Deleted Added
sdiff udiff text old ( 13981:577196ddd040 ) new ( 14195:c5efdb3319aa )
full compact
1/*
2 * Copyright (c) 2010-2014 ARM Limited
3 * Copyright (c) 2012-2013 AMD
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 * Korey Sewell
43 */
44
45#ifndef __CPU_O3_FETCH_IMPL_HH__
46#define __CPU_O3_FETCH_IMPL_HH__
47
48#include <algorithm>
49#include <cstring>
50#include <list>
51#include <map>
52#include <queue>
53
54#include "arch/generic/tlb.hh"
55#include "arch/isa_traits.hh"
56#include "arch/utility.hh"
57#include "arch/vtophys.hh"
58#include "base/random.hh"
59#include "base/types.hh"
60#include "config/the_isa.hh"
61#include "cpu/base.hh"
62//#include "cpu/checker/cpu.hh"
63#include "cpu/o3/cpu.hh"
64#include "cpu/o3/fetch.hh"
65#include "cpu/exetrace.hh"
66#include "debug/Activity.hh"
67#include "debug/Drain.hh"
68#include "debug/Fetch.hh"
69#include "debug/O3CPU.hh"
70#include "debug/O3PipeView.hh"
71#include "mem/packet.hh"
72#include "params/DerivO3CPU.hh"
73#include "sim/byteswap.hh"
74#include "sim/core.hh"
75#include "sim/eventq.hh"
76#include "sim/full_system.hh"
77#include "sim/system.hh"
78#include "cpu/o3/isa_specific.hh"
79
80using namespace std;
81
82template<class Impl>
83DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
84 : fetchPolicy(params->smtFetchPolicy),
85 cpu(_cpu),
86 branchPred(nullptr),
87 decodeToFetchDelay(params->decodeToFetchDelay),
88 renameToFetchDelay(params->renameToFetchDelay),
89 iewToFetchDelay(params->iewToFetchDelay),
90 commitToFetchDelay(params->commitToFetchDelay),
91 fetchWidth(params->fetchWidth),
92 decodeWidth(params->decodeWidth),
93 retryPkt(NULL),
94 retryTid(InvalidThreadID),
95 cacheBlkSize(cpu->cacheLineSize()),
96 fetchBufferSize(params->fetchBufferSize),
97 fetchBufferMask(fetchBufferSize - 1),
98 fetchQueueSize(params->fetchQueueSize),
99 numThreads(params->numThreads),
100 numFetchingThreads(params->smtNumFetchingThreads),
101 icachePort(this, _cpu),
102 finishTranslationEvent(this)
103{
104 if (numThreads > Impl::MaxThreads)
105 fatal("numThreads (%d) is larger than compiled limit (%d),\n"
106 "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
107 numThreads, static_cast<int>(Impl::MaxThreads));
108 if (fetchWidth > Impl::MaxWidth)
109 fatal("fetchWidth (%d) is larger than compiled limit (%d),\n"
110 "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
111 fetchWidth, static_cast<int>(Impl::MaxWidth));
112 if (fetchBufferSize > cacheBlkSize)
113 fatal("fetch buffer size (%u bytes) is greater than the cache "
114 "block size (%u bytes)\n", fetchBufferSize, cacheBlkSize);
115 if (cacheBlkSize % fetchBufferSize)
116 fatal("cache block (%u bytes) is not a multiple of the "
117 "fetch buffer (%u bytes)\n", cacheBlkSize, fetchBufferSize);
118
119 // Figure out fetch policy
120 panic_if(fetchPolicy == FetchPolicy::SingleThread && numThreads > 1,
121 "Invalid Fetch Policy for a SMT workload.");
122
123 // Get the size of an instruction.
124 instSize = sizeof(TheISA::MachInst);
125
126 for (int i = 0; i < Impl::MaxThreads; i++) {
127 fetchStatus[i] = Idle;
128 decoder[i] = nullptr;
129 pc[i] = 0;
130 fetchOffset[i] = 0;
131 macroop[i] = nullptr;
132 delayedCommit[i] = false;
133 memReq[i] = nullptr;
134 stalls[i] = {false, false};
135 fetchBuffer[i] = NULL;
136 fetchBufferPC[i] = 0;
137 fetchBufferValid[i] = false;
138 lastIcacheStall[i] = 0;
139 issuePipelinedIfetch[i] = false;
140 }
141
142 branchPred = params->branchPred;
143
144 for (ThreadID tid = 0; tid < numThreads; tid++) {
145 decoder[tid] = new TheISA::Decoder(params->isa[tid]);
146 // Create space to buffer the cache line data,
147 // which may not hold the entire cache line.
148 fetchBuffer[tid] = new uint8_t[fetchBufferSize];
149 }
150}
151
152template <class Impl>
153std::string
154DefaultFetch<Impl>::name() const
155{
156 return cpu->name() + ".fetch";
157}
158
159template <class Impl>
160void
161DefaultFetch<Impl>::regProbePoints()
162{
163 ppFetch = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Fetch");
164 ppFetchRequestSent = new ProbePointArg<RequestPtr>(cpu->getProbeManager(),
165 "FetchRequest");
166
167}
168
169template <class Impl>
170void
171DefaultFetch<Impl>::regStats()
172{
173 icacheStallCycles
174 .name(name() + ".icacheStallCycles")
175 .desc("Number of cycles fetch is stalled on an Icache miss")
176 .prereq(icacheStallCycles);
177
178 fetchedInsts
179 .name(name() + ".Insts")
180 .desc("Number of instructions fetch has processed")
181 .prereq(fetchedInsts);
182
183 fetchedBranches
184 .name(name() + ".Branches")
185 .desc("Number of branches that fetch encountered")
186 .prereq(fetchedBranches);
187
188 predictedBranches
189 .name(name() + ".predictedBranches")
190 .desc("Number of branches that fetch has predicted taken")
191 .prereq(predictedBranches);
192
193 fetchCycles
194 .name(name() + ".Cycles")
195 .desc("Number of cycles fetch has run and was not squashing or"
196 " blocked")
197 .prereq(fetchCycles);
198
199 fetchSquashCycles
200 .name(name() + ".SquashCycles")
201 .desc("Number of cycles fetch has spent squashing")
202 .prereq(fetchSquashCycles);
203
204 fetchTlbCycles
205 .name(name() + ".TlbCycles")
206 .desc("Number of cycles fetch has spent waiting for tlb")
207 .prereq(fetchTlbCycles);
208
209 fetchIdleCycles
210 .name(name() + ".IdleCycles")
211 .desc("Number of cycles fetch was idle")
212 .prereq(fetchIdleCycles);
213
214 fetchBlockedCycles
215 .name(name() + ".BlockedCycles")
216 .desc("Number of cycles fetch has spent blocked")
217 .prereq(fetchBlockedCycles);
218
219 fetchedCacheLines
220 .name(name() + ".CacheLines")
221 .desc("Number of cache lines fetched")
222 .prereq(fetchedCacheLines);
223
224 fetchMiscStallCycles
225 .name(name() + ".MiscStallCycles")
226 .desc("Number of cycles fetch has spent waiting on interrupts, or "
227 "bad addresses, or out of MSHRs")
228 .prereq(fetchMiscStallCycles);
229
230 fetchPendingDrainCycles
231 .name(name() + ".PendingDrainCycles")
232 .desc("Number of cycles fetch has spent waiting on pipes to drain")
233 .prereq(fetchPendingDrainCycles);
234
235 fetchNoActiveThreadStallCycles
236 .name(name() + ".NoActiveThreadStallCycles")
237 .desc("Number of stall cycles due to no active thread to fetch from")
238 .prereq(fetchNoActiveThreadStallCycles);
239
240 fetchPendingTrapStallCycles
241 .name(name() + ".PendingTrapStallCycles")
242 .desc("Number of stall cycles due to pending traps")
243 .prereq(fetchPendingTrapStallCycles);
244
245 fetchPendingQuiesceStallCycles
246 .name(name() + ".PendingQuiesceStallCycles")
247 .desc("Number of stall cycles due to pending quiesce instructions")
248 .prereq(fetchPendingQuiesceStallCycles);
249
250 fetchIcacheWaitRetryStallCycles
251 .name(name() + ".IcacheWaitRetryStallCycles")
252 .desc("Number of stall cycles due to full MSHR")
253 .prereq(fetchIcacheWaitRetryStallCycles);
254
255 fetchIcacheSquashes
256 .name(name() + ".IcacheSquashes")
257 .desc("Number of outstanding Icache misses that were squashed")
258 .prereq(fetchIcacheSquashes);
259
260 fetchTlbSquashes
261 .name(name() + ".ItlbSquashes")
262 .desc("Number of outstanding ITLB misses that were squashed")
263 .prereq(fetchTlbSquashes);
264
265 fetchNisnDist
266 .init(/* base value */ 0,
267 /* last value */ fetchWidth,
268 /* bucket size */ 1)
269 .name(name() + ".rateDist")
270 .desc("Number of instructions fetched each cycle (Total)")
271 .flags(Stats::pdf);
272
273 idleRate
274 .name(name() + ".idleRate")
275 .desc("Percent of cycles fetch was idle")
276 .prereq(idleRate);
277 idleRate = fetchIdleCycles * 100 / cpu->numCycles;
278
279 branchRate
280 .name(name() + ".branchRate")
281 .desc("Number of branch fetches per cycle")
282 .flags(Stats::total);
283 branchRate = fetchedBranches / cpu->numCycles;
284
285 fetchRate
286 .name(name() + ".rate")
287 .desc("Number of inst fetches per cycle")
288 .flags(Stats::total);
289 fetchRate = fetchedInsts / cpu->numCycles;
290}
291
292template<class Impl>
293void
294DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
295{
296 timeBuffer = time_buffer;
297
298 // Create wires to get information from proper places in time buffer.
299 fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
300 fromRename = timeBuffer->getWire(-renameToFetchDelay);
301 fromIEW = timeBuffer->getWire(-iewToFetchDelay);
302 fromCommit = timeBuffer->getWire(-commitToFetchDelay);
303}
304
305template<class Impl>
306void
307DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
308{
309 activeThreads = at_ptr;
310}
311
312template<class Impl>
313void
314DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *ftb_ptr)
315{
316 // Create wire to write information to proper place in fetch time buf.
317 toDecode = ftb_ptr->getWire(0);
318}
319
320template<class Impl>
321void
322DefaultFetch<Impl>::startupStage()
323{
324 assert(priorityList.empty());
325 resetStage();
326
327 // Fetch needs to start fetching instructions at the very beginning,
328 // so it must start up in active state.
329 switchToActive();
330}
331
332template<class Impl>
333void
334DefaultFetch<Impl>::clearStates(ThreadID tid)
335{
336 fetchStatus[tid] = Running;
337 pc[tid] = cpu->pcState(tid);
338 fetchOffset[tid] = 0;
339 macroop[tid] = NULL;
340 delayedCommit[tid] = false;
341 memReq[tid] = NULL;
342 stalls[tid].decode = false;
343 stalls[tid].drain = false;
344 fetchBufferPC[tid] = 0;
345 fetchBufferValid[tid] = false;
346 fetchQueue[tid].clear();
347
348 // TODO not sure what to do with priorityList for now
349 // priorityList.push_back(tid);
350}
351
352template<class Impl>
353void
354DefaultFetch<Impl>::resetStage()
355{
356 numInst = 0;
357 interruptPending = false;
358 cacheBlocked = false;
359
360 priorityList.clear();
361
362 // Setup PC and nextPC with initial state.
363 for (ThreadID tid = 0; tid < numThreads; ++tid) {
364 fetchStatus[tid] = Running;
365 pc[tid] = cpu->pcState(tid);
366 fetchOffset[tid] = 0;
367 macroop[tid] = NULL;
368
369 delayedCommit[tid] = false;
370 memReq[tid] = NULL;
371
372 stalls[tid].decode = false;
373 stalls[tid].drain = false;
374
375 fetchBufferPC[tid] = 0;
376 fetchBufferValid[tid] = false;
377
378 fetchQueue[tid].clear();
379
380 priorityList.push_back(tid);
381 }
382
383 wroteToTimeBuffer = false;
384 _status = Inactive;
385}
386
387template<class Impl>
388void
389DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
390{
391 ThreadID tid = cpu->contextToThread(pkt->req->contextId());
392
393 DPRINTF(Fetch, "[tid:%i] Waking up from cache miss.\n", tid);
394 assert(!cpu->switchedOut());
395
396 // Only change the status if it's still waiting on the icache access
397 // to return.
398 if (fetchStatus[tid] != IcacheWaitResponse ||
399 pkt->req != memReq[tid]) {
400 ++fetchIcacheSquashes;
401 delete pkt;
402 return;
403 }
404
405 memcpy(fetchBuffer[tid], pkt->getConstPtr<uint8_t>(), fetchBufferSize);
406 fetchBufferValid[tid] = true;
407
408 // Wake up the CPU (if it went to sleep and was waiting on
409 // this completion event).
410 cpu->wakeCPU();
411
412 DPRINTF(Activity, "[tid:%i] Activating fetch due to cache completion\n",
413 tid);
414
415 switchToActive();
416
417 // Only switch to IcacheAccessComplete if we're not stalled as well.
418 if (checkStall(tid)) {
419 fetchStatus[tid] = Blocked;
420 } else {
421 fetchStatus[tid] = IcacheAccessComplete;
422 }
423
424 pkt->req->setAccessLatency();
425 cpu->ppInstAccessComplete->notify(pkt);
426 // Reset the mem req to NULL.
427 delete pkt;
428 memReq[tid] = NULL;
429}
430
431template <class Impl>
432void
433DefaultFetch<Impl>::drainResume()
434{
435 for (ThreadID i = 0; i < numThreads; ++i) {
436 stalls[i].decode = false;
437 stalls[i].drain = false;
438 }
439}
440
441template <class Impl>
442void
443DefaultFetch<Impl>::drainSanityCheck() const
444{
445 assert(isDrained());
446 assert(retryPkt == NULL);
447 assert(retryTid == InvalidThreadID);
448 assert(!cacheBlocked);
449 assert(!interruptPending);
450
451 for (ThreadID i = 0; i < numThreads; ++i) {
452 assert(!memReq[i]);
453 assert(fetchStatus[i] == Idle || stalls[i].drain);
454 }
455
456 branchPred->drainSanityCheck();
457}
458
459template <class Impl>
460bool
461DefaultFetch<Impl>::isDrained() const
462{
463 /* Make sure that threads are either idle of that the commit stage
464 * has signaled that draining has completed by setting the drain
465 * stall flag. This effectively forces the pipeline to be disabled
466 * until the whole system is drained (simulation may continue to
467 * drain other components).
468 */
469 for (ThreadID i = 0; i < numThreads; ++i) {
470 // Verify fetch queues are drained
471 if (!fetchQueue[i].empty())
472 return false;
473
474 // Return false if not idle or drain stalled
475 if (fetchStatus[i] != Idle) {
476 if (fetchStatus[i] == Blocked && stalls[i].drain)
477 continue;
478 else
479 return false;
480 }
481 }
482
483 /* The pipeline might start up again in the middle of the drain
484 * cycle if the finish translation event is scheduled, so make
485 * sure that's not the case.
486 */
487 return !finishTranslationEvent.scheduled();
488}
489
490template <class Impl>
491void
492DefaultFetch<Impl>::takeOverFrom()
493{
494 assert(cpu->getInstPort().isConnected());
495 resetStage();
496
497}
498
499template <class Impl>
500void
501DefaultFetch<Impl>::drainStall(ThreadID tid)
502{
503 assert(cpu->isDraining());
504 assert(!stalls[tid].drain);
505 DPRINTF(Drain, "%i: Thread drained.\n", tid);
506 stalls[tid].drain = true;
507}
508
509template <class Impl>
510void
511DefaultFetch<Impl>::wakeFromQuiesce()
512{
513 DPRINTF(Fetch, "Waking up from quiesce\n");
514 // Hopefully this is safe
515 // @todo: Allow other threads to wake from quiesce.
516 fetchStatus[0] = Running;
517}
518
519template <class Impl>
520inline void
521DefaultFetch<Impl>::switchToActive()
522{
523 if (_status == Inactive) {
524 DPRINTF(Activity, "Activating stage.\n");
525
526 cpu->activateStage(O3CPU::FetchIdx);
527
528 _status = Active;
529 }
530}
531
532template <class Impl>
533inline void
534DefaultFetch<Impl>::switchToInactive()
535{
536 if (_status == Active) {
537 DPRINTF(Activity, "Deactivating stage.\n");
538
539 cpu->deactivateStage(O3CPU::FetchIdx);
540
541 _status = Inactive;
542 }
543}
544
545template <class Impl>
546void
547DefaultFetch<Impl>::deactivateThread(ThreadID tid)
548{
549 // Update priority list
550 auto thread_it = std::find(priorityList.begin(), priorityList.end(), tid);
551 if (thread_it != priorityList.end()) {
552 priorityList.erase(thread_it);
553 }
554}
555
556template <class Impl>
557bool
558DefaultFetch<Impl>::lookupAndUpdateNextPC(
559 const DynInstPtr &inst, TheISA::PCState &nextPC)
560{
561 // Do branch prediction check here.
562 // A bit of a misnomer...next_PC is actually the current PC until
563 // this function updates it.
564 bool predict_taken;
565
566 if (!inst->isControl()) {
567 TheISA::advancePC(nextPC, inst->staticInst);
568 inst->setPredTarg(nextPC);
569 inst->setPredTaken(false);
570 return false;
571 }
572
573 ThreadID tid = inst->threadNumber;
574 predict_taken = branchPred->predict(inst->staticInst, inst->seqNum,
575 nextPC, tid);
576
577 if (predict_taken) {
578 DPRINTF(Fetch, "[tid:%i] [sn:%llu] Branch at PC %#x "
579 "predicted to be taken to %s\n",
580 tid, inst->seqNum, inst->pcState().instAddr(), nextPC);
581 } else {
582 DPRINTF(Fetch, "[tid:%i] [sn:%llu] Branch at PC %#x "
583 "predicted to be not taken\n",
584 tid, inst->seqNum, inst->pcState().instAddr());
585 }
586
587 DPRINTF(Fetch, "[tid:%i] [sn:%llu] Branch at PC %#x "
588 "predicted to go to %s\n",
589 tid, inst->seqNum, inst->pcState().instAddr(), nextPC);
590 inst->setPredTarg(nextPC);
591 inst->setPredTaken(predict_taken);
592
593 ++fetchedBranches;
594
595 if (predict_taken) {
596 ++predictedBranches;
597 }
598
599 return predict_taken;
600}
601
602template <class Impl>
603bool
604DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, ThreadID tid, Addr pc)
605{
606 Fault fault = NoFault;
607
608 assert(!cpu->switchedOut());
609
610 // @todo: not sure if these should block translation.
611 //AlphaDep
612 if (cacheBlocked) {
613 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
614 tid);
615 return false;
616 } else if (checkInterrupt(pc) && !delayedCommit[tid]) {
617 // Hold off fetch from getting new instructions when:
618 // Cache is blocked, or
619 // while an interrupt is pending and we're not in PAL mode, or
620 // fetch is switched out.
621 DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
622 tid);
623 return false;
624 }
625
626 // Align the fetch address to the start of a fetch buffer segment.
627 Addr fetchBufferBlockPC = fetchBufferAlignPC(vaddr);
628
629 DPRINTF(Fetch, "[tid:%i] Fetching cache line %#x for addr %#x\n",
630 tid, fetchBufferBlockPC, vaddr);
631
632 // Setup the memReq to do a read of the first instruction's address.
633 // Set the appropriate read size and flags as well.
634 // Build request here.
635 RequestPtr mem_req = std::make_shared<Request>(
636 tid, fetchBufferBlockPC, fetchBufferSize,
637 Request::INST_FETCH, cpu->instMasterId(), pc,
638 cpu->thread[tid]->contextId());
639
640 mem_req->taskId(cpu->taskId());
641
642 memReq[tid] = mem_req;
643
644 // Initiate translation of the icache block
645 fetchStatus[tid] = ItlbWait;
646 FetchTranslation *trans = new FetchTranslation(this);
647 cpu->itb->translateTiming(mem_req, cpu->thread[tid]->getTC(),
648 trans, BaseTLB::Execute);
649 return true;
650}
651
652template <class Impl>
653void
654DefaultFetch<Impl>::finishTranslation(const Fault &fault,
655 const RequestPtr &mem_req)
656{
657 ThreadID tid = cpu->contextToThread(mem_req->contextId());
658 Addr fetchBufferBlockPC = mem_req->getVaddr();
659
660 assert(!cpu->switchedOut());
661
662 // Wake up CPU if it was idle
663 cpu->wakeCPU();
664
665 if (fetchStatus[tid] != ItlbWait || mem_req != memReq[tid] ||
666 mem_req->getVaddr() != memReq[tid]->getVaddr()) {
667 DPRINTF(Fetch, "[tid:%i] Ignoring itlb completed after squash\n",
668 tid);
669 ++fetchTlbSquashes;
670 return;
671 }
672
673
674 // If translation was successful, attempt to read the icache block.
675 if (fault == NoFault) {
676 // Check that we're not going off into random memory
677 // If we have, just wait around for commit to squash something and put
678 // us on the right track
679 if (!cpu->system->isMemAddr(mem_req->getPaddr())) {
680 warn("Address %#x is outside of physical memory, stopping fetch\n",
681 mem_req->getPaddr());
682 fetchStatus[tid] = NoGoodAddr;
683 memReq[tid] = NULL;
684 return;
685 }
686
687 // Build packet here.
688 PacketPtr data_pkt = new Packet(mem_req, MemCmd::ReadReq);
689 data_pkt->dataDynamic(new uint8_t[fetchBufferSize]);
690
691 fetchBufferPC[tid] = fetchBufferBlockPC;
692 fetchBufferValid[tid] = false;
693 DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
694
695 fetchedCacheLines++;
696
697 // Access the cache.
698 if (!icachePort.sendTimingReq(data_pkt)) {
699 assert(retryPkt == NULL);
700 assert(retryTid == InvalidThreadID);
701 DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
702
703 fetchStatus[tid] = IcacheWaitRetry;
704 retryPkt = data_pkt;
705 retryTid = tid;
706 cacheBlocked = true;
707 } else {
708 DPRINTF(Fetch, "[tid:%i] Doing Icache access.\n", tid);
709 DPRINTF(Activity, "[tid:%i] Activity: Waiting on I-cache "
710 "response.\n", tid);
711 lastIcacheStall[tid] = curTick();
712 fetchStatus[tid] = IcacheWaitResponse;
713 // Notify Fetch Request probe when a packet containing a fetch
714 // request is successfully sent
715 ppFetchRequestSent->notify(mem_req);
716 }
717 } else {
718 // Don't send an instruction to decode if we can't handle it.
719 if (!(numInst < fetchWidth) || !(fetchQueue[tid].size() < fetchQueueSize)) {
720 assert(!finishTranslationEvent.scheduled());
721 finishTranslationEvent.setFault(fault);
722 finishTranslationEvent.setReq(mem_req);
723 cpu->schedule(finishTranslationEvent,
724 cpu->clockEdge(Cycles(1)));
725 return;
726 }
727 DPRINTF(Fetch, "[tid:%i] Got back req with addr %#x but expected %#x\n",
728 tid, mem_req->getVaddr(), memReq[tid]->getVaddr());
729 // Translation faulted, icache request won't be sent.
730 memReq[tid] = NULL;
731
732 // Send the fault to commit. This thread will not do anything
733 // until commit handles the fault. The only other way it can
734 // wake up is if a squash comes along and changes the PC.
735 TheISA::PCState fetchPC = pc[tid];
736
737 DPRINTF(Fetch, "[tid:%i] Translation faulted, building noop.\n", tid);
738 // We will use a nop in ordier to carry the fault.
739 DynInstPtr instruction = buildInst(tid, StaticInst::nopStaticInstPtr,
740 NULL, fetchPC, fetchPC, false);
741 instruction->setNotAnInst();
742
743 instruction->setPredTarg(fetchPC);
744 instruction->fault = fault;
745 wroteToTimeBuffer = true;
746
747 DPRINTF(Activity, "Activity this cycle.\n");
748 cpu->activityThisCycle();
749
750 fetchStatus[tid] = TrapPending;
751
752 DPRINTF(Fetch, "[tid:%i] Blocked, need to handle the trap.\n", tid);
753 DPRINTF(Fetch, "[tid:%i] fault (%s) detected @ PC %s.\n",
754 tid, fault->name(), pc[tid]);
755 }
756 _status = updateFetchStatus();
757}
758
759template <class Impl>
760inline void
761DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC,
762 const DynInstPtr squashInst, ThreadID tid)
763{
764 DPRINTF(Fetch, "[tid:%i] Squashing, setting PC to: %s.\n",
765 tid, newPC);
766
767 pc[tid] = newPC;
768 fetchOffset[tid] = 0;
769 if (squashInst && squashInst->pcState().instAddr() == newPC.instAddr())
770 macroop[tid] = squashInst->macroop;
771 else
772 macroop[tid] = NULL;
773 decoder[tid]->reset();
774
775 // Clear the icache miss if it's outstanding.
776 if (fetchStatus[tid] == IcacheWaitResponse) {
777 DPRINTF(Fetch, "[tid:%i] Squashing outstanding Icache miss.\n",
778 tid);
779 memReq[tid] = NULL;
780 } else if (fetchStatus[tid] == ItlbWait) {
781 DPRINTF(Fetch, "[tid:%i] Squashing outstanding ITLB miss.\n",
782 tid);
783 memReq[tid] = NULL;
784 }
785
786 // Get rid of the retrying packet if it was from this thread.
787 if (retryTid == tid) {
788 assert(cacheBlocked);
789 if (retryPkt) {
790 delete retryPkt;
791 }
792 retryPkt = NULL;
793 retryTid = InvalidThreadID;
794 }
795
796 fetchStatus[tid] = Squashing;
797
798 // Empty fetch queue
799 fetchQueue[tid].clear();
800
801 // microops are being squashed, it is not known wheather the
802 // youngest non-squashed microop was marked delayed commit
803 // or not. Setting the flag to true ensures that the
804 // interrupts are not handled when they cannot be, though
805 // some opportunities to handle interrupts may be missed.
806 delayedCommit[tid] = true;
807
808 ++fetchSquashCycles;
809}
810
811template<class Impl>
812void
813DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
814 const DynInstPtr squashInst,
815 const InstSeqNum seq_num, ThreadID tid)
816{
817 DPRINTF(Fetch, "[tid:%i] Squashing from decode.\n", tid);
818
819 doSquash(newPC, squashInst, tid);
820
821 // Tell the CPU to remove any instructions that are in flight between
822 // fetch and decode.
823 cpu->removeInstsUntil(seq_num, tid);
824}
825
826template<class Impl>
827bool
828DefaultFetch<Impl>::checkStall(ThreadID tid) const
829{
830 bool ret_val = false;
831
832 if (stalls[tid].drain) {
833 assert(cpu->isDraining());
834 DPRINTF(Fetch,"[tid:%i] Drain stall detected.\n",tid);
835 ret_val = true;
836 }
837
838 return ret_val;
839}
840
841template<class Impl>
842typename DefaultFetch<Impl>::FetchStatus
843DefaultFetch<Impl>::updateFetchStatus()
844{
845 //Check Running
846 list<ThreadID>::iterator threads = activeThreads->begin();
847 list<ThreadID>::iterator end = activeThreads->end();
848
849 while (threads != end) {
850 ThreadID tid = *threads++;
851
852 if (fetchStatus[tid] == Running ||
853 fetchStatus[tid] == Squashing ||
854 fetchStatus[tid] == IcacheAccessComplete) {
855
856 if (_status == Inactive) {
857 DPRINTF(Activity, "[tid:%i] Activating stage.\n",tid);
858
859 if (fetchStatus[tid] == IcacheAccessComplete) {
860 DPRINTF(Activity, "[tid:%i] Activating fetch due to cache"
861 "completion\n",tid);
862 }
863
864 cpu->activateStage(O3CPU::FetchIdx);
865 }
866
867 return Active;
868 }
869 }
870
871 // Stage is switching from active to inactive, notify CPU of it.
872 if (_status == Active) {
873 DPRINTF(Activity, "Deactivating stage.\n");
874
875 cpu->deactivateStage(O3CPU::FetchIdx);
876 }
877
878 return Inactive;
879}
880
881template <class Impl>
882void
883DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
884 const InstSeqNum seq_num, DynInstPtr squashInst,
885 ThreadID tid)
886{
887 DPRINTF(Fetch, "[tid:%i] Squash from commit.\n", tid);
888
889 doSquash(newPC, squashInst, tid);
890
891 // Tell the CPU to remove any instructions that are not in the ROB.
892 cpu->removeInstsNotInROB(tid);
893}
894
895template <class Impl>
896void
897DefaultFetch<Impl>::tick()
898{
899 list<ThreadID>::iterator threads = activeThreads->begin();
900 list<ThreadID>::iterator end = activeThreads->end();
901 bool status_change = false;
902
903 wroteToTimeBuffer = false;
904
905 for (ThreadID i = 0; i < numThreads; ++i) {
906 issuePipelinedIfetch[i] = false;
907 }
908
909 while (threads != end) {
910 ThreadID tid = *threads++;
911
912 // Check the signals for each thread to determine the proper status
913 // for each thread.
914 bool updated_status = checkSignalsAndUpdate(tid);
915 status_change = status_change || updated_status;
916 }
917
918 DPRINTF(Fetch, "Running stage.\n");
919
920 if (FullSystem) {
921 if (fromCommit->commitInfo[0].interruptPending) {
922 interruptPending = true;
923 }
924
925 if (fromCommit->commitInfo[0].clearInterrupt) {
926 interruptPending = false;
927 }
928 }
929
930 for (threadFetched = 0; threadFetched < numFetchingThreads;
931 threadFetched++) {
932 // Fetch each of the actively fetching threads.
933 fetch(status_change);
934 }
935
936 // Record number of instructions fetched this cycle for distribution.
937 fetchNisnDist.sample(numInst);
938
939 if (status_change) {
940 // Change the fetch stage status if there was a status change.
941 _status = updateFetchStatus();
942 }
943
944 // Issue the next I-cache request if possible.
945 for (ThreadID i = 0; i < numThreads; ++i) {
946 if (issuePipelinedIfetch[i]) {
947 pipelineIcacheAccesses(i);
948 }
949 }
950
951 // Send instructions enqueued into the fetch queue to decode.
952 // Limit rate by fetchWidth. Stall if decode is stalled.
953 unsigned insts_to_decode = 0;
954 unsigned available_insts = 0;
955
956 for (auto tid : *activeThreads) {
957 if (!stalls[tid].decode) {
958 available_insts += fetchQueue[tid].size();
959 }
960 }
961
962 // Pick a random thread to start trying to grab instructions from
963 auto tid_itr = activeThreads->begin();
964 std::advance(tid_itr, random_mt.random<uint8_t>(0, activeThreads->size() - 1));
965
966 while (available_insts != 0 && insts_to_decode < decodeWidth) {
967 ThreadID tid = *tid_itr;
968 if (!stalls[tid].decode && !fetchQueue[tid].empty()) {
969 const auto& inst = fetchQueue[tid].front();
970 toDecode->insts[toDecode->size++] = inst;
971 DPRINTF(Fetch, "[tid:%i] [sn:%llu] Sending instruction to decode "
972 "from fetch queue. Fetch queue size: %i.\n",
973 tid, inst->seqNum, fetchQueue[tid].size());
974
975 wroteToTimeBuffer = true;
976 fetchQueue[tid].pop_front();
977 insts_to_decode++;
978 available_insts--;
979 }
980
981 tid_itr++;
982 // Wrap around if at end of active threads list
983 if (tid_itr == activeThreads->end())
984 tid_itr = activeThreads->begin();
985 }
986
987 // If there was activity this cycle, inform the CPU of it.
988 if (wroteToTimeBuffer) {
989 DPRINTF(Activity, "Activity this cycle.\n");
990 cpu->activityThisCycle();
991 }
992
993 // Reset the number of the instruction we've fetched.
994 numInst = 0;
995}
996
997template <class Impl>
998bool
999DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
1000{
1001 // Update the per thread stall statuses.
1002 if (fromDecode->decodeBlock[tid]) {
1003 stalls[tid].decode = true;
1004 }
1005
1006 if (fromDecode->decodeUnblock[tid]) {
1007 assert(stalls[tid].decode);
1008 assert(!fromDecode->decodeBlock[tid]);
1009 stalls[tid].decode = false;
1010 }
1011
1012 // Check squash signals from commit.
1013 if (fromCommit->commitInfo[tid].squash) {
1014
1015 DPRINTF(Fetch, "[tid:%i] Squashing instructions due to squash "
1016 "from commit.\n",tid);
1017 // In any case, squash.
1018 squash(fromCommit->commitInfo[tid].pc,
1019 fromCommit->commitInfo[tid].doneSeqNum,
1020 fromCommit->commitInfo[tid].squashInst, tid);
1021
1022 // If it was a branch mispredict on a control instruction, update the
1023 // branch predictor with that instruction, otherwise just kill the
1024 // invalid state we generated in after sequence number
1025 if (fromCommit->commitInfo[tid].mispredictInst &&
1026 fromCommit->commitInfo[tid].mispredictInst->isControl()) {
1027 branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
1028 fromCommit->commitInfo[tid].pc,
1029 fromCommit->commitInfo[tid].branchTaken,
1030 tid);
1031 } else {
1032 branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
1033 tid);
1034 }
1035
1036 return true;
1037 } else if (fromCommit->commitInfo[tid].doneSeqNum) {
1038 // Update the branch predictor if it wasn't a squashed instruction
1039 // that was broadcasted.
1040 branchPred->update(fromCommit->commitInfo[tid].doneSeqNum, tid);
1041 }
1042
1043 // Check squash signals from decode.
1044 if (fromDecode->decodeInfo[tid].squash) {
1045 DPRINTF(Fetch, "[tid:%i] Squashing instructions due to squash "
1046 "from decode.\n",tid);
1047
1048 // Update the branch predictor.
1049 if (fromDecode->decodeInfo[tid].branchMispredict) {
1050 branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1051 fromDecode->decodeInfo[tid].nextPC,
1052 fromDecode->decodeInfo[tid].branchTaken,
1053 tid);
1054 } else {
1055 branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1056 tid);
1057 }
1058
1059 if (fetchStatus[tid] != Squashing) {
1060
1061 DPRINTF(Fetch, "Squashing from decode with PC = %s\n",
1062 fromDecode->decodeInfo[tid].nextPC);
1063 // Squash unless we're already squashing
1064 squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
1065 fromDecode->decodeInfo[tid].squashInst,
1066 fromDecode->decodeInfo[tid].doneSeqNum,
1067 tid);
1068
1069 return true;
1070 }
1071 }
1072
1073 if (checkStall(tid) &&
1074 fetchStatus[tid] != IcacheWaitResponse &&
1075 fetchStatus[tid] != IcacheWaitRetry &&
1076 fetchStatus[tid] != ItlbWait &&
1077 fetchStatus[tid] != QuiescePending) {
1078 DPRINTF(Fetch, "[tid:%i] Setting to blocked\n",tid);
1079
1080 fetchStatus[tid] = Blocked;
1081
1082 return true;
1083 }
1084
1085 if (fetchStatus[tid] == Blocked ||
1086 fetchStatus[tid] == Squashing) {
1087 // Switch status to running if fetch isn't being told to block or
1088 // squash this cycle.
1089 DPRINTF(Fetch, "[tid:%i] Done squashing, switching to running.\n",
1090 tid);
1091
1092 fetchStatus[tid] = Running;
1093
1094 return true;
1095 }
1096
1097 // If we've reached this point, we have not gotten any signals that
1098 // cause fetch to change its status. Fetch remains the same as before.
1099 return false;
1100}
1101
1102template<class Impl>
1103typename Impl::DynInstPtr
1104DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
1105 StaticInstPtr curMacroop, TheISA::PCState thisPC,
1106 TheISA::PCState nextPC, bool trace)
1107{
1108 // Get a sequence number.
1109 InstSeqNum seq = cpu->getAndIncrementInstSeq();
1110
1111 // Create a new DynInst from the instruction fetched.
1112 DynInstPtr instruction =
1113 new DynInst(staticInst, curMacroop, thisPC, nextPC, seq, cpu);
1114 instruction->setTid(tid);
1115
1116 instruction->setASID(tid);
1117
1118 instruction->setThreadState(cpu->thread[tid]);
1119
1120 DPRINTF(Fetch, "[tid:%i] Instruction PC %#x (%d) created "
1121 "[sn:%lli].\n", tid, thisPC.instAddr(),
1122 thisPC.microPC(), seq);
1123
1124 DPRINTF(Fetch, "[tid:%i] Instruction is: %s\n", tid,
1125 instruction->staticInst->
1126 disassemble(thisPC.instAddr()));
1127
1128#if TRACING_ON
1129 if (trace) {
1130 instruction->traceData =
1131 cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
1132 instruction->staticInst, thisPC, curMacroop);
1133 }
1134#else
1135 instruction->traceData = NULL;
1136#endif
1137
1138 // Add instruction to the CPU's list of instructions.
1139 instruction->setInstListIt(cpu->addInst(instruction));
1140
1141 // Write the instruction to the first slot in the queue
1142 // that heads to decode.
1143 assert(numInst < fetchWidth);
1144 fetchQueue[tid].push_back(instruction);
1145 assert(fetchQueue[tid].size() <= fetchQueueSize);
1146 DPRINTF(Fetch, "[tid:%i] Fetch queue entry created (%i/%i).\n",
1147 tid, fetchQueue[tid].size(), fetchQueueSize);
1148 //toDecode->insts[toDecode->size++] = instruction;
1149
1150 // Keep track of if we can take an interrupt at this boundary
1151 delayedCommit[tid] = instruction->isDelayedCommit();
1152
1153 return instruction;
1154}
1155
1156template<class Impl>
1157void
1158DefaultFetch<Impl>::fetch(bool &status_change)
1159{
1160 //////////////////////////////////////////
1161 // Start actual fetch
1162 //////////////////////////////////////////
1163 ThreadID tid = getFetchingThread();
1164
1165 assert(!cpu->switchedOut());
1166
1167 if (tid == InvalidThreadID) {
1168 // Breaks looping condition in tick()
1169 threadFetched = numFetchingThreads;
1170
1171 if (numThreads == 1) { // @todo Per-thread stats
1172 profileStall(0);
1173 }
1174
1175 return;
1176 }
1177
1178 DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1179
1180 // The current PC.
1181 TheISA::PCState thisPC = pc[tid];
1182
1183 Addr pcOffset = fetchOffset[tid];
1184 Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1185
1186 bool inRom = isRomMicroPC(thisPC.microPC());
1187
1188 // If returning from the delay of a cache miss, then update the status
1189 // to running, otherwise do the cache access. Possibly move this up
1190 // to tick() function.
1191 if (fetchStatus[tid] == IcacheAccessComplete) {
1192 DPRINTF(Fetch, "[tid:%i] Icache miss is complete.\n", tid);
1193
1194 fetchStatus[tid] = Running;
1195 status_change = true;
1196 } else if (fetchStatus[tid] == Running) {
1197 // Align the fetch PC so its at the start of a fetch buffer segment.
1198 Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1199
1200 // If buffer is no longer valid or fetchAddr has moved to point
1201 // to the next cache block, AND we have no remaining ucode
1202 // from a macro-op, then start fetch from icache.
1203 if (!(fetchBufferValid[tid] && fetchBufferBlockPC == fetchBufferPC[tid])
1204 && !inRom && !macroop[tid]) {
1205 DPRINTF(Fetch, "[tid:%i] Attempting to translate and read "
1206 "instruction, starting at PC %s.\n", tid, thisPC);
1207
1208 fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1209
1210 if (fetchStatus[tid] == IcacheWaitResponse)
1211 ++icacheStallCycles;
1212 else if (fetchStatus[tid] == ItlbWait)
1213 ++fetchTlbCycles;
1214 else
1215 ++fetchMiscStallCycles;
1216 return;
1217 } else if ((checkInterrupt(thisPC.instAddr()) && !delayedCommit[tid])) {
1218 // Stall CPU if an interrupt is posted and we're not issuing
1219 // an delayed commit micro-op currently (delayed commit instructions
1220 // are not interruptable by interrupts, only faults)
1221 ++fetchMiscStallCycles;
1222 DPRINTF(Fetch, "[tid:%i] Fetch is stalled!\n", tid);
1223 return;
1224 }
1225 } else {
1226 if (fetchStatus[tid] == Idle) {
1227 ++fetchIdleCycles;
1228 DPRINTF(Fetch, "[tid:%i] Fetch is idle!\n", tid);
1229 }
1230
1231 // Status is Idle, so fetch should do nothing.
1232 return;
1233 }
1234
1235 ++fetchCycles;
1236
1237 TheISA::PCState nextPC = thisPC;
1238
1239 StaticInstPtr staticInst = NULL;
1240 StaticInstPtr curMacroop = macroop[tid];
1241
1242 // If the read of the first instruction was successful, then grab the
1243 // instructions from the rest of the cache line and put them into the
1244 // queue heading to decode.
1245
1246 DPRINTF(Fetch, "[tid:%i] Adding instructions to queue to "
1247 "decode.\n", tid);
1248
1249 // Need to keep track of whether or not a predicted branch
1250 // ended this fetch block.
1251 bool predictedBranch = false;
1252
1253 // Need to halt fetch if quiesce instruction detected
1254 bool quiesce = false;
1255
1256 TheISA::MachInst *cacheInsts =
1257 reinterpret_cast<TheISA::MachInst *>(fetchBuffer[tid]);
1258
1259 const unsigned numInsts = fetchBufferSize / instSize;
1260 unsigned blkOffset = (fetchAddr - fetchBufferPC[tid]) / instSize;
1261
1262 // Loop through instruction memory from the cache.
1263 // Keep issuing while fetchWidth is available and branch is not
1264 // predicted taken
1265 while (numInst < fetchWidth && fetchQueue[tid].size() < fetchQueueSize
1266 && !predictedBranch && !quiesce) {
1267 // We need to process more memory if we aren't going to get a
1268 // StaticInst from the rom, the current macroop, or what's already
1269 // in the decoder.
1270 bool needMem = !inRom && !curMacroop &&
1271 !decoder[tid]->instReady();
1272 fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1273 Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1274
1275 if (needMem) {
1276 // If buffer is no longer valid or fetchAddr has moved to point
1277 // to the next cache block then start fetch from icache.
1278 if (!fetchBufferValid[tid] ||
1279 fetchBufferBlockPC != fetchBufferPC[tid])
1280 break;
1281
1282 if (blkOffset >= numInsts) {
1283 // We need to process more memory, but we've run out of the
1284 // current block.
1285 break;
1286 }
1287
1288 MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1289 decoder[tid]->moreBytes(thisPC, fetchAddr, inst);
1290
1291 if (decoder[tid]->needMoreBytes()) {
1292 blkOffset++;
1293 fetchAddr += instSize;
1294 pcOffset += instSize;
1295 }
1296 }
1297
1298 // Extract as many instructions and/or microops as we can from
1299 // the memory we've processed so far.
1300 do {
1301 if (!(curMacroop || inRom)) {
1302 if (decoder[tid]->instReady()) {
1303 staticInst = decoder[tid]->decode(thisPC);
1304
1305 // Increment stat of fetched instructions.
1306 ++fetchedInsts;
1307
1308 if (staticInst->isMacroop()) {
1309 curMacroop = staticInst;
1310 } else {
1311 pcOffset = 0;
1312 }
1313 } else {
1314 // We need more bytes for this instruction so blkOffset and
1315 // pcOffset will be updated
1316 break;
1317 }
1318 }
1319 // Whether we're moving to a new macroop because we're at the
1320 // end of the current one, or the branch predictor incorrectly
1321 // thinks we are...
1322 bool newMacro = false;
1323 if (curMacroop || inRom) {
1324 if (inRom) {
1325 staticInst = cpu->microcodeRom.fetchMicroop(
1326 thisPC.microPC(), curMacroop);
1327 } else {
1328 staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1329 }
1330 newMacro |= staticInst->isLastMicroop();
1331 }
1332
1333 DynInstPtr instruction =
1334 buildInst(tid, staticInst, curMacroop,
1335 thisPC, nextPC, true);
1336
1337 ppFetch->notify(instruction);
1338 numInst++;
1339
1340#if TRACING_ON
1341 if (DTRACE(O3PipeView)) {
1342 instruction->fetchTick = curTick();
1343 }
1344#endif
1345
1346 nextPC = thisPC;
1347
1348 // If we're branching after this instruction, quit fetching
1349 // from the same block.
1350 predictedBranch |= thisPC.branching();
1351 predictedBranch |=
1352 lookupAndUpdateNextPC(instruction, nextPC);
1353 if (predictedBranch) {
1354 DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1355 }
1356
1357 newMacro |= thisPC.instAddr() != nextPC.instAddr();
1358
1359 // Move to the next instruction, unless we have a branch.
1360 thisPC = nextPC;
1361 inRom = isRomMicroPC(thisPC.microPC());
1362
1363 if (newMacro) {
1364 fetchAddr = thisPC.instAddr() & BaseCPU::PCMask;
1365 blkOffset = (fetchAddr - fetchBufferPC[tid]) / instSize;
1366 pcOffset = 0;
1367 curMacroop = NULL;
1368 }
1369
1370 if (instruction->isQuiesce()) {
1371 DPRINTF(Fetch,
1372 "Quiesce instruction encountered, halting fetch!\n");
1373 fetchStatus[tid] = QuiescePending;
1374 status_change = true;
1375 quiesce = true;
1376 break;
1377 }
1378 } while ((curMacroop || decoder[tid]->instReady()) &&
1379 numInst < fetchWidth &&
1380 fetchQueue[tid].size() < fetchQueueSize);
1381
1382 // Re-evaluate whether the next instruction to fetch is in micro-op ROM
1383 // or not.
1384 inRom = isRomMicroPC(thisPC.microPC());
1385 }
1386
1387 if (predictedBranch) {
1388 DPRINTF(Fetch, "[tid:%i] Done fetching, predicted branch "
1389 "instruction encountered.\n", tid);
1390 } else if (numInst >= fetchWidth) {
1391 DPRINTF(Fetch, "[tid:%i] Done fetching, reached fetch bandwidth "
1392 "for this cycle.\n", tid);
1393 } else if (blkOffset >= fetchBufferSize) {
1394 DPRINTF(Fetch, "[tid:%i] Done fetching, reached the end of the"
1395 "fetch buffer.\n", tid);
1396 }
1397
1398 macroop[tid] = curMacroop;
1399 fetchOffset[tid] = pcOffset;
1400
1401 if (numInst > 0) {
1402 wroteToTimeBuffer = true;
1403 }
1404
1405 pc[tid] = thisPC;
1406
1407 // pipeline a fetch if we're crossing a fetch buffer boundary and not in
1408 // a state that would preclude fetching
1409 fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1410 Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1411 issuePipelinedIfetch[tid] = fetchBufferBlockPC != fetchBufferPC[tid] &&
1412 fetchStatus[tid] != IcacheWaitResponse &&
1413 fetchStatus[tid] != ItlbWait &&
1414 fetchStatus[tid] != IcacheWaitRetry &&
1415 fetchStatus[tid] != QuiescePending &&
1416 !curMacroop;
1417}
1418
1419template<class Impl>
1420void
1421DefaultFetch<Impl>::recvReqRetry()
1422{
1423 if (retryPkt != NULL) {
1424 assert(cacheBlocked);
1425 assert(retryTid != InvalidThreadID);
1426 assert(fetchStatus[retryTid] == IcacheWaitRetry);
1427
1428 if (icachePort.sendTimingReq(retryPkt)) {
1429 fetchStatus[retryTid] = IcacheWaitResponse;
1430 // Notify Fetch Request probe when a retryPkt is successfully sent.
1431 // Note that notify must be called before retryPkt is set to NULL.
1432 ppFetchRequestSent->notify(retryPkt->req);
1433 retryPkt = NULL;
1434 retryTid = InvalidThreadID;
1435 cacheBlocked = false;
1436 }
1437 } else {
1438 assert(retryTid == InvalidThreadID);
1439 // Access has been squashed since it was sent out. Just clear
1440 // the cache being blocked.
1441 cacheBlocked = false;
1442 }
1443}
1444
1445///////////////////////////////////////
1446// //
1447// SMT FETCH POLICY MAINTAINED HERE //
1448// //
1449///////////////////////////////////////
1450template<class Impl>
1451ThreadID
1452DefaultFetch<Impl>::getFetchingThread()
1453{
1454 if (numThreads > 1) {
1455 switch (fetchPolicy) {
1456 case FetchPolicy::RoundRobin:
1457 return roundRobin();
1458 case FetchPolicy::IQCount:
1459 return iqCount();
1460 case FetchPolicy::LSQCount:
1461 return lsqCount();
1462 case FetchPolicy::Branch:
1463 return branchCount();
1464 default:
1465 return InvalidThreadID;
1466 }
1467 } else {
1468 list<ThreadID>::iterator thread = activeThreads->begin();
1469 if (thread == activeThreads->end()) {
1470 return InvalidThreadID;
1471 }
1472
1473 ThreadID tid = *thread;
1474
1475 if (fetchStatus[tid] == Running ||
1476 fetchStatus[tid] == IcacheAccessComplete ||
1477 fetchStatus[tid] == Idle) {
1478 return tid;
1479 } else {
1480 return InvalidThreadID;
1481 }
1482 }
1483}
1484
1485
1486template<class Impl>
1487ThreadID
1488DefaultFetch<Impl>::roundRobin()
1489{
1490 list<ThreadID>::iterator pri_iter = priorityList.begin();
1491 list<ThreadID>::iterator end = priorityList.end();
1492
1493 ThreadID high_pri;
1494
1495 while (pri_iter != end) {
1496 high_pri = *pri_iter;
1497
1498 assert(high_pri <= numThreads);
1499
1500 if (fetchStatus[high_pri] == Running ||
1501 fetchStatus[high_pri] == IcacheAccessComplete ||
1502 fetchStatus[high_pri] == Idle) {
1503
1504 priorityList.erase(pri_iter);
1505 priorityList.push_back(high_pri);
1506
1507 return high_pri;
1508 }
1509
1510 pri_iter++;
1511 }
1512
1513 return InvalidThreadID;
1514}
1515
1516template<class Impl>
1517ThreadID
1518DefaultFetch<Impl>::iqCount()
1519{
1520 //sorted from lowest->highest
1521 std::priority_queue<unsigned,vector<unsigned>,
1522 std::greater<unsigned> > PQ;
1523 std::map<unsigned, ThreadID> threadMap;
1524
1525 list<ThreadID>::iterator threads = activeThreads->begin();
1526 list<ThreadID>::iterator end = activeThreads->end();
1527
1528 while (threads != end) {
1529 ThreadID tid = *threads++;
1530 unsigned iqCount = fromIEW->iewInfo[tid].iqCount;
1531
1532 //we can potentially get tid collisions if two threads
1533 //have the same iqCount, but this should be rare.
1534 PQ.push(iqCount);
1535 threadMap[iqCount] = tid;
1536 }
1537
1538 while (!PQ.empty()) {
1539 ThreadID high_pri = threadMap[PQ.top()];
1540
1541 if (fetchStatus[high_pri] == Running ||
1542 fetchStatus[high_pri] == IcacheAccessComplete ||
1543 fetchStatus[high_pri] == Idle)
1544 return high_pri;
1545 else
1546 PQ.pop();
1547
1548 }
1549
1550 return InvalidThreadID;
1551}
1552
1553template<class Impl>
1554ThreadID
1555DefaultFetch<Impl>::lsqCount()
1556{
1557 //sorted from lowest->highest
1558 std::priority_queue<unsigned,vector<unsigned>,
1559 std::greater<unsigned> > PQ;
1560 std::map<unsigned, ThreadID> threadMap;
1561
1562 list<ThreadID>::iterator threads = activeThreads->begin();
1563 list<ThreadID>::iterator end = activeThreads->end();
1564
1565 while (threads != end) {
1566 ThreadID tid = *threads++;
1567 unsigned ldstqCount = fromIEW->iewInfo[tid].ldstqCount;
1568
1569 //we can potentially get tid collisions if two threads
1570 //have the same iqCount, but this should be rare.
1571 PQ.push(ldstqCount);
1572 threadMap[ldstqCount] = tid;
1573 }
1574
1575 while (!PQ.empty()) {
1576 ThreadID high_pri = threadMap[PQ.top()];
1577
1578 if (fetchStatus[high_pri] == Running ||
1579 fetchStatus[high_pri] == IcacheAccessComplete ||
1580 fetchStatus[high_pri] == Idle)
1581 return high_pri;
1582 else
1583 PQ.pop();
1584 }
1585
1586 return InvalidThreadID;
1587}
1588
1589template<class Impl>
1590ThreadID
1591DefaultFetch<Impl>::branchCount()
1592{
1593 panic("Branch Count Fetch policy unimplemented\n");
1594 return InvalidThreadID;
1595}
1596
1597template<class Impl>
1598void
1599DefaultFetch<Impl>::pipelineIcacheAccesses(ThreadID tid)
1600{
1601 if (!issuePipelinedIfetch[tid]) {
1602 return;
1603 }
1604
1605 // The next PC to access.
1606 TheISA::PCState thisPC = pc[tid];
1607
1608 if (isRomMicroPC(thisPC.microPC())) {
1609 return;
1610 }
1611
1612 Addr pcOffset = fetchOffset[tid];
1613 Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1614
1615 // Align the fetch PC so its at the start of a fetch buffer segment.
1616 Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1617
1618 // Unless buffer already got the block, fetch it from icache.
1619 if (!(fetchBufferValid[tid] && fetchBufferBlockPC == fetchBufferPC[tid])) {
1620 DPRINTF(Fetch, "[tid:%i] Issuing a pipelined I-cache access, "
1621 "starting at PC %s.\n", tid, thisPC);
1622
1623 fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1624 }
1625}
1626
1627template<class Impl>
1628void
1629DefaultFetch<Impl>::profileStall(ThreadID tid) {
1630 DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1631
1632 // @todo Per-thread stats
1633
1634 if (stalls[tid].drain) {
1635 ++fetchPendingDrainCycles;
1636 DPRINTF(Fetch, "Fetch is waiting for a drain!\n");
1637 } else if (activeThreads->empty()) {
1638 ++fetchNoActiveThreadStallCycles;
1639 DPRINTF(Fetch, "Fetch has no active thread!\n");
1640 } else if (fetchStatus[tid] == Blocked) {
1641 ++fetchBlockedCycles;
1642 DPRINTF(Fetch, "[tid:%i] Fetch is blocked!\n", tid);
1643 } else if (fetchStatus[tid] == Squashing) {
1644 ++fetchSquashCycles;
1645 DPRINTF(Fetch, "[tid:%i] Fetch is squashing!\n", tid);
1646 } else if (fetchStatus[tid] == IcacheWaitResponse) {
1647 ++icacheStallCycles;
1648 DPRINTF(Fetch, "[tid:%i] Fetch is waiting cache response!\n",
1649 tid);
1650 } else if (fetchStatus[tid] == ItlbWait) {
1651 ++fetchTlbCycles;
1652 DPRINTF(Fetch, "[tid:%i] Fetch is waiting ITLB walk to "
1653 "finish!\n", tid);
1654 } else if (fetchStatus[tid] == TrapPending) {
1655 ++fetchPendingTrapStallCycles;
1656 DPRINTF(Fetch, "[tid:%i] Fetch is waiting for a pending trap!\n",
1657 tid);
1658 } else if (fetchStatus[tid] == QuiescePending) {
1659 ++fetchPendingQuiesceStallCycles;
1660 DPRINTF(Fetch, "[tid:%i] Fetch is waiting for a pending quiesce "
1661 "instruction!\n", tid);
1662 } else if (fetchStatus[tid] == IcacheWaitRetry) {
1663 ++fetchIcacheWaitRetryStallCycles;
1664 DPRINTF(Fetch, "[tid:%i] Fetch is waiting for an I-cache retry!\n",
1665 tid);
1666 } else if (fetchStatus[tid] == NoGoodAddr) {
1667 DPRINTF(Fetch, "[tid:%i] Fetch predicted non-executable address\n",
1668 tid);
1669 } else {
1670 DPRINTF(Fetch, "[tid:%i] Unexpected fetch stall reason "
1671 "(Status: %i)\n",
1672 tid, fetchStatus[tid]);
1673 }
1674}
1675
1676template<class Impl>
1677bool
1678DefaultFetch<Impl>::IcachePort::recvTimingResp(PacketPtr pkt)
1679{
1680 DPRINTF(O3CPU, "Fetch unit received timing\n");
1681 // We shouldn't ever get a cacheable block in Modified state
1682 assert(pkt->req->isUncacheable() ||
1683 !(pkt->cacheResponding() && !pkt->hasSharers()));
1684 fetch->processCacheCompletion(pkt);
1685
1686 return true;
1687}
1688
1689template<class Impl>
1690void
1691DefaultFetch<Impl>::IcachePort::recvReqRetry()
1692{
1693 fetch->recvReqRetry();
1694}
1695
1696#endif//__CPU_O3_FETCH_IMPL_HH__