Deleted Added
sdiff udiff text old ( 3376:ed8179dd13da ) new ( 3383:8105c3e566ab )
full compact
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 * Korey Sewell
30 */
31
32#include "config/use_checker.hh"
33
34#include "arch/isa_traits.hh"
35#include "arch/utility.hh"
36#include "cpu/checker/cpu.hh"
37#include "cpu/exetrace.hh"
38#include "cpu/o3/fetch.hh"
39#include "mem/packet.hh"
40#include "mem/request.hh"
41#include "sim/byteswap.hh"
42#include "sim/host.hh"
43#include "sim/root.hh"
44
45#if FULL_SYSTEM
46#include "arch/tlb.hh"
47#include "arch/vtophys.hh"
48#include "base/remote_gdb.hh"
49#include "sim/system.hh"
50#endif // FULL_SYSTEM
51
52#include <algorithm>
53
54template<class Impl>
55Tick
56DefaultFetch<Impl>::IcachePort::recvAtomic(PacketPtr pkt)
57{
58 panic("DefaultFetch doesn't expect recvAtomic callback!");
59 return curTick;
60}
61
62template<class Impl>
63void
64DefaultFetch<Impl>::IcachePort::recvFunctional(PacketPtr pkt)
65{
66 warn("Default fetch doesn't update it's state from a functional call.");
67}
68
69template<class Impl>
70void
71DefaultFetch<Impl>::IcachePort::recvStatusChange(Status status)
72{
73 if (status == RangeChange)
74 return;
75
76 panic("DefaultFetch doesn't expect recvStatusChange callback!");
77}
78
79template<class Impl>
80bool
81DefaultFetch<Impl>::IcachePort::recvTiming(PacketPtr pkt)
82{
83 if (pkt->isResponse()) {
84 fetch->processCacheCompletion(pkt);
85 }
86 //else Snooped a coherence request, just return
87 return true;
88}
89
90template<class Impl>
91void
92DefaultFetch<Impl>::IcachePort::recvRetry()
93{
94 fetch->recvRetry();
95}
96
97template<class Impl>
98DefaultFetch<Impl>::DefaultFetch(Params *params)
99 : mem(params->mem),
100 branchPred(params),
101 decodeToFetchDelay(params->decodeToFetchDelay),
102 renameToFetchDelay(params->renameToFetchDelay),
103 iewToFetchDelay(params->iewToFetchDelay),
104 commitToFetchDelay(params->commitToFetchDelay),
105 fetchWidth(params->fetchWidth),
106 cacheBlocked(false),
107 retryPkt(NULL),
108 retryTid(-1),
109 numThreads(params->numberOfThreads),
110 numFetchingThreads(params->smtNumFetchingThreads),
111 interruptPending(false),
112 drainPending(false),
113 switchedOut(false)
114{
115 if (numThreads > Impl::MaxThreads)
116 fatal("numThreads is not a valid value\n");
117
118 // Set fetch stage's status to inactive.
119 _status = Inactive;
120
121 std::string policy = params->smtFetchPolicy;
122
123 // Convert string to lowercase
124 std::transform(policy.begin(), policy.end(), policy.begin(),
125 (int(*)(int)) tolower);
126
127 // Figure out fetch policy
128 if (policy == "singlethread") {
129 fetchPolicy = SingleThread;
130 if (numThreads > 1)
131 panic("Invalid Fetch Policy for a SMT workload.");
132 } else if (policy == "roundrobin") {
133 fetchPolicy = RoundRobin;
134 DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
135 } else if (policy == "branch") {
136 fetchPolicy = Branch;
137 DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
138 } else if (policy == "iqcount") {
139 fetchPolicy = IQ;
140 DPRINTF(Fetch, "Fetch policy set to IQ count\n");
141 } else if (policy == "lsqcount") {
142 fetchPolicy = LSQ;
143 DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
144 } else {
145 fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
146 " RoundRobin,LSQcount,IQcount}\n");
147 }
148
149 // Size of cache block.
150 cacheBlkSize = 64;
151
152 // Create mask to get rid of offset bits.
153 cacheBlkMask = (cacheBlkSize - 1);
154
155 for (int tid=0; tid < numThreads; tid++) {
156
157 fetchStatus[tid] = Running;
158
159 priorityList.push_back(tid);
160
161 memReq[tid] = NULL;
162
163 // Create space to store a cache line.
164 cacheData[tid] = new uint8_t[cacheBlkSize];
165 cacheDataPC[tid] = 0;
166 cacheDataValid[tid] = false;
167
168 delaySlotInfo[tid].branchSeqNum = -1;
169 delaySlotInfo[tid].numInsts = 0;
170 delaySlotInfo[tid].targetAddr = 0;
171 delaySlotInfo[tid].targetReady = false;
172
173 stalls[tid].decode = false;
174 stalls[tid].rename = false;
175 stalls[tid].iew = false;
176 stalls[tid].commit = false;
177 }
178
179 // Get the size of an instruction.
180 instSize = sizeof(TheISA::MachInst);
181}
182
183template <class Impl>
184std::string
185DefaultFetch<Impl>::name() const
186{
187 return cpu->name() + ".fetch";
188}
189
190template <class Impl>
191void
192DefaultFetch<Impl>::regStats()
193{
194 icacheStallCycles
195 .name(name() + ".icacheStallCycles")
196 .desc("Number of cycles fetch is stalled on an Icache miss")
197 .prereq(icacheStallCycles);
198
199 fetchedInsts
200 .name(name() + ".Insts")
201 .desc("Number of instructions fetch has processed")
202 .prereq(fetchedInsts);
203
204 fetchedBranches
205 .name(name() + ".Branches")
206 .desc("Number of branches that fetch encountered")
207 .prereq(fetchedBranches);
208
209 predictedBranches
210 .name(name() + ".predictedBranches")
211 .desc("Number of branches that fetch has predicted taken")
212 .prereq(predictedBranches);
213
214 fetchCycles
215 .name(name() + ".Cycles")
216 .desc("Number of cycles fetch has run and was not squashing or"
217 " blocked")
218 .prereq(fetchCycles);
219
220 fetchSquashCycles
221 .name(name() + ".SquashCycles")
222 .desc("Number of cycles fetch has spent squashing")
223 .prereq(fetchSquashCycles);
224
225 fetchIdleCycles
226 .name(name() + ".IdleCycles")
227 .desc("Number of cycles fetch was idle")
228 .prereq(fetchIdleCycles);
229
230 fetchBlockedCycles
231 .name(name() + ".BlockedCycles")
232 .desc("Number of cycles fetch has spent blocked")
233 .prereq(fetchBlockedCycles);
234
235 fetchedCacheLines
236 .name(name() + ".CacheLines")
237 .desc("Number of cache lines fetched")
238 .prereq(fetchedCacheLines);
239
240 fetchMiscStallCycles
241 .name(name() + ".MiscStallCycles")
242 .desc("Number of cycles fetch has spent waiting on interrupts, or "
243 "bad addresses, or out of MSHRs")
244 .prereq(fetchMiscStallCycles);
245
246 fetchIcacheSquashes
247 .name(name() + ".IcacheSquashes")
248 .desc("Number of outstanding Icache misses that were squashed")
249 .prereq(fetchIcacheSquashes);
250
251 fetchNisnDist
252 .init(/* base value */ 0,
253 /* last value */ fetchWidth,
254 /* bucket size */ 1)
255 .name(name() + ".rateDist")
256 .desc("Number of instructions fetched each cycle (Total)")
257 .flags(Stats::pdf);
258
259 idleRate
260 .name(name() + ".idleRate")
261 .desc("Percent of cycles fetch was idle")
262 .prereq(idleRate);
263 idleRate = fetchIdleCycles * 100 / cpu->numCycles;
264
265 branchRate
266 .name(name() + ".branchRate")
267 .desc("Number of branch fetches per cycle")
268 .flags(Stats::total);
269 branchRate = fetchedBranches / cpu->numCycles;
270
271 fetchRate
272 .name(name() + ".rate")
273 .desc("Number of inst fetches per cycle")
274 .flags(Stats::total);
275 fetchRate = fetchedInsts / cpu->numCycles;
276
277 branchPred.regStats();
278}
279
280template<class Impl>
281void
282DefaultFetch<Impl>::setCPU(O3CPU *cpu_ptr)
283{
284 DPRINTF(Fetch, "Setting the CPU pointer.\n");
285 cpu = cpu_ptr;
286
287 // Name is finally available, so create the port.
288 icachePort = new IcachePort(this);
289
290#if USE_CHECKER
291 if (cpu->checker) {
292 cpu->checker->setIcachePort(icachePort);
293 }
294#endif
295
296 // Schedule fetch to get the correct PC from the CPU
297 // scheduleFetchStartupEvent(1);
298
299 // Fetch needs to start fetching instructions at the very beginning,
300 // so it must start up in active state.
301 switchToActive();
302}
303
304template<class Impl>
305void
306DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
307{
308 DPRINTF(Fetch, "Setting the time buffer pointer.\n");
309 timeBuffer = time_buffer;
310
311 // Create wires to get information from proper places in time buffer.
312 fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
313 fromRename = timeBuffer->getWire(-renameToFetchDelay);
314 fromIEW = timeBuffer->getWire(-iewToFetchDelay);
315 fromCommit = timeBuffer->getWire(-commitToFetchDelay);
316}
317
318template<class Impl>
319void
320DefaultFetch<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
321{
322 DPRINTF(Fetch, "Setting active threads list pointer.\n");
323 activeThreads = at_ptr;
324}
325
326template<class Impl>
327void
328DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
329{
330 DPRINTF(Fetch, "Setting the fetch queue pointer.\n");
331 fetchQueue = fq_ptr;
332
333 // Create wire to write information to proper place in fetch queue.
334 toDecode = fetchQueue->getWire(0);
335}
336
337template<class Impl>
338void
339DefaultFetch<Impl>::initStage()
340{
341 // Setup PC and nextPC with initial state.
342 for (int tid = 0; tid < numThreads; tid++) {
343 PC[tid] = cpu->readPC(tid);
344 nextPC[tid] = cpu->readNextPC(tid);
345#if ISA_HAS_DELAY_SLOT
346 nextNPC[tid] = cpu->readNextNPC(tid);
347#endif
348 }
349}
350
351template<class Impl>
352void
353DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
354{
355 unsigned tid = pkt->req->getThreadNum();
356
357 DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n",tid);
358
359 // Only change the status if it's still waiting on the icache access
360 // to return.
361 if (fetchStatus[tid] != IcacheWaitResponse ||
362 pkt->req != memReq[tid] ||
363 isSwitchedOut()) {
364 ++fetchIcacheSquashes;
365 delete pkt->req;
366 delete pkt;
367 return;
368 }
369
370 memcpy(cacheData[tid], pkt->getPtr<uint8_t *>(), cacheBlkSize);
371 cacheDataValid[tid] = true;
372
373 if (!drainPending) {
374 // Wake up the CPU (if it went to sleep and was waiting on
375 // this completion event).
376 cpu->wakeCPU();
377
378 DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
379 tid);
380
381 switchToActive();
382 }
383
384 // Only switch to IcacheAccessComplete if we're not stalled as well.
385 if (checkStall(tid)) {
386 fetchStatus[tid] = Blocked;
387 } else {
388 fetchStatus[tid] = IcacheAccessComplete;
389 }
390
391 // Reset the mem req to NULL.
392 delete pkt->req;
393 delete pkt;
394 memReq[tid] = NULL;
395}
396
397template <class Impl>
398bool
399DefaultFetch<Impl>::drain()
400{
401 // Fetch is ready to drain at any time.
402 cpu->signalDrained();
403 drainPending = true;
404 return true;
405}
406
407template <class Impl>
408void
409DefaultFetch<Impl>::resume()
410{
411 drainPending = false;
412}
413
414template <class Impl>
415void
416DefaultFetch<Impl>::switchOut()
417{
418 switchedOut = true;
419 // Branch predictor needs to have its state cleared.
420 branchPred.switchOut();
421}
422
423template <class Impl>
424void
425DefaultFetch<Impl>::takeOverFrom()
426{
427 // Reset all state
428 for (int i = 0; i < Impl::MaxThreads; ++i) {
429 stalls[i].decode = 0;
430 stalls[i].rename = 0;
431 stalls[i].iew = 0;
432 stalls[i].commit = 0;
433 PC[i] = cpu->readPC(i);
434 nextPC[i] = cpu->readNextPC(i);
435#if ISA_HAS_DELAY_SLOT
436 nextNPC[i] = cpu->readNextNPC(i);
437 delaySlotInfo[i].branchSeqNum = -1;
438 delaySlotInfo[i].numInsts = 0;
439 delaySlotInfo[i].targetAddr = 0;
440 delaySlotInfo[i].targetReady = false;
441#endif
442 fetchStatus[i] = Running;
443 }
444 numInst = 0;
445 wroteToTimeBuffer = false;
446 _status = Inactive;
447 switchedOut = false;
448 interruptPending = false;
449 branchPred.takeOverFrom();
450}
451
452template <class Impl>
453void
454DefaultFetch<Impl>::wakeFromQuiesce()
455{
456 DPRINTF(Fetch, "Waking up from quiesce\n");
457 // Hopefully this is safe
458 // @todo: Allow other threads to wake from quiesce.
459 fetchStatus[0] = Running;
460}
461
462template <class Impl>
463inline void
464DefaultFetch<Impl>::switchToActive()
465{
466 if (_status == Inactive) {
467 DPRINTF(Activity, "Activating stage.\n");
468
469 cpu->activateStage(O3CPU::FetchIdx);
470
471 _status = Active;
472 }
473}
474
475template <class Impl>
476inline void
477DefaultFetch<Impl>::switchToInactive()
478{
479 if (_status == Active) {
480 DPRINTF(Activity, "Deactivating stage.\n");
481
482 cpu->deactivateStage(O3CPU::FetchIdx);
483
484 _status = Inactive;
485 }
486}
487
488template <class Impl>
489bool
490DefaultFetch<Impl>::lookupAndUpdateNextPC(DynInstPtr &inst, Addr &next_PC,
491 Addr &next_NPC)
492{
493 // Do branch prediction check here.
494 // A bit of a misnomer...next_PC is actually the current PC until
495 // this function updates it.
496 bool predict_taken;
497
498 if (!inst->isControl()) {
499#if ISA_HAS_DELAY_SLOT
500 Addr cur_PC = next_PC;
501 next_PC = cur_PC + instSize; //next_NPC;
502 next_NPC = cur_PC + (2 * instSize);//next_NPC + instSize;
503 inst->setPredTarg(next_NPC);
504#else
505 next_PC = next_PC + instSize;
506 inst->setPredTarg(next_PC);
507#endif
508 return false;
509 }
510
511 int tid = inst->threadNumber;
512#if ISA_HAS_DELAY_SLOT
513 Addr pred_PC = next_PC;
514 predict_taken = branchPred.predict(inst, pred_PC, tid);
515
516 if (predict_taken) {
517 DPRINTF(Fetch, "[tid:%i]: Branch predicted to be true.\n", tid);
518 } else {
519 DPRINTF(Fetch, "[tid:%i]: Branch predicted to be false.\n", tid);
520 }
521
522 if (predict_taken) {
523 next_PC = next_NPC;
524 next_NPC = pred_PC;
525
526 // Update delay slot info
527 ++delaySlotInfo[tid].numInsts;
528 delaySlotInfo[tid].targetAddr = pred_PC;
529 DPRINTF(Fetch, "[tid:%i]: %i delay slot inst(s) to process.\n", tid,
530 delaySlotInfo[tid].numInsts);
531 } else { // !predict_taken
532 if (inst->isCondDelaySlot()) {
533 next_PC = pred_PC;
534 // The delay slot is skipped here if there is on
535 // prediction
536 } else {
537 next_PC = next_NPC;
538 // No need to declare a delay slot here since
539 // there is no for the pred. target to jump
540 }
541
542 next_NPC = next_NPC + instSize;
543 }
544#else
545 predict_taken = branchPred.predict(inst, next_PC, tid);
546#endif
547
548 ++fetchedBranches;
549
550 if (predict_taken) {
551 ++predictedBranches;
552 }
553
554 return predict_taken;
555}
556
557template <class Impl>
558bool
559DefaultFetch<Impl>::fetchCacheLine(Addr fetch_PC, Fault &ret_fault, unsigned tid)
560{
561 Fault fault = NoFault;
562
563#if FULL_SYSTEM
564 // Flag to say whether or not address is physical addr.
565 unsigned flags = cpu->inPalMode(fetch_PC) ? PHYSICAL : 0;
566#else
567 unsigned flags = 0;
568#endif // FULL_SYSTEM
569
570 if (cacheBlocked || isSwitchedOut() || (interruptPending && flags == 0)) {
571 // Hold off fetch from getting new instructions when:
572 // Cache is blocked, or
573 // while an interrupt is pending and we're not in PAL mode, or
574 // fetch is switched out.
575 return false;
576 }
577
578 // Align the fetch PC so it's at the start of a cache block.
579 fetch_PC = icacheBlockAlignPC(fetch_PC);
580
581 // If we've already got the block, no need to try to fetch it again.
582 if (cacheDataValid[tid] && fetch_PC == cacheDataPC[tid]) {
583 return true;
584 }
585
586 // Setup the memReq to do a read of the first instruction's address.
587 // Set the appropriate read size and flags as well.
588 // Build request here.
589 RequestPtr mem_req = new Request(tid, fetch_PC, cacheBlkSize, flags,
590 fetch_PC, cpu->readCpuId(), tid);
591
592 memReq[tid] = mem_req;
593
594 // Translate the instruction request.
595 fault = cpu->translateInstReq(mem_req, cpu->thread[tid]);
596
597 // In the case of faults, the fetch stage may need to stall and wait
598 // for the ITB miss to be handled.
599
600 // If translation was successful, attempt to read the first
601 // instruction.
602 if (fault == NoFault) {
603#if 0
604 if (cpu->system->memctrl->badaddr(memReq[tid]->paddr) ||
605 memReq[tid]->isUncacheable()) {
606 DPRINTF(Fetch, "Fetch: Bad address %#x (hopefully on a "
607 "misspeculating path)!",
608 memReq[tid]->paddr);
609 ret_fault = TheISA::genMachineCheckFault();
610 return false;
611 }
612#endif
613
614 // Build packet here.
615 PacketPtr data_pkt = new Packet(mem_req,
616 Packet::ReadReq, Packet::Broadcast);
617 data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
618
619 cacheDataPC[tid] = fetch_PC;
620 cacheDataValid[tid] = false;
621
622 DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
623
624 fetchedCacheLines++;
625
626 // Now do the timing access to see whether or not the instruction
627 // exists within the cache.
628 if (!icachePort->sendTiming(data_pkt)) {
629 if (data_pkt->result == Packet::BadAddress) {
630 fault = TheISA::genMachineCheckFault();
631 delete mem_req;
632 memReq[tid] = NULL;
633 }
634 assert(retryPkt == NULL);
635 assert(retryTid == -1);
636 DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
637 fetchStatus[tid] = IcacheWaitRetry;
638 retryPkt = data_pkt;
639 retryTid = tid;
640 cacheBlocked = true;
641 return false;
642 }
643
644 DPRINTF(Fetch, "[tid:%i]: Doing cache access.\n", tid);
645
646 lastIcacheStall[tid] = curTick;
647
648 DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
649 "response.\n", tid);
650
651 fetchStatus[tid] = IcacheWaitResponse;
652 } else {
653 delete mem_req;
654 memReq[tid] = NULL;
655 }
656
657 ret_fault = fault;
658 return true;
659}
660
661template <class Impl>
662inline void
663DefaultFetch<Impl>::doSquash(const Addr &new_PC, unsigned tid)
664{
665 DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %#x.\n",
666 tid, new_PC);
667
668 PC[tid] = new_PC;
669 nextPC[tid] = new_PC + instSize;
670 nextNPC[tid] = new_PC + (2 * instSize);
671
672 // Clear the icache miss if it's outstanding.
673 if (fetchStatus[tid] == IcacheWaitResponse) {
674 DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
675 tid);
676 memReq[tid] = NULL;
677 }
678
679 // Get rid of the retrying packet if it was from this thread.
680 if (retryTid == tid) {
681 assert(cacheBlocked);
682 cacheBlocked = false;
683 retryTid = -1;
684 delete retryPkt->req;
685 delete retryPkt;
686 retryPkt = NULL;
687 }
688
689 fetchStatus[tid] = Squashing;
690
691 ++fetchSquashCycles;
692}
693
694template<class Impl>
695void
696DefaultFetch<Impl>::squashFromDecode(const Addr &new_PC,
697 const InstSeqNum &seq_num,
698 unsigned tid)
699{
700 DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n",tid);
701
702 doSquash(new_PC, tid);
703
704#if ISA_HAS_DELAY_SLOT
705 if (seq_num <= delaySlotInfo[tid].branchSeqNum) {
706 delaySlotInfo[tid].numInsts = 0;
707 delaySlotInfo[tid].targetAddr = 0;
708 delaySlotInfo[tid].targetReady = false;
709 }
710#endif
711
712 // Tell the CPU to remove any instructions that are in flight between
713 // fetch and decode.
714 cpu->removeInstsUntil(seq_num, tid);
715}
716
717template<class Impl>
718bool
719DefaultFetch<Impl>::checkStall(unsigned tid) const
720{
721 bool ret_val = false;
722
723 if (cpu->contextSwitch) {
724 DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
725 ret_val = true;
726 } else if (stalls[tid].decode) {
727 DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
728 ret_val = true;
729 } else if (stalls[tid].rename) {
730 DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
731 ret_val = true;
732 } else if (stalls[tid].iew) {
733 DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
734 ret_val = true;
735 } else if (stalls[tid].commit) {
736 DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
737 ret_val = true;
738 }
739
740 return ret_val;
741}
742
743template<class Impl>
744typename DefaultFetch<Impl>::FetchStatus
745DefaultFetch<Impl>::updateFetchStatus()
746{
747 //Check Running
748 std::list<unsigned>::iterator threads = (*activeThreads).begin();
749
750 while (threads != (*activeThreads).end()) {
751
752 unsigned tid = *threads++;
753
754 if (fetchStatus[tid] == Running ||
755 fetchStatus[tid] == Squashing ||
756 fetchStatus[tid] == IcacheAccessComplete) {
757
758 if (_status == Inactive) {
759 DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
760
761 if (fetchStatus[tid] == IcacheAccessComplete) {
762 DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
763 "completion\n",tid);
764 }
765
766 cpu->activateStage(O3CPU::FetchIdx);
767 }
768
769 return Active;
770 }
771 }
772
773 // Stage is switching from active to inactive, notify CPU of it.
774 if (_status == Active) {
775 DPRINTF(Activity, "Deactivating stage.\n");
776
777 cpu->deactivateStage(O3CPU::FetchIdx);
778 }
779
780 return Inactive;
781}
782
783template <class Impl>
784void
785DefaultFetch<Impl>::squash(const Addr &new_PC, const InstSeqNum &seq_num,
786 bool squash_delay_slot, unsigned tid)
787{
788 DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n",tid);
789
790 doSquash(new_PC, tid);
791
792#if ISA_HAS_DELAY_SLOT
793 if (seq_num <= delaySlotInfo[tid].branchSeqNum) {
794 delaySlotInfo[tid].numInsts = 0;
795 delaySlotInfo[tid].targetAddr = 0;
796 delaySlotInfo[tid].targetReady = false;
797 }
798
799 // Tell the CPU to remove any instructions that are not in the ROB.
800 cpu->removeInstsNotInROB(tid, squash_delay_slot, seq_num);
801#else
802 // Tell the CPU to remove any instructions that are not in the ROB.
803 cpu->removeInstsNotInROB(tid, true, 0);
804#endif
805}
806
807template <class Impl>
808void
809DefaultFetch<Impl>::tick()
810{
811 std::list<unsigned>::iterator threads = (*activeThreads).begin();
812 bool status_change = false;
813
814 wroteToTimeBuffer = false;
815
816 while (threads != (*activeThreads).end()) {
817 unsigned tid = *threads++;
818
819 // Check the signals for each thread to determine the proper status
820 // for each thread.
821 bool updated_status = checkSignalsAndUpdate(tid);
822 status_change = status_change || updated_status;
823 }
824
825 DPRINTF(Fetch, "Running stage.\n");
826
827 // Reset the number of the instruction we're fetching.
828 numInst = 0;
829
830#if FULL_SYSTEM
831 if (fromCommit->commitInfo[0].interruptPending) {
832 interruptPending = true;
833 }
834
835 if (fromCommit->commitInfo[0].clearInterrupt) {
836 interruptPending = false;
837 }
838#endif
839
840 for (threadFetched = 0; threadFetched < numFetchingThreads;
841 threadFetched++) {
842 // Fetch each of the actively fetching threads.
843 fetch(status_change);
844 }
845
846 // Record number of instructions fetched this cycle for distribution.
847 fetchNisnDist.sample(numInst);
848
849 if (status_change) {
850 // Change the fetch stage status if there was a status change.
851 _status = updateFetchStatus();
852 }
853
854 // If there was activity this cycle, inform the CPU of it.
855 if (wroteToTimeBuffer || cpu->contextSwitch) {
856 DPRINTF(Activity, "Activity this cycle.\n");
857
858 cpu->activityThisCycle();
859 }
860}
861
862template <class Impl>
863bool
864DefaultFetch<Impl>::checkSignalsAndUpdate(unsigned tid)
865{
866 // Update the per thread stall statuses.
867 if (fromDecode->decodeBlock[tid]) {
868 stalls[tid].decode = true;
869 }
870
871 if (fromDecode->decodeUnblock[tid]) {
872 assert(stalls[tid].decode);
873 assert(!fromDecode->decodeBlock[tid]);
874 stalls[tid].decode = false;
875 }
876
877 if (fromRename->renameBlock[tid]) {
878 stalls[tid].rename = true;
879 }
880
881 if (fromRename->renameUnblock[tid]) {
882 assert(stalls[tid].rename);
883 assert(!fromRename->renameBlock[tid]);
884 stalls[tid].rename = false;
885 }
886
887 if (fromIEW->iewBlock[tid]) {
888 stalls[tid].iew = true;
889 }
890
891 if (fromIEW->iewUnblock[tid]) {
892 assert(stalls[tid].iew);
893 assert(!fromIEW->iewBlock[tid]);
894 stalls[tid].iew = false;
895 }
896
897 if (fromCommit->commitBlock[tid]) {
898 stalls[tid].commit = true;
899 }
900
901 if (fromCommit->commitUnblock[tid]) {
902 assert(stalls[tid].commit);
903 assert(!fromCommit->commitBlock[tid]);
904 stalls[tid].commit = false;
905 }
906
907 // Check squash signals from commit.
908 if (fromCommit->commitInfo[tid].squash) {
909
910 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
911 "from commit.\n",tid);
912
913#if ISA_HAS_DELAY_SLOT
914 InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].bdelayDoneSeqNum;
915#else
916 InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].doneSeqNum;
917#endif
918 // In any case, squash.
919 squash(fromCommit->commitInfo[tid].nextPC,
920 doneSeqNum,
921 fromCommit->commitInfo[tid].squashDelaySlot,
922 tid);
923
924 // Also check if there's a mispredict that happened.
925 if (fromCommit->commitInfo[tid].branchMispredict) {
926 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
927 fromCommit->commitInfo[tid].nextPC,
928 fromCommit->commitInfo[tid].branchTaken,
929 tid);
930 } else {
931 branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
932 tid);
933 }
934
935 return true;
936 } else if (fromCommit->commitInfo[tid].doneSeqNum) {
937 // Update the branch predictor if it wasn't a squashed instruction
938 // that was broadcasted.
939 branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
940 }
941
942 // Check ROB squash signals from commit.
943 if (fromCommit->commitInfo[tid].robSquashing) {
944 DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
945
946 // Continue to squash.
947 fetchStatus[tid] = Squashing;
948
949 return true;
950 }
951
952 // Check squash signals from decode.
953 if (fromDecode->decodeInfo[tid].squash) {
954 DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
955 "from decode.\n",tid);
956
957 // Update the branch predictor.
958 if (fromDecode->decodeInfo[tid].branchMispredict) {
959 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
960 fromDecode->decodeInfo[tid].nextPC,
961 fromDecode->decodeInfo[tid].branchTaken,
962 tid);
963 } else {
964 branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
965 tid);
966 }
967
968 if (fetchStatus[tid] != Squashing) {
969
970#if ISA_HAS_DELAY_SLOT
971 InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].bdelayDoneSeqNum;
972#else
973 InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].doneSeqNum;
974#endif
975 // Squash unless we're already squashing
976 squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
977 doneSeqNum,
978 tid);
979
980 return true;
981 }
982 }
983
984 if (checkStall(tid) && fetchStatus[tid] != IcacheWaitResponse) {
985 DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
986
987 fetchStatus[tid] = Blocked;
988
989 return true;
990 }
991
992 if (fetchStatus[tid] == Blocked ||
993 fetchStatus[tid] == Squashing) {
994 // Switch status to running if fetch isn't being told to block or
995 // squash this cycle.
996 DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
997 tid);
998
999 fetchStatus[tid] = Running;
1000
1001 return true;
1002 }
1003
1004 // If we've reached this point, we have not gotten any signals that
1005 // cause fetch to change its status. Fetch remains the same as before.
1006 return false;
1007}
1008
1009template<class Impl>
1010void
1011DefaultFetch<Impl>::fetch(bool &status_change)
1012{
1013 //////////////////////////////////////////
1014 // Start actual fetch
1015 //////////////////////////////////////////
1016 int tid = getFetchingThread(fetchPolicy);
1017
1018 if (tid == -1 || drainPending) {
1019 DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1020
1021 // Breaks looping condition in tick()
1022 threadFetched = numFetchingThreads;
1023 return;
1024 }
1025
1026 DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1027
1028 // The current PC.
1029 Addr &fetch_PC = PC[tid];
1030
1031 // Fault code for memory access.
1032 Fault fault = NoFault;
1033
1034 // If returning from the delay of a cache miss, then update the status
1035 // to running, otherwise do the cache access. Possibly move this up
1036 // to tick() function.
1037 if (fetchStatus[tid] == IcacheAccessComplete) {
1038 DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n",
1039 tid);
1040
1041 fetchStatus[tid] = Running;
1042 status_change = true;
1043 } else if (fetchStatus[tid] == Running) {
1044 DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1045 "instruction, starting at PC %08p.\n",
1046 tid, fetch_PC);
1047
1048 bool fetch_success = fetchCacheLine(fetch_PC, fault, tid);
1049 if (!fetch_success) {
1050 if (cacheBlocked) {
1051 ++icacheStallCycles;
1052 } else {
1053 ++fetchMiscStallCycles;
1054 }
1055 return;
1056 }
1057 } else {
1058 if (fetchStatus[tid] == Idle) {
1059 ++fetchIdleCycles;
1060 } else if (fetchStatus[tid] == Blocked) {
1061 ++fetchBlockedCycles;
1062 } else if (fetchStatus[tid] == Squashing) {
1063 ++fetchSquashCycles;
1064 } else if (fetchStatus[tid] == IcacheWaitResponse) {
1065 ++icacheStallCycles;
1066 }
1067
1068 // Status is Idle, Squashing, Blocked, or IcacheWaitResponse, so
1069 // fetch should do nothing.
1070 return;
1071 }
1072
1073 ++fetchCycles;
1074
1075 // If we had a stall due to an icache miss, then return.
1076 if (fetchStatus[tid] == IcacheWaitResponse) {
1077 ++icacheStallCycles;
1078 status_change = true;
1079 return;
1080 }
1081
1082 Addr next_PC = fetch_PC;
1083 Addr next_NPC = next_PC + instSize;
1084 InstSeqNum inst_seq;
1085 MachInst inst;
1086 ExtMachInst ext_inst;
1087 // @todo: Fix this hack.
1088 unsigned offset = (fetch_PC & cacheBlkMask) & ~3;
1089
1090 if (fault == NoFault) {
1091 // If the read of the first instruction was successful, then grab the
1092 // instructions from the rest of the cache line and put them into the
1093 // queue heading to decode.
1094
1095 DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1096 "decode.\n",tid);
1097
1098 // Need to keep track of whether or not a predicted branch
1099 // ended this fetch block.
1100 bool predicted_branch = false;
1101
1102 // Need to keep track of whether or not a delay slot
1103 // instruction has been fetched
1104
1105 for (;
1106 offset < cacheBlkSize &&
1107 numInst < fetchWidth &&
1108 (!predicted_branch || delaySlotInfo[tid].numInsts > 0);
1109 ++numInst) {
1110
1111 // Get a sequence number.
1112 inst_seq = cpu->getAndIncrementInstSeq();
1113
1114 // Make sure this is a valid index.
1115 assert(offset <= cacheBlkSize - instSize);
1116
1117 // Get the instruction from the array of the cache line.
1118 inst = TheISA::gtoh(*reinterpret_cast<TheISA::MachInst *>
1119 (&cacheData[tid][offset]));
1120
1121 ext_inst = TheISA::makeExtMI(inst, cpu->tcBase(tid));
1122
1123 // Create a new DynInst from the instruction fetched.
1124 DynInstPtr instruction = new DynInst(ext_inst, fetch_PC,
1125 next_PC,
1126 inst_seq, cpu);
1127 instruction->setTid(tid);
1128
1129 instruction->setASID(tid);
1130
1131 instruction->setThreadState(cpu->thread[tid]);
1132
1133 DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x created "
1134 "[sn:%lli]\n",
1135 tid, instruction->readPC(), inst_seq);
1136
1137 DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n",
1138 tid, instruction->staticInst->disassemble(fetch_PC));
1139
1140 instruction->traceData =
1141 Trace::getInstRecord(curTick, cpu->tcBase(tid),
1142 instruction->staticInst,
1143 instruction->readPC());
1144
1145 predicted_branch = lookupAndUpdateNextPC(instruction, next_PC,
1146 next_NPC);
1147
1148 // Add instruction to the CPU's list of instructions.
1149 instruction->setInstListIt(cpu->addInst(instruction));
1150
1151 // Write the instruction to the first slot in the queue
1152 // that heads to decode.
1153 toDecode->insts[numInst] = instruction;
1154
1155 toDecode->size++;
1156
1157 // Increment stat of fetched instructions.
1158 ++fetchedInsts;
1159
1160 // Move to the next instruction, unless we have a branch.
1161 fetch_PC = next_PC;
1162
1163 if (instruction->isQuiesce()) {
1164// warn("%lli: Quiesce instruction encountered, halting fetch!",
1165// curTick);
1166 fetchStatus[tid] = QuiescePending;
1167 ++numInst;
1168 status_change = true;
1169 break;
1170 }
1171
1172 offset += instSize;
1173
1174#if ISA_HAS_DELAY_SLOT
1175 if (predicted_branch) {
1176 delaySlotInfo[tid].branchSeqNum = inst_seq;
1177
1178 DPRINTF(Fetch, "[tid:%i]: Delay slot branch set to [sn:%i]\n",
1179 tid, inst_seq);
1180 continue;
1181 } else if (delaySlotInfo[tid].numInsts > 0) {
1182 --delaySlotInfo[tid].numInsts;
1183
1184 // It's OK to set PC to target of branch
1185 if (delaySlotInfo[tid].numInsts == 0) {
1186 delaySlotInfo[tid].targetReady = true;
1187
1188 // Break the looping condition
1189 predicted_branch = true;
1190 }
1191
1192 DPRINTF(Fetch, "[tid:%i]: %i delay slot inst(s) left to"
1193 " process.\n", tid, delaySlotInfo[tid].numInsts);
1194 }
1195#endif
1196 }
1197
1198 if (offset >= cacheBlkSize) {
1199 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1200 "block.\n", tid);
1201 } else if (numInst >= fetchWidth) {
1202 DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1203 "for this cycle.\n", tid);
1204 } else if (predicted_branch && delaySlotInfo[tid].numInsts <= 0) {
1205 DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1206 "instruction encountered.\n", tid);
1207 }
1208 }
1209
1210 if (numInst > 0) {
1211 wroteToTimeBuffer = true;
1212 }
1213
1214 // Now that fetching is completed, update the PC to signify what the next
1215 // cycle will be.
1216 if (fault == NoFault) {
1217#if ISA_HAS_DELAY_SLOT
1218 if (delaySlotInfo[tid].targetReady &&
1219 delaySlotInfo[tid].numInsts == 0) {
1220 // Set PC to target
1221 PC[tid] = delaySlotInfo[tid].targetAddr; //next_PC
1222 nextPC[tid] = next_PC + instSize; //next_NPC
1223 nextNPC[tid] = next_PC + (2 * instSize);
1224
1225 delaySlotInfo[tid].targetReady = false;
1226 } else {
1227 PC[tid] = next_PC;
1228 nextPC[tid] = next_NPC;
1229 nextNPC[tid] = next_NPC + instSize;
1230 }
1231
1232 DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n", tid, PC[tid]);
1233#else
1234 DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n",tid, next_PC);
1235 PC[tid] = next_PC;
1236 nextPC[tid] = next_PC + instSize;
1237#endif
1238 } else {
1239 // We shouldn't be in an icache miss and also have a fault (an ITB
1240 // miss)
1241 if (fetchStatus[tid] == IcacheWaitResponse) {
1242 panic("Fetch should have exited prior to this!");
1243 }
1244
1245 // Send the fault to commit. This thread will not do anything
1246 // until commit handles the fault. The only other way it can
1247 // wake up is if a squash comes along and changes the PC.
1248#if FULL_SYSTEM
1249 assert(numInst != fetchWidth);
1250 // Get a sequence number.
1251 inst_seq = cpu->getAndIncrementInstSeq();
1252 // We will use a nop in order to carry the fault.
1253 ext_inst = TheISA::NoopMachInst;
1254
1255 // Create a new DynInst from the dummy nop.
1256 DynInstPtr instruction = new DynInst(ext_inst, fetch_PC,
1257 next_PC,
1258 inst_seq, cpu);
1259 instruction->setPredTarg(next_PC + instSize);
1260 instruction->setTid(tid);
1261
1262 instruction->setASID(tid);
1263
1264 instruction->setThreadState(cpu->thread[tid]);
1265
1266 instruction->traceData = NULL;
1267
1268 instruction->setInstListIt(cpu->addInst(instruction));
1269
1270 instruction->fault = fault;
1271
1272 toDecode->insts[numInst] = instruction;
1273 toDecode->size++;
1274
1275 DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n",tid);
1276
1277 fetchStatus[tid] = TrapPending;
1278 status_change = true;
1279
1280// warn("%lli fault (%d) detected @ PC %08p", curTick, fault, PC[tid]);
1281#else // !FULL_SYSTEM
1282 warn("cycle %lli: fault (%s) detected @ PC %08p", curTick, fault->name(), PC[tid]);
1283#endif // FULL_SYSTEM
1284 }
1285}
1286
1287template<class Impl>
1288void
1289DefaultFetch<Impl>::recvRetry()
1290{
1291 if (retryPkt != NULL) {
1292 assert(cacheBlocked);
1293 assert(retryTid != -1);
1294 assert(fetchStatus[retryTid] == IcacheWaitRetry);
1295
1296 if (icachePort->sendTiming(retryPkt)) {
1297 fetchStatus[retryTid] = IcacheWaitResponse;
1298 retryPkt = NULL;
1299 retryTid = -1;
1300 cacheBlocked = false;
1301 }
1302 } else {
1303 assert(retryTid == -1);
1304 // Access has been squashed since it was sent out. Just clear
1305 // the cache being blocked.
1306 cacheBlocked = false;
1307 }
1308}
1309
1310///////////////////////////////////////
1311// //
1312// SMT FETCH POLICY MAINTAINED HERE //
1313// //
1314///////////////////////////////////////
1315template<class Impl>
1316int
1317DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1318{
1319 if (numThreads > 1) {
1320 switch (fetch_priority) {
1321
1322 case SingleThread:
1323 return 0;
1324
1325 case RoundRobin:
1326 return roundRobin();
1327
1328 case IQ:
1329 return iqCount();
1330
1331 case LSQ:
1332 return lsqCount();
1333
1334 case Branch:
1335 return branchCount();
1336
1337 default:
1338 return -1;
1339 }
1340 } else {
1341 int tid = *((*activeThreads).begin());
1342
1343 if (fetchStatus[tid] == Running ||
1344 fetchStatus[tid] == IcacheAccessComplete ||
1345 fetchStatus[tid] == Idle) {
1346 return tid;
1347 } else {
1348 return -1;
1349 }
1350 }
1351
1352}
1353
1354
1355template<class Impl>
1356int
1357DefaultFetch<Impl>::roundRobin()
1358{
1359 std::list<unsigned>::iterator pri_iter = priorityList.begin();
1360 std::list<unsigned>::iterator end = priorityList.end();
1361
1362 int high_pri;
1363
1364 while (pri_iter != end) {
1365 high_pri = *pri_iter;
1366
1367 assert(high_pri <= numThreads);
1368
1369 if (fetchStatus[high_pri] == Running ||
1370 fetchStatus[high_pri] == IcacheAccessComplete ||
1371 fetchStatus[high_pri] == Idle) {
1372
1373 priorityList.erase(pri_iter);
1374 priorityList.push_back(high_pri);
1375
1376 return high_pri;
1377 }
1378
1379 pri_iter++;
1380 }
1381
1382 return -1;
1383}
1384
1385template<class Impl>
1386int
1387DefaultFetch<Impl>::iqCount()
1388{
1389 std::priority_queue<unsigned> PQ;
1390
1391 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1392
1393 while (threads != (*activeThreads).end()) {
1394 unsigned tid = *threads++;
1395
1396 PQ.push(fromIEW->iewInfo[tid].iqCount);
1397 }
1398
1399 while (!PQ.empty()) {
1400
1401 unsigned high_pri = PQ.top();
1402
1403 if (fetchStatus[high_pri] == Running ||
1404 fetchStatus[high_pri] == IcacheAccessComplete ||
1405 fetchStatus[high_pri] == Idle)
1406 return high_pri;
1407 else
1408 PQ.pop();
1409
1410 }
1411
1412 return -1;
1413}
1414
1415template<class Impl>
1416int
1417DefaultFetch<Impl>::lsqCount()
1418{
1419 std::priority_queue<unsigned> PQ;
1420
1421
1422 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1423
1424 while (threads != (*activeThreads).end()) {
1425 unsigned tid = *threads++;
1426
1427 PQ.push(fromIEW->iewInfo[tid].ldstqCount);
1428 }
1429
1430 while (!PQ.empty()) {
1431
1432 unsigned high_pri = PQ.top();
1433
1434 if (fetchStatus[high_pri] == Running ||
1435 fetchStatus[high_pri] == IcacheAccessComplete ||
1436 fetchStatus[high_pri] == Idle)
1437 return high_pri;
1438 else
1439 PQ.pop();
1440
1441 }
1442
1443 return -1;
1444}
1445
1446template<class Impl>
1447int
1448DefaultFetch<Impl>::branchCount()
1449{
1450 std::list<unsigned>::iterator threads = (*activeThreads).begin();
1451 panic("Branch Count Fetch policy unimplemented\n");
1452 return *threads;
1453}