Deleted Added
sdiff udiff text old ( 3300:393d1801068a ) new ( 3310:21adbb41a37e )
full compact
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 * Korey Sewell
30 */
31
32#include "config/use_checker.hh"
33
34#include "arch/isa_traits.hh"
35#include "arch/utility.hh"
36#include "cpu/checker/cpu.hh"
37#include "cpu/exetrace.hh"
38#include "cpu/o3/fetch.hh"
39#include "mem/packet.hh"
40#include "mem/request.hh"
41#include "sim/byteswap.hh"
42#include "sim/host.hh"
43#include "sim/root.hh"
44
45#if FULL_SYSTEM
46#include "arch/tlb.hh"
47#include "arch/vtophys.hh"
48#include "base/remote_gdb.hh"
49#include "sim/system.hh"
50#endif // FULL_SYSTEM
51
52#include <algorithm>
53
54template<class Impl>
55Tick
56DefaultFetch<Impl>::IcachePort::recvAtomic(PacketPtr pkt)
57{
58 panic("DefaultFetch doesn't expect recvAtomic callback!");
59 return curTick;
60}
61
62template<class Impl>
63void
64DefaultFetch<Impl>::IcachePort::recvFunctional(PacketPtr pkt)
65{
66 warn("Default fetch doesn't update it's state from a functional call.");
67}
68
69template<class Impl>
70void
71DefaultFetch<Impl>::IcachePort::recvStatusChange(Status status)
72{
73 if (status == RangeChange)
74 return;
75
76 panic("DefaultFetch doesn't expect recvStatusChange callback!");
77}
78
79template<class Impl>
80bool
81DefaultFetch<Impl>::IcachePort::recvTiming(Packet *pkt)
82{
83 fetch->processCacheCompletion(pkt);
84 return true;
85}
86
87template<class Impl>
88void
89DefaultFetch<Impl>::IcachePort::recvRetry()
90{
91 fetch->recvRetry();
92}
93
94template<class Impl>
95DefaultFetch<Impl>::DefaultFetch(Params *params)
96 : mem(params->mem),
97 branchPred(params),
98 decodeToFetchDelay(params->decodeToFetchDelay),
99 renameToFetchDelay(params->renameToFetchDelay),
100 iewToFetchDelay(params->iewToFetchDelay),
101 commitToFetchDelay(params->commitToFetchDelay),
102 fetchWidth(params->fetchWidth),
103 cacheBlocked(false),
104 retryPkt(NULL),
105 retryTid(-1),
106 numThreads(params->numberOfThreads),
107 numFetchingThreads(params->smtNumFetchingThreads),
108 interruptPending(false),
109 drainPending(false),
110 switchedOut(false)
111{
112 if (numThreads > Impl::MaxThreads)
113 fatal("numThreads is not a valid value\n");
114
115 // Set fetch stage's status to inactive.
116 _status = Inactive;
117
118 std::string policy = params->smtFetchPolicy;
119
120 // Convert string to lowercase
121 std::transform(policy.begin(), policy.end(), policy.begin(),
122 (int(*)(int)) tolower);
123
124 // Figure out fetch policy
125 if (policy == "singlethread") {
126 fetchPolicy = SingleThread;
127 if (numThreads > 1)
128 panic("Invalid Fetch Policy for a SMT workload.");
129 } else if (policy == "roundrobin") {
130 fetchPolicy = RoundRobin;
131 DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
132 } else if (policy == "branch") {
133 fetchPolicy = Branch;
134 DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
135 } else if (policy == "iqcount") {
136 fetchPolicy = IQ;
137 DPRINTF(Fetch, "Fetch policy set to IQ count\n");
138 } else if (policy == "lsqcount") {
139 fetchPolicy = LSQ;
140 DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
141 } else {
142 fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
143 " RoundRobin,LSQcount,IQcount}\n");
144 }
145
146 // Size of cache block.
147 cacheBlkSize = 64;
148
149 // Create mask to get rid of offset bits.
150 cacheBlkMask = (cacheBlkSize - 1);
151
152 for (int tid=0; tid < numThreads; tid++) {
153
154 fetchStatus[tid] = Running;
155
156 priorityList.push_back(tid);
157
158 memReq[tid] = NULL;
159
160 // Create space to store a cache line.
161 cacheData[tid] = new uint8_t[cacheBlkSize];
162 cacheDataPC[tid] = 0;
163 cacheDataValid[tid] = false;
164
165 delaySlotInfo[tid].branchSeqNum = -1;
166 delaySlotInfo[tid].numInsts = 0;
167 delaySlotInfo[tid].targetAddr = 0;
168 delaySlotInfo[tid].targetReady = false;
169
170 stalls[tid].decode = false;
171 stalls[tid].rename = false;
172 stalls[tid].iew = false;
173 stalls[tid].commit = false;
174 }
175
176 // Get the size of an instruction.
177 instSize = sizeof(TheISA::MachInst);
178}
179
180template <class Impl>
181std::string
182DefaultFetch<Impl>::name() const
183{
184 return cpu->name() + ".fetch";
185}
186
187template <class Impl>
188void
189DefaultFetch<Impl>::regStats()
190{
191 icacheStallCycles
192 .name(name() + ".icacheStallCycles")
193 .desc("Number of cycles fetch is stalled on an Icache miss")
194 .prereq(icacheStallCycles);
195
196 fetchedInsts
197 .name(name() + ".Insts")
198 .desc("Number of instructions fetch has processed")
199 .prereq(fetchedInsts);
200
201 fetchedBranches
202 .name(name() + ".Branches")
203 .desc("Number of branches that fetch encountered")
204 .prereq(fetchedBranches);
205
206 predictedBranches
207 .name(name() + ".predictedBranches")
208 .desc("Number of branches that fetch has predicted taken")
209 .prereq(predictedBranches);
210
211 fetchCycles
212 .name(name() + ".Cycles")
213 .desc("Number of cycles fetch has run and was not squashing or"
214 " blocked")
215 .prereq(fetchCycles);
216
217 fetchSquashCycles
218 .name(name() + ".SquashCycles")
219 .desc("Number of cycles fetch has spent squashing")
220 .prereq(fetchSquashCycles);
221
222 fetchIdleCycles
223 .name(name() + ".IdleCycles")
224 .desc("Number of cycles fetch was idle")
225 .prereq(fetchIdleCycles);
226
227 fetchBlockedCycles
228 .name(name() + ".BlockedCycles")
229 .desc("Number of cycles fetch has spent blocked")
230 .prereq(fetchBlockedCycles);
231
232 fetchedCacheLines
233 .name(name() + ".CacheLines")
234 .desc("Number of cache lines fetched")
235 .prereq(fetchedCacheLines);
236
237 fetchMiscStallCycles
238 .name(name() + ".MiscStallCycles")
239 .desc("Number of cycles fetch has spent waiting on interrupts, or "
240 "bad addresses, or out of MSHRs")
241 .prereq(fetchMiscStallCycles);
242
243 fetchIcacheSquashes
244 .name(name() + ".IcacheSquashes")
245 .desc("Number of outstanding Icache misses that were squashed")
246 .prereq(fetchIcacheSquashes);
247
248 fetchNisnDist
249 .init(/* base value */ 0,
250 /* last value */ fetchWidth,
251 /* bucket size */ 1)
252 .name(name() + ".rateDist")
253 .desc("Number of instructions fetched each cycle (Total)")
254 .flags(Stats::pdf);
255
256 idleRate
257 .name(name() + ".idleRate")
258 .desc("Percent of cycles fetch was idle")
259 .prereq(idleRate);
260 idleRate = fetchIdleCycles * 100 / cpu->numCycles;
261
262 branchRate
263 .name(name() + ".branchRate")
264 .desc("Number of branch fetches per cycle")
265 .flags(Stats::total);
266 branchRate = fetchedBranches / cpu->numCycles;
267
268 fetchRate
269 .name(name() + ".rate")
270 .desc("Number of inst fetches per cycle")
271 .flags(Stats::total);
272 fetchRate = fetchedInsts / cpu->numCycles;
273
274 branchPred.regStats();
275}
276
277template<class Impl>
278void
279DefaultFetch<Impl>::setCPU(O3CPU *cpu_ptr)
280{
281 DPRINTF(Fetch, "Setting the CPU pointer.\n");
282 cpu = cpu_ptr;
283
284 // Name is finally available, so create the port.
285 icachePort = new IcachePort(this);
286
287#if USE_CHECKER
288 if (cpu->checker) {
289 cpu->checker->setIcachePort(icachePort);
290 }
291#endif
292
293 // Schedule fetch to get the correct PC from the CPU
294 // scheduleFetchStartupEvent(1);
295
296 // Fetch needs to start fetching instructions at the very beginning,
297 // so it must start up in active state.
298 switchToActive();
299}
300
301template<class Impl>
302void
303DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
304{
305 DPRINTF(Fetch, "Setting the time buffer pointer.\n");
306 timeBuffer = time_buffer;
307
308 // Create wires to get information from proper places in time buffer.
309 fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
310 fromRename = timeBuffer->getWire(-renameToFetchDelay);
311 fromIEW = timeBuffer->getWire(-iewToFetchDelay);
312 fromCommit = timeBuffer->getWire(-commitToFetchDelay);
313}
314
315template<class Impl>
316void
317DefaultFetch<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
318{
319 DPRINTF(Fetch, "Setting active threads list pointer.\n");
320 activeThreads = at_ptr;
321}
322
323template<class Impl>
324void
325DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
326{
327 DPRINTF(Fetch, "Setting the fetch queue pointer.\n");
328 fetchQueue = fq_ptr;
329
330 // Create wire to write information to proper place in fetch queue.
331 toDecode = fetchQueue->getWire(0);
332}
333
334template<class Impl>
335void
336DefaultFetch<Impl>::initStage()
337{
338 // Setup PC and nextPC with initial state.
339 for (int tid = 0; tid < numThreads; tid++) {
340 PC[tid] = cpu->readPC(tid);
341 nextPC[tid] = cpu->readNextPC(tid);
342#if ISA_HAS_DELAY_SLOT
343 nextNPC[tid] = cpu->readNextNPC(tid);
344#endif
345 }
346}
347
348template<class Impl>
349void
350DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
351{
352 unsigned tid = pkt->req->getThreadNum();
353
354 DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n",tid);
355
356 // Only change the status if it's still waiting on the icache access
357 // to return.
358 if (fetchStatus[tid] != IcacheWaitResponse ||
359 pkt->req != memReq[tid] ||
360 isSwitchedOut()) {
361 ++fetchIcacheSquashes;
362 delete pkt->req;
363 delete pkt;
364 return;
365 }
366
367 memcpy(cacheData[tid], pkt->getPtr<uint8_t *>(), cacheBlkSize);
368 cacheDataValid[tid] = true;
369
370 if (!drainPending) {
371 // Wake up the CPU (if it went to sleep and was waiting on
372 // this completion event).
373 cpu->wakeCPU();
374
375 DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
376 tid);
377
378 switchToActive();
379 }
380
381 // Only switch to IcacheAccessComplete if we're not stalled as well.
382 if (checkStall(tid)) {
383 fetchStatus[tid] = Blocked;
384 } else {
385 fetchStatus[tid] = IcacheAccessComplete;
386 }
387
388 // Reset the mem req to NULL.
389 delete pkt->req;
390 delete pkt;
391 memReq[tid] = NULL;
392}
393
394template <class Impl>
395bool
396DefaultFetch<Impl>::drain()
397{
398 // Fetch is ready to drain at any time.
399 cpu->signalDrained();
400 drainPending = true;
401 return true;
402}
403
404template <class Impl>
405void
406DefaultFetch<Impl>::resume()
407{
408 drainPending = false;
409}
410
411template <class Impl>
412void
413DefaultFetch<Impl>::switchOut()
414{
415 switchedOut = true;
416 // Branch predictor needs to have its state cleared.
417 branchPred.switchOut();
418}
419
420template <class Impl>
421void
422DefaultFetch<Impl>::takeOverFrom()
423{
424 // Reset all state
425 for (int i = 0; i < Impl::MaxThreads; ++i) {
426 stalls[i].decode = 0;
427 stalls[i].rename = 0;
428 stalls[i].iew = 0;
429 stalls[i].commit = 0;
430 PC[i] = cpu->readPC(i);
431 nextPC[i] = cpu->readNextPC(i);
432#if ISA_HAS_DELAY_SLOT
433 nextNPC[i] = cpu->readNextNPC(i);
434 delaySlotInfo[i].branchSeqNum = -1;
435 delaySlotInfo[i].numInsts = 0;
436 delaySlotInfo[i].targetAddr = 0;
437 delaySlotInfo[i].targetReady = false;
438#endif
439 fetchStatus[i] = Running;
440 }
441 numInst = 0;
442 wroteToTimeBuffer = false;
443 _status = Inactive;
444 switchedOut = false;
445 interruptPending = false;
446 branchPred.takeOverFrom();
447}
448
449template <class Impl>
450void
451DefaultFetch<Impl>::wakeFromQuiesce()
452{
453 DPRINTF(Fetch, "Waking up from quiesce\n");
454 // Hopefully this is safe
455 // @todo: Allow other threads to wake from quiesce.
456 fetchStatus[0] = Running;
457}
458
459template <class Impl>
460inline void
461DefaultFetch<Impl>::switchToActive()
462{
463 if (_status == Inactive) {
464 DPRINTF(Activity, "Activating stage.\n");
465
466 cpu->activateStage(O3CPU::FetchIdx);
467
468 _status = Active;
469 }
470}
471
472template <class Impl>
473inline void
474DefaultFetch<Impl>::switchToInactive()
475{
476 if (_status == Active) {
477 DPRINTF(Activity, "Deactivating stage.\n");
478
479 cpu->deactivateStage(O3CPU::FetchIdx);
480
481 _status = Inactive;
482 }
483}
484
485template <class Impl>
486bool
487DefaultFetch<Impl>::lookupAndUpdateNextPC(DynInstPtr &inst, Addr &next_PC,
488 Addr &next_NPC)
489{
490 // Do branch prediction check here.
491 // A bit of a misnomer...next_PC is actually the current PC until
492 // this function updates it.
493 bool predict_taken;
494
495 if (!inst->isControl()) {
496#if ISA_HAS_DELAY_SLOT
497 Addr cur_PC = next_PC;
498 next_PC = cur_PC + instSize; //next_NPC;
499 next_NPC = cur_PC + (2 * instSize);//next_NPC + instSize;
500 inst->setPredTarg(next_NPC);
501#else
502 next_PC = next_PC + instSize;
503 inst->setPredTarg(next_PC);
504#endif
505 return false;
506 }
507
508 int tid = inst->threadNumber;
509#if ISA_HAS_DELAY_SLOT
510 Addr pred_PC = next_PC;
511 predict_taken = branchPred.predict(inst, pred_PC, tid);
512
513 if (predict_taken) {
514 DPRINTF(Fetch, "[tid:%i]: Branch predicted to be true.\n", tid);
515 } else {
516 DPRINTF(Fetch, "[tid:%i]: Branch predicted to be false.\n", tid);
517 }
518
519 if (predict_taken) {
520 next_PC = next_NPC;
521 next_NPC = pred_PC;
522
523 // Update delay slot info
524 ++delaySlotInfo[tid].numInsts;
525 delaySlotInfo[tid].targetAddr = pred_PC;
526 DPRINTF(Fetch, "[tid:%i]: %i delay slot inst(s) to process.\n", tid,
527 delaySlotInfo[tid].numInsts);
528 } else { // !predict_taken
529 if (inst->isCondDelaySlot()) {
530 next_PC = pred_PC;
531 // The delay slot is skipped here if there is on
532 // prediction
533 } else {
534 next_PC = next_NPC;
535 // No need to declare a delay slot here since
536 // there is no for the pred. target to jump
537 }
538
539 next_NPC = next_NPC + instSize;
540 }
541#else
542 predict_taken = branchPred.predict(inst, next_PC, tid);
543#endif
544
545 ++fetchedBranches;
546
547 if (predict_taken) {
548 ++predictedBranches;
549 }
550
551 return predict_taken;
552}
553
554template <class Impl>
555bool
556DefaultFetch<Impl>::fetchCacheLine(Addr fetch_PC, Fault &ret_fault, unsigned tid)
557{
558 Fault fault = NoFault;
559
560#if FULL_SYSTEM
561 // Flag to say whether or not address is physical addr.
562 unsigned flags = cpu->inPalMode(fetch_PC) ? PHYSICAL : 0;
563#else
564 unsigned flags = 0;
565#endif // FULL_SYSTEM
566
567 if (cacheBlocked || isSwitchedOut() || (interruptPending && flags == 0)) {
568 // Hold off fetch from getting new instructions when:
569 // Cache is blocked, or
570 // while an interrupt is pending and we're not in PAL mode, or
571 // fetch is switched out.
572 return false;
573 }
574
575 // Align the fetch PC so it's at the start of a cache block.
576 fetch_PC = icacheBlockAlignPC(fetch_PC);
577
578 // If we've already got the block, no need to try to fetch it again.
579 if (cacheDataValid[tid] && fetch_PC == cacheDataPC[tid]) {
580 return true;
581 }
582
583 // Setup the memReq to do a read of the first instruction's address.
584 // Set the appropriate read size and flags as well.
585 // Build request here.
586 RequestPtr mem_req = new Request(tid, fetch_PC, cacheBlkSize, flags,
587 fetch_PC, cpu->readCpuId(), tid);
588
589 memReq[tid] = mem_req;
590
591 // Translate the instruction request.
592 fault = cpu->translateInstReq(mem_req, cpu->thread[tid]);
593
594 // In the case of faults, the fetch stage may need to stall and wait
595 // for the ITB miss to be handled.
596
597 // If translation was successful, attempt to read the first
598 // instruction.
599 if (fault == NoFault) {
600#if 0
601 if (cpu->system->memctrl->badaddr(memReq[tid]->paddr) ||
602 memReq[tid]->isUncacheable()) {
603 DPRINTF(Fetch, "Fetch: Bad address %#x (hopefully on a "
604 "misspeculating path)!",
605 memReq[tid]->paddr);
606 ret_fault = TheISA::genMachineCheckFault();
607 return false;
608 }
609#endif
610
611 // Build packet here.
612 PacketPtr data_pkt = new Packet(mem_req,
613 Packet::ReadReq, Packet::Broadcast);
614 data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
615
616 cacheDataPC[tid] = fetch_PC;
617 cacheDataValid[tid] = false;
618
619 DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
620
621 fetchedCacheLines++;
622
623 // Now do the timing access to see whether or not the instruction
624 // exists within the cache.
625 if (!icachePort->sendTiming(data_pkt)) {
626 if (data_pkt->result == Packet::BadAddress) {
627 fault = TheISA::genMachineCheckFault();
628 delete mem_req;
629 memReq[tid] = NULL;
630 }
631 assert(retryPkt == NULL);
632 assert(retryTid == -1);
633 DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
634 fetchStatus[tid] = IcacheWaitRetry;
635 retryPkt = data_pkt;
636 retryTid = tid;
637 cacheBlocked = true;
638 return false;
639 }
640
641 DPRINTF(Fetch, "[tid:%i]: Doing cache access.\n", tid);
642
643 lastIcacheStall[tid] = curTick;
644
645 DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
646 "response.\n", tid);
647
648 fetchStatus[tid] = IcacheWaitResponse;
649 } else {
650 delete mem_req;
651 memReq[tid] = NULL;
652 }
653
654 ret_fault = fault;
655 return true;
656}
657
658template <class Impl>
659inline void
660DefaultFetch<Impl>::doSquash(const Addr &new_PC, unsigned tid)
661{
662 DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %#x.\n",
663 tid, new_PC);
664
665 PC[tid] = new_PC;
666 nextPC[tid] = new_PC + instSize;
667 nextNPC[tid] = new_PC + (2 * instSize);
668
669 // Clear the icache miss if it's outstanding.
670 if (fetchStatus[tid] == IcacheWaitResponse) {
671 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
672 tid);
673 memReq[tid] = NULL;
674 }
675
676 // Get rid of the retrying packet if it was from this thread.
677 if (retryTid == tid) {
678 assert(cacheBlocked);
679 cacheBlocked = false;
680 retryTid = -1;
681 delete retryPkt->req;
682 delete retryPkt;
683 retryPkt = NULL;
684 }
685
686 fetchStatus[tid] = Squashing;
687
688 ++fetchSquashCycles;
689}
690
691template<class Impl>
692void
693DefaultFetch<Impl>::squashFromDecode(const Addr &new_PC,
694 const InstSeqNum &seq_num,
695 unsigned tid)
696{
697 DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n",tid);
698
699 doSquash(new_PC, tid);
700
701#if ISA_HAS_DELAY_SLOT
702 if (seq_num <= delaySlotInfo[tid].branchSeqNum) {
703 delaySlotInfo[tid].numInsts = 0;
704 delaySlotInfo[tid].targetAddr = 0;
705 delaySlotInfo[tid].targetReady = false;
706 }
707#endif
708
709 // Tell the CPU to remove any instructions that are in flight between
710 // fetch and decode.
711 cpu->removeInstsUntil(seq_num, tid);
712}
713
714template<class Impl>
715bool
716DefaultFetch<Impl>::checkStall(unsigned tid) const
717{
718 bool ret_val = false;
719
720 if (cpu->contextSwitch) {
721 DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
722 ret_val = true;
723 } else if (stalls[tid].decode) {
724 DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
725 ret_val = true;
726 } else if (stalls[tid].rename) {
727 DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
728 ret_val = true;
729 } else if (stalls[tid].iew) {
730 DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
731 ret_val = true;
732 } else if (stalls[tid].commit) {
733 DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
734 ret_val = true;
735 }
736
737 return ret_val;
738}
739
740template<class Impl>
741typename DefaultFetch<Impl>::FetchStatus
742DefaultFetch<Impl>::updateFetchStatus()
743{
744 //Check Running
745 std::list<unsigned>::iterator threads = (*activeThreads).begin();
746
747 while (threads != (*activeThreads).end()) {
748
749 unsigned tid = *threads++;
750
751 if (fetchStatus[tid] == Running ||
752 fetchStatus[tid] == Squashing ||
753 fetchStatus[tid] == IcacheAccessComplete) {
754
755 if (_status == Inactive) {
756 DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
757
758 if (fetchStatus[tid] == IcacheAccessComplete) {
759 DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
760 "completion\n",tid);
761 }
762
763 cpu->activateStage(O3CPU::FetchIdx);
764 }
765
766 return Active;
767 }
768 }
769
770 // Stage is switching from active to inactive, notify CPU of it.
771 if (_status == Active) {
772 DPRINTF(Activity, "Deactivating stage.\n");
773
774 cpu->deactivateStage(O3CPU::FetchIdx);
775 }
776
777 return Inactive;
778}
779
780template <class Impl>
781void
782DefaultFetch<Impl>::squash(const Addr &new_PC, const InstSeqNum &seq_num,
783 bool squash_delay_slot, unsigned tid)
784{
785 DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n",tid);
786
787 doSquash(new_PC, tid);
788
789#if ISA_HAS_DELAY_SLOT
790 if (seq_num <= delaySlotInfo[tid].branchSeqNum) {
791 delaySlotInfo[tid].numInsts = 0;
792 delaySlotInfo[tid].targetAddr = 0;
793 delaySlotInfo[tid].targetReady = false;
794 }
795
796 // Tell the CPU to remove any instructions that are not in the ROB.
797 cpu->removeInstsNotInROB(tid, squash_delay_slot, seq_num);
798#else
799 // Tell the CPU to remove any instructions that are not in the ROB.
800 cpu->removeInstsNotInROB(tid, true, 0);
801#endif
802}
803
804template <class Impl>
805void
806DefaultFetch<Impl>::tick()
807{
808 std::list<unsigned>::iterator threads = (*activeThreads).begin();
809 bool status_change = false;
810
811 wroteToTimeBuffer = false;
812
813 while (threads != (*activeThreads).end()) {
814 unsigned tid = *threads++;
815
816 // Check the signals for each thread to determine the proper status
817 // for each thread.
818 bool updated_status = checkSignalsAndUpdate(tid);
819 status_change = status_change || updated_status;
820 }
821
822 DPRINTF(Fetch, "Running stage.\n");
823
824 // Reset the number of the instruction we're fetching.
825 numInst = 0;
826
827#if FULL_SYSTEM
828 if (fromCommit->commitInfo[0].interruptPending) {
829 interruptPending = true;
830 }
831
832 if (fromCommit->commitInfo[0].clearInterrupt) {
833 interruptPending = false;
834 }
835#endif
836
837 for (threadFetched = 0; threadFetched < numFetchingThreads;
838 threadFetched++) {
839 // Fetch each of the actively fetching threads.
840 fetch(status_change);
841 }
842
843 // Record number of instructions fetched this cycle for distribution.
844 fetchNisnDist.sample(numInst);
845
846 if (status_change) {
847 // Change the fetch stage status if there was a status change.
848 _status = updateFetchStatus();
849 }
850
851 // If there was activity this cycle, inform the CPU of it.
852 if (wroteToTimeBuffer || cpu->contextSwitch) {
853 DPRINTF(Activity, "Activity this cycle.\n");
854
855 cpu->activityThisCycle();
856 }
857}
858
859template <class Impl>
860bool
861DefaultFetch<Impl>::checkSignalsAndUpdate(unsigned tid)
862{
863 // Update the per thread stall statuses.
864 if (fromDecode->decodeBlock[tid]) {
865 stalls[tid].decode = true;
866 }
867
868 if (fromDecode->decodeUnblock[tid]) {
869 assert(stalls[tid].decode);
870 assert(!fromDecode->decodeBlock[tid]);
871 stalls[tid].decode = false;
872 }
873
874 if (fromRename->renameBlock[tid]) {
875 stalls[tid].rename = true;
876 }
877
878 if (fromRename->renameUnblock[tid]) {
879 assert(stalls[tid].rename);
880 assert(!fromRename->renameBlock[tid]);
881 stalls[tid].rename = false;
882 }
883
884 if (fromIEW->iewBlock[tid]) {
885 stalls[tid].iew = true;
886 }
887
888 if (fromIEW->iewUnblock[tid]) {
889 assert(stalls[tid].iew);
890 assert(!fromIEW->iewBlock[tid]);
891 stalls[tid].iew = false;
892 }
893
894 if (fromCommit->commitBlock[tid]) {
895 stalls[tid].commit = true;
896 }
897
898 if (fromCommit->commitUnblock[tid]) {
899 assert(stalls[tid].commit);
900 assert(!fromCommit->commitBlock[tid]);
901 stalls[tid].commit = false;
902 }
903
904 // Check squash signals from commit.
905 if (fromCommit->commitInfo[tid].squash) {
906
907 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
908 "from commit.\n",tid);
909
910#if ISA_HAS_DELAY_SLOT
911 InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].bdelayDoneSeqNum;
912#else
913 InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].doneSeqNum;
914#endif
915 // In any case, squash.
916 squash(fromCommit->commitInfo[tid].nextPC,
917 doneSeqNum,
918 fromCommit->commitInfo[tid].squashDelaySlot,
919 tid);
920
921 // Also check if there's a mispredict that happened.
922 if (fromCommit->commitInfo[tid].branchMispredict) {
923 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
924 fromCommit->commitInfo[tid].nextPC,
925 fromCommit->commitInfo[tid].branchTaken,
926 tid);
927 } else {
928 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
929 tid);
930 }
931
932 return true;
933 } else if (fromCommit->commitInfo[tid].doneSeqNum) {
934 // Update the branch predictor if it wasn't a squashed instruction
935 // that was broadcasted.
936 branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
937 }
938
939 // Check ROB squash signals from commit.
940 if (fromCommit->commitInfo[tid].robSquashing) {
941 DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
942
943 // Continue to squash.
944 fetchStatus[tid] = Squashing;
945
946 return true;
947 }
948
949 // Check squash signals from decode.
950 if (fromDecode->decodeInfo[tid].squash) {
951 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
952 "from decode.\n",tid);
953
954 // Update the branch predictor.
955 if (fromDecode->decodeInfo[tid].branchMispredict) {
956 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
957 fromDecode->decodeInfo[tid].nextPC,
958 fromDecode->decodeInfo[tid].branchTaken,
959 tid);
960 } else {
961 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
962 tid);
963 }
964
965 if (fetchStatus[tid] != Squashing) {
966
967#if ISA_HAS_DELAY_SLOT
968 InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].bdelayDoneSeqNum;
969#else
970 InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].doneSeqNum;
971#endif
972 // Squash unless we're already squashing
973 squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
974 doneSeqNum,
975 tid);
976
977 return true;
978 }
979 }
980
981 if (checkStall(tid) && fetchStatus[tid] != IcacheWaitResponse) {
982 DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
983
984 fetchStatus[tid] = Blocked;
985
986 return true;
987 }
988
989 if (fetchStatus[tid] == Blocked ||
990 fetchStatus[tid] == Squashing) {
991 // Switch status to running if fetch isn't being told to block or
992 // squash this cycle.
993 DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
994 tid);
995
996 fetchStatus[tid] = Running;
997
998 return true;
999 }
1000
1001 // If we've reached this point, we have not gotten any signals that
1002 // cause fetch to change its status. Fetch remains the same as before.
1003 return false;
1004}
1005
1006template<class Impl>
1007void
1008DefaultFetch<Impl>::fetch(bool &status_change)
1009{
1010 //////////////////////////////////////////
1011 // Start actual fetch
1012 //////////////////////////////////////////
1013 int tid = getFetchingThread(fetchPolicy);
1014
1015 if (tid == -1 || drainPending) {
1016 DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1017
1018 // Breaks looping condition in tick()
1019 threadFetched = numFetchingThreads;
1020 return;
1021 }
1022
1023 DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1024
1025 // The current PC.
1026 Addr &fetch_PC = PC[tid];
1027
1028 // Fault code for memory access.
1029 Fault fault = NoFault;
1030
1031 // If returning from the delay of a cache miss, then update the status
1032 // to running, otherwise do the cache access. Possibly move this up
1033 // to tick() function.
1034 if (fetchStatus[tid] == IcacheAccessComplete) {
1035 DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n",
1036 tid);
1037
1038 fetchStatus[tid] = Running;
1039 status_change = true;
1040 } else if (fetchStatus[tid] == Running) {
1041 DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1042 "instruction, starting at PC %08p.\n",
1043 tid, fetch_PC);
1044
1045 bool fetch_success = fetchCacheLine(fetch_PC, fault, tid);
1046 if (!fetch_success) {
1047 if (cacheBlocked) {
1048 ++icacheStallCycles;
1049 } else {
1050 ++fetchMiscStallCycles;
1051 }
1052 return;
1053 }
1054 } else {
1055 if (fetchStatus[tid] == Idle) {
1056 ++fetchIdleCycles;
1057 } else if (fetchStatus[tid] == Blocked) {
1058 ++fetchBlockedCycles;
1059 } else if (fetchStatus[tid] == Squashing) {
1060 ++fetchSquashCycles;
1061 } else if (fetchStatus[tid] == IcacheWaitResponse) {
1062 ++icacheStallCycles;
1063 }
1064
1065 // Status is Idle, Squashing, Blocked, or IcacheWaitResponse, so
1066 // fetch should do nothing.
1067 return;
1068 }
1069
1070 ++fetchCycles;
1071
1072 // If we had a stall due to an icache miss, then return.
1073 if (fetchStatus[tid] == IcacheWaitResponse) {
1074 ++icacheStallCycles;
1075 status_change = true;
1076 return;
1077 }
1078
1079 Addr next_PC = fetch_PC;
1080 Addr next_NPC = next_PC + instSize;
1081 InstSeqNum inst_seq;
1082 MachInst inst;
1083 ExtMachInst ext_inst;
1084 // @todo: Fix this hack.
1085 unsigned offset = (fetch_PC & cacheBlkMask) & ~3;
1086
1087 if (fault == NoFault) {
1088 // If the read of the first instruction was successful, then grab the
1089 // instructions from the rest of the cache line and put them into the
1090 // queue heading to decode.
1091
1092 DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1093 "decode.\n",tid);
1094
1095 // Need to keep track of whether or not a predicted branch
1096 // ended this fetch block.
1097 bool predicted_branch = false;
1098
1099 // Need to keep track of whether or not a delay slot
1100 // instruction has been fetched
1101
1102 for (;
1103 offset < cacheBlkSize &&
1104 numInst < fetchWidth &&
1105 (!predicted_branch || delaySlotInfo[tid].numInsts > 0);
1106 ++numInst) {
1107
1108 // Get a sequence number.
1109 inst_seq = cpu->getAndIncrementInstSeq();
1110
1111 // Make sure this is a valid index.
1112 assert(offset <= cacheBlkSize - instSize);
1113
1114 // Get the instruction from the array of the cache line.
1115 inst = TheISA::gtoh(*reinterpret_cast<TheISA::MachInst *>
1116 (&cacheData[tid][offset]));
1117
1118 ext_inst = TheISA::makeExtMI(inst, fetch_PC);
1119
1120 // Create a new DynInst from the instruction fetched.
1121 DynInstPtr instruction = new DynInst(ext_inst, fetch_PC,
1122 next_PC,
1123 inst_seq, cpu);
1124 instruction->setTid(tid);
1125
1126 instruction->setASID(tid);
1127
1128 instruction->setThreadState(cpu->thread[tid]);
1129
1130 DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x created "
1131 "[sn:%lli]\n",
1132 tid, instruction->readPC(), inst_seq);
1133
1134 DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n",
1135 tid, instruction->staticInst->disassemble(fetch_PC));
1136
1137 instruction->traceData =
1138 Trace::getInstRecord(curTick, cpu->tcBase(tid),
1139 instruction->staticInst,
1140 instruction->readPC());
1141
1142 predicted_branch = lookupAndUpdateNextPC(instruction, next_PC,
1143 next_NPC);
1144
1145 // Add instruction to the CPU's list of instructions.
1146 instruction->setInstListIt(cpu->addInst(instruction));
1147
1148 // Write the instruction to the first slot in the queue
1149 // that heads to decode.
1150 toDecode->insts[numInst] = instruction;
1151
1152 toDecode->size++;
1153
1154 // Increment stat of fetched instructions.
1155 ++fetchedInsts;
1156
1157 // Move to the next instruction, unless we have a branch.
1158 fetch_PC = next_PC;
1159
1160 if (instruction->isQuiesce()) {
1161// warn("%lli: Quiesce instruction encountered, halting fetch!",
1162// curTick);
1163 fetchStatus[tid] = QuiescePending;
1164 ++numInst;
1165 status_change = true;
1166 break;
1167 }
1168
1169 offset += instSize;
1170
1171#if ISA_HAS_DELAY_SLOT
1172 if (predicted_branch) {
1173 delaySlotInfo[tid].branchSeqNum = inst_seq;
1174
1175 DPRINTF(Fetch, "[tid:%i]: Delay slot branch set to [sn:%i]\n",
1176 tid, inst_seq);
1177 continue;
1178 } else if (delaySlotInfo[tid].numInsts > 0) {
1179 --delaySlotInfo[tid].numInsts;
1180
1181 // It's OK to set PC to target of branch
1182 if (delaySlotInfo[tid].numInsts == 0) {
1183 delaySlotInfo[tid].targetReady = true;
1184
1185 // Break the looping condition
1186 predicted_branch = true;
1187 }
1188
1189 DPRINTF(Fetch, "[tid:%i]: %i delay slot inst(s) left to"
1190 " process.\n", tid, delaySlotInfo[tid].numInsts);
1191 }
1192#endif
1193 }
1194
1195 if (offset >= cacheBlkSize) {
1196 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1197 "block.\n", tid);
1198 } else if (numInst >= fetchWidth) {
1199 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1200 "for this cycle.\n", tid);
1201 } else if (predicted_branch && delaySlotInfo[tid].numInsts <= 0) {
1202 DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1203 "instruction encountered.\n", tid);
1204 }
1205 }
1206
1207 if (numInst > 0) {
1208 wroteToTimeBuffer = true;
1209 }
1210
1211 // Now that fetching is completed, update the PC to signify what the next
1212 // cycle will be.
1213 if (fault == NoFault) {
1214#if ISA_HAS_DELAY_SLOT
1215 if (delaySlotInfo[tid].targetReady &&
1216 delaySlotInfo[tid].numInsts == 0) {
1217 // Set PC to target
1218 PC[tid] = delaySlotInfo[tid].targetAddr; //next_PC
1219 nextPC[tid] = next_PC + instSize; //next_NPC
1220 nextNPC[tid] = next_PC + (2 * instSize);
1221
1222 delaySlotInfo[tid].targetReady = false;
1223 } else {
1224 PC[tid] = next_PC;
1225 nextPC[tid] = next_NPC;
1226 nextNPC[tid] = next_NPC + instSize;
1227 }
1228
1229 DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n", tid, PC[tid]);
1230#else
1231 DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n",tid, next_PC);
1232 PC[tid] = next_PC;
1233 nextPC[tid] = next_PC + instSize;
1234#endif
1235 } else {
1236 // We shouldn't be in an icache miss and also have a fault (an ITB
1237 // miss)
1238 if (fetchStatus[tid] == IcacheWaitResponse) {
1239 panic("Fetch should have exited prior to this!");
1240 }
1241
1242 // Send the fault to commit. This thread will not do anything
1243 // until commit handles the fault. The only other way it can
1244 // wake up is if a squash comes along and changes the PC.
1245#if FULL_SYSTEM
1246 assert(numInst != fetchWidth);
1247 // Get a sequence number.
1248 inst_seq = cpu->getAndIncrementInstSeq();
1249 // We will use a nop in order to carry the fault.
1250 ext_inst = TheISA::NoopMachInst;
1251
1252 // Create a new DynInst from the dummy nop.
1253 DynInstPtr instruction = new DynInst(ext_inst, fetch_PC,
1254 next_PC,
1255 inst_seq, cpu);
1256 instruction->setPredTarg(next_PC + instSize);
1257 instruction->setTid(tid);
1258
1259 instruction->setASID(tid);
1260
1261 instruction->setThreadState(cpu->thread[tid]);
1262
1263 instruction->traceData = NULL;
1264
1265 instruction->setInstListIt(cpu->addInst(instruction));
1266
1267 instruction->fault = fault;
1268
1269 toDecode->insts[numInst] = instruction;
1270 toDecode->size++;
1271
1272 DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n",tid);
1273
1274 fetchStatus[tid] = TrapPending;
1275 status_change = true;
1276
1277// warn("%lli fault (%d) detected @ PC %08p", curTick, fault, PC[tid]);
1278#else // !FULL_SYSTEM
1279 warn("cycle %lli: fault (%s) detected @ PC %08p", curTick, fault->name(), PC[tid]);
1280#endif // FULL_SYSTEM
1281 }
1282}
1283
1284template<class Impl>
1285void
1286DefaultFetch<Impl>::recvRetry()
1287{
1288 if (retryPkt != NULL) {
1289 assert(cacheBlocked);
1290 assert(retryTid != -1);
1291 assert(fetchStatus[retryTid] == IcacheWaitRetry);
1292
1293 if (icachePort->sendTiming(retryPkt)) {
1294 fetchStatus[retryTid] = IcacheWaitResponse;
1295 retryPkt = NULL;
1296 retryTid = -1;
1297 cacheBlocked = false;
1298 }
1299 } else {
1300 assert(retryTid == -1);
1301 // Access has been squashed since it was sent out. Just clear
1302 // the cache being blocked.
1303 cacheBlocked = false;
1304 }
1305}
1306
1307///////////////////////////////////////
1308// //
1309// SMT FETCH POLICY MAINTAINED HERE //
1310// //
1311///////////////////////////////////////
1312template<class Impl>
1313int
1314DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1315{
1316 if (numThreads > 1) {
1317 switch (fetch_priority) {
1318
1319 case SingleThread:
1320 return 0;
1321
1322 case RoundRobin:
1323 return roundRobin();
1324
1325 case IQ:
1326 return iqCount();
1327
1328 case LSQ:
1329 return lsqCount();
1330
1331 case Branch:
1332 return branchCount();
1333
1334 default:
1335 return -1;
1336 }
1337 } else {
1338 int tid = *((*activeThreads).begin());
1339
1340 if (fetchStatus[tid] == Running ||
1341 fetchStatus[tid] == IcacheAccessComplete ||
1342 fetchStatus[tid] == Idle) {
1343 return tid;
1344 } else {
1345 return -1;
1346 }
1347 }
1348
1349}
1350
1351
1352template<class Impl>
1353int
1354DefaultFetch<Impl>::roundRobin()
1355{
1356 std::list<unsigned>::iterator pri_iter = priorityList.begin();
1357 std::list<unsigned>::iterator end = priorityList.end();
1358
1359 int high_pri;
1360
1361 while (pri_iter != end) {
1362 high_pri = *pri_iter;
1363
1364 assert(high_pri <= numThreads);
1365
1366 if (fetchStatus[high_pri] == Running ||
1367 fetchStatus[high_pri] == IcacheAccessComplete ||
1368 fetchStatus[high_pri] == Idle) {
1369
1370 priorityList.erase(pri_iter);
1371 priorityList.push_back(high_pri);
1372
1373 return high_pri;
1374 }
1375
1376 pri_iter++;
1377 }
1378
1379 return -1;
1380}
1381
1382template<class Impl>
1383int
1384DefaultFetch<Impl>::iqCount()
1385{
1386 std::priority_queue<unsigned> PQ;
1387
1388 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1389
1390 while (threads != (*activeThreads).end()) {
1391 unsigned tid = *threads++;
1392
1393 PQ.push(fromIEW->iewInfo[tid].iqCount);
1394 }
1395
1396 while (!PQ.empty()) {
1397
1398 unsigned high_pri = PQ.top();
1399
1400 if (fetchStatus[high_pri] == Running ||
1401 fetchStatus[high_pri] == IcacheAccessComplete ||
1402 fetchStatus[high_pri] == Idle)
1403 return high_pri;
1404 else
1405 PQ.pop();
1406
1407 }
1408
1409 return -1;
1410}
1411
1412template<class Impl>
1413int
1414DefaultFetch<Impl>::lsqCount()
1415{
1416 std::priority_queue<unsigned> PQ;
1417
1418
1419 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1420
1421 while (threads != (*activeThreads).end()) {
1422 unsigned tid = *threads++;
1423
1424 PQ.push(fromIEW->iewInfo[tid].ldstqCount);
1425 }
1426
1427 while (!PQ.empty()) {
1428
1429 unsigned high_pri = PQ.top();
1430
1431 if (fetchStatus[high_pri] == Running ||
1432 fetchStatus[high_pri] == IcacheAccessComplete ||
1433 fetchStatus[high_pri] == Idle)
1434 return high_pri;
1435 else
1436 PQ.pop();
1437
1438 }
1439
1440 return -1;
1441}
1442
1443template<class Impl>
1444int
1445DefaultFetch<Impl>::branchCount()
1446{
1447 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1448 panic("Branch Count Fetch policy unimplemented\n");
1449 return *threads;
1450}