1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 * Korey Sewell
42 */
43
44#include <algorithm>
45#include <string>
46
47#include "arch/utility.hh"
48#include "base/loader/symtab.hh"
49#include "base/cp_annotate.hh"
50#include "config/full_system.hh"
51#include "config/the_isa.hh"
52#include "config/use_checker.hh"
53#include "cpu/o3/commit.hh"
54#include "cpu/o3/thread_state.hh"
55#include "cpu/exetrace.hh"
56#include "cpu/timebuf.hh"
57#include "params/DerivO3CPU.hh"
58#include "sim/faults.hh"
59
60#if USE_CHECKER
61#include "cpu/checker/cpu.hh"
62#endif
63
64using namespace std;
65
66template <class Impl>
67DefaultCommit<Impl>::TrapEvent::TrapEvent(DefaultCommit<Impl> *_commit,
68 ThreadID _tid)
69 : Event(CPU_Tick_Pri), commit(_commit), tid(_tid)
70{
71 this->setFlags(AutoDelete);
72}
73
74template <class Impl>
75void
76DefaultCommit<Impl>::TrapEvent::process()
77{
78 // This will get reset by commit if it was switched out at the
79 // time of this event processing.
80 commit->trapSquash[tid] = true;
81}
82
83template <class Impl>
84const char *
85DefaultCommit<Impl>::TrapEvent::description() const
86{
87 return "Trap";
88}
89
90template <class Impl>
91DefaultCommit<Impl>::DefaultCommit(O3CPU *_cpu, DerivO3CPUParams *params)
92 : cpu(_cpu),
93 squashCounter(0),
94 iewToCommitDelay(params->iewToCommitDelay),
95 commitToIEWDelay(params->commitToIEWDelay),
96 renameToROBDelay(params->renameToROBDelay),
97 fetchToCommitDelay(params->commitToFetchDelay),
98 renameWidth(params->renameWidth),
99 commitWidth(params->commitWidth),
100 numThreads(params->numThreads),
101 drainPending(false),
102 switchedOut(false),
103 trapLatency(params->trapLatency)
104{
105 _status = Active;
106 _nextStatus = Inactive;
107 std::string policy = params->smtCommitPolicy;
108
109 //Convert string to lowercase
110 std::transform(policy.begin(), policy.end(), policy.begin(),
111 (int(*)(int)) tolower);
112
113 //Assign commit policy
114 if (policy == "aggressive"){
115 commitPolicy = Aggressive;
116
117 DPRINTF(Commit,"Commit Policy set to Aggressive.");
118 } else if (policy == "roundrobin"){
119 commitPolicy = RoundRobin;
120
121 //Set-Up Priority List
122 for (ThreadID tid = 0; tid < numThreads; tid++) {
123 priority_list.push_back(tid);
124 }
125
126 DPRINTF(Commit,"Commit Policy set to Round Robin.");
127 } else if (policy == "oldestready"){
128 commitPolicy = OldestReady;
129
130 DPRINTF(Commit,"Commit Policy set to Oldest Ready.");
131 } else {
132 assert(0 && "Invalid SMT Commit Policy. Options Are: {Aggressive,"
133 "RoundRobin,OldestReady}");
134 }
135
136 for (ThreadID tid = 0; tid < numThreads; tid++) {
137 commitStatus[tid] = Idle;
138 changedROBNumEntries[tid] = false;
139 checkEmptyROB[tid] = false;
140 trapInFlight[tid] = false;
141 committedStores[tid] = false;
142 trapSquash[tid] = false;
143 tcSquash[tid] = false;
144 pc[tid].set(0);
145 lastCommitedSeqNum[tid] = 0;
146 }
147#if FULL_SYSTEM
148 interrupt = NoFault;
149#endif
150}
151
152template <class Impl>
153std::string
154DefaultCommit<Impl>::name() const
155{
156 return cpu->name() + ".commit";
157}
158
159template <class Impl>
160void
161DefaultCommit<Impl>::regStats()
162{
163 using namespace Stats;
164 commitCommittedInsts
165 .name(name() + ".commitCommittedInsts")
166 .desc("The number of committed instructions")
167 .prereq(commitCommittedInsts);
168 commitSquashedInsts
169 .name(name() + ".commitSquashedInsts")
170 .desc("The number of squashed insts skipped by commit")
171 .prereq(commitSquashedInsts);
172 commitSquashEvents
173 .name(name() + ".commitSquashEvents")
174 .desc("The number of times commit is told to squash")
175 .prereq(commitSquashEvents);
176 commitNonSpecStalls
177 .name(name() + ".commitNonSpecStalls")
178 .desc("The number of times commit has been forced to stall to "
179 "communicate backwards")
180 .prereq(commitNonSpecStalls);
181 branchMispredicts
182 .name(name() + ".branchMispredicts")
183 .desc("The number of times a branch was mispredicted")
184 .prereq(branchMispredicts);
185 numCommittedDist
186 .init(0,commitWidth,1)
187 .name(name() + ".COM:committed_per_cycle")
188 .desc("Number of insts commited each cycle")
189 .flags(Stats::pdf)
190 ;
191
192 statComInst
193 .init(cpu->numThreads)
194 .name(name() + ".COM:count")
195 .desc("Number of instructions committed")
196 .flags(total)
197 ;
198
199 statComSwp
200 .init(cpu->numThreads)
201 .name(name() + ".COM:swp_count")
202 .desc("Number of s/w prefetches committed")
203 .flags(total)
204 ;
205
206 statComRefs
207 .init(cpu->numThreads)
208 .name(name() + ".COM:refs")
209 .desc("Number of memory references committed")
210 .flags(total)
211 ;
212
213 statComLoads
214 .init(cpu->numThreads)
215 .name(name() + ".COM:loads")
216 .desc("Number of loads committed")
217 .flags(total)
218 ;
219
220 statComMembars
221 .init(cpu->numThreads)
222 .name(name() + ".COM:membars")
223 .desc("Number of memory barriers committed")
224 .flags(total)
225 ;
226
227 statComBranches
228 .init(cpu->numThreads)
229 .name(name() + ".COM:branches")
230 .desc("Number of branches committed")
231 .flags(total)
232 ;
233
234 statComFloating
235 .init(cpu->numThreads)
236 .name(name() + ".COM:fp_insts")
237 .desc("Number of committed floating point instructions.")
238 .flags(total)
239 ;
240
241 statComInteger
242 .init(cpu->numThreads)
243 .name(name()+".COM:int_insts")
244 .desc("Number of committed integer instructions.")
245 .flags(total)
246 ;
247
248 statComFunctionCalls
249 .init(cpu->numThreads)
250 .name(name()+".COM:function_calls")
251 .desc("Number of function calls committed.")
252 .flags(total)
253 ;
254
255 commitEligible
256 .init(cpu->numThreads)
257 .name(name() + ".COM:bw_limited")
258 .desc("number of insts not committed due to BW limits")
259 .flags(total)
260 ;
261
262 commitEligibleSamples
263 .name(name() + ".COM:bw_lim_events")
264 .desc("number cycles where commit BW limit reached")
265 ;
266}
267
268template <class Impl>
269void
270DefaultCommit<Impl>::setThreads(std::vector<Thread *> &threads)
271{
272 thread = threads;
273}
274
275template <class Impl>
276void
277DefaultCommit<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
278{
279 timeBuffer = tb_ptr;
280
281 // Setup wire to send information back to IEW.
282 toIEW = timeBuffer->getWire(0);
283
284 // Setup wire to read data from IEW (for the ROB).
285 robInfoFromIEW = timeBuffer->getWire(-iewToCommitDelay);
286}
287
288template <class Impl>
289void
290DefaultCommit<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
291{
292 fetchQueue = fq_ptr;
293
294 // Setup wire to get instructions from rename (for the ROB).
295 fromFetch = fetchQueue->getWire(-fetchToCommitDelay);
296}
297
298template <class Impl>
299void
300DefaultCommit<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
301{
302 renameQueue = rq_ptr;
303
304 // Setup wire to get instructions from rename (for the ROB).
305 fromRename = renameQueue->getWire(-renameToROBDelay);
306}
307
308template <class Impl>
309void
310DefaultCommit<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
311{
312 iewQueue = iq_ptr;
313
314 // Setup wire to get instructions from IEW.
315 fromIEW = iewQueue->getWire(-iewToCommitDelay);
316}
317
318template <class Impl>
319void
320DefaultCommit<Impl>::setIEWStage(IEW *iew_stage)
321{
322 iewStage = iew_stage;
323}
324
325template<class Impl>
326void
327DefaultCommit<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
328{
329 activeThreads = at_ptr;
330}
331
332template <class Impl>
333void
334DefaultCommit<Impl>::setRenameMap(RenameMap rm_ptr[])
335{
336 for (ThreadID tid = 0; tid < numThreads; tid++)
337 renameMap[tid] = &rm_ptr[tid];
338}
339
340template <class Impl>
341void
342DefaultCommit<Impl>::setROB(ROB *rob_ptr)
343{
344 rob = rob_ptr;
345}
346
347template <class Impl>
348void
349DefaultCommit<Impl>::initStage()
350{
351 rob->setActiveThreads(activeThreads);
352 rob->resetEntries();
353
354 // Broadcast the number of free entries.
355 for (ThreadID tid = 0; tid < numThreads; tid++) {
356 toIEW->commitInfo[tid].usedROB = true;
357 toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
358 toIEW->commitInfo[tid].emptyROB = true;
359 }
360
361 // Commit must broadcast the number of free entries it has at the
362 // start of the simulation, so it starts as active.
363 cpu->activateStage(O3CPU::CommitIdx);
364
365 cpu->activityThisCycle();
366 trapLatency = cpu->ticks(trapLatency);
367}
368
369template <class Impl>
370bool
371DefaultCommit<Impl>::drain()
372{
373 drainPending = true;
374
375 return false;
376}
377
378template <class Impl>
379void
380DefaultCommit<Impl>::switchOut()
381{
382 switchedOut = true;
383 drainPending = false;
384 rob->switchOut();
385}
386
387template <class Impl>
388void
389DefaultCommit<Impl>::resume()
390{
391 drainPending = false;
392}
393
394template <class Impl>
395void
396DefaultCommit<Impl>::takeOverFrom()
397{
398 switchedOut = false;
399 _status = Active;
400 _nextStatus = Inactive;
401 for (ThreadID tid = 0; tid < numThreads; tid++) {
402 commitStatus[tid] = Idle;
403 changedROBNumEntries[tid] = false;
404 trapSquash[tid] = false;
405 tcSquash[tid] = false;
406 }
407 squashCounter = 0;
408 rob->takeOverFrom();
409}
410
411template <class Impl>
412void
413DefaultCommit<Impl>::updateStatus()
414{
415 // reset ROB changed variable
416 list<ThreadID>::iterator threads = activeThreads->begin();
417 list<ThreadID>::iterator end = activeThreads->end();
418
419 while (threads != end) {
420 ThreadID tid = *threads++;
421
422 changedROBNumEntries[tid] = false;
423
424 // Also check if any of the threads has a trap pending
425 if (commitStatus[tid] == TrapPending ||
426 commitStatus[tid] == FetchTrapPending) {
427 _nextStatus = Active;
428 }
429 }
430
431 if (_nextStatus == Inactive && _status == Active) {
432 DPRINTF(Activity, "Deactivating stage.\n");
433 cpu->deactivateStage(O3CPU::CommitIdx);
434 } else if (_nextStatus == Active && _status == Inactive) {
435 DPRINTF(Activity, "Activating stage.\n");
436 cpu->activateStage(O3CPU::CommitIdx);
437 }
438
439 _status = _nextStatus;
440}
441
442template <class Impl>
443void
444DefaultCommit<Impl>::setNextStatus()
445{
446 int squashes = 0;
447
448 list<ThreadID>::iterator threads = activeThreads->begin();
449 list<ThreadID>::iterator end = activeThreads->end();
450
451 while (threads != end) {
452 ThreadID tid = *threads++;
453
454 if (commitStatus[tid] == ROBSquashing) {
455 squashes++;
456 }
457 }
458
459 squashCounter = squashes;
460
461 // If commit is currently squashing, then it will have activity for the
462 // next cycle. Set its next status as active.
463 if (squashCounter) {
464 _nextStatus = Active;
465 }
466}
467
468template <class Impl>
469bool
470DefaultCommit<Impl>::changedROBEntries()
471{
472 list<ThreadID>::iterator threads = activeThreads->begin();
473 list<ThreadID>::iterator end = activeThreads->end();
474
475 while (threads != end) {
476 ThreadID tid = *threads++;
477
478 if (changedROBNumEntries[tid]) {
479 return true;
480 }
481 }
482
483 return false;
484}
485
486template <class Impl>
487size_t
488DefaultCommit<Impl>::numROBFreeEntries(ThreadID tid)
489{
490 return rob->numFreeEntries(tid);
491}
492
493template <class Impl>
494void
495DefaultCommit<Impl>::generateTrapEvent(ThreadID tid)
496{
497 DPRINTF(Commit, "Generating trap event for [tid:%i]\n", tid);
498
499 TrapEvent *trap = new TrapEvent(this, tid);
500
501 cpu->schedule(trap, curTick() + trapLatency);
502 trapInFlight[tid] = true;
503}
504
505template <class Impl>
506void
507DefaultCommit<Impl>::generateTCEvent(ThreadID tid)
508{
509 assert(!trapInFlight[tid]);
510 DPRINTF(Commit, "Generating TC squash event for [tid:%i]\n", tid);
511
512 tcSquash[tid] = true;
513}
514
515template <class Impl>
516void
517DefaultCommit<Impl>::squashAll(ThreadID tid)
518{
519 // If we want to include the squashing instruction in the squash,
520 // then use one older sequence number.
521 // Hopefully this doesn't mess things up. Basically I want to squash
522 // all instructions of this thread.
523 InstSeqNum squashed_inst = rob->isEmpty() ?
524 lastCommitedSeqNum[tid] : rob->readHeadInst(tid)->seqNum - 1;
525
526 // All younger instructions will be squashed. Set the sequence
527 // number as the youngest instruction in the ROB (0 in this case.
528 // Hopefully nothing breaks.)
529 youngestSeqNum[tid] = lastCommitedSeqNum[tid];
530
531 rob->squash(squashed_inst, tid);
532 changedROBNumEntries[tid] = true;
533
534 // Send back the sequence number of the squashed instruction.
535 toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
536
537 // Send back the squash signal to tell stages that they should
538 // squash.
539 toIEW->commitInfo[tid].squash = true;
540
541 // Send back the rob squashing signal so other stages know that
542 // the ROB is in the process of squashing.
543 toIEW->commitInfo[tid].robSquashing = true;
544
545 toIEW->commitInfo[tid].mispredictInst = NULL;
546 toIEW->commitInfo[tid].squashInst = NULL;
547
548 toIEW->commitInfo[tid].pc = pc[tid];
549}
550
551template <class Impl>
552void
553DefaultCommit<Impl>::squashFromTrap(ThreadID tid)
554{
555 squashAll(tid);
556
557 DPRINTF(Commit, "Squashing from trap, restarting at PC %s\n", pc[tid]);
558
559 thread[tid]->trapPending = false;
560 thread[tid]->inSyscall = false;
561 trapInFlight[tid] = false;
562
563 trapSquash[tid] = false;
564
565 commitStatus[tid] = ROBSquashing;
566 cpu->activityThisCycle();
567}
568
569template <class Impl>
570void
571DefaultCommit<Impl>::squashFromTC(ThreadID tid)
572{
573 squashAll(tid);
574
575 DPRINTF(Commit, "Squashing from TC, restarting at PC %s\n", pc[tid]);
576
577 thread[tid]->inSyscall = false;
578 assert(!thread[tid]->trapPending);
579
580 commitStatus[tid] = ROBSquashing;
581 cpu->activityThisCycle();
582
583 tcSquash[tid] = false;
584}
585
586template <class Impl>
587void
588DefaultCommit<Impl>::squashAfter(ThreadID tid, DynInstPtr &head_inst,
589 uint64_t squash_after_seq_num)
590{
591 youngestSeqNum[tid] = squash_after_seq_num;
592
593 rob->squash(squash_after_seq_num, tid);
594 changedROBNumEntries[tid] = true;
595
596 // Send back the sequence number of the squashed instruction.
597 toIEW->commitInfo[tid].doneSeqNum = squash_after_seq_num;
598
599 toIEW->commitInfo[tid].squashInst = head_inst;
600 // Send back the squash signal to tell stages that they should squash.
601 toIEW->commitInfo[tid].squash = true;
602
603 // Send back the rob squashing signal so other stages know that
604 // the ROB is in the process of squashing.
605 toIEW->commitInfo[tid].robSquashing = true;
606
607 toIEW->commitInfo[tid].mispredictInst = NULL;
608
609 toIEW->commitInfo[tid].pc = pc[tid];
610 DPRINTF(Commit, "Executing squash after for [tid:%i] inst [sn:%lli]\n",
611 tid, squash_after_seq_num);
612 commitStatus[tid] = ROBSquashing;
613}
614
615template <class Impl>
616void
617DefaultCommit<Impl>::tick()
618{
619 wroteToTimeBuffer = false;
620 _nextStatus = Inactive;
621
622 if (drainPending && rob->isEmpty() && !iewStage->hasStoresToWB()) {
623 cpu->signalDrained();
624 drainPending = false;
625 return;
626 }
627
628 if (activeThreads->empty())
629 return;
630
631 list<ThreadID>::iterator threads = activeThreads->begin();
632 list<ThreadID>::iterator end = activeThreads->end();
633
634 // Check if any of the threads are done squashing. Change the
635 // status if they are done.
636 while (threads != end) {
637 ThreadID tid = *threads++;
638
639 // Clear the bit saying if the thread has committed stores
640 // this cycle.
641 committedStores[tid] = false;
642
643 if (commitStatus[tid] == ROBSquashing) {
644
645 if (rob->isDoneSquashing(tid)) {
646 commitStatus[tid] = Running;
647 } else {
648 DPRINTF(Commit,"[tid:%u]: Still Squashing, cannot commit any"
649 " insts this cycle.\n", tid);
650 rob->doSquash(tid);
651 toIEW->commitInfo[tid].robSquashing = true;
652 wroteToTimeBuffer = true;
653 }
654 }
655 }
656
657 commit();
658
659 markCompletedInsts();
660
661 threads = activeThreads->begin();
662
663 while (threads != end) {
664 ThreadID tid = *threads++;
665
666 if (!rob->isEmpty(tid) && rob->readHeadInst(tid)->readyToCommit()) {
667 // The ROB has more instructions it can commit. Its next status
668 // will be active.
669 _nextStatus = Active;
670
671 DynInstPtr inst = rob->readHeadInst(tid);
672
673 DPRINTF(Commit,"[tid:%i]: Instruction [sn:%lli] PC %s is head of"
674 " ROB and ready to commit\n",
675 tid, inst->seqNum, inst->pcState());
676
677 } else if (!rob->isEmpty(tid)) {
678 DynInstPtr inst = rob->readHeadInst(tid);
679
680 DPRINTF(Commit,"[tid:%i]: Can't commit, Instruction [sn:%lli] PC "
681 "%s is head of ROB and not ready\n",
682 tid, inst->seqNum, inst->pcState());
683 }
684
685 DPRINTF(Commit, "[tid:%i]: ROB has %d insts & %d free entries.\n",
686 tid, rob->countInsts(tid), rob->numFreeEntries(tid));
687 }
688
689
690 if (wroteToTimeBuffer) {
691 DPRINTF(Activity, "Activity This Cycle.\n");
692 cpu->activityThisCycle();
693 }
694
695 updateStatus();
696}
697
698#if FULL_SYSTEM
699template <class Impl>
700void
701DefaultCommit<Impl>::handleInterrupt()
702{
703 // Verify that we still have an interrupt to handle
704 if (!cpu->checkInterrupts(cpu->tcBase(0))) {
705 DPRINTF(Commit, "Pending interrupt is cleared by master before "
706 "it got handled. Restart fetching from the orig path.\n");
707 toIEW->commitInfo[0].clearInterrupt = true;
708 interrupt = NoFault;
709 return;
710 }
711
712 // Wait until the ROB is empty and all stores have drained in
713 // order to enter the interrupt.
714 if (rob->isEmpty() && !iewStage->hasStoresToWB()) {
715 // Squash or record that I need to squash this cycle if
716 // an interrupt needed to be handled.
717 DPRINTF(Commit, "Interrupt detected.\n");
718
719 // Clear the interrupt now that it's going to be handled
720 toIEW->commitInfo[0].clearInterrupt = true;
721
722 assert(!thread[0]->inSyscall);
723 thread[0]->inSyscall = true;
724
725 // CPU will handle interrupt.
726 cpu->processInterrupts(interrupt);
727
728 thread[0]->inSyscall = false;
729
730 commitStatus[0] = TrapPending;
731
732 // Generate trap squash event.
733 generateTrapEvent(0);
734
735 interrupt = NoFault;
736 } else {
737 DPRINTF(Commit, "Interrupt pending, waiting for ROB to empty.\n");
738 }
739}
740
741template <class Impl>
742void
743DefaultCommit<Impl>::propagateInterrupt()
744{
745 if (commitStatus[0] == TrapPending || interrupt || trapSquash[0] ||
746 tcSquash[0])
747 return;
748
749 // Process interrupts if interrupts are enabled, not in PAL
750 // mode, and no other traps or external squashes are currently
751 // pending.
752 // @todo: Allow other threads to handle interrupts.
753
754 // Get any interrupt that happened
755 interrupt = cpu->getInterrupts();
756
757 // Tell fetch that there is an interrupt pending. This
758 // will make fetch wait until it sees a non PAL-mode PC,
759 // at which point it stops fetching instructions.
760 if (interrupt != NoFault)
761 toIEW->commitInfo[0].interruptPending = true;
762}
763
764#endif // FULL_SYSTEM
765
766template <class Impl>
767void
768DefaultCommit<Impl>::commit()
769{
770
771#if FULL_SYSTEM
772 // Check for any interrupt that we've already squashed for and start processing it.
773 if (interrupt != NoFault)
774 handleInterrupt();
775
776 // Check if we have a interrupt and get read to handle it
777 if (cpu->checkInterrupts(cpu->tcBase(0)))
778 propagateInterrupt();
779#endif // FULL_SYSTEM
780
781 ////////////////////////////////////
782 // Check for any possible squashes, handle them first
783 ////////////////////////////////////
784 list<ThreadID>::iterator threads = activeThreads->begin();
785 list<ThreadID>::iterator end = activeThreads->end();
786
787 while (threads != end) {
788 ThreadID tid = *threads++;
789
790 // Not sure which one takes priority. I think if we have
791 // both, that's a bad sign.
792 if (trapSquash[tid] == true) {
793 assert(!tcSquash[tid]);
794 squashFromTrap(tid);
795 } else if (tcSquash[tid] == true) {
796 assert(commitStatus[tid] != TrapPending);
797 squashFromTC(tid);
798 }
799
800 // Squashed sequence number must be older than youngest valid
801 // instruction in the ROB. This prevents squashes from younger
802 // instructions overriding squashes from older instructions.
803 if (fromIEW->squash[tid] &&
804 commitStatus[tid] != TrapPending &&
805 fromIEW->squashedSeqNum[tid] <= youngestSeqNum[tid]) {
806
807 if (fromIEW->mispredictInst[tid]) {
808 DPRINTF(Commit,
809 "[tid:%i]: Squashing due to branch mispred PC:%#x [sn:%i]\n",
810 tid,
811 fromIEW->mispredictInst[tid]->instAddr(),
812 fromIEW->squashedSeqNum[tid]);
813 } else {
814 DPRINTF(Commit,
815 "[tid:%i]: Squashing due to order violation [sn:%i]\n",
816 tid, fromIEW->squashedSeqNum[tid]);
817 }
818
819 DPRINTF(Commit, "[tid:%i]: Redirecting to PC %#x\n",
820 tid,
821 fromIEW->pc[tid].nextInstAddr());
822
823 commitStatus[tid] = ROBSquashing;
824
825 // If we want to include the squashing instruction in the squash,
826 // then use one older sequence number.
827 InstSeqNum squashed_inst = fromIEW->squashedSeqNum[tid];
828
829 if (fromIEW->includeSquashInst[tid] == true) {
830 squashed_inst--;
831 }
832
833 // All younger instructions will be squashed. Set the sequence
834 // number as the youngest instruction in the ROB.
835 youngestSeqNum[tid] = squashed_inst;
836
837 rob->squash(squashed_inst, tid);
838 changedROBNumEntries[tid] = true;
839
840 toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
841
842 toIEW->commitInfo[tid].squash = true;
843
844 // Send back the rob squashing signal so other stages know that
845 // the ROB is in the process of squashing.
846 toIEW->commitInfo[tid].robSquashing = true;
847
848 toIEW->commitInfo[tid].mispredictInst =
849 fromIEW->mispredictInst[tid];
850 toIEW->commitInfo[tid].branchTaken =
851 fromIEW->branchTaken[tid];
852 toIEW->commitInfo[tid].squashInst = NULL;
853
854 toIEW->commitInfo[tid].pc = fromIEW->pc[tid];
855
856 if (toIEW->commitInfo[tid].mispredictInst) {
857 ++branchMispredicts;
858 }
859 }
860
861 }
862
863 setNextStatus();
864
865 if (squashCounter != numThreads) {
866 // If we're not currently squashing, then get instructions.
867 getInsts();
868
869 // Try to commit any instructions.
870 commitInsts();
871 }
872
873 //Check for any activity
874 threads = activeThreads->begin();
875
876 while (threads != end) {
877 ThreadID tid = *threads++;
878
879 if (changedROBNumEntries[tid]) {
880 toIEW->commitInfo[tid].usedROB = true;
881 toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
882
883 wroteToTimeBuffer = true;
884 changedROBNumEntries[tid] = false;
885 if (rob->isEmpty(tid))
886 checkEmptyROB[tid] = true;
887 }
888
889 // ROB is only considered "empty" for previous stages if: a)
890 // ROB is empty, b) there are no outstanding stores, c) IEW
891 // stage has received any information regarding stores that
892 // committed.
893 // c) is checked by making sure to not consider the ROB empty
894 // on the same cycle as when stores have been committed.
895 // @todo: Make this handle multi-cycle communication between
896 // commit and IEW.
897 if (checkEmptyROB[tid] && rob->isEmpty(tid) &&
898 !iewStage->hasStoresToWB(tid) && !committedStores[tid]) {
899 checkEmptyROB[tid] = false;
900 toIEW->commitInfo[tid].usedROB = true;
901 toIEW->commitInfo[tid].emptyROB = true;
902 toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
903 wroteToTimeBuffer = true;
904 }
905
906 }
907}
908
909template <class Impl>
910void
911DefaultCommit<Impl>::commitInsts()
912{
913 ////////////////////////////////////
914 // Handle commit
915 // Note that commit will be handled prior to putting new
916 // instructions in the ROB so that the ROB only tries to commit
917 // instructions it has in this current cycle, and not instructions
918 // it is writing in during this cycle. Can't commit and squash
919 // things at the same time...
920 ////////////////////////////////////
921
922 DPRINTF(Commit, "Trying to commit instructions in the ROB.\n");
923
924 unsigned num_committed = 0;
925
926 DynInstPtr head_inst;
927
928 // Commit as many instructions as possible until the commit bandwidth
929 // limit is reached, or it becomes impossible to commit any more.
930 while (num_committed < commitWidth) {
931 int commit_thread = getCommittingThread();
932
933 if (commit_thread == -1 || !rob->isHeadReady(commit_thread))
934 break;
935
936 head_inst = rob->readHeadInst(commit_thread);
937
938 ThreadID tid = head_inst->threadNumber;
939
940 assert(tid == commit_thread);
941
942 DPRINTF(Commit, "Trying to commit head instruction, [sn:%i] [tid:%i]\n",
943 head_inst->seqNum, tid);
944
945 // If the head instruction is squashed, it is ready to retire
946 // (be removed from the ROB) at any time.
947 if (head_inst->isSquashed()) {
948
949 DPRINTF(Commit, "Retiring squashed instruction from "
950 "ROB.\n");
951
952 rob->retireHead(commit_thread);
953
954 ++commitSquashedInsts;
955
956 // Record that the number of ROB entries has changed.
957 changedROBNumEntries[tid] = true;
958 } else {
959 pc[tid] = head_inst->pcState();
960
961 // Increment the total number of non-speculative instructions
962 // executed.
963 // Hack for now: it really shouldn't happen until after the
964 // commit is deemed to be successful, but this count is needed
965 // for syscalls.
966 thread[tid]->funcExeInst++;
967
968 // Try to commit the head instruction.
969 bool commit_success = commitHead(head_inst, num_committed);
970
971 if (commit_success) {
972 ++num_committed;
973
974 changedROBNumEntries[tid] = true;
975
976 // Set the doneSeqNum to the youngest committed instruction.
977 toIEW->commitInfo[tid].doneSeqNum = head_inst->seqNum;
978
979 ++commitCommittedInsts;
980
981 // To match the old model, don't count nops and instruction
982 // prefetches towards the total commit count.
983 if (!head_inst->isNop() && !head_inst->isInstPrefetch()) {
984 cpu->instDone(tid);
985 }
986
987 // Updates misc. registers.
988 head_inst->updateMiscRegs();
989
990 TheISA::advancePC(pc[tid], head_inst->staticInst);
991
992 // Keep track of the last sequence number commited
993 lastCommitedSeqNum[tid] = head_inst->seqNum;
994
995 // If this is an instruction that doesn't play nicely with
996 // others squash everything and restart fetch
997 if (head_inst->isSquashAfter())
998 squashAfter(tid, head_inst, head_inst->seqNum);
999
1000 int count = 0;
1001 Addr oldpc;
1002 // Debug statement. Checks to make sure we're not
1003 // currently updating state while handling PC events.
1004 assert(!thread[tid]->inSyscall && !thread[tid]->trapPending);
1005 do {
1006 oldpc = pc[tid].instAddr();
1007 cpu->system->pcEventQueue.service(thread[tid]->getTC());
1008 count++;
1009 } while (oldpc != pc[tid].instAddr());
1010 if (count > 1) {
1011 DPRINTF(Commit,
1012 "PC skip function event, stopping commit\n");
1013 break;
1014 }
1015 } else {
1016 DPRINTF(Commit, "Unable to commit head instruction PC:%s "
1017 "[tid:%i] [sn:%i].\n",
1018 head_inst->pcState(), tid ,head_inst->seqNum);
1019 break;
1020 }
1021 }
1022 }
1023
1024 DPRINTF(CommitRate, "%i\n", num_committed);
1025 numCommittedDist.sample(num_committed);
1026
1027 if (num_committed == commitWidth) {
1028 commitEligibleSamples++;
1029 }
1030}
1031
1032template <class Impl>
1033bool
1034DefaultCommit<Impl>::commitHead(DynInstPtr &head_inst, unsigned inst_num)
1035{
1036 assert(head_inst);
1037
1038 ThreadID tid = head_inst->threadNumber;
1039
1040 // If the instruction is not executed yet, then it will need extra
1041 // handling. Signal backwards that it should be executed.
1042 if (!head_inst->isExecuted()) {
1043 // Keep this number correct. We have not yet actually executed
1044 // and committed this instruction.
1045 thread[tid]->funcExeInst--;
1046
1047 if (head_inst->isNonSpeculative() ||
1048 head_inst->isStoreConditional() ||
1049 head_inst->isMemBarrier() ||
1050 head_inst->isWriteBarrier()) {
1051
1052 DPRINTF(Commit, "Encountered a barrier or non-speculative "
1053 "instruction [sn:%lli] at the head of the ROB, PC %s.\n",
1054 head_inst->seqNum, head_inst->pcState());
1055
1056 if (inst_num > 0 || iewStage->hasStoresToWB(tid)) {
1057 DPRINTF(Commit, "Waiting for all stores to writeback.\n");
1058 return false;
1059 }
1060
1061 toIEW->commitInfo[tid].nonSpecSeqNum = head_inst->seqNum;
1062
1063 // Change the instruction so it won't try to commit again until
1064 // it is executed.
1065 head_inst->clearCanCommit();
1066
1067 ++commitNonSpecStalls;
1068
1069 return false;
1070 } else if (head_inst->isLoad()) {
1071 if (inst_num > 0 || iewStage->hasStoresToWB(tid)) {
1072 DPRINTF(Commit, "Waiting for all stores to writeback.\n");
1073 return false;
1074 }
1075
1076 assert(head_inst->uncacheable());
1077 DPRINTF(Commit, "[sn:%lli]: Uncached load, PC %s.\n",
1078 head_inst->seqNum, head_inst->pcState());
1079
1080 // Send back the non-speculative instruction's sequence
1081 // number. Tell the lsq to re-execute the load.
1082 toIEW->commitInfo[tid].nonSpecSeqNum = head_inst->seqNum;
1083 toIEW->commitInfo[tid].uncached = true;
1084 toIEW->commitInfo[tid].uncachedLoad = head_inst;
1085
1086 head_inst->clearCanCommit();
1087
1088 return false;
1089 } else {
1090 panic("Trying to commit un-executed instruction "
1091 "of unknown type!\n");
1092 }
1093 }
1094
1095 if (head_inst->isThreadSync()) {
1096 // Not handled for now.
1097 panic("Thread sync instructions are not handled yet.\n");
1098 }
1099
1100 // Check if the instruction caused a fault. If so, trap.
1101 Fault inst_fault = head_inst->getFault();
1102
1103 // Stores mark themselves as completed.
1104 if (!head_inst->isStore() && inst_fault == NoFault) {
1105 head_inst->setCompleted();
1106 }
1107
1108#if USE_CHECKER
1109 // Use checker prior to updating anything due to traps or PC
1110 // based events.
1111 if (cpu->checker) {
1112 cpu->checker->verify(head_inst);
1113 }
1114#endif
1115
1116 if (inst_fault != NoFault) {
1117 DPRINTF(Commit, "Inst [sn:%lli] PC %s has a fault\n",
1118 head_inst->seqNum, head_inst->pcState());
1119
1120 if (iewStage->hasStoresToWB(tid) || inst_num > 0) {
1121 DPRINTF(Commit, "Stores outstanding, fault must wait.\n");
1122 return false;
1123 }
1124
1125 head_inst->setCompleted();
1126
1127#if USE_CHECKER
1128 if (cpu->checker && head_inst->isStore()) {
1129 cpu->checker->verify(head_inst);
1130 }
1131#endif
1132
1133 assert(!thread[tid]->inSyscall);
1134
1135 // Mark that we're in state update mode so that the trap's
1136 // execution doesn't generate extra squashes.
1137 thread[tid]->inSyscall = true;
1138
1139 // Execute the trap. Although it's slightly unrealistic in
1140 // terms of timing (as it doesn't wait for the full timing of
1141 // the trap event to complete before updating state), it's
1142 // needed to update the state as soon as possible. This
1143 // prevents external agents from changing any specific state
1144 // that the trap need.
1145 cpu->trap(inst_fault, tid, head_inst->staticInst);
1146
1147 // Exit state update mode to avoid accidental updating.
1148 thread[tid]->inSyscall = false;
1149
1150 commitStatus[tid] = TrapPending;
1151
1152 DPRINTF(Commit, "Committing instruction with fault [sn:%lli]\n",
1153 head_inst->seqNum);
1154 if (head_inst->traceData) {
1155 if (DTRACE(ExecFaulting)) {
1156 head_inst->traceData->setFetchSeq(head_inst->seqNum);
1157 head_inst->traceData->setCPSeq(thread[tid]->numInst);
1158 head_inst->traceData->dump();
1159 }
1160 delete head_inst->traceData;
1161 head_inst->traceData = NULL;
1162 }
1163
1164 // Generate trap squash event.
1165 generateTrapEvent(tid);
1166 return false;
1167 }
1168
1169 updateComInstStats(head_inst);
1170
1171#if FULL_SYSTEM
1172 if (thread[tid]->profile) {
1173 thread[tid]->profilePC = head_inst->instAddr();
1174 ProfileNode *node = thread[tid]->profile->consume(thread[tid]->getTC(),
1175 head_inst->staticInst);
1176
1177 if (node)
1178 thread[tid]->profileNode = node;
1179 }
1180 if (CPA::available()) {
1181 if (head_inst->isControl()) {
1182 ThreadContext *tc = thread[tid]->getTC();
1183 CPA::cpa()->swAutoBegin(tc, head_inst->nextInstAddr());
1184 }
1185 }
1186#endif
1187 DPRINTF(Commit, "Committing instruction with [sn:%lli]\n",
1188 head_inst->seqNum);
1189 if (head_inst->traceData) {
1190 head_inst->traceData->setFetchSeq(head_inst->seqNum);
1191 head_inst->traceData->setCPSeq(thread[tid]->numInst);
1192 head_inst->traceData->dump();
1193 delete head_inst->traceData;
1194 head_inst->traceData = NULL;
1195 }
1196
1197 // Update the commit rename map
1198 for (int i = 0; i < head_inst->numDestRegs(); i++) {
1199 renameMap[tid]->setEntry(head_inst->flattenedDestRegIdx(i),
1200 head_inst->renamedDestRegIdx(i));
1201 }
1202
1203 // Finally clear the head ROB entry.
1204 rob->retireHead(tid);
1205
1206 // If this was a store, record it for this cycle.
1207 if (head_inst->isStore())
1208 committedStores[tid] = true;
1209
1210 // Return true to indicate that we have committed an instruction.
1211 return true;
1212}
1213
1214template <class Impl>
1215void
1216DefaultCommit<Impl>::getInsts()
1217{
1218 DPRINTF(Commit, "Getting instructions from Rename stage.\n");
1219
1220 // Read any renamed instructions and place them into the ROB.
1221 int insts_to_process = std::min((int)renameWidth, fromRename->size);
1222
1223 for (int inst_num = 0; inst_num < insts_to_process; ++inst_num) {
1224 DynInstPtr inst;
1225
1226 inst = fromRename->insts[inst_num];
1227 ThreadID tid = inst->threadNumber;
1228
1229 if (!inst->isSquashed() &&
1230 commitStatus[tid] != ROBSquashing &&
1231 commitStatus[tid] != TrapPending) {
1232 changedROBNumEntries[tid] = true;
1233
1234 DPRINTF(Commit, "Inserting PC %s [sn:%i] [tid:%i] into ROB.\n",
1235 inst->pcState(), inst->seqNum, tid);
1236
1237 rob->insertInst(inst);
1238
1239 assert(rob->getThreadEntries(tid) <= rob->getMaxEntries(tid));
1240
1241 youngestSeqNum[tid] = inst->seqNum;
1242 } else {
1243 DPRINTF(Commit, "Instruction PC %s [sn:%i] [tid:%i] was "
1244 "squashed, skipping.\n",
1245 inst->pcState(), inst->seqNum, tid);
1246 }
1247 }
1248}
1249
1250template <class Impl>
1251void
1252DefaultCommit<Impl>::skidInsert()
1253{
1254 DPRINTF(Commit, "Attempting to any instructions from rename into "
1255 "skidBuffer.\n");
1256
1257 for (int inst_num = 0; inst_num < fromRename->size; ++inst_num) {
1258 DynInstPtr inst = fromRename->insts[inst_num];
1259
1260 if (!inst->isSquashed()) {
1261 DPRINTF(Commit, "Inserting PC %s [sn:%i] [tid:%i] into ",
1262 "skidBuffer.\n", inst->pcState(), inst->seqNum,
1263 inst->threadNumber);
1264 skidBuffer.push(inst);
1265 } else {
1266 DPRINTF(Commit, "Instruction PC %s [sn:%i] [tid:%i] was "
1267 "squashed, skipping.\n",
1268 inst->pcState(), inst->seqNum, inst->threadNumber);
1269 }
1270 }
1271}
1272
1273template <class Impl>
1274void
1275DefaultCommit<Impl>::markCompletedInsts()
1276{
1277 // Grab completed insts out of the IEW instruction queue, and mark
1278 // instructions completed within the ROB.
1279 for (int inst_num = 0;
1280 inst_num < fromIEW->size && fromIEW->insts[inst_num];
1281 ++inst_num)
1282 {
1283 if (!fromIEW->insts[inst_num]->isSquashed()) {
1284 DPRINTF(Commit, "[tid:%i]: Marking PC %s, [sn:%lli] ready "
1285 "within ROB.\n",
1286 fromIEW->insts[inst_num]->threadNumber,
1287 fromIEW->insts[inst_num]->pcState(),
1288 fromIEW->insts[inst_num]->seqNum);
1289
1290 // Mark the instruction as ready to commit.
1291 fromIEW->insts[inst_num]->setCanCommit();
1292 }
1293 }
1294}
1295
1296template <class Impl>
1297bool
1298DefaultCommit<Impl>::robDoneSquashing()
1299{
1300 list<ThreadID>::iterator threads = activeThreads->begin();
1301 list<ThreadID>::iterator end = activeThreads->end();
1302
1303 while (threads != end) {
1304 ThreadID tid = *threads++;
1305
1306 if (!rob->isDoneSquashing(tid))
1307 return false;
1308 }
1309
1310 return true;
1311}
1312
1313template <class Impl>
1314void
1315DefaultCommit<Impl>::updateComInstStats(DynInstPtr &inst)
1316{
1317 ThreadID tid = inst->threadNumber;
1318
1319 //
1320 // Pick off the software prefetches
1321 //
1322#ifdef TARGET_ALPHA
1323 if (inst->isDataPrefetch()) {
1324 statComSwp[tid]++;
1325 } else {
1326 statComInst[tid]++;
1327 }
1328#else
1329 statComInst[tid]++;
1330#endif
1331
1332 //
1333 // Control Instructions
1334 //
1335 if (inst->isControl())
1336 statComBranches[tid]++;
1337
1338 //
1339 // Memory references
1340 //
1341 if (inst->isMemRef()) {
1342 statComRefs[tid]++;
1343
1344 if (inst->isLoad()) {
1345 statComLoads[tid]++;
1346 }
1347 }
1348
1349 if (inst->isMemBarrier()) {
1350 statComMembars[tid]++;
1351 }
1352
1353 // Integer Instruction
1354 if (inst->isInteger())
1355 statComInteger[tid]++;
1356
1357 // Floating Point Instruction
1358 if (inst->isFloating())
1359 statComFloating[tid]++;
1360
1361 // Function Calls
1362 if (inst->isCall())
1363 statComFunctionCalls[tid]++;
1364
1365}
1366
1367////////////////////////////////////////
1368// //
1369// SMT COMMIT POLICY MAINTAINED HERE //
1370// //
1371////////////////////////////////////////
1372template <class Impl>
1373ThreadID
1374DefaultCommit<Impl>::getCommittingThread()
1375{
1376 if (numThreads > 1) {
1377 switch (commitPolicy) {
1378
1379 case Aggressive:
1380 //If Policy is Aggressive, commit will call
1381 //this function multiple times per
1382 //cycle
1383 return oldestReady();
1384
1385 case RoundRobin:
1386 return roundRobin();
1387
1388 case OldestReady:
1389 return oldestReady();
1390
1391 default:
1392 return InvalidThreadID;
1393 }
1394 } else {
1395 assert(!activeThreads->empty());
1396 ThreadID tid = activeThreads->front();
1397
1398 if (commitStatus[tid] == Running ||
1399 commitStatus[tid] == Idle ||
1400 commitStatus[tid] == FetchTrapPending) {
1401 return tid;
1402 } else {
1403 return InvalidThreadID;
1404 }
1405 }
1406}
1407
1408template<class Impl>
1409ThreadID
1410DefaultCommit<Impl>::roundRobin()
1411{
1412 list<ThreadID>::iterator pri_iter = priority_list.begin();
1413 list<ThreadID>::iterator end = priority_list.end();
1414
1415 while (pri_iter != end) {
1416 ThreadID tid = *pri_iter;
1417
1418 if (commitStatus[tid] == Running ||
1419 commitStatus[tid] == Idle ||
1420 commitStatus[tid] == FetchTrapPending) {
1421
1422 if (rob->isHeadReady(tid)) {
1423 priority_list.erase(pri_iter);
1424 priority_list.push_back(tid);
1425
1426 return tid;
1427 }
1428 }
1429
1430 pri_iter++;
1431 }
1432
1433 return InvalidThreadID;
1434}
1435
1436template<class Impl>
1437ThreadID
1438DefaultCommit<Impl>::oldestReady()
1439{
1440 unsigned oldest = 0;
1441 bool first = true;
1442
1443 list<ThreadID>::iterator threads = activeThreads->begin();
1444 list<ThreadID>::iterator end = activeThreads->end();
1445
1446 while (threads != end) {
1447 ThreadID tid = *threads++;
1448
1449 if (!rob->isEmpty(tid) &&
1450 (commitStatus[tid] == Running ||
1451 commitStatus[tid] == Idle ||
1452 commitStatus[tid] == FetchTrapPending)) {
1453
1454 if (rob->isHeadReady(tid)) {
1455
1456 DynInstPtr head_inst = rob->readHeadInst(tid);
1457
1458 if (first) {
1459 oldest = tid;
1460 first = false;
1461 } else if (head_inst->seqNum < oldest) {
1462 oldest = tid;
1463 }
1464 }
1465 }
1466 }
1467
1468 if (!first) {
1469 return oldest;
1470 } else {
1471 return InvalidThreadID;
1472 }
1473}