
1444 list<ThreadID>::iterator thread = activeThreads->begin();
1445 if (thread == activeThreads->end()) {
1446 return InvalidThreadID;
1447 }
1448
1449 ThreadID tid = *thread;
1450
1451 if (fetchStatus[tid] == Running ||
1452 fetchStatus[tid] == IcacheAccessComplete ||
1453 fetchStatus[tid] == Idle) {
1454 return tid;
1455 } else {
1456 return InvalidThreadID;
1457 }
1458 }
1459}
1460
1461
1462template<class Impl>
1463ThreadID
1464DefaultFetch<Impl>::roundRobin()
1465{
1466 list<ThreadID>::iterator pri_iter = priorityList.begin();
1467 list<ThreadID>::iterator end = priorityList.end();
1468
1469 ThreadID high_pri;
1470
1471 while (pri_iter != end) {
1472 high_pri = *pri_iter;
1473
1474 assert(high_pri <= numThreads);
1475
1476 if (fetchStatus[high_pri] == Running ||
1477 fetchStatus[high_pri] == IcacheAccessComplete ||
1478 fetchStatus[high_pri] == Idle) {
1479
1480 priorityList.erase(pri_iter);
1481 priorityList.push_back(high_pri);
1482
1483 return high_pri;
1484 }
1485
1486 pri_iter++;
1487 }
1488
1489 return InvalidThreadID;
1490}
1491
1492template<class Impl>
1493ThreadID
1494DefaultFetch<Impl>::iqCount()
1495{
1496 std::priority_queue<unsigned> PQ;
1497 std::map<unsigned, ThreadID> threadMap;
1498
1499 list<ThreadID>::iterator threads = activeThreads->begin();
1500 list<ThreadID>::iterator end = activeThreads->end();
1501
1502 while (threads != end) {
1503 ThreadID tid = *threads++;
1504 unsigned iqCount = fromIEW->iewInfo[tid].iqCount;
1505
1506 PQ.push(iqCount);
1507 threadMap[iqCount] = tid;
1508 }
1509
1510 while (!PQ.empty()) {
1511 ThreadID high_pri = threadMap[PQ.top()];
1512
1513 if (fetchStatus[high_pri] == Running ||
1514 fetchStatus[high_pri] == IcacheAccessComplete ||
1515 fetchStatus[high_pri] == Idle)
1516 return high_pri;
1517 else
1518 PQ.pop();
1519
1520 }
1521
1522 return InvalidThreadID;
1523}
1524
1525template<class Impl>
1526ThreadID
1527DefaultFetch<Impl>::lsqCount()
1528{
1529 std::priority_queue<unsigned> PQ;
1530 std::map<unsigned, ThreadID> threadMap;
1531
1532 list<ThreadID>::iterator threads = activeThreads->begin();
1533 list<ThreadID>::iterator end = activeThreads->end();
1534
1535 while (threads != end) {
1536 ThreadID tid = *threads++;
1537 unsigned ldstqCount = fromIEW->iewInfo[tid].ldstqCount;
1538
1539 PQ.push(ldstqCount);
1540 threadMap[ldstqCount] = tid;
1541 }
1542
1543 while (!PQ.empty()) {
1544 ThreadID high_pri = threadMap[PQ.top()];
1545
1546 if (fetchStatus[high_pri] == Running ||
1547 fetchStatus[high_pri] == IcacheAccessComplete ||
1548 fetchStatus[high_pri] == Idle)
1549 return high_pri;
1550 else
1551 PQ.pop();
1552 }
1553
1554 return InvalidThreadID;
1555}
1556
1557template<class Impl>
1558ThreadID
1559DefaultFetch<Impl>::branchCount()
1560{
1561#if 0
1562 list<ThreadID>::iterator thread = activeThreads->begin();
1563 assert(thread != activeThreads->end());
1564 ThreadID tid = *thread;
1565#endif
1566
1567 panic("Branch Count Fetch policy unimplemented\n");
1568 return InvalidThreadID;
1569}
1570
1571template<class Impl>
1572void
1573DefaultFetch<Impl>::pipelineIcacheAccesses(ThreadID tid)
1574{
1575 if (!issuePipelinedIfetch[tid]) {
1576 return;
1577 }
1578
1579 // The next PC to access.
1580 TheISA::PCState thisPC = pc[tid];
1581
1582 if (isRomMicroPC(thisPC.microPC())) {
1583 return;
1584 }
1585
1586 Addr pcOffset = fetchOffset[tid];
1587 Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1588
1589 // Align the fetch PC so its at the start of a fetch buffer segment.
1590 Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1591
1592 // Unless buffer already got the block, fetch it from icache.
1593 if (!(fetchBufferValid[tid] && fetchBufferBlockPC == fetchBufferPC[tid])) {
1594 DPRINTF(Fetch, "[tid:%i]: Issuing a pipelined I-cache access, "
1595 "starting at PC %s.\n", tid, thisPC);
1596
1597 fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1598 }
1599}
1600
1601template<class Impl>
1602void
1603DefaultFetch<Impl>::profileStall(ThreadID tid) {
1604 DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1605
1606 // @todo Per-thread stats
1607
1608 if (stalls[tid].drain) {
1609 ++fetchPendingDrainCycles;
1610 DPRINTF(Fetch, "Fetch is waiting for a drain!\n");
1611 } else if (activeThreads->empty()) {
1612 ++fetchNoActiveThreadStallCycles;
1613 DPRINTF(Fetch, "Fetch has no active thread!\n");
1614 } else if (fetchStatus[tid] == Blocked) {
1615 ++fetchBlockedCycles;
1616 DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1617 } else if (fetchStatus[tid] == Squashing) {
1618 ++fetchSquashCycles;
1619 DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1620 } else if (fetchStatus[tid] == IcacheWaitResponse) {
1621 ++icacheStallCycles;
1622 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n",
1623 tid);
1624 } else if (fetchStatus[tid] == ItlbWait) {
1625 ++fetchTlbCycles;
1626 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting ITLB walk to "
1627 "finish!\n", tid);
1628 } else if (fetchStatus[tid] == TrapPending) {
1629 ++fetchPendingTrapStallCycles;
1630 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending trap!\n",
1631 tid);
1632 } else if (fetchStatus[tid] == QuiescePending) {
1633 ++fetchPendingQuiesceStallCycles;
1634 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending quiesce "
1635 "instruction!\n", tid);
1636 } else if (fetchStatus[tid] == IcacheWaitRetry) {
1637 ++fetchIcacheWaitRetryStallCycles;
1638 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for an I-cache retry!\n",
1639 tid);
1640 } else if (fetchStatus[tid] == NoGoodAddr) {
1641 DPRINTF(Fetch, "[tid:%i]: Fetch predicted non-executable address\n",
1642 tid);
1643 } else {
1644 DPRINTF(Fetch, "[tid:%i]: Unexpected fetch stall reason (Status: %i).\n",
1645 tid, fetchStatus[tid]);
1646 }
1647}
1648
1649#endif//__CPU_O3_FETCH_IMPL_HH__
1323 numInst++;
1324
1325#if TRACING_ON
1326 if (DTRACE(O3PipeView)) {
1327 instruction->fetchTick = curTick();
1328 }
1329#endif
1330
1331 nextPC = thisPC;
1332
1333 // If we're branching after this instruction, quite fetching
1334 // from the same block then.
1335 predictedBranch |= thisPC.branching();
1336 predictedBranch |=
1337 lookupAndUpdateNextPC(instruction, nextPC);
1338 if (predictedBranch) {
1339 DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1340 }
1341
1342 newMacro |= thisPC.instAddr() != nextPC.instAddr();
1343
1344 // Move to the next instruction, unless we have a branch.
1345 thisPC = nextPC;
1346 inRom = isRomMicroPC(thisPC.microPC());
1347
1348 if (newMacro) {
1349 fetchAddr = thisPC.instAddr() & BaseCPU::PCMask;
1350 blkOffset = (fetchAddr - fetchBufferPC[tid]) / instSize;
1351 pcOffset = 0;
1352 curMacroop = NULL;
1353 }
1354
1355 if (instruction->isQuiesce()) {
1356 DPRINTF(Fetch,
1357 "Quiesce instruction encountered, halting fetch!");
1358 fetchStatus[tid] = QuiescePending;
1359 status_change = true;
1360 break;
1361 }
1362 } while ((curMacroop || decoder[tid]->instReady()) &&
1363 numInst < fetchWidth);
1364 }
1365
1366 if (predictedBranch) {
1367 DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1368 "instruction encountered.\n", tid);
1369 } else if (numInst >= fetchWidth) {
1370 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1371 "for this cycle.\n", tid);
1372 } else if (blkOffset >= fetchBufferSize) {
1373 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of the"
1374 "fetch buffer.\n", tid);
1375 }
1376
1377 macroop[tid] = curMacroop;
1378 fetchOffset[tid] = pcOffset;
1379
1380 if (numInst > 0) {
1381 wroteToTimeBuffer = true;
1382 }
1383
1384 pc[tid] = thisPC;
1385
1386 // pipeline a fetch if we're crossing a fetch buffer boundary and not in
1387 // a state that would preclude fetching
1388 fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1389 Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1390 issuePipelinedIfetch[tid] = fetchBufferBlockPC != fetchBufferPC[tid] &&
1391 fetchStatus[tid] != IcacheWaitResponse &&
1392 fetchStatus[tid] != ItlbWait &&
1393 fetchStatus[tid] != IcacheWaitRetry &&
1394 fetchStatus[tid] != QuiescePending &&
1395 !curMacroop;
1396}
1397
1398template<class Impl>
1399void
1400DefaultFetch<Impl>::recvRetry()
1401{
1402 if (retryPkt != NULL) {
1403 assert(cacheBlocked);
1404 assert(retryTid != InvalidThreadID);
1405 assert(fetchStatus[retryTid] == IcacheWaitRetry);
1406
1407 if (cpu->getInstPort().sendTimingReq(retryPkt)) {
1408 fetchStatus[retryTid] = IcacheWaitResponse;
1409 retryPkt = NULL;
1410 retryTid = InvalidThreadID;
1411 cacheBlocked = false;
1412 }
1413 } else {
1414 assert(retryTid == InvalidThreadID);
1415 // Access has been squashed since it was sent out. Just clear
1416 // the cache being blocked.
1417 cacheBlocked = false;
1418 }
1419}
1420
1421///////////////////////////////////////
1422// //
1423// SMT FETCH POLICY MAINTAINED HERE //
1424// //
1425///////////////////////////////////////
1426template<class Impl>
1427ThreadID
1428DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1429{
1430 if (numThreads > 1) {
1431 switch (fetch_priority) {
1432
1433 case SingleThread:
1434 return 0;
1435
1436 case RoundRobin:
1437 return roundRobin();
1438
1439 case IQ:
1440 return iqCount();
1441
1442 case LSQ:
1443 return lsqCount();
1444
1445 case Branch:
1446 return branchCount();
1447
1448 default:
1449 return InvalidThreadID;
1450 }
1451 } else {
1452 list<ThreadID>::iterator thread = activeThreads->begin();
1453 if (thread == activeThreads->end()) {
1454 return InvalidThreadID;
1455 }
1456
1457 ThreadID tid = *thread;
1458
1459 if (fetchStatus[tid] == Running ||
1460 fetchStatus[tid] == IcacheAccessComplete ||
1461 fetchStatus[tid] == Idle) {
1462 return tid;
1463 } else {
1464 return InvalidThreadID;
1465 }
1466 }
1467}
1468
1469
1470template<class Impl>
1471ThreadID
1472DefaultFetch<Impl>::roundRobin()
1473{
1474 list<ThreadID>::iterator pri_iter = priorityList.begin();
1475 list<ThreadID>::iterator end = priorityList.end();
1476
1477 ThreadID high_pri;
1478
1479 while (pri_iter != end) {
1480 high_pri = *pri_iter;
1481
1482 assert(high_pri <= numThreads);
1483
1484 if (fetchStatus[high_pri] == Running ||
1485 fetchStatus[high_pri] == IcacheAccessComplete ||
1486 fetchStatus[high_pri] == Idle) {
1487
1488 priorityList.erase(pri_iter);
1489 priorityList.push_back(high_pri);
1490
1491 return high_pri;
1492 }
1493
1494 pri_iter++;
1495 }
1496
1497 return InvalidThreadID;
1498}
1499
1500template<class Impl>
1501ThreadID
1502DefaultFetch<Impl>::iqCount()
1503{
1504 std::priority_queue<unsigned> PQ;
1505 std::map<unsigned, ThreadID> threadMap;
1506
1507 list<ThreadID>::iterator threads = activeThreads->begin();
1508 list<ThreadID>::iterator end = activeThreads->end();
1509
1510 while (threads != end) {
1511 ThreadID tid = *threads++;
1512 unsigned iqCount = fromIEW->iewInfo[tid].iqCount;
1513
1514 PQ.push(iqCount);
1515 threadMap[iqCount] = tid;
1516 }
1517
1518 while (!PQ.empty()) {
1519 ThreadID high_pri = threadMap[PQ.top()];
1520
1521 if (fetchStatus[high_pri] == Running ||
1522 fetchStatus[high_pri] == IcacheAccessComplete ||
1523 fetchStatus[high_pri] == Idle)
1524 return high_pri;
1525 else
1526 PQ.pop();
1527
1528 }
1529
1530 return InvalidThreadID;
1531}
1532
1533template<class Impl>
1534ThreadID
1535DefaultFetch<Impl>::lsqCount()
1536{
1537 std::priority_queue<unsigned> PQ;
1538 std::map<unsigned, ThreadID> threadMap;
1539
1540 list<ThreadID>::iterator threads = activeThreads->begin();
1541 list<ThreadID>::iterator end = activeThreads->end();
1542
1543 while (threads != end) {
1544 ThreadID tid = *threads++;
1545 unsigned ldstqCount = fromIEW->iewInfo[tid].ldstqCount;
1546
1547 PQ.push(ldstqCount);
1548 threadMap[ldstqCount] = tid;
1549 }
1550
1551 while (!PQ.empty()) {
1552 ThreadID high_pri = threadMap[PQ.top()];
1553
1554 if (fetchStatus[high_pri] == Running ||
1555 fetchStatus[high_pri] == IcacheAccessComplete ||
1556 fetchStatus[high_pri] == Idle)
1557 return high_pri;
1558 else
1559 PQ.pop();
1560 }
1561
1562 return InvalidThreadID;
1563}
1564
1565template<class Impl>
1566ThreadID
1567DefaultFetch<Impl>::branchCount()
1568{
1569#if 0
1570 list<ThreadID>::iterator thread = activeThreads->begin();
1571 assert(thread != activeThreads->end());
1572 ThreadID tid = *thread;
1573#endif
1574
1575 panic("Branch Count Fetch policy unimplemented\n");
1576 return InvalidThreadID;
1577}
1578
1579template<class Impl>
1580void
1581DefaultFetch<Impl>::pipelineIcacheAccesses(ThreadID tid)
1582{
1583 if (!issuePipelinedIfetch[tid]) {
1584 return;
1585 }
1586
1587 // The next PC to access.
1588 TheISA::PCState thisPC = pc[tid];
1589
1590 if (isRomMicroPC(thisPC.microPC())) {
1591 return;
1592 }
1593
1594 Addr pcOffset = fetchOffset[tid];
1595 Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1596
1597 // Align the fetch PC so its at the start of a fetch buffer segment.
1598 Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1599
1600 // Unless buffer already got the block, fetch it from icache.
1601 if (!(fetchBufferValid[tid] && fetchBufferBlockPC == fetchBufferPC[tid])) {
1602 DPRINTF(Fetch, "[tid:%i]: Issuing a pipelined I-cache access, "
1603 "starting at PC %s.\n", tid, thisPC);
1604
1605 fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1606 }
1607}
1608
1609template<class Impl>
1610void
1611DefaultFetch<Impl>::profileStall(ThreadID tid) {
1612 DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1613
1614 // @todo Per-thread stats
1615
1616 if (stalls[tid].drain) {
1617 ++fetchPendingDrainCycles;
1618 DPRINTF(Fetch, "Fetch is waiting for a drain!\n");
1619 } else if (activeThreads->empty()) {
1620 ++fetchNoActiveThreadStallCycles;
1621 DPRINTF(Fetch, "Fetch has no active thread!\n");
1622 } else if (fetchStatus[tid] == Blocked) {
1623 ++fetchBlockedCycles;
1624 DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1625 } else if (fetchStatus[tid] == Squashing) {
1626 ++fetchSquashCycles;
1627 DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1628 } else if (fetchStatus[tid] == IcacheWaitResponse) {
1629 ++icacheStallCycles;
1630 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n",
1631 tid);
1632 } else if (fetchStatus[tid] == ItlbWait) {
1633 ++fetchTlbCycles;
1634 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting ITLB walk to "
1635 "finish!\n", tid);
1636 } else if (fetchStatus[tid] == TrapPending) {
1637 ++fetchPendingTrapStallCycles;
1638 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending trap!\n",
1639 tid);
1640 } else if (fetchStatus[tid] == QuiescePending) {
1641 ++fetchPendingQuiesceStallCycles;
1642 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending quiesce "
1643 "instruction!\n", tid);
1644 } else if (fetchStatus[tid] == IcacheWaitRetry) {
1645 ++fetchIcacheWaitRetryStallCycles;
1646 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for an I-cache retry!\n",
1647 tid);
1648 } else if (fetchStatus[tid] == NoGoodAddr) {
1649 DPRINTF(Fetch, "[tid:%i]: Fetch predicted non-executable address\n",
1650 tid);
1651 } else {
1652 DPRINTF(Fetch, "[tid:%i]: Unexpected fetch stall reason (Status: %i).\n",
1653 tid, fetchStatus[tid]);
1654 }
1655}
1656
1657#endif//__CPU_O3_FETCH_IMPL_HH__