Deleted Added
sdiff udiff text old ( 3383:8105c3e566ab ) new ( 3402:db60546818d0 )
full compact
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 * Korey Sewell
30 */
31
32#include "config/use_checker.hh"
33
34#include "arch/isa_traits.hh"
35#include "arch/utility.hh"
36#include "cpu/checker/cpu.hh"
37#include "cpu/exetrace.hh"
38#include "cpu/o3/fetch.hh"
39#include "mem/packet.hh"
40#include "mem/request.hh"
41#include "sim/byteswap.hh"
42#include "sim/host.hh"
43#include "sim/root.hh"
44
45#if FULL_SYSTEM
46#include "arch/tlb.hh"
47#include "arch/vtophys.hh"
48#include "base/remote_gdb.hh"
49#include "sim/system.hh"
50#endif // FULL_SYSTEM
51
52#include <algorithm>
53
54template<class Impl>
55Tick
56DefaultFetch<Impl>::IcachePort::recvAtomic(PacketPtr pkt)
57{
58 panic("DefaultFetch doesn't expect recvAtomic callback!");
59 return curTick;
60}
61
62template<class Impl>
63void
64DefaultFetch<Impl>::IcachePort::recvFunctional(PacketPtr pkt)
65{
66 warn("Default fetch doesn't update it's state from a functional call.");
67}
68
69template<class Impl>
70void
71DefaultFetch<Impl>::IcachePort::recvStatusChange(Status status)
72{
73 if (status == RangeChange)
74 return;
75
76 panic("DefaultFetch doesn't expect recvStatusChange callback!");
77}
78
79template<class Impl>
80bool
81DefaultFetch<Impl>::IcachePort::recvTiming(PacketPtr pkt)
82{
83 if (pkt->isResponse()) {
84 fetch->processCacheCompletion(pkt);
85 }
86 //else Snooped a coherence request, just return
87 return true;
88}
89
90template<class Impl>
91void
92DefaultFetch<Impl>::IcachePort::recvRetry()
93{
94 fetch->recvRetry();
95}
96
97template<class Impl>
98DefaultFetch<Impl>::DefaultFetch(Params *params)
99 : branchPred(params),
100 decodeToFetchDelay(params->decodeToFetchDelay),
101 renameToFetchDelay(params->renameToFetchDelay),
102 iewToFetchDelay(params->iewToFetchDelay),
103 commitToFetchDelay(params->commitToFetchDelay),
104 fetchWidth(params->fetchWidth),
105 cacheBlocked(false),
106 retryPkt(NULL),
107 retryTid(-1),
108 numThreads(params->numberOfThreads),
109 numFetchingThreads(params->smtNumFetchingThreads),
110 interruptPending(false),
111 drainPending(false),
112 switchedOut(false)
113{
114 if (numThreads > Impl::MaxThreads)
115 fatal("numThreads is not a valid value\n");
116
117 // Set fetch stage's status to inactive.
118 _status = Inactive;
119
120 std::string policy = params->smtFetchPolicy;
121
122 // Convert string to lowercase
123 std::transform(policy.begin(), policy.end(), policy.begin(),
124 (int(*)(int)) tolower);
125
126 // Figure out fetch policy
127 if (policy == "singlethread") {
128 fetchPolicy = SingleThread;
129 if (numThreads > 1)
130 panic("Invalid Fetch Policy for a SMT workload.");
131 } else if (policy == "roundrobin") {
132 fetchPolicy = RoundRobin;
133 DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
134 } else if (policy == "branch") {
135 fetchPolicy = Branch;
136 DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
137 } else if (policy == "iqcount") {
138 fetchPolicy = IQ;
139 DPRINTF(Fetch, "Fetch policy set to IQ count\n");
140 } else if (policy == "lsqcount") {
141 fetchPolicy = LSQ;
142 DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
143 } else {
144 fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
145 " RoundRobin,LSQcount,IQcount}\n");
146 }
147
148 // Size of cache block.
149 cacheBlkSize = 64;
150
151 // Create mask to get rid of offset bits.
152 cacheBlkMask = (cacheBlkSize - 1);
153
154 for (int tid=0; tid < numThreads; tid++) {
155
156 fetchStatus[tid] = Running;
157
158 priorityList.push_back(tid);
159
160 memReq[tid] = NULL;
161
162 // Create space to store a cache line.
163 cacheData[tid] = new uint8_t[cacheBlkSize];
164 cacheDataPC[tid] = 0;
165 cacheDataValid[tid] = false;
166
167 delaySlotInfo[tid].branchSeqNum = -1;
168 delaySlotInfo[tid].numInsts = 0;
169 delaySlotInfo[tid].targetAddr = 0;
170 delaySlotInfo[tid].targetReady = false;
171
172 stalls[tid].decode = false;
173 stalls[tid].rename = false;
174 stalls[tid].iew = false;
175 stalls[tid].commit = false;
176 }
177
178 // Get the size of an instruction.
179 instSize = sizeof(TheISA::MachInst);
180}
181
182template <class Impl>
183std::string
184DefaultFetch<Impl>::name() const
185{
186 return cpu->name() + ".fetch";
187}
188
189template <class Impl>
190void
191DefaultFetch<Impl>::regStats()
192{
193 icacheStallCycles
194 .name(name() + ".icacheStallCycles")
195 .desc("Number of cycles fetch is stalled on an Icache miss")
196 .prereq(icacheStallCycles);
197
198 fetchedInsts
199 .name(name() + ".Insts")
200 .desc("Number of instructions fetch has processed")
201 .prereq(fetchedInsts);
202
203 fetchedBranches
204 .name(name() + ".Branches")
205 .desc("Number of branches that fetch encountered")
206 .prereq(fetchedBranches);
207
208 predictedBranches
209 .name(name() + ".predictedBranches")
210 .desc("Number of branches that fetch has predicted taken")
211 .prereq(predictedBranches);
212
213 fetchCycles
214 .name(name() + ".Cycles")
215 .desc("Number of cycles fetch has run and was not squashing or"
216 " blocked")
217 .prereq(fetchCycles);
218
219 fetchSquashCycles
220 .name(name() + ".SquashCycles")
221 .desc("Number of cycles fetch has spent squashing")
222 .prereq(fetchSquashCycles);
223
224 fetchIdleCycles
225 .name(name() + ".IdleCycles")
226 .desc("Number of cycles fetch was idle")
227 .prereq(fetchIdleCycles);
228
229 fetchBlockedCycles
230 .name(name() + ".BlockedCycles")
231 .desc("Number of cycles fetch has spent blocked")
232 .prereq(fetchBlockedCycles);
233
234 fetchedCacheLines
235 .name(name() + ".CacheLines")
236 .desc("Number of cache lines fetched")
237 .prereq(fetchedCacheLines);
238
239 fetchMiscStallCycles
240 .name(name() + ".MiscStallCycles")
241 .desc("Number of cycles fetch has spent waiting on interrupts, or "
242 "bad addresses, or out of MSHRs")
243 .prereq(fetchMiscStallCycles);
244
245 fetchIcacheSquashes
246 .name(name() + ".IcacheSquashes")
247 .desc("Number of outstanding Icache misses that were squashed")
248 .prereq(fetchIcacheSquashes);
249
250 fetchNisnDist
251 .init(/* base value */ 0,
252 /* last value */ fetchWidth,
253 /* bucket size */ 1)
254 .name(name() + ".rateDist")
255 .desc("Number of instructions fetched each cycle (Total)")
256 .flags(Stats::pdf);
257
258 idleRate
259 .name(name() + ".idleRate")
260 .desc("Percent of cycles fetch was idle")
261 .prereq(idleRate);
262 idleRate = fetchIdleCycles * 100 / cpu->numCycles;
263
264 branchRate
265 .name(name() + ".branchRate")
266 .desc("Number of branch fetches per cycle")
267 .flags(Stats::total);
268 branchRate = fetchedBranches / cpu->numCycles;
269
270 fetchRate
271 .name(name() + ".rate")
272 .desc("Number of inst fetches per cycle")
273 .flags(Stats::total);
274 fetchRate = fetchedInsts / cpu->numCycles;
275
276 branchPred.regStats();
277}
278
279template<class Impl>
280void
281DefaultFetch<Impl>::setCPU(O3CPU *cpu_ptr)
282{
283 DPRINTF(Fetch, "Setting the CPU pointer.\n");
284 cpu = cpu_ptr;
285
286 // Name is finally available, so create the port.
287 icachePort = new IcachePort(this);
288
289#if USE_CHECKER
290 if (cpu->checker) {
291 cpu->checker->setIcachePort(icachePort);
292 }
293#endif
294
295 // Schedule fetch to get the correct PC from the CPU
296 // scheduleFetchStartupEvent(1);
297
298 // Fetch needs to start fetching instructions at the very beginning,
299 // so it must start up in active state.
300 switchToActive();
301}
302
303template<class Impl>
304void
305DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
306{
307 DPRINTF(Fetch, "Setting the time buffer pointer.\n");
308 timeBuffer = time_buffer;
309
310 // Create wires to get information from proper places in time buffer.
311 fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
312 fromRename = timeBuffer->getWire(-renameToFetchDelay);
313 fromIEW = timeBuffer->getWire(-iewToFetchDelay);
314 fromCommit = timeBuffer->getWire(-commitToFetchDelay);
315}
316
317template<class Impl>
318void
319DefaultFetch<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
320{
321 DPRINTF(Fetch, "Setting active threads list pointer.\n");
322 activeThreads = at_ptr;
323}
324
325template<class Impl>
326void
327DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
328{
329 DPRINTF(Fetch, "Setting the fetch queue pointer.\n");
330 fetchQueue = fq_ptr;
331
332 // Create wire to write information to proper place in fetch queue.
333 toDecode = fetchQueue->getWire(0);
334}
335
336template<class Impl>
337void
338DefaultFetch<Impl>::initStage()
339{
340 // Setup PC and nextPC with initial state.
341 for (int tid = 0; tid < numThreads; tid++) {
342 PC[tid] = cpu->readPC(tid);
343 nextPC[tid] = cpu->readNextPC(tid);
344#if ISA_HAS_DELAY_SLOT
345 nextNPC[tid] = cpu->readNextNPC(tid);
346#endif
347 }
348}
349
350template<class Impl>
351void
352DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
353{
354 unsigned tid = pkt->req->getThreadNum();
355
356 DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n",tid);
357
358 // Only change the status if it's still waiting on the icache access
359 // to return.
360 if (fetchStatus[tid] != IcacheWaitResponse ||
361 pkt->req != memReq[tid] ||
362 isSwitchedOut()) {
363 ++fetchIcacheSquashes;
364 delete pkt->req;
365 delete pkt;
366 return;
367 }
368
369 memcpy(cacheData[tid], pkt->getPtr<uint8_t *>(), cacheBlkSize);
370 cacheDataValid[tid] = true;
371
372 if (!drainPending) {
373 // Wake up the CPU (if it went to sleep and was waiting on
374 // this completion event).
375 cpu->wakeCPU();
376
377 DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
378 tid);
379
380 switchToActive();
381 }
382
383 // Only switch to IcacheAccessComplete if we're not stalled as well.
384 if (checkStall(tid)) {
385 fetchStatus[tid] = Blocked;
386 } else {
387 fetchStatus[tid] = IcacheAccessComplete;
388 }
389
390 // Reset the mem req to NULL.
391 delete pkt->req;
392 delete pkt;
393 memReq[tid] = NULL;
394}
395
396template <class Impl>
397bool
398DefaultFetch<Impl>::drain()
399{
400 // Fetch is ready to drain at any time.
401 cpu->signalDrained();
402 drainPending = true;
403 return true;
404}
405
406template <class Impl>
407void
408DefaultFetch<Impl>::resume()
409{
410 drainPending = false;
411}
412
413template <class Impl>
414void
415DefaultFetch<Impl>::switchOut()
416{
417 switchedOut = true;
418 // Branch predictor needs to have its state cleared.
419 branchPred.switchOut();
420}
421
422template <class Impl>
423void
424DefaultFetch<Impl>::takeOverFrom()
425{
426 // Reset all state
427 for (int i = 0; i < Impl::MaxThreads; ++i) {
428 stalls[i].decode = 0;
429 stalls[i].rename = 0;
430 stalls[i].iew = 0;
431 stalls[i].commit = 0;
432 PC[i] = cpu->readPC(i);
433 nextPC[i] = cpu->readNextPC(i);
434#if ISA_HAS_DELAY_SLOT
435 nextNPC[i] = cpu->readNextNPC(i);
436 delaySlotInfo[i].branchSeqNum = -1;
437 delaySlotInfo[i].numInsts = 0;
438 delaySlotInfo[i].targetAddr = 0;
439 delaySlotInfo[i].targetReady = false;
440#endif
441 fetchStatus[i] = Running;
442 }
443 numInst = 0;
444 wroteToTimeBuffer = false;
445 _status = Inactive;
446 switchedOut = false;
447 interruptPending = false;
448 branchPred.takeOverFrom();
449}
450
451template <class Impl>
452void
453DefaultFetch<Impl>::wakeFromQuiesce()
454{
455 DPRINTF(Fetch, "Waking up from quiesce\n");
456 // Hopefully this is safe
457 // @todo: Allow other threads to wake from quiesce.
458 fetchStatus[0] = Running;
459}
460
461template <class Impl>
462inline void
463DefaultFetch<Impl>::switchToActive()
464{
465 if (_status == Inactive) {
466 DPRINTF(Activity, "Activating stage.\n");
467
468 cpu->activateStage(O3CPU::FetchIdx);
469
470 _status = Active;
471 }
472}
473
474template <class Impl>
475inline void
476DefaultFetch<Impl>::switchToInactive()
477{
478 if (_status == Active) {
479 DPRINTF(Activity, "Deactivating stage.\n");
480
481 cpu->deactivateStage(O3CPU::FetchIdx);
482
483 _status = Inactive;
484 }
485}
486
487template <class Impl>
488bool
489DefaultFetch<Impl>::lookupAndUpdateNextPC(DynInstPtr &inst, Addr &next_PC,
490 Addr &next_NPC)
491{
492 // Do branch prediction check here.
493 // A bit of a misnomer...next_PC is actually the current PC until
494 // this function updates it.
495 bool predict_taken;
496
497 if (!inst->isControl()) {
498#if ISA_HAS_DELAY_SLOT
499 Addr cur_PC = next_PC;
500 next_PC = cur_PC + instSize; //next_NPC;
501 next_NPC = cur_PC + (2 * instSize);//next_NPC + instSize;
502 inst->setPredTarg(next_NPC);
503#else
504 next_PC = next_PC + instSize;
505 inst->setPredTarg(next_PC);
506#endif
507 return false;
508 }
509
510 int tid = inst->threadNumber;
511#if ISA_HAS_DELAY_SLOT
512 Addr pred_PC = next_PC;
513 predict_taken = branchPred.predict(inst, pred_PC, tid);
514
515 if (predict_taken) {
516 DPRINTF(Fetch, "[tid:%i]: Branch predicted to be true.\n", tid);
517 } else {
518 DPRINTF(Fetch, "[tid:%i]: Branch predicted to be false.\n", tid);
519 }
520
521 if (predict_taken) {
522 next_PC = next_NPC;
523 next_NPC = pred_PC;
524
525 // Update delay slot info
526 ++delaySlotInfo[tid].numInsts;
527 delaySlotInfo[tid].targetAddr = pred_PC;
528 DPRINTF(Fetch, "[tid:%i]: %i delay slot inst(s) to process.\n", tid,
529 delaySlotInfo[tid].numInsts);
530 } else { // !predict_taken
531 if (inst->isCondDelaySlot()) {
532 next_PC = pred_PC;
533 // The delay slot is skipped here if there is on
534 // prediction
535 } else {
536 next_PC = next_NPC;
537 // No need to declare a delay slot here since
538 // there is no for the pred. target to jump
539 }
540
541 next_NPC = next_NPC + instSize;
542 }
543#else
544 predict_taken = branchPred.predict(inst, next_PC, tid);
545#endif
546
547 ++fetchedBranches;
548
549 if (predict_taken) {
550 ++predictedBranches;
551 }
552
553 return predict_taken;
554}
555
556template <class Impl>
557bool
558DefaultFetch<Impl>::fetchCacheLine(Addr fetch_PC, Fault &ret_fault, unsigned tid)
559{
560 Fault fault = NoFault;
561
562#if FULL_SYSTEM
563 // Flag to say whether or not address is physical addr.
564 unsigned flags = cpu->inPalMode(fetch_PC) ? PHYSICAL : 0;
565#else
566 unsigned flags = 0;
567#endif // FULL_SYSTEM
568
569 if (cacheBlocked || isSwitchedOut() || (interruptPending && flags == 0)) {
570 // Hold off fetch from getting new instructions when:
571 // Cache is blocked, or
572 // while an interrupt is pending and we're not in PAL mode, or
573 // fetch is switched out.
574 return false;
575 }
576
577 // Align the fetch PC so it's at the start of a cache block.
578 fetch_PC = icacheBlockAlignPC(fetch_PC);
579
580 // If we've already got the block, no need to try to fetch it again.
581 if (cacheDataValid[tid] && fetch_PC == cacheDataPC[tid]) {
582 return true;
583 }
584
585 // Setup the memReq to do a read of the first instruction's address.
586 // Set the appropriate read size and flags as well.
587 // Build request here.
588 RequestPtr mem_req = new Request(tid, fetch_PC, cacheBlkSize, flags,
589 fetch_PC, cpu->readCpuId(), tid);
590
591 memReq[tid] = mem_req;
592
593 // Translate the instruction request.
594 fault = cpu->translateInstReq(mem_req, cpu->thread[tid]);
595
596 // In the case of faults, the fetch stage may need to stall and wait
597 // for the ITB miss to be handled.
598
599 // If translation was successful, attempt to read the first
600 // instruction.
601 if (fault == NoFault) {
602#if 0
603 if (cpu->system->memctrl->badaddr(memReq[tid]->paddr) ||
604 memReq[tid]->isUncacheable()) {
605 DPRINTF(Fetch, "Fetch: Bad address %#x (hopefully on a "
606 "misspeculating path)!",
607 memReq[tid]->paddr);
608 ret_fault = TheISA::genMachineCheckFault();
609 return false;
610 }
611#endif
612
613 // Build packet here.
614 PacketPtr data_pkt = new Packet(mem_req,
615 Packet::ReadReq, Packet::Broadcast);
616 data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
617
618 cacheDataPC[tid] = fetch_PC;
619 cacheDataValid[tid] = false;
620
621 DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
622
623 fetchedCacheLines++;
624
625 // Now do the timing access to see whether or not the instruction
626 // exists within the cache.
627 if (!icachePort->sendTiming(data_pkt)) {
628 if (data_pkt->result == Packet::BadAddress) {
629 fault = TheISA::genMachineCheckFault();
630 delete mem_req;
631 memReq[tid] = NULL;
632 }
633 assert(retryPkt == NULL);
634 assert(retryTid == -1);
635 DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
636 fetchStatus[tid] = IcacheWaitRetry;
637 retryPkt = data_pkt;
638 retryTid = tid;
639 cacheBlocked = true;
640 return false;
641 }
642
643 DPRINTF(Fetch, "[tid:%i]: Doing cache access.\n", tid);
644
645 lastIcacheStall[tid] = curTick;
646
647 DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
648 "response.\n", tid);
649
650 fetchStatus[tid] = IcacheWaitResponse;
651 } else {
652 delete mem_req;
653 memReq[tid] = NULL;
654 }
655
656 ret_fault = fault;
657 return true;
658}
659
660template <class Impl>
661inline void
662DefaultFetch<Impl>::doSquash(const Addr &new_PC, unsigned tid)
663{
664 DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %#x.\n",
665 tid, new_PC);
666
667 PC[tid] = new_PC;
668 nextPC[tid] = new_PC + instSize;
669 nextNPC[tid] = new_PC + (2 * instSize);
670
671 // Clear the icache miss if it's outstanding.
672 if (fetchStatus[tid] == IcacheWaitResponse) {
673 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
674 tid);
675 memReq[tid] = NULL;
676 }
677
678 // Get rid of the retrying packet if it was from this thread.
679 if (retryTid == tid) {
680 assert(cacheBlocked);
681 cacheBlocked = false;
682 retryTid = -1;
683 delete retryPkt->req;
684 delete retryPkt;
685 retryPkt = NULL;
686 }
687
688 fetchStatus[tid] = Squashing;
689
690 ++fetchSquashCycles;
691}
692
693template<class Impl>
694void
695DefaultFetch<Impl>::squashFromDecode(const Addr &new_PC,
696 const InstSeqNum &seq_num,
697 unsigned tid)
698{
699 DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n",tid);
700
701 doSquash(new_PC, tid);
702
703#if ISA_HAS_DELAY_SLOT
704 if (seq_num <= delaySlotInfo[tid].branchSeqNum) {
705 delaySlotInfo[tid].numInsts = 0;
706 delaySlotInfo[tid].targetAddr = 0;
707 delaySlotInfo[tid].targetReady = false;
708 }
709#endif
710
711 // Tell the CPU to remove any instructions that are in flight between
712 // fetch and decode.
713 cpu->removeInstsUntil(seq_num, tid);
714}
715
716template<class Impl>
717bool
718DefaultFetch<Impl>::checkStall(unsigned tid) const
719{
720 bool ret_val = false;
721
722 if (cpu->contextSwitch) {
723 DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
724 ret_val = true;
725 } else if (stalls[tid].decode) {
726 DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
727 ret_val = true;
728 } else if (stalls[tid].rename) {
729 DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
730 ret_val = true;
731 } else if (stalls[tid].iew) {
732 DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
733 ret_val = true;
734 } else if (stalls[tid].commit) {
735 DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
736 ret_val = true;
737 }
738
739 return ret_val;
740}
741
742template<class Impl>
743typename DefaultFetch<Impl>::FetchStatus
744DefaultFetch<Impl>::updateFetchStatus()
745{
746 //Check Running
747 std::list<unsigned>::iterator threads = (*activeThreads).begin();
748
749 while (threads != (*activeThreads).end()) {
750
751 unsigned tid = *threads++;
752
753 if (fetchStatus[tid] == Running ||
754 fetchStatus[tid] == Squashing ||
755 fetchStatus[tid] == IcacheAccessComplete) {
756
757 if (_status == Inactive) {
758 DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
759
760 if (fetchStatus[tid] == IcacheAccessComplete) {
761 DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
762 "completion\n",tid);
763 }
764
765 cpu->activateStage(O3CPU::FetchIdx);
766 }
767
768 return Active;
769 }
770 }
771
772 // Stage is switching from active to inactive, notify CPU of it.
773 if (_status == Active) {
774 DPRINTF(Activity, "Deactivating stage.\n");
775
776 cpu->deactivateStage(O3CPU::FetchIdx);
777 }
778
779 return Inactive;
780}
781
782template <class Impl>
783void
784DefaultFetch<Impl>::squash(const Addr &new_PC, const InstSeqNum &seq_num,
785 bool squash_delay_slot, unsigned tid)
786{
787 DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n",tid);
788
789 doSquash(new_PC, tid);
790
791#if ISA_HAS_DELAY_SLOT
792 if (seq_num <= delaySlotInfo[tid].branchSeqNum) {
793 delaySlotInfo[tid].numInsts = 0;
794 delaySlotInfo[tid].targetAddr = 0;
795 delaySlotInfo[tid].targetReady = false;
796 }
797
798 // Tell the CPU to remove any instructions that are not in the ROB.
799 cpu->removeInstsNotInROB(tid, squash_delay_slot, seq_num);
800#else
801 // Tell the CPU to remove any instructions that are not in the ROB.
802 cpu->removeInstsNotInROB(tid, true, 0);
803#endif
804}
805
806template <class Impl>
807void
808DefaultFetch<Impl>::tick()
809{
810 std::list<unsigned>::iterator threads = (*activeThreads).begin();
811 bool status_change = false;
812
813 wroteToTimeBuffer = false;
814
815 while (threads != (*activeThreads).end()) {
816 unsigned tid = *threads++;
817
818 // Check the signals for each thread to determine the proper status
819 // for each thread.
820 bool updated_status = checkSignalsAndUpdate(tid);
821 status_change = status_change || updated_status;
822 }
823
824 DPRINTF(Fetch, "Running stage.\n");
825
826 // Reset the number of the instruction we're fetching.
827 numInst = 0;
828
829#if FULL_SYSTEM
830 if (fromCommit->commitInfo[0].interruptPending) {
831 interruptPending = true;
832 }
833
834 if (fromCommit->commitInfo[0].clearInterrupt) {
835 interruptPending = false;
836 }
837#endif
838
839 for (threadFetched = 0; threadFetched < numFetchingThreads;
840 threadFetched++) {
841 // Fetch each of the actively fetching threads.
842 fetch(status_change);
843 }
844
845 // Record number of instructions fetched this cycle for distribution.
846 fetchNisnDist.sample(numInst);
847
848 if (status_change) {
849 // Change the fetch stage status if there was a status change.
850 _status = updateFetchStatus();
851 }
852
853 // If there was activity this cycle, inform the CPU of it.
854 if (wroteToTimeBuffer || cpu->contextSwitch) {
855 DPRINTF(Activity, "Activity this cycle.\n");
856
857 cpu->activityThisCycle();
858 }
859}
860
861template <class Impl>
862bool
863DefaultFetch<Impl>::checkSignalsAndUpdate(unsigned tid)
864{
865 // Update the per thread stall statuses.
866 if (fromDecode->decodeBlock[tid]) {
867 stalls[tid].decode = true;
868 }
869
870 if (fromDecode->decodeUnblock[tid]) {
871 assert(stalls[tid].decode);
872 assert(!fromDecode->decodeBlock[tid]);
873 stalls[tid].decode = false;
874 }
875
876 if (fromRename->renameBlock[tid]) {
877 stalls[tid].rename = true;
878 }
879
880 if (fromRename->renameUnblock[tid]) {
881 assert(stalls[tid].rename);
882 assert(!fromRename->renameBlock[tid]);
883 stalls[tid].rename = false;
884 }
885
886 if (fromIEW->iewBlock[tid]) {
887 stalls[tid].iew = true;
888 }
889
890 if (fromIEW->iewUnblock[tid]) {
891 assert(stalls[tid].iew);
892 assert(!fromIEW->iewBlock[tid]);
893 stalls[tid].iew = false;
894 }
895
896 if (fromCommit->commitBlock[tid]) {
897 stalls[tid].commit = true;
898 }
899
900 if (fromCommit->commitUnblock[tid]) {
901 assert(stalls[tid].commit);
902 assert(!fromCommit->commitBlock[tid]);
903 stalls[tid].commit = false;
904 }
905
906 // Check squash signals from commit.
907 if (fromCommit->commitInfo[tid].squash) {
908
909 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
910 "from commit.\n",tid);
911
912#if ISA_HAS_DELAY_SLOT
913 InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].bdelayDoneSeqNum;
914#else
915 InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].doneSeqNum;
916#endif
917 // In any case, squash.
918 squash(fromCommit->commitInfo[tid].nextPC,
919 doneSeqNum,
920 fromCommit->commitInfo[tid].squashDelaySlot,
921 tid);
922
923 // Also check if there's a mispredict that happened.
924 if (fromCommit->commitInfo[tid].branchMispredict) {
925 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
926 fromCommit->commitInfo[tid].nextPC,
927 fromCommit->commitInfo[tid].branchTaken,
928 tid);
929 } else {
930 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
931 tid);
932 }
933
934 return true;
935 } else if (fromCommit->commitInfo[tid].doneSeqNum) {
936 // Update the branch predictor if it wasn't a squashed instruction
937 // that was broadcasted.
938 branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
939 }
940
941 // Check ROB squash signals from commit.
942 if (fromCommit->commitInfo[tid].robSquashing) {
943 DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
944
945 // Continue to squash.
946 fetchStatus[tid] = Squashing;
947
948 return true;
949 }
950
951 // Check squash signals from decode.
952 if (fromDecode->decodeInfo[tid].squash) {
953 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
954 "from decode.\n",tid);
955
956 // Update the branch predictor.
957 if (fromDecode->decodeInfo[tid].branchMispredict) {
958 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
959 fromDecode->decodeInfo[tid].nextPC,
960 fromDecode->decodeInfo[tid].branchTaken,
961 tid);
962 } else {
963 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
964 tid);
965 }
966
967 if (fetchStatus[tid] != Squashing) {
968
969#if ISA_HAS_DELAY_SLOT
970 InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].bdelayDoneSeqNum;
971#else
972 InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].doneSeqNum;
973#endif
974 // Squash unless we're already squashing
975 squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
976 doneSeqNum,
977 tid);
978
979 return true;
980 }
981 }
982
983 if (checkStall(tid) && fetchStatus[tid] != IcacheWaitResponse) {
984 DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
985
986 fetchStatus[tid] = Blocked;
987
988 return true;
989 }
990
991 if (fetchStatus[tid] == Blocked ||
992 fetchStatus[tid] == Squashing) {
993 // Switch status to running if fetch isn't being told to block or
994 // squash this cycle.
995 DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
996 tid);
997
998 fetchStatus[tid] = Running;
999
1000 return true;
1001 }
1002
1003 // If we've reached this point, we have not gotten any signals that
1004 // cause fetch to change its status. Fetch remains the same as before.
1005 return false;
1006}
1007
1008template<class Impl>
1009void
1010DefaultFetch<Impl>::fetch(bool &status_change)
1011{
1012 //////////////////////////////////////////
1013 // Start actual fetch
1014 //////////////////////////////////////////
1015 int tid = getFetchingThread(fetchPolicy);
1016
1017 if (tid == -1 || drainPending) {
1018 DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1019
1020 // Breaks looping condition in tick()
1021 threadFetched = numFetchingThreads;
1022 return;
1023 }
1024
1025 DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1026
1027 // The current PC.
1028 Addr &fetch_PC = PC[tid];
1029
1030 // Fault code for memory access.
1031 Fault fault = NoFault;
1032
1033 // If returning from the delay of a cache miss, then update the status
1034 // to running, otherwise do the cache access. Possibly move this up
1035 // to tick() function.
1036 if (fetchStatus[tid] == IcacheAccessComplete) {
1037 DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n",
1038 tid);
1039
1040 fetchStatus[tid] = Running;
1041 status_change = true;
1042 } else if (fetchStatus[tid] == Running) {
1043 DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1044 "instruction, starting at PC %08p.\n",
1045 tid, fetch_PC);
1046
1047 bool fetch_success = fetchCacheLine(fetch_PC, fault, tid);
1048 if (!fetch_success) {
1049 if (cacheBlocked) {
1050 ++icacheStallCycles;
1051 } else {
1052 ++fetchMiscStallCycles;
1053 }
1054 return;
1055 }
1056 } else {
1057 if (fetchStatus[tid] == Idle) {
1058 ++fetchIdleCycles;
1059 } else if (fetchStatus[tid] == Blocked) {
1060 ++fetchBlockedCycles;
1061 } else if (fetchStatus[tid] == Squashing) {
1062 ++fetchSquashCycles;
1063 } else if (fetchStatus[tid] == IcacheWaitResponse) {
1064 ++icacheStallCycles;
1065 }
1066
1067 // Status is Idle, Squashing, Blocked, or IcacheWaitResponse, so
1068 // fetch should do nothing.
1069 return;
1070 }
1071
1072 ++fetchCycles;
1073
1074 // If we had a stall due to an icache miss, then return.
1075 if (fetchStatus[tid] == IcacheWaitResponse) {
1076 ++icacheStallCycles;
1077 status_change = true;
1078 return;
1079 }
1080
1081 Addr next_PC = fetch_PC;
1082 Addr next_NPC = next_PC + instSize;
1083 InstSeqNum inst_seq;
1084 MachInst inst;
1085 ExtMachInst ext_inst;
1086 // @todo: Fix this hack.
1087 unsigned offset = (fetch_PC & cacheBlkMask) & ~3;
1088
1089 if (fault == NoFault) {
1090 // If the read of the first instruction was successful, then grab the
1091 // instructions from the rest of the cache line and put them into the
1092 // queue heading to decode.
1093
1094 DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1095 "decode.\n",tid);
1096
1097 // Need to keep track of whether or not a predicted branch
1098 // ended this fetch block.
1099 bool predicted_branch = false;
1100
1101 // Need to keep track of whether or not a delay slot
1102 // instruction has been fetched
1103
1104 for (;
1105 offset < cacheBlkSize &&
1106 numInst < fetchWidth &&
1107 (!predicted_branch || delaySlotInfo[tid].numInsts > 0);
1108 ++numInst) {
1109
1110 // Get a sequence number.
1111 inst_seq = cpu->getAndIncrementInstSeq();
1112
1113 // Make sure this is a valid index.
1114 assert(offset <= cacheBlkSize - instSize);
1115
1116 // Get the instruction from the array of the cache line.
1117 inst = TheISA::gtoh(*reinterpret_cast<TheISA::MachInst *>
1118 (&cacheData[tid][offset]));
1119
1120 ext_inst = TheISA::makeExtMI(inst, cpu->tcBase(tid));
1121
1122 // Create a new DynInst from the instruction fetched.
1123 DynInstPtr instruction = new DynInst(ext_inst, fetch_PC,
1124 next_PC,
1125 inst_seq, cpu);
1126 instruction->setTid(tid);
1127
1128 instruction->setASID(tid);
1129
1130 instruction->setThreadState(cpu->thread[tid]);
1131
1132 DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x created "
1133 "[sn:%lli]\n",
1134 tid, instruction->readPC(), inst_seq);
1135
1136 DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n",
1137 tid, instruction->staticInst->disassemble(fetch_PC));
1138
1139 instruction->traceData =
1140 Trace::getInstRecord(curTick, cpu->tcBase(tid),
1141 instruction->staticInst,
1142 instruction->readPC());
1143
1144 predicted_branch = lookupAndUpdateNextPC(instruction, next_PC,
1145 next_NPC);
1146
1147 // Add instruction to the CPU's list of instructions.
1148 instruction->setInstListIt(cpu->addInst(instruction));
1149
1150 // Write the instruction to the first slot in the queue
1151 // that heads to decode.
1152 toDecode->insts[numInst] = instruction;
1153
1154 toDecode->size++;
1155
1156 // Increment stat of fetched instructions.
1157 ++fetchedInsts;
1158
1159 // Move to the next instruction, unless we have a branch.
1160 fetch_PC = next_PC;
1161
1162 if (instruction->isQuiesce()) {
1163// warn("%lli: Quiesce instruction encountered, halting fetch!",
1164// curTick);
1165 fetchStatus[tid] = QuiescePending;
1166 ++numInst;
1167 status_change = true;
1168 break;
1169 }
1170
1171 offset += instSize;
1172
1173#if ISA_HAS_DELAY_SLOT
1174 if (predicted_branch) {
1175 delaySlotInfo[tid].branchSeqNum = inst_seq;
1176
1177 DPRINTF(Fetch, "[tid:%i]: Delay slot branch set to [sn:%i]\n",
1178 tid, inst_seq);
1179 continue;
1180 } else if (delaySlotInfo[tid].numInsts > 0) {
1181 --delaySlotInfo[tid].numInsts;
1182
1183 // It's OK to set PC to target of branch
1184 if (delaySlotInfo[tid].numInsts == 0) {
1185 delaySlotInfo[tid].targetReady = true;
1186
1187 // Break the looping condition
1188 predicted_branch = true;
1189 }
1190
1191 DPRINTF(Fetch, "[tid:%i]: %i delay slot inst(s) left to"
1192 " process.\n", tid, delaySlotInfo[tid].numInsts);
1193 }
1194#endif
1195 }
1196
1197 if (offset >= cacheBlkSize) {
1198 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1199 "block.\n", tid);
1200 } else if (numInst >= fetchWidth) {
1201 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1202 "for this cycle.\n", tid);
1203 } else if (predicted_branch && delaySlotInfo[tid].numInsts <= 0) {
1204 DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1205 "instruction encountered.\n", tid);
1206 }
1207 }
1208
1209 if (numInst > 0) {
1210 wroteToTimeBuffer = true;
1211 }
1212
1213 // Now that fetching is completed, update the PC to signify what the next
1214 // cycle will be.
1215 if (fault == NoFault) {
1216#if ISA_HAS_DELAY_SLOT
1217 if (delaySlotInfo[tid].targetReady &&
1218 delaySlotInfo[tid].numInsts == 0) {
1219 // Set PC to target
1220 PC[tid] = delaySlotInfo[tid].targetAddr; //next_PC
1221 nextPC[tid] = next_PC + instSize; //next_NPC
1222 nextNPC[tid] = next_PC + (2 * instSize);
1223
1224 delaySlotInfo[tid].targetReady = false;
1225 } else {
1226 PC[tid] = next_PC;
1227 nextPC[tid] = next_NPC;
1228 nextNPC[tid] = next_NPC + instSize;
1229 }
1230
1231 DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n", tid, PC[tid]);
1232#else
1233 DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n",tid, next_PC);
1234 PC[tid] = next_PC;
1235 nextPC[tid] = next_PC + instSize;
1236#endif
1237 } else {
1238 // We shouldn't be in an icache miss and also have a fault (an ITB
1239 // miss)
1240 if (fetchStatus[tid] == IcacheWaitResponse) {
1241 panic("Fetch should have exited prior to this!");
1242 }
1243
1244 // Send the fault to commit. This thread will not do anything
1245 // until commit handles the fault. The only other way it can
1246 // wake up is if a squash comes along and changes the PC.
1247#if FULL_SYSTEM
1248 assert(numInst != fetchWidth);
1249 // Get a sequence number.
1250 inst_seq = cpu->getAndIncrementInstSeq();
1251 // We will use a nop in order to carry the fault.
1252 ext_inst = TheISA::NoopMachInst;
1253
1254 // Create a new DynInst from the dummy nop.
1255 DynInstPtr instruction = new DynInst(ext_inst, fetch_PC,
1256 next_PC,
1257 inst_seq, cpu);
1258 instruction->setPredTarg(next_PC + instSize);
1259 instruction->setTid(tid);
1260
1261 instruction->setASID(tid);
1262
1263 instruction->setThreadState(cpu->thread[tid]);
1264
1265 instruction->traceData = NULL;
1266
1267 instruction->setInstListIt(cpu->addInst(instruction));
1268
1269 instruction->fault = fault;
1270
1271 toDecode->insts[numInst] = instruction;
1272 toDecode->size++;
1273
1274 DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n",tid);
1275
1276 fetchStatus[tid] = TrapPending;
1277 status_change = true;
1278
1279// warn("%lli fault (%d) detected @ PC %08p", curTick, fault, PC[tid]);
1280#else // !FULL_SYSTEM
1281 warn("cycle %lli: fault (%s) detected @ PC %08p", curTick, fault->name(), PC[tid]);
1282#endif // FULL_SYSTEM
1283 }
1284}
1285
1286template<class Impl>
1287void
1288DefaultFetch<Impl>::recvRetry()
1289{
1290 if (retryPkt != NULL) {
1291 assert(cacheBlocked);
1292 assert(retryTid != -1);
1293 assert(fetchStatus[retryTid] == IcacheWaitRetry);
1294
1295 if (icachePort->sendTiming(retryPkt)) {
1296 fetchStatus[retryTid] = IcacheWaitResponse;
1297 retryPkt = NULL;
1298 retryTid = -1;
1299 cacheBlocked = false;
1300 }
1301 } else {
1302 assert(retryTid == -1);
1303 // Access has been squashed since it was sent out. Just clear
1304 // the cache being blocked.
1305 cacheBlocked = false;
1306 }
1307}
1308
1309///////////////////////////////////////
1310// //
1311// SMT FETCH POLICY MAINTAINED HERE //
1312// //
1313///////////////////////////////////////
1314template<class Impl>
1315int
1316DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1317{
1318 if (numThreads > 1) {
1319 switch (fetch_priority) {
1320
1321 case SingleThread:
1322 return 0;
1323
1324 case RoundRobin:
1325 return roundRobin();
1326
1327 case IQ:
1328 return iqCount();
1329
1330 case LSQ:
1331 return lsqCount();
1332
1333 case Branch:
1334 return branchCount();
1335
1336 default:
1337 return -1;
1338 }
1339 } else {
1340 int tid = *((*activeThreads).begin());
1341
1342 if (fetchStatus[tid] == Running ||
1343 fetchStatus[tid] == IcacheAccessComplete ||
1344 fetchStatus[tid] == Idle) {
1345 return tid;
1346 } else {
1347 return -1;
1348 }
1349 }
1350
1351}
1352
1353
1354template<class Impl>
1355int
1356DefaultFetch<Impl>::roundRobin()
1357{
1358 std::list<unsigned>::iterator pri_iter = priorityList.begin();
1359 std::list<unsigned>::iterator end = priorityList.end();
1360
1361 int high_pri;
1362
1363 while (pri_iter != end) {
1364 high_pri = *pri_iter;
1365
1366 assert(high_pri <= numThreads);
1367
1368 if (fetchStatus[high_pri] == Running ||
1369 fetchStatus[high_pri] == IcacheAccessComplete ||
1370 fetchStatus[high_pri] == Idle) {
1371
1372 priorityList.erase(pri_iter);
1373 priorityList.push_back(high_pri);
1374
1375 return high_pri;
1376 }
1377
1378 pri_iter++;
1379 }
1380
1381 return -1;
1382}
1383
1384template<class Impl>
1385int
1386DefaultFetch<Impl>::iqCount()
1387{
1388 std::priority_queue<unsigned> PQ;
1389
1390 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1391
1392 while (threads != (*activeThreads).end()) {
1393 unsigned tid = *threads++;
1394
1395 PQ.push(fromIEW->iewInfo[tid].iqCount);
1396 }
1397
1398 while (!PQ.empty()) {
1399
1400 unsigned high_pri = PQ.top();
1401
1402 if (fetchStatus[high_pri] == Running ||
1403 fetchStatus[high_pri] == IcacheAccessComplete ||
1404 fetchStatus[high_pri] == Idle)
1405 return high_pri;
1406 else
1407 PQ.pop();
1408
1409 }
1410
1411 return -1;
1412}
1413
1414template<class Impl>
1415int
1416DefaultFetch<Impl>::lsqCount()
1417{
1418 std::priority_queue<unsigned> PQ;
1419
1420
1421 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1422
1423 while (threads != (*activeThreads).end()) {
1424 unsigned tid = *threads++;
1425
1426 PQ.push(fromIEW->iewInfo[tid].ldstqCount);
1427 }
1428
1429 while (!PQ.empty()) {
1430
1431 unsigned high_pri = PQ.top();
1432
1433 if (fetchStatus[high_pri] == Running ||
1434 fetchStatus[high_pri] == IcacheAccessComplete ||
1435 fetchStatus[high_pri] == Idle)
1436 return high_pri;
1437 else
1438 PQ.pop();
1439
1440 }
1441
1442 return -1;
1443}
1444
1445template<class Impl>
1446int
1447DefaultFetch<Impl>::branchCount()
1448{
1449 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1450 panic("Branch Count Fetch policy unimplemented\n");
1451 return *threads;
1452}