Deleted Added
sdiff udiff text old ( 9152:86c0e6ca5e7c ) new ( 9165:f9e3dac185ba )
full compact
1/*
2 * Copyright (c) 2010-2011 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 * Korey Sewell
42 */
43
44#include <algorithm>
45#include <cstring>
46#include <list>
47#include <map>
48#include <queue>
49
50#include "arch/isa_traits.hh"
51#include "arch/tlb.hh"
52#include "arch/utility.hh"
53#include "arch/vtophys.hh"
54#include "base/types.hh"
55#include "config/the_isa.hh"
56#include "cpu/base.hh"
57//#include "cpu/checker/cpu.hh"
58#include "cpu/o3/fetch.hh"
59#include "cpu/exetrace.hh"
60#include "debug/Activity.hh"
61#include "debug/Fetch.hh"
62#include "mem/packet.hh"
63#include "params/DerivO3CPU.hh"
64#include "sim/byteswap.hh"
65#include "sim/core.hh"
66#include "sim/eventq.hh"
67#include "sim/full_system.hh"
68#include "sim/system.hh"
69
70using namespace std;
71
72template<class Impl>
73DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
74 : cpu(_cpu),
75 branchPred(params),
76 numInst(0),
77 decodeToFetchDelay(params->decodeToFetchDelay),
78 renameToFetchDelay(params->renameToFetchDelay),
79 iewToFetchDelay(params->iewToFetchDelay),
80 commitToFetchDelay(params->commitToFetchDelay),
81 fetchWidth(params->fetchWidth),
82 cacheBlocked(false),
83 retryPkt(NULL),
84 retryTid(InvalidThreadID),
85 numThreads(params->numThreads),
86 numFetchingThreads(params->smtNumFetchingThreads),
87 interruptPending(false),
88 drainPending(false),
89 switchedOut(false),
90 finishTranslationEvent(this)
91{
92 if (numThreads > Impl::MaxThreads)
93 fatal("numThreads (%d) is larger than compiled limit (%d),\n"
94 "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
95 numThreads, static_cast<int>(Impl::MaxThreads));
96 if (fetchWidth > Impl::MaxWidth)
97 fatal("fetchWidth (%d) is larger than compiled limit (%d),\n"
98 "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
99 fetchWidth, static_cast<int>(Impl::MaxWidth));
100
101 // Set fetch stage's status to inactive.
102 _status = Inactive;
103
104 std::string policy = params->smtFetchPolicy;
105
106 // Convert string to lowercase
107 std::transform(policy.begin(), policy.end(), policy.begin(),
108 (int(*)(int)) tolower);
109
110 // Figure out fetch policy
111 if (policy == "singlethread") {
112 fetchPolicy = SingleThread;
113 if (numThreads > 1)
114 panic("Invalid Fetch Policy for a SMT workload.");
115 } else if (policy == "roundrobin") {
116 fetchPolicy = RoundRobin;
117 DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
118 } else if (policy == "branch") {
119 fetchPolicy = Branch;
120 DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
121 } else if (policy == "iqcount") {
122 fetchPolicy = IQ;
123 DPRINTF(Fetch, "Fetch policy set to IQ count\n");
124 } else if (policy == "lsqcount") {
125 fetchPolicy = LSQ;
126 DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
127 } else {
128 fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
129 " RoundRobin,LSQcount,IQcount}\n");
130 }
131
132 // Get the size of an instruction.
133 instSize = sizeof(TheISA::MachInst);
134
135 for (int i = 0; i < Impl::MaxThreads; i++) {
136 cacheData[i] = NULL;
137 decoder[i] = new TheISA::Decoder(NULL);
138 }
139}
140
141template <class Impl>
142std::string
143DefaultFetch<Impl>::name() const
144{
145 return cpu->name() + ".fetch";
146}
147
148template <class Impl>
149void
150DefaultFetch<Impl>::regStats()
151{
152 icacheStallCycles
153 .name(name() + ".icacheStallCycles")
154 .desc("Number of cycles fetch is stalled on an Icache miss")
155 .prereq(icacheStallCycles);
156
157 fetchedInsts
158 .name(name() + ".Insts")
159 .desc("Number of instructions fetch has processed")
160 .prereq(fetchedInsts);
161
162 fetchedBranches
163 .name(name() + ".Branches")
164 .desc("Number of branches that fetch encountered")
165 .prereq(fetchedBranches);
166
167 predictedBranches
168 .name(name() + ".predictedBranches")
169 .desc("Number of branches that fetch has predicted taken")
170 .prereq(predictedBranches);
171
172 fetchCycles
173 .name(name() + ".Cycles")
174 .desc("Number of cycles fetch has run and was not squashing or"
175 " blocked")
176 .prereq(fetchCycles);
177
178 fetchSquashCycles
179 .name(name() + ".SquashCycles")
180 .desc("Number of cycles fetch has spent squashing")
181 .prereq(fetchSquashCycles);
182
183 fetchTlbCycles
184 .name(name() + ".TlbCycles")
185 .desc("Number of cycles fetch has spent waiting for tlb")
186 .prereq(fetchTlbCycles);
187
188 fetchIdleCycles
189 .name(name() + ".IdleCycles")
190 .desc("Number of cycles fetch was idle")
191 .prereq(fetchIdleCycles);
192
193 fetchBlockedCycles
194 .name(name() + ".BlockedCycles")
195 .desc("Number of cycles fetch has spent blocked")
196 .prereq(fetchBlockedCycles);
197
198 fetchedCacheLines
199 .name(name() + ".CacheLines")
200 .desc("Number of cache lines fetched")
201 .prereq(fetchedCacheLines);
202
203 fetchMiscStallCycles
204 .name(name() + ".MiscStallCycles")
205 .desc("Number of cycles fetch has spent waiting on interrupts, or "
206 "bad addresses, or out of MSHRs")
207 .prereq(fetchMiscStallCycles);
208
209 fetchPendingDrainCycles
210 .name(name() + ".PendingDrainCycles")
211 .desc("Number of cycles fetch has spent waiting on pipes to drain")
212 .prereq(fetchPendingDrainCycles);
213
214 fetchNoActiveThreadStallCycles
215 .name(name() + ".NoActiveThreadStallCycles")
216 .desc("Number of stall cycles due to no active thread to fetch from")
217 .prereq(fetchNoActiveThreadStallCycles);
218
219 fetchPendingTrapStallCycles
220 .name(name() + ".PendingTrapStallCycles")
221 .desc("Number of stall cycles due to pending traps")
222 .prereq(fetchPendingTrapStallCycles);
223
224 fetchPendingQuiesceStallCycles
225 .name(name() + ".PendingQuiesceStallCycles")
226 .desc("Number of stall cycles due to pending quiesce instructions")
227 .prereq(fetchPendingQuiesceStallCycles);
228
229 fetchIcacheWaitRetryStallCycles
230 .name(name() + ".IcacheWaitRetryStallCycles")
231 .desc("Number of stall cycles due to full MSHR")
232 .prereq(fetchIcacheWaitRetryStallCycles);
233
234 fetchIcacheSquashes
235 .name(name() + ".IcacheSquashes")
236 .desc("Number of outstanding Icache misses that were squashed")
237 .prereq(fetchIcacheSquashes);
238
239 fetchTlbSquashes
240 .name(name() + ".ItlbSquashes")
241 .desc("Number of outstanding ITLB misses that were squashed")
242 .prereq(fetchTlbSquashes);
243
244 fetchNisnDist
245 .init(/* base value */ 0,
246 /* last value */ fetchWidth,
247 /* bucket size */ 1)
248 .name(name() + ".rateDist")
249 .desc("Number of instructions fetched each cycle (Total)")
250 .flags(Stats::pdf);
251
252 idleRate
253 .name(name() + ".idleRate")
254 .desc("Percent of cycles fetch was idle")
255 .prereq(idleRate);
256 idleRate = fetchIdleCycles * 100 / cpu->numCycles;
257
258 branchRate
259 .name(name() + ".branchRate")
260 .desc("Number of branch fetches per cycle")
261 .flags(Stats::total);
262 branchRate = fetchedBranches / cpu->numCycles;
263
264 fetchRate
265 .name(name() + ".rate")
266 .desc("Number of inst fetches per cycle")
267 .flags(Stats::total);
268 fetchRate = fetchedInsts / cpu->numCycles;
269
270 branchPred.regStats();
271}
272
273template<class Impl>
274void
275DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
276{
277 timeBuffer = time_buffer;
278
279 // Create wires to get information from proper places in time buffer.
280 fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
281 fromRename = timeBuffer->getWire(-renameToFetchDelay);
282 fromIEW = timeBuffer->getWire(-iewToFetchDelay);
283 fromCommit = timeBuffer->getWire(-commitToFetchDelay);
284}
285
286template<class Impl>
287void
288DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
289{
290 activeThreads = at_ptr;
291}
292
293template<class Impl>
294void
295DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
296{
297 fetchQueue = fq_ptr;
298
299 // Create wire to write information to proper place in fetch queue.
300 toDecode = fetchQueue->getWire(0);
301}
302
303template<class Impl>
304void
305DefaultFetch<Impl>::initStage()
306{
307 // Setup PC and nextPC with initial state.
308 for (ThreadID tid = 0; tid < numThreads; tid++) {
309 pc[tid] = cpu->pcState(tid);
310 fetchOffset[tid] = 0;
311 macroop[tid] = NULL;
312 delayedCommit[tid] = false;
313 }
314
315 for (ThreadID tid = 0; tid < numThreads; tid++) {
316
317 fetchStatus[tid] = Running;
318
319 priorityList.push_back(tid);
320
321 memReq[tid] = NULL;
322
323 stalls[tid].decode = false;
324 stalls[tid].rename = false;
325 stalls[tid].iew = false;
326 stalls[tid].commit = false;
327 }
328
329 // Schedule fetch to get the correct PC from the CPU
330 // scheduleFetchStartupEvent(1);
331
332 // Fetch needs to start fetching instructions at the very beginning,
333 // so it must start up in active state.
334 switchToActive();
335}
336
337template<class Impl>
338void
339DefaultFetch<Impl>::setIcache()
340{
341 assert(cpu->getInstPort().isConnected());
342
343 // Size of cache block.
344 cacheBlkSize = cpu->getInstPort().peerBlockSize();
345
346 // Create mask to get rid of offset bits.
347 cacheBlkMask = (cacheBlkSize - 1);
348
349 for (ThreadID tid = 0; tid < numThreads; tid++) {
350 // Create space to store a cache line.
351 if (!cacheData[tid])
352 cacheData[tid] = new uint8_t[cacheBlkSize];
353 cacheDataPC[tid] = 0;
354 cacheDataValid[tid] = false;
355 }
356}
357
358template<class Impl>
359void
360DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
361{
362 ThreadID tid = pkt->req->threadId();
363
364 DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n", tid);
365
366 assert(!pkt->wasNacked());
367
368 // Only change the status if it's still waiting on the icache access
369 // to return.
370 if (fetchStatus[tid] != IcacheWaitResponse ||
371 pkt->req != memReq[tid] ||
372 isSwitchedOut()) {
373 ++fetchIcacheSquashes;
374 delete pkt->req;
375 delete pkt;
376 return;
377 }
378
379 memcpy(cacheData[tid], pkt->getPtr<uint8_t>(), cacheBlkSize);
380 cacheDataValid[tid] = true;
381
382 if (!drainPending) {
383 // Wake up the CPU (if it went to sleep and was waiting on
384 // this completion event).
385 cpu->wakeCPU();
386
387 DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
388 tid);
389
390 switchToActive();
391 }
392
393 // Only switch to IcacheAccessComplete if we're not stalled as well.
394 if (checkStall(tid)) {
395 fetchStatus[tid] = Blocked;
396 } else {
397 fetchStatus[tid] = IcacheAccessComplete;
398 }
399
400 // Reset the mem req to NULL.
401 delete pkt->req;
402 delete pkt;
403 memReq[tid] = NULL;
404}
405
406template <class Impl>
407bool
408DefaultFetch<Impl>::drain()
409{
410 // Fetch is ready to drain at any time.
411 cpu->signalDrained();
412 drainPending = true;
413 return true;
414}
415
416template <class Impl>
417void
418DefaultFetch<Impl>::resume()
419{
420 drainPending = false;
421}
422
423template <class Impl>
424void
425DefaultFetch<Impl>::switchOut()
426{
427 switchedOut = true;
428 // Branch predictor needs to have its state cleared.
429 branchPred.switchOut();
430}
431
432template <class Impl>
433void
434DefaultFetch<Impl>::takeOverFrom()
435{
436 // the instruction port is now connected so we can get the block
437 // size
438 setIcache();
439
440 // Reset all state
441 for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
442 stalls[i].decode = 0;
443 stalls[i].rename = 0;
444 stalls[i].iew = 0;
445 stalls[i].commit = 0;
446 pc[i] = cpu->pcState(i);
447 fetchStatus[i] = Running;
448 }
449 numInst = 0;
450 wroteToTimeBuffer = false;
451 _status = Inactive;
452 switchedOut = false;
453 interruptPending = false;
454 branchPred.takeOverFrom();
455}
456
457template <class Impl>
458void
459DefaultFetch<Impl>::wakeFromQuiesce()
460{
461 DPRINTF(Fetch, "Waking up from quiesce\n");
462 // Hopefully this is safe
463 // @todo: Allow other threads to wake from quiesce.
464 fetchStatus[0] = Running;
465}
466
467template <class Impl>
468inline void
469DefaultFetch<Impl>::switchToActive()
470{
471 if (_status == Inactive) {
472 DPRINTF(Activity, "Activating stage.\n");
473
474 cpu->activateStage(O3CPU::FetchIdx);
475
476 _status = Active;
477 }
478}
479
480template <class Impl>
481inline void
482DefaultFetch<Impl>::switchToInactive()
483{
484 if (_status == Active) {
485 DPRINTF(Activity, "Deactivating stage.\n");
486
487 cpu->deactivateStage(O3CPU::FetchIdx);
488
489 _status = Inactive;
490 }
491}
492
493template <class Impl>
494bool
495DefaultFetch<Impl>::lookupAndUpdateNextPC(
496 DynInstPtr &inst, TheISA::PCState &nextPC)
497{
498 // Do branch prediction check here.
499 // A bit of a misnomer...next_PC is actually the current PC until
500 // this function updates it.
501 bool predict_taken;
502
503 if (!inst->isControl()) {
504 TheISA::advancePC(nextPC, inst->staticInst);
505 inst->setPredTarg(nextPC);
506 inst->setPredTaken(false);
507 return false;
508 }
509
510 ThreadID tid = inst->threadNumber;
511 predict_taken = branchPred.predict(inst, nextPC, tid);
512
513 if (predict_taken) {
514 DPRINTF(Fetch, "[tid:%i]: [sn:%i]: Branch predicted to be taken to %s.\n",
515 tid, inst->seqNum, nextPC);
516 } else {
517 DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n",
518 tid, inst->seqNum);
519 }
520
521 DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n",
522 tid, inst->seqNum, nextPC);
523 inst->setPredTarg(nextPC);
524 inst->setPredTaken(predict_taken);
525
526 ++fetchedBranches;
527
528 if (predict_taken) {
529 ++predictedBranches;
530 }
531
532 return predict_taken;
533}
534
535template <class Impl>
536bool
537DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, ThreadID tid, Addr pc)
538{
539 Fault fault = NoFault;
540
541 // @todo: not sure if these should block translation.
542 //AlphaDep
543 if (cacheBlocked) {
544 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
545 tid);
546 return false;
547 } else if (isSwitchedOut()) {
548 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, switched out\n",
549 tid);
550 return false;
551 } else if (checkInterrupt(pc) && !delayedCommit[tid]) {
552 // Hold off fetch from getting new instructions when:
553 // Cache is blocked, or
554 // while an interrupt is pending and we're not in PAL mode, or
555 // fetch is switched out.
556 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
557 tid);
558 return false;
559 }
560
561 // Align the fetch address so it's at the start of a cache block.
562 Addr block_PC = icacheBlockAlignPC(vaddr);
563
564 DPRINTF(Fetch, "[tid:%i] Fetching cache line %#x for addr %#x\n",
565 tid, block_PC, vaddr);
566
567 // Setup the memReq to do a read of the first instruction's address.
568 // Set the appropriate read size and flags as well.
569 // Build request here.
570 RequestPtr mem_req =
571 new Request(tid, block_PC, cacheBlkSize, Request::INST_FETCH,
572 cpu->instMasterId(), pc, cpu->thread[tid]->contextId(), tid);
573
574 memReq[tid] = mem_req;
575
576 // Initiate translation of the icache block
577 fetchStatus[tid] = ItlbWait;
578 FetchTranslation *trans = new FetchTranslation(this);
579 cpu->itb->translateTiming(mem_req, cpu->thread[tid]->getTC(),
580 trans, BaseTLB::Execute);
581 return true;
582}
583
584template <class Impl>
585void
586DefaultFetch<Impl>::finishTranslation(Fault fault, RequestPtr mem_req)
587{
588 ThreadID tid = mem_req->threadId();
589 Addr block_PC = mem_req->getVaddr();
590
591 // Wake up CPU if it was idle
592 cpu->wakeCPU();
593
594 if (fetchStatus[tid] != ItlbWait || mem_req != memReq[tid] ||
595 mem_req->getVaddr() != memReq[tid]->getVaddr() || isSwitchedOut()) {
596 DPRINTF(Fetch, "[tid:%i] Ignoring itlb completed after squash\n",
597 tid);
598 ++fetchTlbSquashes;
599 delete mem_req;
600 return;
601 }
602
603
604 // If translation was successful, attempt to read the icache block.
605 if (fault == NoFault) {
606 // Check that we're not going off into random memory
607 // If we have, just wait around for commit to squash something and put
608 // us on the right track
609 if (!cpu->system->isMemAddr(mem_req->getPaddr())) {
610 warn("Address %#x is outside of physical memory, stopping fetch\n",
611 mem_req->getPaddr());
612 fetchStatus[tid] = NoGoodAddr;
613 delete mem_req;
614 memReq[tid] = NULL;
615 return;
616 }
617
618 // Build packet here.
619 PacketPtr data_pkt = new Packet(mem_req, MemCmd::ReadReq);
620 data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
621
622 cacheDataPC[tid] = block_PC;
623 cacheDataValid[tid] = false;
624 DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
625
626 fetchedCacheLines++;
627
628 // Access the cache.
629 if (!cpu->getInstPort().sendTimingReq(data_pkt)) {
630 assert(retryPkt == NULL);
631 assert(retryTid == InvalidThreadID);
632 DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
633
634 fetchStatus[tid] = IcacheWaitRetry;
635 retryPkt = data_pkt;
636 retryTid = tid;
637 cacheBlocked = true;
638 } else {
639 DPRINTF(Fetch, "[tid:%i]: Doing Icache access.\n", tid);
640 DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
641 "response.\n", tid);
642
643 lastIcacheStall[tid] = curTick();
644 fetchStatus[tid] = IcacheWaitResponse;
645 }
646 } else {
647 if (!(numInst < fetchWidth)) {
648 assert(!finishTranslationEvent.scheduled());
649 finishTranslationEvent.setFault(fault);
650 finishTranslationEvent.setReq(mem_req);
651 cpu->schedule(finishTranslationEvent, cpu->nextCycle(curTick() + cpu->ticks(1)));
652 return;
653 }
654 DPRINTF(Fetch, "[tid:%i] Got back req with addr %#x but expected %#x\n",
655 tid, mem_req->getVaddr(), memReq[tid]->getVaddr());
656 // Translation faulted, icache request won't be sent.
657 delete mem_req;
658 memReq[tid] = NULL;
659
660 // Send the fault to commit. This thread will not do anything
661 // until commit handles the fault. The only other way it can
662 // wake up is if a squash comes along and changes the PC.
663 TheISA::PCState fetchPC = pc[tid];
664
665 DPRINTF(Fetch, "[tid:%i]: Translation faulted, building noop.\n", tid);
666 // We will use a nop in ordier to carry the fault.
667 DynInstPtr instruction = buildInst(tid,
668 decoder[tid]->decode(TheISA::NoopMachInst, fetchPC.instAddr()),
669 NULL, fetchPC, fetchPC, false);
670
671 instruction->setPredTarg(fetchPC);
672 instruction->fault = fault;
673 wroteToTimeBuffer = true;
674
675 DPRINTF(Activity, "Activity this cycle.\n");
676 cpu->activityThisCycle();
677
678 fetchStatus[tid] = TrapPending;
679
680 DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n", tid);
681 DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s.\n",
682 tid, fault->name(), pc[tid]);
683 }
684 _status = updateFetchStatus();
685}
686
687template <class Impl>
688inline void
689DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC,
690 const DynInstPtr squashInst, ThreadID tid)
691{
692 DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n",
693 tid, newPC);
694
695 pc[tid] = newPC;
696 fetchOffset[tid] = 0;
697 if (squashInst && squashInst->pcState().instAddr() == newPC.instAddr())
698 macroop[tid] = squashInst->macroop;
699 else
700 macroop[tid] = NULL;
701 decoder[tid]->reset();
702
703 // Clear the icache miss if it's outstanding.
704 if (fetchStatus[tid] == IcacheWaitResponse) {
705 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
706 tid);
707 memReq[tid] = NULL;
708 } else if (fetchStatus[tid] == ItlbWait) {
709 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding ITLB miss.\n",
710 tid);
711 memReq[tid] = NULL;
712 }
713
714 // Get rid of the retrying packet if it was from this thread.
715 if (retryTid == tid) {
716 assert(cacheBlocked);
717 if (retryPkt) {
718 delete retryPkt->req;
719 delete retryPkt;
720 }
721 retryPkt = NULL;
722 retryTid = InvalidThreadID;
723 }
724
725 fetchStatus[tid] = Squashing;
726
727 // microops are being squashed, it is not known wheather the
728 // youngest non-squashed microop was marked delayed commit
729 // or not. Setting the flag to true ensures that the
730 // interrupts are not handled when they cannot be, though
731 // some opportunities to handle interrupts may be missed.
732 delayedCommit[tid] = true;
733
734 ++fetchSquashCycles;
735}
736
737template<class Impl>
738void
739DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
740 const DynInstPtr squashInst,
741 const InstSeqNum seq_num, ThreadID tid)
742{
743 DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid);
744
745 doSquash(newPC, squashInst, tid);
746
747 // Tell the CPU to remove any instructions that are in flight between
748 // fetch and decode.
749 cpu->removeInstsUntil(seq_num, tid);
750}
751
752template<class Impl>
753bool
754DefaultFetch<Impl>::checkStall(ThreadID tid) const
755{
756 bool ret_val = false;
757
758 if (cpu->contextSwitch) {
759 DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
760 ret_val = true;
761 } else if (stalls[tid].decode) {
762 DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
763 ret_val = true;
764 } else if (stalls[tid].rename) {
765 DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
766 ret_val = true;
767 } else if (stalls[tid].iew) {
768 DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
769 ret_val = true;
770 } else if (stalls[tid].commit) {
771 DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
772 ret_val = true;
773 }
774
775 return ret_val;
776}
777
778template<class Impl>
779typename DefaultFetch<Impl>::FetchStatus
780DefaultFetch<Impl>::updateFetchStatus()
781{
782 //Check Running
783 list<ThreadID>::iterator threads = activeThreads->begin();
784 list<ThreadID>::iterator end = activeThreads->end();
785
786 while (threads != end) {
787 ThreadID tid = *threads++;
788
789 if (fetchStatus[tid] == Running ||
790 fetchStatus[tid] == Squashing ||
791 fetchStatus[tid] == IcacheAccessComplete) {
792
793 if (_status == Inactive) {
794 DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
795
796 if (fetchStatus[tid] == IcacheAccessComplete) {
797 DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
798 "completion\n",tid);
799 }
800
801 cpu->activateStage(O3CPU::FetchIdx);
802 }
803
804 return Active;
805 }
806 }
807
808 // Stage is switching from active to inactive, notify CPU of it.
809 if (_status == Active) {
810 DPRINTF(Activity, "Deactivating stage.\n");
811
812 cpu->deactivateStage(O3CPU::FetchIdx);
813 }
814
815 return Inactive;
816}
817
818template <class Impl>
819void
820DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
821 const InstSeqNum seq_num, DynInstPtr squashInst,
822 ThreadID tid)
823{
824 DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid);
825
826 doSquash(newPC, squashInst, tid);
827
828 // Tell the CPU to remove any instructions that are not in the ROB.
829 cpu->removeInstsNotInROB(tid);
830}
831
832template <class Impl>
833void
834DefaultFetch<Impl>::tick()
835{
836 list<ThreadID>::iterator threads = activeThreads->begin();
837 list<ThreadID>::iterator end = activeThreads->end();
838 bool status_change = false;
839
840 wroteToTimeBuffer = false;
841
842 for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
843 issuePipelinedIfetch[i] = false;
844 }
845
846 while (threads != end) {
847 ThreadID tid = *threads++;
848
849 // Check the signals for each thread to determine the proper status
850 // for each thread.
851 bool updated_status = checkSignalsAndUpdate(tid);
852 status_change = status_change || updated_status;
853 }
854
855 DPRINTF(Fetch, "Running stage.\n");
856
857 if (FullSystem) {
858 if (fromCommit->commitInfo[0].interruptPending) {
859 interruptPending = true;
860 }
861
862 if (fromCommit->commitInfo[0].clearInterrupt) {
863 interruptPending = false;
864 }
865 }
866
867 for (threadFetched = 0; threadFetched < numFetchingThreads;
868 threadFetched++) {
869 // Fetch each of the actively fetching threads.
870 fetch(status_change);
871 }
872
873 // Record number of instructions fetched this cycle for distribution.
874 fetchNisnDist.sample(numInst);
875
876 if (status_change) {
877 // Change the fetch stage status if there was a status change.
878 _status = updateFetchStatus();
879 }
880
881 // If there was activity this cycle, inform the CPU of it.
882 if (wroteToTimeBuffer || cpu->contextSwitch) {
883 DPRINTF(Activity, "Activity this cycle.\n");
884
885 cpu->activityThisCycle();
886 }
887
888 // Issue the next I-cache request if possible.
889 for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
890 if (issuePipelinedIfetch[i]) {
891 pipelineIcacheAccesses(i);
892 }
893 }
894
895 // Reset the number of the instruction we've fetched.
896 numInst = 0;
897}
898
899template <class Impl>
900bool
901DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
902{
903 // Update the per thread stall statuses.
904 if (fromDecode->decodeBlock[tid]) {
905 stalls[tid].decode = true;
906 }
907
908 if (fromDecode->decodeUnblock[tid]) {
909 assert(stalls[tid].decode);
910 assert(!fromDecode->decodeBlock[tid]);
911 stalls[tid].decode = false;
912 }
913
914 if (fromRename->renameBlock[tid]) {
915 stalls[tid].rename = true;
916 }
917
918 if (fromRename->renameUnblock[tid]) {
919 assert(stalls[tid].rename);
920 assert(!fromRename->renameBlock[tid]);
921 stalls[tid].rename = false;
922 }
923
924 if (fromIEW->iewBlock[tid]) {
925 stalls[tid].iew = true;
926 }
927
928 if (fromIEW->iewUnblock[tid]) {
929 assert(stalls[tid].iew);
930 assert(!fromIEW->iewBlock[tid]);
931 stalls[tid].iew = false;
932 }
933
934 if (fromCommit->commitBlock[tid]) {
935 stalls[tid].commit = true;
936 }
937
938 if (fromCommit->commitUnblock[tid]) {
939 assert(stalls[tid].commit);
940 assert(!fromCommit->commitBlock[tid]);
941 stalls[tid].commit = false;
942 }
943
944 // Check squash signals from commit.
945 if (fromCommit->commitInfo[tid].squash) {
946
947 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
948 "from commit.\n",tid);
949 // In any case, squash.
950 squash(fromCommit->commitInfo[tid].pc,
951 fromCommit->commitInfo[tid].doneSeqNum,
952 fromCommit->commitInfo[tid].squashInst, tid);
953
954 // If it was a branch mispredict on a control instruction, update the
955 // branch predictor with that instruction, otherwise just kill the
956 // invalid state we generated in after sequence number
957 if (fromCommit->commitInfo[tid].mispredictInst &&
958 fromCommit->commitInfo[tid].mispredictInst->isControl()) {
959 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
960 fromCommit->commitInfo[tid].pc,
961 fromCommit->commitInfo[tid].branchTaken,
962 tid);
963 } else {
964 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
965 tid);
966 }
967
968 return true;
969 } else if (fromCommit->commitInfo[tid].doneSeqNum) {
970 // Update the branch predictor if it wasn't a squashed instruction
971 // that was broadcasted.
972 branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
973 }
974
975 // Check ROB squash signals from commit.
976 if (fromCommit->commitInfo[tid].robSquashing) {
977 DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
978
979 // Continue to squash.
980 fetchStatus[tid] = Squashing;
981
982 return true;
983 }
984
985 // Check squash signals from decode.
986 if (fromDecode->decodeInfo[tid].squash) {
987 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
988 "from decode.\n",tid);
989
990 // Update the branch predictor.
991 if (fromDecode->decodeInfo[tid].branchMispredict) {
992 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
993 fromDecode->decodeInfo[tid].nextPC,
994 fromDecode->decodeInfo[tid].branchTaken,
995 tid);
996 } else {
997 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
998 tid);
999 }
1000
1001 if (fetchStatus[tid] != Squashing) {
1002
1003 DPRINTF(Fetch, "Squashing from decode with PC = %s\n",
1004 fromDecode->decodeInfo[tid].nextPC);
1005 // Squash unless we're already squashing
1006 squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
1007 fromDecode->decodeInfo[tid].squashInst,
1008 fromDecode->decodeInfo[tid].doneSeqNum,
1009 tid);
1010
1011 return true;
1012 }
1013 }
1014
1015 if (checkStall(tid) &&
1016 fetchStatus[tid] != IcacheWaitResponse &&
1017 fetchStatus[tid] != IcacheWaitRetry) {
1018 DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
1019
1020 fetchStatus[tid] = Blocked;
1021
1022 return true;
1023 }
1024
1025 if (fetchStatus[tid] == Blocked ||
1026 fetchStatus[tid] == Squashing) {
1027 // Switch status to running if fetch isn't being told to block or
1028 // squash this cycle.
1029 DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1030 tid);
1031
1032 fetchStatus[tid] = Running;
1033
1034 return true;
1035 }
1036
1037 // If we've reached this point, we have not gotten any signals that
1038 // cause fetch to change its status. Fetch remains the same as before.
1039 return false;
1040}
1041
1042template<class Impl>
1043typename Impl::DynInstPtr
1044DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
1045 StaticInstPtr curMacroop, TheISA::PCState thisPC,
1046 TheISA::PCState nextPC, bool trace)
1047{
1048 // Get a sequence number.
1049 InstSeqNum seq = cpu->getAndIncrementInstSeq();
1050
1051 // Create a new DynInst from the instruction fetched.
1052 DynInstPtr instruction =
1053 new DynInst(staticInst, curMacroop, thisPC, nextPC, seq, cpu);
1054 instruction->setTid(tid);
1055
1056 instruction->setASID(tid);
1057
1058 instruction->setThreadState(cpu->thread[tid]);
1059
1060 DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created "
1061 "[sn:%lli].\n", tid, thisPC.instAddr(),
1062 thisPC.microPC(), seq);
1063
1064 DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid,
1065 instruction->staticInst->
1066 disassemble(thisPC.instAddr()));
1067
1068#if TRACING_ON
1069 if (trace) {
1070 instruction->traceData =
1071 cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
1072 instruction->staticInst, thisPC, curMacroop);
1073 }
1074#else
1075 instruction->traceData = NULL;
1076#endif
1077
1078 // Add instruction to the CPU's list of instructions.
1079 instruction->setInstListIt(cpu->addInst(instruction));
1080
1081 // Write the instruction to the first slot in the queue
1082 // that heads to decode.
1083 assert(numInst < fetchWidth);
1084 toDecode->insts[toDecode->size++] = instruction;
1085
1086 // Keep track of if we can take an interrupt at this boundary
1087 delayedCommit[tid] = instruction->isDelayedCommit();
1088
1089 return instruction;
1090}
1091
1092template<class Impl>
1093void
1094DefaultFetch<Impl>::fetch(bool &status_change)
1095{
1096 //////////////////////////////////////////
1097 // Start actual fetch
1098 //////////////////////////////////////////
1099 ThreadID tid = getFetchingThread(fetchPolicy);
1100
1101 if (tid == InvalidThreadID || drainPending) {
1102 // Breaks looping condition in tick()
1103 threadFetched = numFetchingThreads;
1104
1105 if (numThreads == 1) { // @todo Per-thread stats
1106 profileStall(0);
1107 }
1108
1109 return;
1110 }
1111
1112 DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1113
1114 // The current PC.
1115 TheISA::PCState thisPC = pc[tid];
1116
1117 Addr pcOffset = fetchOffset[tid];
1118 Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1119
1120 bool inRom = isRomMicroPC(thisPC.microPC());
1121
1122 // If returning from the delay of a cache miss, then update the status
1123 // to running, otherwise do the cache access. Possibly move this up
1124 // to tick() function.
1125 if (fetchStatus[tid] == IcacheAccessComplete) {
1126 DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n", tid);
1127
1128 fetchStatus[tid] = Running;
1129 status_change = true;
1130 } else if (fetchStatus[tid] == Running) {
1131 // Align the fetch PC so its at the start of a cache block.
1132 Addr block_PC = icacheBlockAlignPC(fetchAddr);
1133
1134 // If buffer is no longer valid or fetchAddr has moved to point
1135 // to the next cache block, AND we have no remaining ucode
1136 // from a macro-op, then start fetch from icache.
1137 if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])
1138 && !inRom && !macroop[tid]) {
1139 DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1140 "instruction, starting at PC %s.\n", tid, thisPC);
1141
1142 fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1143
1144 if (fetchStatus[tid] == IcacheWaitResponse)
1145 ++icacheStallCycles;
1146 else if (fetchStatus[tid] == ItlbWait)
1147 ++fetchTlbCycles;
1148 else
1149 ++fetchMiscStallCycles;
1150 return;
1151 } else if ((checkInterrupt(thisPC.instAddr()) && !delayedCommit[tid])
1152 || isSwitchedOut()) {
1153 // Stall CPU if an interrupt is posted and we're not issuing
1154 // an delayed commit micro-op currently (delayed commit instructions
1155 // are not interruptable by interrupts, only faults)
1156 ++fetchMiscStallCycles;
1157 DPRINTF(Fetch, "[tid:%i]: Fetch is stalled!\n", tid);
1158 return;
1159 }
1160 } else {
1161 if (fetchStatus[tid] == Idle) {
1162 ++fetchIdleCycles;
1163 DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1164 }
1165
1166 // Status is Idle, so fetch should do nothing.
1167 return;
1168 }
1169
1170 ++fetchCycles;
1171
1172 TheISA::PCState nextPC = thisPC;
1173
1174 StaticInstPtr staticInst = NULL;
1175 StaticInstPtr curMacroop = macroop[tid];
1176
1177 // If the read of the first instruction was successful, then grab the
1178 // instructions from the rest of the cache line and put them into the
1179 // queue heading to decode.
1180
1181 DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1182 "decode.\n", tid);
1183
1184 // Need to keep track of whether or not a predicted branch
1185 // ended this fetch block.
1186 bool predictedBranch = false;
1187
1188 TheISA::MachInst *cacheInsts =
1189 reinterpret_cast<TheISA::MachInst *>(cacheData[tid]);
1190
1191 const unsigned numInsts = cacheBlkSize / instSize;
1192 unsigned blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1193
1194 // Loop through instruction memory from the cache.
1195 // Keep issuing while fetchWidth is available and branch is not
1196 // predicted taken
1197 while (numInst < fetchWidth && !predictedBranch) {
1198
1199 // We need to process more memory if we aren't going to get a
1200 // StaticInst from the rom, the current macroop, or what's already
1201 // in the decoder.
1202 bool needMem = !inRom && !curMacroop &&
1203 !decoder[tid]->instReady();
1204 fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1205 Addr block_PC = icacheBlockAlignPC(fetchAddr);
1206
1207 if (needMem) {
1208 // If buffer is no longer valid or fetchAddr has moved to point
1209 // to the next cache block then start fetch from icache.
1210 if (!cacheDataValid[tid] || block_PC != cacheDataPC[tid])
1211 break;
1212
1213 if (blkOffset >= numInsts) {
1214 // We need to process more memory, but we've run out of the
1215 // current block.
1216 break;
1217 }
1218
1219 if (ISA_HAS_DELAY_SLOT && pcOffset == 0) {
1220 // Walk past any annulled delay slot instructions.
1221 Addr pcAddr = thisPC.instAddr() & BaseCPU::PCMask;
1222 while (fetchAddr != pcAddr && blkOffset < numInsts) {
1223 blkOffset++;
1224 fetchAddr += instSize;
1225 }
1226 if (blkOffset >= numInsts)
1227 break;
1228 }
1229 MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1230
1231 decoder[tid]->setTC(cpu->thread[tid]->getTC());
1232 decoder[tid]->moreBytes(thisPC, fetchAddr, inst);
1233
1234 if (decoder[tid]->needMoreBytes()) {
1235 blkOffset++;
1236 fetchAddr += instSize;
1237 pcOffset += instSize;
1238 }
1239 }
1240
1241 // Extract as many instructions and/or microops as we can from
1242 // the memory we've processed so far.
1243 do {
1244 if (!(curMacroop || inRom)) {
1245 if (decoder[tid]->instReady()) {
1246 staticInst = decoder[tid]->decode(thisPC);
1247
1248 // Increment stat of fetched instructions.
1249 ++fetchedInsts;
1250
1251 if (staticInst->isMacroop()) {
1252 curMacroop = staticInst;
1253 } else {
1254 pcOffset = 0;
1255 }
1256 } else {
1257 // We need more bytes for this instruction so blkOffset and
1258 // pcOffset will be updated
1259 break;
1260 }
1261 }
1262 // Whether we're moving to a new macroop because we're at the
1263 // end of the current one, or the branch predictor incorrectly
1264 // thinks we are...
1265 bool newMacro = false;
1266 if (curMacroop || inRom) {
1267 if (inRom) {
1268 staticInst = cpu->microcodeRom.fetchMicroop(
1269 thisPC.microPC(), curMacroop);
1270 } else {
1271 staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1272 }
1273 newMacro |= staticInst->isLastMicroop();
1274 }
1275
1276 DynInstPtr instruction =
1277 buildInst(tid, staticInst, curMacroop,
1278 thisPC, nextPC, true);
1279
1280 numInst++;
1281
1282#if TRACING_ON
1283 instruction->fetchTick = curTick();
1284#endif
1285
1286 nextPC = thisPC;
1287
1288 // If we're branching after this instruction, quite fetching
1289 // from the same block then.
1290 predictedBranch |= thisPC.branching();
1291 predictedBranch |=
1292 lookupAndUpdateNextPC(instruction, nextPC);
1293 if (predictedBranch) {
1294 DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1295 }
1296
1297 newMacro |= thisPC.instAddr() != nextPC.instAddr();
1298
1299 // Move to the next instruction, unless we have a branch.
1300 thisPC = nextPC;
1301 inRom = isRomMicroPC(thisPC.microPC());
1302
1303 if (newMacro) {
1304 fetchAddr = thisPC.instAddr() & BaseCPU::PCMask;
1305 blkOffset = (fetchAddr - cacheDataPC[tid]) / instSize;
1306 pcOffset = 0;
1307 curMacroop = NULL;
1308 }
1309
1310 if (instruction->isQuiesce()) {
1311 DPRINTF(Fetch,
1312 "Quiesce instruction encountered, halting fetch!");
1313 fetchStatus[tid] = QuiescePending;
1314 status_change = true;
1315 break;
1316 }
1317 } while ((curMacroop || decoder[tid]->instReady()) &&
1318 numInst < fetchWidth);
1319 }
1320
1321 if (predictedBranch) {
1322 DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1323 "instruction encountered.\n", tid);
1324 } else if (numInst >= fetchWidth) {
1325 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1326 "for this cycle.\n", tid);
1327 } else if (blkOffset >= cacheBlkSize) {
1328 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1329 "block.\n", tid);
1330 }
1331
1332 macroop[tid] = curMacroop;
1333 fetchOffset[tid] = pcOffset;
1334
1335 if (numInst > 0) {
1336 wroteToTimeBuffer = true;
1337 }
1338
1339 pc[tid] = thisPC;
1340
1341 // pipeline a fetch if we're crossing a cache boundary and not in
1342 // a state that would preclude fetching
1343 fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1344 Addr block_PC = icacheBlockAlignPC(fetchAddr);
1345 issuePipelinedIfetch[tid] = block_PC != cacheDataPC[tid] &&
1346 fetchStatus[tid] != IcacheWaitResponse &&
1347 fetchStatus[tid] != ItlbWait &&
1348 fetchStatus[tid] != IcacheWaitRetry &&
1349 fetchStatus[tid] != QuiescePending &&
1350 !curMacroop;
1351}
1352
1353template<class Impl>
1354void
1355DefaultFetch<Impl>::recvRetry()
1356{
1357 if (retryPkt != NULL) {
1358 assert(cacheBlocked);
1359 assert(retryTid != InvalidThreadID);
1360 assert(fetchStatus[retryTid] == IcacheWaitRetry);
1361
1362 if (cpu->getInstPort().sendTimingReq(retryPkt)) {
1363 fetchStatus[retryTid] = IcacheWaitResponse;
1364 retryPkt = NULL;
1365 retryTid = InvalidThreadID;
1366 cacheBlocked = false;
1367 }
1368 } else {
1369 assert(retryTid == InvalidThreadID);
1370 // Access has been squashed since it was sent out. Just clear
1371 // the cache being blocked.
1372 cacheBlocked = false;
1373 }
1374}
1375
1376///////////////////////////////////////
1377// //
1378// SMT FETCH POLICY MAINTAINED HERE //
1379// //
1380///////////////////////////////////////
1381template<class Impl>
1382ThreadID
1383DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1384{
1385 if (numThreads > 1) {
1386 switch (fetch_priority) {
1387
1388 case SingleThread:
1389 return 0;
1390
1391 case RoundRobin:
1392 return roundRobin();
1393
1394 case IQ:
1395 return iqCount();
1396
1397 case LSQ:
1398 return lsqCount();
1399
1400 case Branch:
1401 return branchCount();
1402
1403 default:
1404 return InvalidThreadID;
1405 }
1406 } else {
1407 list<ThreadID>::iterator thread = activeThreads->begin();
1408 if (thread == activeThreads->end()) {
1409 return InvalidThreadID;
1410 }
1411
1412 ThreadID tid = *thread;
1413
1414 if (fetchStatus[tid] == Running ||
1415 fetchStatus[tid] == IcacheAccessComplete ||
1416 fetchStatus[tid] == Idle) {
1417 return tid;
1418 } else {
1419 return InvalidThreadID;
1420 }
1421 }
1422}
1423
1424
1425template<class Impl>
1426ThreadID
1427DefaultFetch<Impl>::roundRobin()
1428{
1429 list<ThreadID>::iterator pri_iter = priorityList.begin();
1430 list<ThreadID>::iterator end = priorityList.end();
1431
1432 ThreadID high_pri;
1433
1434 while (pri_iter != end) {
1435 high_pri = *pri_iter;
1436
1437 assert(high_pri <= numThreads);
1438
1439 if (fetchStatus[high_pri] == Running ||
1440 fetchStatus[high_pri] == IcacheAccessComplete ||
1441 fetchStatus[high_pri] == Idle) {
1442
1443 priorityList.erase(pri_iter);
1444 priorityList.push_back(high_pri);
1445
1446 return high_pri;
1447 }
1448
1449 pri_iter++;
1450 }
1451
1452 return InvalidThreadID;
1453}
1454
1455template<class Impl>
1456ThreadID
1457DefaultFetch<Impl>::iqCount()
1458{
1459 std::priority_queue<unsigned> PQ;
1460 std::map<unsigned, ThreadID> threadMap;
1461
1462 list<ThreadID>::iterator threads = activeThreads->begin();
1463 list<ThreadID>::iterator end = activeThreads->end();
1464
1465 while (threads != end) {
1466 ThreadID tid = *threads++;
1467 unsigned iqCount = fromIEW->iewInfo[tid].iqCount;
1468
1469 PQ.push(iqCount);
1470 threadMap[iqCount] = tid;
1471 }
1472
1473 while (!PQ.empty()) {
1474 ThreadID high_pri = threadMap[PQ.top()];
1475
1476 if (fetchStatus[high_pri] == Running ||
1477 fetchStatus[high_pri] == IcacheAccessComplete ||
1478 fetchStatus[high_pri] == Idle)
1479 return high_pri;
1480 else
1481 PQ.pop();
1482
1483 }
1484
1485 return InvalidThreadID;
1486}
1487
1488template<class Impl>
1489ThreadID
1490DefaultFetch<Impl>::lsqCount()
1491{
1492 std::priority_queue<unsigned> PQ;
1493 std::map<unsigned, ThreadID> threadMap;
1494
1495 list<ThreadID>::iterator threads = activeThreads->begin();
1496 list<ThreadID>::iterator end = activeThreads->end();
1497
1498 while (threads != end) {
1499 ThreadID tid = *threads++;
1500 unsigned ldstqCount = fromIEW->iewInfo[tid].ldstqCount;
1501
1502 PQ.push(ldstqCount);
1503 threadMap[ldstqCount] = tid;
1504 }
1505
1506 while (!PQ.empty()) {
1507 ThreadID high_pri = threadMap[PQ.top()];
1508
1509 if (fetchStatus[high_pri] == Running ||
1510 fetchStatus[high_pri] == IcacheAccessComplete ||
1511 fetchStatus[high_pri] == Idle)
1512 return high_pri;
1513 else
1514 PQ.pop();
1515 }
1516
1517 return InvalidThreadID;
1518}
1519
1520template<class Impl>
1521ThreadID
1522DefaultFetch<Impl>::branchCount()
1523{
1524#if 0
1525 list<ThreadID>::iterator thread = activeThreads->begin();
1526 assert(thread != activeThreads->end());
1527 ThreadID tid = *thread;
1528#endif
1529
1530 panic("Branch Count Fetch policy unimplemented\n");
1531 return InvalidThreadID;
1532}
1533
1534template<class Impl>
1535void
1536DefaultFetch<Impl>::pipelineIcacheAccesses(ThreadID tid)
1537{
1538 if (!issuePipelinedIfetch[tid]) {
1539 return;
1540 }
1541
1542 // The next PC to access.
1543 TheISA::PCState thisPC = pc[tid];
1544
1545 if (isRomMicroPC(thisPC.microPC())) {
1546 return;
1547 }
1548
1549 Addr pcOffset = fetchOffset[tid];
1550 Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1551
1552 // Align the fetch PC so its at the start of a cache block.
1553 Addr block_PC = icacheBlockAlignPC(fetchAddr);
1554
1555 // Unless buffer already got the block, fetch it from icache.
1556 if (!(cacheDataValid[tid] && block_PC == cacheDataPC[tid])) {
1557 DPRINTF(Fetch, "[tid:%i]: Issuing a pipelined I-cache access, "
1558 "starting at PC %s.\n", tid, thisPC);
1559
1560 fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1561 }
1562}
1563
1564template<class Impl>
1565void
1566DefaultFetch<Impl>::profileStall(ThreadID tid) {
1567 DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1568
1569 // @todo Per-thread stats
1570
1571 if (drainPending) {
1572 ++fetchPendingDrainCycles;
1573 DPRINTF(Fetch, "Fetch is waiting for a drain!\n");
1574 } else if (activeThreads->empty()) {
1575 ++fetchNoActiveThreadStallCycles;
1576 DPRINTF(Fetch, "Fetch has no active thread!\n");
1577 } else if (fetchStatus[tid] == Blocked) {
1578 ++fetchBlockedCycles;
1579 DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1580 } else if (fetchStatus[tid] == Squashing) {
1581 ++fetchSquashCycles;
1582 DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1583 } else if (fetchStatus[tid] == IcacheWaitResponse) {
1584 ++icacheStallCycles;
1585 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n",
1586 tid);
1587 } else if (fetchStatus[tid] == ItlbWait) {
1588 ++fetchTlbCycles;
1589 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting ITLB walk to "
1590 "finish!\n", tid);
1591 } else if (fetchStatus[tid] == TrapPending) {
1592 ++fetchPendingTrapStallCycles;
1593 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending trap!\n",
1594 tid);
1595 } else if (fetchStatus[tid] == QuiescePending) {
1596 ++fetchPendingQuiesceStallCycles;
1597 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending quiesce "
1598 "instruction!\n", tid);
1599 } else if (fetchStatus[tid] == IcacheWaitRetry) {
1600 ++fetchIcacheWaitRetryStallCycles;
1601 DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for an I-cache retry!\n",
1602 tid);
1603 } else if (fetchStatus[tid] == NoGoodAddr) {
1604 DPRINTF(Fetch, "[tid:%i]: Fetch predicted non-executable address\n",
1605 tid);
1606 } else {
1607 DPRINTF(Fetch, "[tid:%i]: Unexpected fetch stall reason (Status: %i).\n",
1608 tid, fetchStatus[tid]);
1609 }
1610}