commit_impl.hh (8809:bb10807da889) commit_impl.hh (8822:e7ae13867098)
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 * Korey Sewell
42 */
43
44#include <algorithm>
45#include <string>
46
47#include "arch/utility.hh"
48#include "base/loader/symtab.hh"
49#include "base/cp_annotate.hh"
50#include "config/the_isa.hh"
51#include "config/use_checker.hh"
52#include "cpu/o3/commit.hh"
53#include "cpu/o3/thread_state.hh"
54#include "cpu/base.hh"
55#include "cpu/exetrace.hh"
56#include "cpu/timebuf.hh"
57#include "debug/Activity.hh"
58#include "debug/Commit.hh"
59#include "debug/CommitRate.hh"
60#include "debug/ExecFaulting.hh"
61#include "debug/O3PipeView.hh"
62#include "params/DerivO3CPU.hh"
63#include "sim/faults.hh"
64#include "sim/full_system.hh"
65
66#if USE_CHECKER
67#include "cpu/checker/cpu.hh"
68#endif
69
70using namespace std;
71
72template <class Impl>
73DefaultCommit<Impl>::TrapEvent::TrapEvent(DefaultCommit<Impl> *_commit,
74 ThreadID _tid)
75 : Event(CPU_Tick_Pri, AutoDelete), commit(_commit), tid(_tid)
76{
77}
78
79template <class Impl>
80void
81DefaultCommit<Impl>::TrapEvent::process()
82{
83 // This will get reset by commit if it was switched out at the
84 // time of this event processing.
85 commit->trapSquash[tid] = true;
86}
87
88template <class Impl>
89const char *
90DefaultCommit<Impl>::TrapEvent::description() const
91{
92 return "Trap";
93}
94
95template <class Impl>
96DefaultCommit<Impl>::DefaultCommit(O3CPU *_cpu, DerivO3CPUParams *params)
97 : cpu(_cpu),
98 squashCounter(0),
99 iewToCommitDelay(params->iewToCommitDelay),
100 commitToIEWDelay(params->commitToIEWDelay),
101 renameToROBDelay(params->renameToROBDelay),
102 fetchToCommitDelay(params->commitToFetchDelay),
103 renameWidth(params->renameWidth),
104 commitWidth(params->commitWidth),
105 numThreads(params->numThreads),
106 drainPending(false),
107 switchedOut(false),
108 trapLatency(params->trapLatency)
109{
110 _status = Active;
111 _nextStatus = Inactive;
112 std::string policy = params->smtCommitPolicy;
113
114 //Convert string to lowercase
115 std::transform(policy.begin(), policy.end(), policy.begin(),
116 (int(*)(int)) tolower);
117
118 //Assign commit policy
119 if (policy == "aggressive"){
120 commitPolicy = Aggressive;
121
122 DPRINTF(Commit,"Commit Policy set to Aggressive.\n");
123 } else if (policy == "roundrobin"){
124 commitPolicy = RoundRobin;
125
126 //Set-Up Priority List
127 for (ThreadID tid = 0; tid < numThreads; tid++) {
128 priority_list.push_back(tid);
129 }
130
131 DPRINTF(Commit,"Commit Policy set to Round Robin.\n");
132 } else if (policy == "oldestready"){
133 commitPolicy = OldestReady;
134
135 DPRINTF(Commit,"Commit Policy set to Oldest Ready.");
136 } else {
137 assert(0 && "Invalid SMT Commit Policy. Options Are: {Aggressive,"
138 "RoundRobin,OldestReady}");
139 }
140
141 for (ThreadID tid = 0; tid < numThreads; tid++) {
142 commitStatus[tid] = Idle;
143 changedROBNumEntries[tid] = false;
144 checkEmptyROB[tid] = false;
145 trapInFlight[tid] = false;
146 committedStores[tid] = false;
147 trapSquash[tid] = false;
148 tcSquash[tid] = false;
149 pc[tid].set(0);
150 lastCommitedSeqNum[tid] = 0;
151 }
152 interrupt = NoFault;
153}
154
155template <class Impl>
156std::string
157DefaultCommit<Impl>::name() const
158{
159 return cpu->name() + ".commit";
160}
161
162template <class Impl>
163void
164DefaultCommit<Impl>::regStats()
165{
166 using namespace Stats;
167 commitCommittedInsts
168 .name(name() + ".commitCommittedInsts")
169 .desc("The number of committed instructions")
170 .prereq(commitCommittedInsts);
171 commitSquashedInsts
172 .name(name() + ".commitSquashedInsts")
173 .desc("The number of squashed insts skipped by commit")
174 .prereq(commitSquashedInsts);
175 commitSquashEvents
176 .name(name() + ".commitSquashEvents")
177 .desc("The number of times commit is told to squash")
178 .prereq(commitSquashEvents);
179 commitNonSpecStalls
180 .name(name() + ".commitNonSpecStalls")
181 .desc("The number of times commit has been forced to stall to "
182 "communicate backwards")
183 .prereq(commitNonSpecStalls);
184 branchMispredicts
185 .name(name() + ".branchMispredicts")
186 .desc("The number of times a branch was mispredicted")
187 .prereq(branchMispredicts);
188 numCommittedDist
189 .init(0,commitWidth,1)
190 .name(name() + ".committed_per_cycle")
191 .desc("Number of insts commited each cycle")
192 .flags(Stats::pdf)
193 ;
194
195 statComInst
196 .init(cpu->numThreads)
197 .name(name() + ".count")
198 .desc("Number of instructions committed")
199 .flags(total)
200 ;
201
202 statComSwp
203 .init(cpu->numThreads)
204 .name(name() + ".swp_count")
205 .desc("Number of s/w prefetches committed")
206 .flags(total)
207 ;
208
209 statComRefs
210 .init(cpu->numThreads)
211 .name(name() + ".refs")
212 .desc("Number of memory references committed")
213 .flags(total)
214 ;
215
216 statComLoads
217 .init(cpu->numThreads)
218 .name(name() + ".loads")
219 .desc("Number of loads committed")
220 .flags(total)
221 ;
222
223 statComMembars
224 .init(cpu->numThreads)
225 .name(name() + ".membars")
226 .desc("Number of memory barriers committed")
227 .flags(total)
228 ;
229
230 statComBranches
231 .init(cpu->numThreads)
232 .name(name() + ".branches")
233 .desc("Number of branches committed")
234 .flags(total)
235 ;
236
237 statComFloating
238 .init(cpu->numThreads)
239 .name(name() + ".fp_insts")
240 .desc("Number of committed floating point instructions.")
241 .flags(total)
242 ;
243
244 statComInteger
245 .init(cpu->numThreads)
246 .name(name()+".int_insts")
247 .desc("Number of committed integer instructions.")
248 .flags(total)
249 ;
250
251 statComFunctionCalls
252 .init(cpu->numThreads)
253 .name(name()+".function_calls")
254 .desc("Number of function calls committed.")
255 .flags(total)
256 ;
257
258 commitEligible
259 .init(cpu->numThreads)
260 .name(name() + ".bw_limited")
261 .desc("number of insts not committed due to BW limits")
262 .flags(total)
263 ;
264
265 commitEligibleSamples
266 .name(name() + ".bw_lim_events")
267 .desc("number cycles where commit BW limit reached")
268 ;
269}
270
271template <class Impl>
272void
273DefaultCommit<Impl>::setThreads(std::vector<Thread *> &threads)
274{
275 thread = threads;
276}
277
278template <class Impl>
279void
280DefaultCommit<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
281{
282 timeBuffer = tb_ptr;
283
284 // Setup wire to send information back to IEW.
285 toIEW = timeBuffer->getWire(0);
286
287 // Setup wire to read data from IEW (for the ROB).
288 robInfoFromIEW = timeBuffer->getWire(-iewToCommitDelay);
289}
290
291template <class Impl>
292void
293DefaultCommit<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
294{
295 fetchQueue = fq_ptr;
296
297 // Setup wire to get instructions from rename (for the ROB).
298 fromFetch = fetchQueue->getWire(-fetchToCommitDelay);
299}
300
301template <class Impl>
302void
303DefaultCommit<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
304{
305 renameQueue = rq_ptr;
306
307 // Setup wire to get instructions from rename (for the ROB).
308 fromRename = renameQueue->getWire(-renameToROBDelay);
309}
310
311template <class Impl>
312void
313DefaultCommit<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
314{
315 iewQueue = iq_ptr;
316
317 // Setup wire to get instructions from IEW.
318 fromIEW = iewQueue->getWire(-iewToCommitDelay);
319}
320
321template <class Impl>
322void
323DefaultCommit<Impl>::setIEWStage(IEW *iew_stage)
324{
325 iewStage = iew_stage;
326}
327
328template<class Impl>
329void
330DefaultCommit<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
331{
332 activeThreads = at_ptr;
333}
334
335template <class Impl>
336void
337DefaultCommit<Impl>::setRenameMap(RenameMap rm_ptr[])
338{
339 for (ThreadID tid = 0; tid < numThreads; tid++)
340 renameMap[tid] = &rm_ptr[tid];
341}
342
343template <class Impl>
344void
345DefaultCommit<Impl>::setROB(ROB *rob_ptr)
346{
347 rob = rob_ptr;
348}
349
350template <class Impl>
351void
352DefaultCommit<Impl>::initStage()
353{
354 rob->setActiveThreads(activeThreads);
355 rob->resetEntries();
356
357 // Broadcast the number of free entries.
358 for (ThreadID tid = 0; tid < numThreads; tid++) {
359 toIEW->commitInfo[tid].usedROB = true;
360 toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
361 toIEW->commitInfo[tid].emptyROB = true;
362 }
363
364 // Commit must broadcast the number of free entries it has at the
365 // start of the simulation, so it starts as active.
366 cpu->activateStage(O3CPU::CommitIdx);
367
368 cpu->activityThisCycle();
369 trapLatency = cpu->ticks(trapLatency);
370}
371
372template <class Impl>
373bool
374DefaultCommit<Impl>::drain()
375{
376 drainPending = true;
377
378 return false;
379}
380
381template <class Impl>
382void
383DefaultCommit<Impl>::switchOut()
384{
385 switchedOut = true;
386 drainPending = false;
387 rob->switchOut();
388}
389
390template <class Impl>
391void
392DefaultCommit<Impl>::resume()
393{
394 drainPending = false;
395}
396
397template <class Impl>
398void
399DefaultCommit<Impl>::takeOverFrom()
400{
401 switchedOut = false;
402 _status = Active;
403 _nextStatus = Inactive;
404 for (ThreadID tid = 0; tid < numThreads; tid++) {
405 commitStatus[tid] = Idle;
406 changedROBNumEntries[tid] = false;
407 trapSquash[tid] = false;
408 tcSquash[tid] = false;
409 }
410 squashCounter = 0;
411 rob->takeOverFrom();
412}
413
414template <class Impl>
415void
416DefaultCommit<Impl>::updateStatus()
417{
418 // reset ROB changed variable
419 list<ThreadID>::iterator threads = activeThreads->begin();
420 list<ThreadID>::iterator end = activeThreads->end();
421
422 while (threads != end) {
423 ThreadID tid = *threads++;
424
425 changedROBNumEntries[tid] = false;
426
427 // Also check if any of the threads has a trap pending
428 if (commitStatus[tid] == TrapPending ||
429 commitStatus[tid] == FetchTrapPending) {
430 _nextStatus = Active;
431 }
432 }
433
434 if (_nextStatus == Inactive && _status == Active) {
435 DPRINTF(Activity, "Deactivating stage.\n");
436 cpu->deactivateStage(O3CPU::CommitIdx);
437 } else if (_nextStatus == Active && _status == Inactive) {
438 DPRINTF(Activity, "Activating stage.\n");
439 cpu->activateStage(O3CPU::CommitIdx);
440 }
441
442 _status = _nextStatus;
443}
444
445template <class Impl>
446void
447DefaultCommit<Impl>::setNextStatus()
448{
449 int squashes = 0;
450
451 list<ThreadID>::iterator threads = activeThreads->begin();
452 list<ThreadID>::iterator end = activeThreads->end();
453
454 while (threads != end) {
455 ThreadID tid = *threads++;
456
457 if (commitStatus[tid] == ROBSquashing) {
458 squashes++;
459 }
460 }
461
462 squashCounter = squashes;
463
464 // If commit is currently squashing, then it will have activity for the
465 // next cycle. Set its next status as active.
466 if (squashCounter) {
467 _nextStatus = Active;
468 }
469}
470
471template <class Impl>
472bool
473DefaultCommit<Impl>::changedROBEntries()
474{
475 list<ThreadID>::iterator threads = activeThreads->begin();
476 list<ThreadID>::iterator end = activeThreads->end();
477
478 while (threads != end) {
479 ThreadID tid = *threads++;
480
481 if (changedROBNumEntries[tid]) {
482 return true;
483 }
484 }
485
486 return false;
487}
488
489template <class Impl>
490size_t
491DefaultCommit<Impl>::numROBFreeEntries(ThreadID tid)
492{
493 return rob->numFreeEntries(tid);
494}
495
496template <class Impl>
497void
498DefaultCommit<Impl>::generateTrapEvent(ThreadID tid)
499{
500 DPRINTF(Commit, "Generating trap event for [tid:%i]\n", tid);
501
502 TrapEvent *trap = new TrapEvent(this, tid);
503
504 cpu->schedule(trap, curTick() + trapLatency);
505 trapInFlight[tid] = true;
506 thread[tid]->trapPending = true;
507}
508
509template <class Impl>
510void
511DefaultCommit<Impl>::generateTCEvent(ThreadID tid)
512{
513 assert(!trapInFlight[tid]);
514 DPRINTF(Commit, "Generating TC squash event for [tid:%i]\n", tid);
515
516 tcSquash[tid] = true;
517}
518
519template <class Impl>
520void
521DefaultCommit<Impl>::squashAll(ThreadID tid)
522{
523 // If we want to include the squashing instruction in the squash,
524 // then use one older sequence number.
525 // Hopefully this doesn't mess things up. Basically I want to squash
526 // all instructions of this thread.
527 InstSeqNum squashed_inst = rob->isEmpty() ?
528 lastCommitedSeqNum[tid] : rob->readHeadInst(tid)->seqNum - 1;
529
530 // All younger instructions will be squashed. Set the sequence
531 // number as the youngest instruction in the ROB (0 in this case.
532 // Hopefully nothing breaks.)
533 youngestSeqNum[tid] = lastCommitedSeqNum[tid];
534
535 rob->squash(squashed_inst, tid);
536 changedROBNumEntries[tid] = true;
537
538 // Send back the sequence number of the squashed instruction.
539 toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
540
541 // Send back the squash signal to tell stages that they should
542 // squash.
543 toIEW->commitInfo[tid].squash = true;
544
545 // Send back the rob squashing signal so other stages know that
546 // the ROB is in the process of squashing.
547 toIEW->commitInfo[tid].robSquashing = true;
548
549 toIEW->commitInfo[tid].mispredictInst = NULL;
550 toIEW->commitInfo[tid].squashInst = NULL;
551
552 toIEW->commitInfo[tid].pc = pc[tid];
553}
554
555template <class Impl>
556void
557DefaultCommit<Impl>::squashFromTrap(ThreadID tid)
558{
559 squashAll(tid);
560
561 DPRINTF(Commit, "Squashing from trap, restarting at PC %s\n", pc[tid]);
562
563 thread[tid]->trapPending = false;
564 thread[tid]->inSyscall = false;
565 trapInFlight[tid] = false;
566
567 trapSquash[tid] = false;
568
569 commitStatus[tid] = ROBSquashing;
570 cpu->activityThisCycle();
571}
572
573template <class Impl>
574void
575DefaultCommit<Impl>::squashFromTC(ThreadID tid)
576{
577 squashAll(tid);
578
579 DPRINTF(Commit, "Squashing from TC, restarting at PC %s\n", pc[tid]);
580
581 thread[tid]->inSyscall = false;
582 assert(!thread[tid]->trapPending);
583
584 commitStatus[tid] = ROBSquashing;
585 cpu->activityThisCycle();
586
587 tcSquash[tid] = false;
588}
589
590template <class Impl>
591void
592DefaultCommit<Impl>::squashAfter(ThreadID tid, DynInstPtr &head_inst,
593 uint64_t squash_after_seq_num)
594{
595 youngestSeqNum[tid] = squash_after_seq_num;
596
597 rob->squash(squash_after_seq_num, tid);
598 changedROBNumEntries[tid] = true;
599
600 // Send back the sequence number of the squashed instruction.
601 toIEW->commitInfo[tid].doneSeqNum = squash_after_seq_num;
602
603 toIEW->commitInfo[tid].squashInst = head_inst;
604 // Send back the squash signal to tell stages that they should squash.
605 toIEW->commitInfo[tid].squash = true;
606
607 // Send back the rob squashing signal so other stages know that
608 // the ROB is in the process of squashing.
609 toIEW->commitInfo[tid].robSquashing = true;
610
611 toIEW->commitInfo[tid].mispredictInst = NULL;
612
613 toIEW->commitInfo[tid].pc = pc[tid];
614 DPRINTF(Commit, "Executing squash after for [tid:%i] inst [sn:%lli]\n",
615 tid, squash_after_seq_num);
616 commitStatus[tid] = ROBSquashing;
617}
618
619template <class Impl>
620void
621DefaultCommit<Impl>::tick()
622{
623 wroteToTimeBuffer = false;
624 _nextStatus = Inactive;
625
626 if (drainPending && rob->isEmpty() && !iewStage->hasStoresToWB()) {
627 cpu->signalDrained();
628 drainPending = false;
629 return;
630 }
631
632 if (activeThreads->empty())
633 return;
634
635 list<ThreadID>::iterator threads = activeThreads->begin();
636 list<ThreadID>::iterator end = activeThreads->end();
637
638 // Check if any of the threads are done squashing. Change the
639 // status if they are done.
640 while (threads != end) {
641 ThreadID tid = *threads++;
642
643 // Clear the bit saying if the thread has committed stores
644 // this cycle.
645 committedStores[tid] = false;
646
647 if (commitStatus[tid] == ROBSquashing) {
648
649 if (rob->isDoneSquashing(tid)) {
650 commitStatus[tid] = Running;
651 } else {
652 DPRINTF(Commit,"[tid:%u]: Still Squashing, cannot commit any"
653 " insts this cycle.\n", tid);
654 rob->doSquash(tid);
655 toIEW->commitInfo[tid].robSquashing = true;
656 wroteToTimeBuffer = true;
657 }
658 }
659 }
660
661 commit();
662
663 markCompletedInsts();
664
665 threads = activeThreads->begin();
666
667 while (threads != end) {
668 ThreadID tid = *threads++;
669
670 if (!rob->isEmpty(tid) && rob->readHeadInst(tid)->readyToCommit()) {
671 // The ROB has more instructions it can commit. Its next status
672 // will be active.
673 _nextStatus = Active;
674
675 DynInstPtr inst = rob->readHeadInst(tid);
676
677 DPRINTF(Commit,"[tid:%i]: Instruction [sn:%lli] PC %s is head of"
678 " ROB and ready to commit\n",
679 tid, inst->seqNum, inst->pcState());
680
681 } else if (!rob->isEmpty(tid)) {
682 DynInstPtr inst = rob->readHeadInst(tid);
683
684 DPRINTF(Commit,"[tid:%i]: Can't commit, Instruction [sn:%lli] PC "
685 "%s is head of ROB and not ready\n",
686 tid, inst->seqNum, inst->pcState());
687 }
688
689 DPRINTF(Commit, "[tid:%i]: ROB has %d insts & %d free entries.\n",
690 tid, rob->countInsts(tid), rob->numFreeEntries(tid));
691 }
692
693
694 if (wroteToTimeBuffer) {
695 DPRINTF(Activity, "Activity This Cycle.\n");
696 cpu->activityThisCycle();
697 }
698
699 updateStatus();
700}
701
702template <class Impl>
703void
704DefaultCommit<Impl>::handleInterrupt()
705{
706 // Verify that we still have an interrupt to handle
707 if (!cpu->checkInterrupts(cpu->tcBase(0))) {
708 DPRINTF(Commit, "Pending interrupt is cleared by master before "
709 "it got handled. Restart fetching from the orig path.\n");
710 toIEW->commitInfo[0].clearInterrupt = true;
711 interrupt = NoFault;
712 return;
713 }
714
715 // Wait until all in flight instructions are finished before enterring
716 // the interrupt.
717 if (cpu->instList.empty()) {
718 // Squash or record that I need to squash this cycle if
719 // an interrupt needed to be handled.
720 DPRINTF(Commit, "Interrupt detected.\n");
721
722 // Clear the interrupt now that it's going to be handled
723 toIEW->commitInfo[0].clearInterrupt = true;
724
725 assert(!thread[0]->inSyscall);
726 thread[0]->inSyscall = true;
727
728#if USE_CHECKER
729 if (cpu->checker) {
730 cpu->checker->handlePendingInt();
731 }
732#endif
733
734 // CPU will handle interrupt.
735 cpu->processInterrupts(interrupt);
736
737 thread[0]->inSyscall = false;
738
739 commitStatus[0] = TrapPending;
740
741 // Generate trap squash event.
742 generateTrapEvent(0);
743
744 interrupt = NoFault;
745 } else {
746 DPRINTF(Commit, "Interrupt pending, waiting for ROB to empty.\n");
747 }
748}
749
750template <class Impl>
751void
752DefaultCommit<Impl>::propagateInterrupt()
753{
754 if (commitStatus[0] == TrapPending || interrupt || trapSquash[0] ||
755 tcSquash[0])
756 return;
757
758 // Process interrupts if interrupts are enabled, not in PAL
759 // mode, and no other traps or external squashes are currently
760 // pending.
761 // @todo: Allow other threads to handle interrupts.
762
763 // Get any interrupt that happened
764 interrupt = cpu->getInterrupts();
765
766 // Tell fetch that there is an interrupt pending. This
767 // will make fetch wait until it sees a non PAL-mode PC,
768 // at which point it stops fetching instructions.
769 if (interrupt != NoFault)
770 toIEW->commitInfo[0].interruptPending = true;
771}
772
773template <class Impl>
774void
775DefaultCommit<Impl>::commit()
776{
777 if (FullSystem) {
778 // Check for any interrupt that we've already squashed for and
779 // start processing it.
780 if (interrupt != NoFault)
781 handleInterrupt();
782
783 // Check if we have a interrupt and get read to handle it
784 if (cpu->checkInterrupts(cpu->tcBase(0)))
785 propagateInterrupt();
786 }
787
788 ////////////////////////////////////
789 // Check for any possible squashes, handle them first
790 ////////////////////////////////////
791 list<ThreadID>::iterator threads = activeThreads->begin();
792 list<ThreadID>::iterator end = activeThreads->end();
793
794 while (threads != end) {
795 ThreadID tid = *threads++;
796
797 // Not sure which one takes priority. I think if we have
798 // both, that's a bad sign.
799 if (trapSquash[tid] == true) {
800 assert(!tcSquash[tid]);
801 squashFromTrap(tid);
802 } else if (tcSquash[tid] == true) {
803 assert(commitStatus[tid] != TrapPending);
804 squashFromTC(tid);
805 }
806
807 // Squashed sequence number must be older than youngest valid
808 // instruction in the ROB. This prevents squashes from younger
809 // instructions overriding squashes from older instructions.
810 if (fromIEW->squash[tid] &&
811 commitStatus[tid] != TrapPending &&
812 fromIEW->squashedSeqNum[tid] <= youngestSeqNum[tid]) {
813
814 if (fromIEW->mispredictInst[tid]) {
815 DPRINTF(Commit,
816 "[tid:%i]: Squashing due to branch mispred PC:%#x [sn:%i]\n",
817 tid,
818 fromIEW->mispredictInst[tid]->instAddr(),
819 fromIEW->squashedSeqNum[tid]);
820 } else {
821 DPRINTF(Commit,
822 "[tid:%i]: Squashing due to order violation [sn:%i]\n",
823 tid, fromIEW->squashedSeqNum[tid]);
824 }
825
826 DPRINTF(Commit, "[tid:%i]: Redirecting to PC %#x\n",
827 tid,
828 fromIEW->pc[tid].nextInstAddr());
829
830 commitStatus[tid] = ROBSquashing;
831
832 // If we want to include the squashing instruction in the squash,
833 // then use one older sequence number.
834 InstSeqNum squashed_inst = fromIEW->squashedSeqNum[tid];
835
836 if (fromIEW->includeSquashInst[tid] == true) {
837 squashed_inst--;
838 }
839
840 // All younger instructions will be squashed. Set the sequence
841 // number as the youngest instruction in the ROB.
842 youngestSeqNum[tid] = squashed_inst;
843
844 rob->squash(squashed_inst, tid);
845 changedROBNumEntries[tid] = true;
846
847 toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
848
849 toIEW->commitInfo[tid].squash = true;
850
851 // Send back the rob squashing signal so other stages know that
852 // the ROB is in the process of squashing.
853 toIEW->commitInfo[tid].robSquashing = true;
854
855 toIEW->commitInfo[tid].mispredictInst =
856 fromIEW->mispredictInst[tid];
857 toIEW->commitInfo[tid].branchTaken =
858 fromIEW->branchTaken[tid];
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2004-2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 * Korey Sewell
42 */
43
44#include <algorithm>
45#include <string>
46
47#include "arch/utility.hh"
48#include "base/loader/symtab.hh"
49#include "base/cp_annotate.hh"
50#include "config/the_isa.hh"
51#include "config/use_checker.hh"
52#include "cpu/o3/commit.hh"
53#include "cpu/o3/thread_state.hh"
54#include "cpu/base.hh"
55#include "cpu/exetrace.hh"
56#include "cpu/timebuf.hh"
57#include "debug/Activity.hh"
58#include "debug/Commit.hh"
59#include "debug/CommitRate.hh"
60#include "debug/ExecFaulting.hh"
61#include "debug/O3PipeView.hh"
62#include "params/DerivO3CPU.hh"
63#include "sim/faults.hh"
64#include "sim/full_system.hh"
65
66#if USE_CHECKER
67#include "cpu/checker/cpu.hh"
68#endif
69
70using namespace std;
71
72template <class Impl>
73DefaultCommit<Impl>::TrapEvent::TrapEvent(DefaultCommit<Impl> *_commit,
74 ThreadID _tid)
75 : Event(CPU_Tick_Pri, AutoDelete), commit(_commit), tid(_tid)
76{
77}
78
79template <class Impl>
80void
81DefaultCommit<Impl>::TrapEvent::process()
82{
83 // This will get reset by commit if it was switched out at the
84 // time of this event processing.
85 commit->trapSquash[tid] = true;
86}
87
88template <class Impl>
89const char *
90DefaultCommit<Impl>::TrapEvent::description() const
91{
92 return "Trap";
93}
94
95template <class Impl>
96DefaultCommit<Impl>::DefaultCommit(O3CPU *_cpu, DerivO3CPUParams *params)
97 : cpu(_cpu),
98 squashCounter(0),
99 iewToCommitDelay(params->iewToCommitDelay),
100 commitToIEWDelay(params->commitToIEWDelay),
101 renameToROBDelay(params->renameToROBDelay),
102 fetchToCommitDelay(params->commitToFetchDelay),
103 renameWidth(params->renameWidth),
104 commitWidth(params->commitWidth),
105 numThreads(params->numThreads),
106 drainPending(false),
107 switchedOut(false),
108 trapLatency(params->trapLatency)
109{
110 _status = Active;
111 _nextStatus = Inactive;
112 std::string policy = params->smtCommitPolicy;
113
114 //Convert string to lowercase
115 std::transform(policy.begin(), policy.end(), policy.begin(),
116 (int(*)(int)) tolower);
117
118 //Assign commit policy
119 if (policy == "aggressive"){
120 commitPolicy = Aggressive;
121
122 DPRINTF(Commit,"Commit Policy set to Aggressive.\n");
123 } else if (policy == "roundrobin"){
124 commitPolicy = RoundRobin;
125
126 //Set-Up Priority List
127 for (ThreadID tid = 0; tid < numThreads; tid++) {
128 priority_list.push_back(tid);
129 }
130
131 DPRINTF(Commit,"Commit Policy set to Round Robin.\n");
132 } else if (policy == "oldestready"){
133 commitPolicy = OldestReady;
134
135 DPRINTF(Commit,"Commit Policy set to Oldest Ready.");
136 } else {
137 assert(0 && "Invalid SMT Commit Policy. Options Are: {Aggressive,"
138 "RoundRobin,OldestReady}");
139 }
140
141 for (ThreadID tid = 0; tid < numThreads; tid++) {
142 commitStatus[tid] = Idle;
143 changedROBNumEntries[tid] = false;
144 checkEmptyROB[tid] = false;
145 trapInFlight[tid] = false;
146 committedStores[tid] = false;
147 trapSquash[tid] = false;
148 tcSquash[tid] = false;
149 pc[tid].set(0);
150 lastCommitedSeqNum[tid] = 0;
151 }
152 interrupt = NoFault;
153}
154
155template <class Impl>
156std::string
157DefaultCommit<Impl>::name() const
158{
159 return cpu->name() + ".commit";
160}
161
162template <class Impl>
163void
164DefaultCommit<Impl>::regStats()
165{
166 using namespace Stats;
167 commitCommittedInsts
168 .name(name() + ".commitCommittedInsts")
169 .desc("The number of committed instructions")
170 .prereq(commitCommittedInsts);
171 commitSquashedInsts
172 .name(name() + ".commitSquashedInsts")
173 .desc("The number of squashed insts skipped by commit")
174 .prereq(commitSquashedInsts);
175 commitSquashEvents
176 .name(name() + ".commitSquashEvents")
177 .desc("The number of times commit is told to squash")
178 .prereq(commitSquashEvents);
179 commitNonSpecStalls
180 .name(name() + ".commitNonSpecStalls")
181 .desc("The number of times commit has been forced to stall to "
182 "communicate backwards")
183 .prereq(commitNonSpecStalls);
184 branchMispredicts
185 .name(name() + ".branchMispredicts")
186 .desc("The number of times a branch was mispredicted")
187 .prereq(branchMispredicts);
188 numCommittedDist
189 .init(0,commitWidth,1)
190 .name(name() + ".committed_per_cycle")
191 .desc("Number of insts commited each cycle")
192 .flags(Stats::pdf)
193 ;
194
195 statComInst
196 .init(cpu->numThreads)
197 .name(name() + ".count")
198 .desc("Number of instructions committed")
199 .flags(total)
200 ;
201
202 statComSwp
203 .init(cpu->numThreads)
204 .name(name() + ".swp_count")
205 .desc("Number of s/w prefetches committed")
206 .flags(total)
207 ;
208
209 statComRefs
210 .init(cpu->numThreads)
211 .name(name() + ".refs")
212 .desc("Number of memory references committed")
213 .flags(total)
214 ;
215
216 statComLoads
217 .init(cpu->numThreads)
218 .name(name() + ".loads")
219 .desc("Number of loads committed")
220 .flags(total)
221 ;
222
223 statComMembars
224 .init(cpu->numThreads)
225 .name(name() + ".membars")
226 .desc("Number of memory barriers committed")
227 .flags(total)
228 ;
229
230 statComBranches
231 .init(cpu->numThreads)
232 .name(name() + ".branches")
233 .desc("Number of branches committed")
234 .flags(total)
235 ;
236
237 statComFloating
238 .init(cpu->numThreads)
239 .name(name() + ".fp_insts")
240 .desc("Number of committed floating point instructions.")
241 .flags(total)
242 ;
243
244 statComInteger
245 .init(cpu->numThreads)
246 .name(name()+".int_insts")
247 .desc("Number of committed integer instructions.")
248 .flags(total)
249 ;
250
251 statComFunctionCalls
252 .init(cpu->numThreads)
253 .name(name()+".function_calls")
254 .desc("Number of function calls committed.")
255 .flags(total)
256 ;
257
258 commitEligible
259 .init(cpu->numThreads)
260 .name(name() + ".bw_limited")
261 .desc("number of insts not committed due to BW limits")
262 .flags(total)
263 ;
264
265 commitEligibleSamples
266 .name(name() + ".bw_lim_events")
267 .desc("number cycles where commit BW limit reached")
268 ;
269}
270
271template <class Impl>
272void
273DefaultCommit<Impl>::setThreads(std::vector<Thread *> &threads)
274{
275 thread = threads;
276}
277
278template <class Impl>
279void
280DefaultCommit<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
281{
282 timeBuffer = tb_ptr;
283
284 // Setup wire to send information back to IEW.
285 toIEW = timeBuffer->getWire(0);
286
287 // Setup wire to read data from IEW (for the ROB).
288 robInfoFromIEW = timeBuffer->getWire(-iewToCommitDelay);
289}
290
291template <class Impl>
292void
293DefaultCommit<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
294{
295 fetchQueue = fq_ptr;
296
297 // Setup wire to get instructions from rename (for the ROB).
298 fromFetch = fetchQueue->getWire(-fetchToCommitDelay);
299}
300
301template <class Impl>
302void
303DefaultCommit<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
304{
305 renameQueue = rq_ptr;
306
307 // Setup wire to get instructions from rename (for the ROB).
308 fromRename = renameQueue->getWire(-renameToROBDelay);
309}
310
311template <class Impl>
312void
313DefaultCommit<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
314{
315 iewQueue = iq_ptr;
316
317 // Setup wire to get instructions from IEW.
318 fromIEW = iewQueue->getWire(-iewToCommitDelay);
319}
320
321template <class Impl>
322void
323DefaultCommit<Impl>::setIEWStage(IEW *iew_stage)
324{
325 iewStage = iew_stage;
326}
327
328template<class Impl>
329void
330DefaultCommit<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
331{
332 activeThreads = at_ptr;
333}
334
335template <class Impl>
336void
337DefaultCommit<Impl>::setRenameMap(RenameMap rm_ptr[])
338{
339 for (ThreadID tid = 0; tid < numThreads; tid++)
340 renameMap[tid] = &rm_ptr[tid];
341}
342
343template <class Impl>
344void
345DefaultCommit<Impl>::setROB(ROB *rob_ptr)
346{
347 rob = rob_ptr;
348}
349
350template <class Impl>
351void
352DefaultCommit<Impl>::initStage()
353{
354 rob->setActiveThreads(activeThreads);
355 rob->resetEntries();
356
357 // Broadcast the number of free entries.
358 for (ThreadID tid = 0; tid < numThreads; tid++) {
359 toIEW->commitInfo[tid].usedROB = true;
360 toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
361 toIEW->commitInfo[tid].emptyROB = true;
362 }
363
364 // Commit must broadcast the number of free entries it has at the
365 // start of the simulation, so it starts as active.
366 cpu->activateStage(O3CPU::CommitIdx);
367
368 cpu->activityThisCycle();
369 trapLatency = cpu->ticks(trapLatency);
370}
371
372template <class Impl>
373bool
374DefaultCommit<Impl>::drain()
375{
376 drainPending = true;
377
378 return false;
379}
380
381template <class Impl>
382void
383DefaultCommit<Impl>::switchOut()
384{
385 switchedOut = true;
386 drainPending = false;
387 rob->switchOut();
388}
389
390template <class Impl>
391void
392DefaultCommit<Impl>::resume()
393{
394 drainPending = false;
395}
396
397template <class Impl>
398void
399DefaultCommit<Impl>::takeOverFrom()
400{
401 switchedOut = false;
402 _status = Active;
403 _nextStatus = Inactive;
404 for (ThreadID tid = 0; tid < numThreads; tid++) {
405 commitStatus[tid] = Idle;
406 changedROBNumEntries[tid] = false;
407 trapSquash[tid] = false;
408 tcSquash[tid] = false;
409 }
410 squashCounter = 0;
411 rob->takeOverFrom();
412}
413
414template <class Impl>
415void
416DefaultCommit<Impl>::updateStatus()
417{
418 // reset ROB changed variable
419 list<ThreadID>::iterator threads = activeThreads->begin();
420 list<ThreadID>::iterator end = activeThreads->end();
421
422 while (threads != end) {
423 ThreadID tid = *threads++;
424
425 changedROBNumEntries[tid] = false;
426
427 // Also check if any of the threads has a trap pending
428 if (commitStatus[tid] == TrapPending ||
429 commitStatus[tid] == FetchTrapPending) {
430 _nextStatus = Active;
431 }
432 }
433
434 if (_nextStatus == Inactive && _status == Active) {
435 DPRINTF(Activity, "Deactivating stage.\n");
436 cpu->deactivateStage(O3CPU::CommitIdx);
437 } else if (_nextStatus == Active && _status == Inactive) {
438 DPRINTF(Activity, "Activating stage.\n");
439 cpu->activateStage(O3CPU::CommitIdx);
440 }
441
442 _status = _nextStatus;
443}
444
445template <class Impl>
446void
447DefaultCommit<Impl>::setNextStatus()
448{
449 int squashes = 0;
450
451 list<ThreadID>::iterator threads = activeThreads->begin();
452 list<ThreadID>::iterator end = activeThreads->end();
453
454 while (threads != end) {
455 ThreadID tid = *threads++;
456
457 if (commitStatus[tid] == ROBSquashing) {
458 squashes++;
459 }
460 }
461
462 squashCounter = squashes;
463
464 // If commit is currently squashing, then it will have activity for the
465 // next cycle. Set its next status as active.
466 if (squashCounter) {
467 _nextStatus = Active;
468 }
469}
470
471template <class Impl>
472bool
473DefaultCommit<Impl>::changedROBEntries()
474{
475 list<ThreadID>::iterator threads = activeThreads->begin();
476 list<ThreadID>::iterator end = activeThreads->end();
477
478 while (threads != end) {
479 ThreadID tid = *threads++;
480
481 if (changedROBNumEntries[tid]) {
482 return true;
483 }
484 }
485
486 return false;
487}
488
489template <class Impl>
490size_t
491DefaultCommit<Impl>::numROBFreeEntries(ThreadID tid)
492{
493 return rob->numFreeEntries(tid);
494}
495
496template <class Impl>
497void
498DefaultCommit<Impl>::generateTrapEvent(ThreadID tid)
499{
500 DPRINTF(Commit, "Generating trap event for [tid:%i]\n", tid);
501
502 TrapEvent *trap = new TrapEvent(this, tid);
503
504 cpu->schedule(trap, curTick() + trapLatency);
505 trapInFlight[tid] = true;
506 thread[tid]->trapPending = true;
507}
508
509template <class Impl>
510void
511DefaultCommit<Impl>::generateTCEvent(ThreadID tid)
512{
513 assert(!trapInFlight[tid]);
514 DPRINTF(Commit, "Generating TC squash event for [tid:%i]\n", tid);
515
516 tcSquash[tid] = true;
517}
518
519template <class Impl>
520void
521DefaultCommit<Impl>::squashAll(ThreadID tid)
522{
523 // If we want to include the squashing instruction in the squash,
524 // then use one older sequence number.
525 // Hopefully this doesn't mess things up. Basically I want to squash
526 // all instructions of this thread.
527 InstSeqNum squashed_inst = rob->isEmpty() ?
528 lastCommitedSeqNum[tid] : rob->readHeadInst(tid)->seqNum - 1;
529
530 // All younger instructions will be squashed. Set the sequence
531 // number as the youngest instruction in the ROB (0 in this case.
532 // Hopefully nothing breaks.)
533 youngestSeqNum[tid] = lastCommitedSeqNum[tid];
534
535 rob->squash(squashed_inst, tid);
536 changedROBNumEntries[tid] = true;
537
538 // Send back the sequence number of the squashed instruction.
539 toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
540
541 // Send back the squash signal to tell stages that they should
542 // squash.
543 toIEW->commitInfo[tid].squash = true;
544
545 // Send back the rob squashing signal so other stages know that
546 // the ROB is in the process of squashing.
547 toIEW->commitInfo[tid].robSquashing = true;
548
549 toIEW->commitInfo[tid].mispredictInst = NULL;
550 toIEW->commitInfo[tid].squashInst = NULL;
551
552 toIEW->commitInfo[tid].pc = pc[tid];
553}
554
555template <class Impl>
556void
557DefaultCommit<Impl>::squashFromTrap(ThreadID tid)
558{
559 squashAll(tid);
560
561 DPRINTF(Commit, "Squashing from trap, restarting at PC %s\n", pc[tid]);
562
563 thread[tid]->trapPending = false;
564 thread[tid]->inSyscall = false;
565 trapInFlight[tid] = false;
566
567 trapSquash[tid] = false;
568
569 commitStatus[tid] = ROBSquashing;
570 cpu->activityThisCycle();
571}
572
573template <class Impl>
574void
575DefaultCommit<Impl>::squashFromTC(ThreadID tid)
576{
577 squashAll(tid);
578
579 DPRINTF(Commit, "Squashing from TC, restarting at PC %s\n", pc[tid]);
580
581 thread[tid]->inSyscall = false;
582 assert(!thread[tid]->trapPending);
583
584 commitStatus[tid] = ROBSquashing;
585 cpu->activityThisCycle();
586
587 tcSquash[tid] = false;
588}
589
590template <class Impl>
591void
592DefaultCommit<Impl>::squashAfter(ThreadID tid, DynInstPtr &head_inst,
593 uint64_t squash_after_seq_num)
594{
595 youngestSeqNum[tid] = squash_after_seq_num;
596
597 rob->squash(squash_after_seq_num, tid);
598 changedROBNumEntries[tid] = true;
599
600 // Send back the sequence number of the squashed instruction.
601 toIEW->commitInfo[tid].doneSeqNum = squash_after_seq_num;
602
603 toIEW->commitInfo[tid].squashInst = head_inst;
604 // Send back the squash signal to tell stages that they should squash.
605 toIEW->commitInfo[tid].squash = true;
606
607 // Send back the rob squashing signal so other stages know that
608 // the ROB is in the process of squashing.
609 toIEW->commitInfo[tid].robSquashing = true;
610
611 toIEW->commitInfo[tid].mispredictInst = NULL;
612
613 toIEW->commitInfo[tid].pc = pc[tid];
614 DPRINTF(Commit, "Executing squash after for [tid:%i] inst [sn:%lli]\n",
615 tid, squash_after_seq_num);
616 commitStatus[tid] = ROBSquashing;
617}
618
619template <class Impl>
620void
621DefaultCommit<Impl>::tick()
622{
623 wroteToTimeBuffer = false;
624 _nextStatus = Inactive;
625
626 if (drainPending && rob->isEmpty() && !iewStage->hasStoresToWB()) {
627 cpu->signalDrained();
628 drainPending = false;
629 return;
630 }
631
632 if (activeThreads->empty())
633 return;
634
635 list<ThreadID>::iterator threads = activeThreads->begin();
636 list<ThreadID>::iterator end = activeThreads->end();
637
638 // Check if any of the threads are done squashing. Change the
639 // status if they are done.
640 while (threads != end) {
641 ThreadID tid = *threads++;
642
643 // Clear the bit saying if the thread has committed stores
644 // this cycle.
645 committedStores[tid] = false;
646
647 if (commitStatus[tid] == ROBSquashing) {
648
649 if (rob->isDoneSquashing(tid)) {
650 commitStatus[tid] = Running;
651 } else {
652 DPRINTF(Commit,"[tid:%u]: Still Squashing, cannot commit any"
653 " insts this cycle.\n", tid);
654 rob->doSquash(tid);
655 toIEW->commitInfo[tid].robSquashing = true;
656 wroteToTimeBuffer = true;
657 }
658 }
659 }
660
661 commit();
662
663 markCompletedInsts();
664
665 threads = activeThreads->begin();
666
667 while (threads != end) {
668 ThreadID tid = *threads++;
669
670 if (!rob->isEmpty(tid) && rob->readHeadInst(tid)->readyToCommit()) {
671 // The ROB has more instructions it can commit. Its next status
672 // will be active.
673 _nextStatus = Active;
674
675 DynInstPtr inst = rob->readHeadInst(tid);
676
677 DPRINTF(Commit,"[tid:%i]: Instruction [sn:%lli] PC %s is head of"
678 " ROB and ready to commit\n",
679 tid, inst->seqNum, inst->pcState());
680
681 } else if (!rob->isEmpty(tid)) {
682 DynInstPtr inst = rob->readHeadInst(tid);
683
684 DPRINTF(Commit,"[tid:%i]: Can't commit, Instruction [sn:%lli] PC "
685 "%s is head of ROB and not ready\n",
686 tid, inst->seqNum, inst->pcState());
687 }
688
689 DPRINTF(Commit, "[tid:%i]: ROB has %d insts & %d free entries.\n",
690 tid, rob->countInsts(tid), rob->numFreeEntries(tid));
691 }
692
693
694 if (wroteToTimeBuffer) {
695 DPRINTF(Activity, "Activity This Cycle.\n");
696 cpu->activityThisCycle();
697 }
698
699 updateStatus();
700}
701
702template <class Impl>
703void
704DefaultCommit<Impl>::handleInterrupt()
705{
706 // Verify that we still have an interrupt to handle
707 if (!cpu->checkInterrupts(cpu->tcBase(0))) {
708 DPRINTF(Commit, "Pending interrupt is cleared by master before "
709 "it got handled. Restart fetching from the orig path.\n");
710 toIEW->commitInfo[0].clearInterrupt = true;
711 interrupt = NoFault;
712 return;
713 }
714
715 // Wait until all in flight instructions are finished before enterring
716 // the interrupt.
717 if (cpu->instList.empty()) {
718 // Squash or record that I need to squash this cycle if
719 // an interrupt needed to be handled.
720 DPRINTF(Commit, "Interrupt detected.\n");
721
722 // Clear the interrupt now that it's going to be handled
723 toIEW->commitInfo[0].clearInterrupt = true;
724
725 assert(!thread[0]->inSyscall);
726 thread[0]->inSyscall = true;
727
728#if USE_CHECKER
729 if (cpu->checker) {
730 cpu->checker->handlePendingInt();
731 }
732#endif
733
734 // CPU will handle interrupt.
735 cpu->processInterrupts(interrupt);
736
737 thread[0]->inSyscall = false;
738
739 commitStatus[0] = TrapPending;
740
741 // Generate trap squash event.
742 generateTrapEvent(0);
743
744 interrupt = NoFault;
745 } else {
746 DPRINTF(Commit, "Interrupt pending, waiting for ROB to empty.\n");
747 }
748}
749
750template <class Impl>
751void
752DefaultCommit<Impl>::propagateInterrupt()
753{
754 if (commitStatus[0] == TrapPending || interrupt || trapSquash[0] ||
755 tcSquash[0])
756 return;
757
758 // Process interrupts if interrupts are enabled, not in PAL
759 // mode, and no other traps or external squashes are currently
760 // pending.
761 // @todo: Allow other threads to handle interrupts.
762
763 // Get any interrupt that happened
764 interrupt = cpu->getInterrupts();
765
766 // Tell fetch that there is an interrupt pending. This
767 // will make fetch wait until it sees a non PAL-mode PC,
768 // at which point it stops fetching instructions.
769 if (interrupt != NoFault)
770 toIEW->commitInfo[0].interruptPending = true;
771}
772
773template <class Impl>
774void
775DefaultCommit<Impl>::commit()
776{
777 if (FullSystem) {
778 // Check for any interrupt that we've already squashed for and
779 // start processing it.
780 if (interrupt != NoFault)
781 handleInterrupt();
782
783 // Check if we have a interrupt and get read to handle it
784 if (cpu->checkInterrupts(cpu->tcBase(0)))
785 propagateInterrupt();
786 }
787
788 ////////////////////////////////////
789 // Check for any possible squashes, handle them first
790 ////////////////////////////////////
791 list<ThreadID>::iterator threads = activeThreads->begin();
792 list<ThreadID>::iterator end = activeThreads->end();
793
794 while (threads != end) {
795 ThreadID tid = *threads++;
796
797 // Not sure which one takes priority. I think if we have
798 // both, that's a bad sign.
799 if (trapSquash[tid] == true) {
800 assert(!tcSquash[tid]);
801 squashFromTrap(tid);
802 } else if (tcSquash[tid] == true) {
803 assert(commitStatus[tid] != TrapPending);
804 squashFromTC(tid);
805 }
806
807 // Squashed sequence number must be older than youngest valid
808 // instruction in the ROB. This prevents squashes from younger
809 // instructions overriding squashes from older instructions.
810 if (fromIEW->squash[tid] &&
811 commitStatus[tid] != TrapPending &&
812 fromIEW->squashedSeqNum[tid] <= youngestSeqNum[tid]) {
813
814 if (fromIEW->mispredictInst[tid]) {
815 DPRINTF(Commit,
816 "[tid:%i]: Squashing due to branch mispred PC:%#x [sn:%i]\n",
817 tid,
818 fromIEW->mispredictInst[tid]->instAddr(),
819 fromIEW->squashedSeqNum[tid]);
820 } else {
821 DPRINTF(Commit,
822 "[tid:%i]: Squashing due to order violation [sn:%i]\n",
823 tid, fromIEW->squashedSeqNum[tid]);
824 }
825
826 DPRINTF(Commit, "[tid:%i]: Redirecting to PC %#x\n",
827 tid,
828 fromIEW->pc[tid].nextInstAddr());
829
830 commitStatus[tid] = ROBSquashing;
831
832 // If we want to include the squashing instruction in the squash,
833 // then use one older sequence number.
834 InstSeqNum squashed_inst = fromIEW->squashedSeqNum[tid];
835
836 if (fromIEW->includeSquashInst[tid] == true) {
837 squashed_inst--;
838 }
839
840 // All younger instructions will be squashed. Set the sequence
841 // number as the youngest instruction in the ROB.
842 youngestSeqNum[tid] = squashed_inst;
843
844 rob->squash(squashed_inst, tid);
845 changedROBNumEntries[tid] = true;
846
847 toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
848
849 toIEW->commitInfo[tid].squash = true;
850
851 // Send back the rob squashing signal so other stages know that
852 // the ROB is in the process of squashing.
853 toIEW->commitInfo[tid].robSquashing = true;
854
855 toIEW->commitInfo[tid].mispredictInst =
856 fromIEW->mispredictInst[tid];
857 toIEW->commitInfo[tid].branchTaken =
858 fromIEW->branchTaken[tid];
859 toIEW->commitInfo[tid].squashInst = NULL;
859 toIEW->commitInfo[tid].squashInst =
860 rob->findInst(tid, squashed_inst);
860
861 toIEW->commitInfo[tid].pc = fromIEW->pc[tid];
862
863 if (toIEW->commitInfo[tid].mispredictInst) {
864 ++branchMispredicts;
865 }
866 }
867
868 }
869
870 setNextStatus();
871
872 if (squashCounter != numThreads) {
873 // If we're not currently squashing, then get instructions.
874 getInsts();
875
876 // Try to commit any instructions.
877 commitInsts();
878 }
879
880 //Check for any activity
881 threads = activeThreads->begin();
882
883 while (threads != end) {
884 ThreadID tid = *threads++;
885
886 if (changedROBNumEntries[tid]) {
887 toIEW->commitInfo[tid].usedROB = true;
888 toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
889
890 wroteToTimeBuffer = true;
891 changedROBNumEntries[tid] = false;
892 if (rob->isEmpty(tid))
893 checkEmptyROB[tid] = true;
894 }
895
896 // ROB is only considered "empty" for previous stages if: a)
897 // ROB is empty, b) there are no outstanding stores, c) IEW
898 // stage has received any information regarding stores that
899 // committed.
900 // c) is checked by making sure to not consider the ROB empty
901 // on the same cycle as when stores have been committed.
902 // @todo: Make this handle multi-cycle communication between
903 // commit and IEW.
904 if (checkEmptyROB[tid] && rob->isEmpty(tid) &&
905 !iewStage->hasStoresToWB(tid) && !committedStores[tid]) {
906 checkEmptyROB[tid] = false;
907 toIEW->commitInfo[tid].usedROB = true;
908 toIEW->commitInfo[tid].emptyROB = true;
909 toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
910 wroteToTimeBuffer = true;
911 }
912
913 }
914}
915
916template <class Impl>
917void
918DefaultCommit<Impl>::commitInsts()
919{
920 ////////////////////////////////////
921 // Handle commit
922 // Note that commit will be handled prior to putting new
923 // instructions in the ROB so that the ROB only tries to commit
924 // instructions it has in this current cycle, and not instructions
925 // it is writing in during this cycle. Can't commit and squash
926 // things at the same time...
927 ////////////////////////////////////
928
929 DPRINTF(Commit, "Trying to commit instructions in the ROB.\n");
930
931 unsigned num_committed = 0;
932
933 DynInstPtr head_inst;
934
935 // Commit as many instructions as possible until the commit bandwidth
936 // limit is reached, or it becomes impossible to commit any more.
937 while (num_committed < commitWidth) {
938 int commit_thread = getCommittingThread();
939
940 if (commit_thread == -1 || !rob->isHeadReady(commit_thread))
941 break;
942
943 head_inst = rob->readHeadInst(commit_thread);
944
945 ThreadID tid = head_inst->threadNumber;
946
947 assert(tid == commit_thread);
948
949 DPRINTF(Commit, "Trying to commit head instruction, [sn:%i] [tid:%i]\n",
950 head_inst->seqNum, tid);
951
952 // If the head instruction is squashed, it is ready to retire
953 // (be removed from the ROB) at any time.
954 if (head_inst->isSquashed()) {
955
956 DPRINTF(Commit, "Retiring squashed instruction from "
957 "ROB.\n");
958
959 rob->retireHead(commit_thread);
960
961 ++commitSquashedInsts;
962
963 // Record that the number of ROB entries has changed.
964 changedROBNumEntries[tid] = true;
965 } else {
966 pc[tid] = head_inst->pcState();
967
968 // Increment the total number of non-speculative instructions
969 // executed.
970 // Hack for now: it really shouldn't happen until after the
971 // commit is deemed to be successful, but this count is needed
972 // for syscalls.
973 thread[tid]->funcExeInst++;
974
975 // Try to commit the head instruction.
976 bool commit_success = commitHead(head_inst, num_committed);
977
978 if (commit_success) {
979 ++num_committed;
980
981 changedROBNumEntries[tid] = true;
982
983 // Set the doneSeqNum to the youngest committed instruction.
984 toIEW->commitInfo[tid].doneSeqNum = head_inst->seqNum;
985
986 ++commitCommittedInsts;
987
988 // To match the old model, don't count nops and instruction
989 // prefetches towards the total commit count.
990 if (!head_inst->isNop() && !head_inst->isInstPrefetch()) {
991 cpu->instDone(tid);
992 }
993
994 // Updates misc. registers.
995 head_inst->updateMiscRegs();
996
997 cpu->traceFunctions(pc[tid].instAddr());
998
999 TheISA::advancePC(pc[tid], head_inst->staticInst);
1000
1001 // Keep track of the last sequence number commited
1002 lastCommitedSeqNum[tid] = head_inst->seqNum;
1003
1004 // If this is an instruction that doesn't play nicely with
1005 // others squash everything and restart fetch
1006 if (head_inst->isSquashAfter())
1007 squashAfter(tid, head_inst, head_inst->seqNum);
1008
1009 int count = 0;
1010 Addr oldpc;
1011 // Debug statement. Checks to make sure we're not
1012 // currently updating state while handling PC events.
1013 assert(!thread[tid]->inSyscall && !thread[tid]->trapPending);
1014 do {
1015 oldpc = pc[tid].instAddr();
1016 cpu->system->pcEventQueue.service(thread[tid]->getTC());
1017 count++;
1018 } while (oldpc != pc[tid].instAddr());
1019 if (count > 1) {
1020 DPRINTF(Commit,
1021 "PC skip function event, stopping commit\n");
1022 break;
1023 }
1024 } else {
1025 DPRINTF(Commit, "Unable to commit head instruction PC:%s "
1026 "[tid:%i] [sn:%i].\n",
1027 head_inst->pcState(), tid ,head_inst->seqNum);
1028 break;
1029 }
1030 }
1031 }
1032
1033 DPRINTF(CommitRate, "%i\n", num_committed);
1034 numCommittedDist.sample(num_committed);
1035
1036 if (num_committed == commitWidth) {
1037 commitEligibleSamples++;
1038 }
1039}
1040
1041template <class Impl>
1042bool
1043DefaultCommit<Impl>::commitHead(DynInstPtr &head_inst, unsigned inst_num)
1044{
1045 assert(head_inst);
1046
1047 ThreadID tid = head_inst->threadNumber;
1048
1049 // If the instruction is not executed yet, then it will need extra
1050 // handling. Signal backwards that it should be executed.
1051 if (!head_inst->isExecuted()) {
1052 // Keep this number correct. We have not yet actually executed
1053 // and committed this instruction.
1054 thread[tid]->funcExeInst--;
1055
1056 if (head_inst->isNonSpeculative() ||
1057 head_inst->isStoreConditional() ||
1058 head_inst->isMemBarrier() ||
1059 head_inst->isWriteBarrier()) {
1060
1061 DPRINTF(Commit, "Encountered a barrier or non-speculative "
1062 "instruction [sn:%lli] at the head of the ROB, PC %s.\n",
1063 head_inst->seqNum, head_inst->pcState());
1064
1065 if (inst_num > 0 || iewStage->hasStoresToWB(tid)) {
1066 DPRINTF(Commit, "Waiting for all stores to writeback.\n");
1067 return false;
1068 }
1069
1070 toIEW->commitInfo[tid].nonSpecSeqNum = head_inst->seqNum;
1071
1072 // Change the instruction so it won't try to commit again until
1073 // it is executed.
1074 head_inst->clearCanCommit();
1075
1076 ++commitNonSpecStalls;
1077
1078 return false;
1079 } else if (head_inst->isLoad()) {
1080 if (inst_num > 0 || iewStage->hasStoresToWB(tid)) {
1081 DPRINTF(Commit, "Waiting for all stores to writeback.\n");
1082 return false;
1083 }
1084
1085 assert(head_inst->uncacheable());
1086 DPRINTF(Commit, "[sn:%lli]: Uncached load, PC %s.\n",
1087 head_inst->seqNum, head_inst->pcState());
1088
1089 // Send back the non-speculative instruction's sequence
1090 // number. Tell the lsq to re-execute the load.
1091 toIEW->commitInfo[tid].nonSpecSeqNum = head_inst->seqNum;
1092 toIEW->commitInfo[tid].uncached = true;
1093 toIEW->commitInfo[tid].uncachedLoad = head_inst;
1094
1095 head_inst->clearCanCommit();
1096
1097 return false;
1098 } else {
1099 panic("Trying to commit un-executed instruction "
1100 "of unknown type!\n");
1101 }
1102 }
1103
1104 if (head_inst->isThreadSync()) {
1105 // Not handled for now.
1106 panic("Thread sync instructions are not handled yet.\n");
1107 }
1108
1109 // Check if the instruction caused a fault. If so, trap.
1110 Fault inst_fault = head_inst->getFault();
1111
1112 // Stores mark themselves as completed.
1113 if (!head_inst->isStore() && inst_fault == NoFault) {
1114 head_inst->setCompleted();
1115 }
1116
1117#if USE_CHECKER
1118 // Use checker prior to updating anything due to traps or PC
1119 // based events.
1120 if (cpu->checker) {
1121 cpu->checker->verify(head_inst);
1122 }
1123#endif
1124
1125 if (inst_fault != NoFault) {
1126 DPRINTF(Commit, "Inst [sn:%lli] PC %s has a fault\n",
1127 head_inst->seqNum, head_inst->pcState());
1128
1129 if (iewStage->hasStoresToWB(tid) || inst_num > 0) {
1130 DPRINTF(Commit, "Stores outstanding, fault must wait.\n");
1131 return false;
1132 }
1133
1134 head_inst->setCompleted();
1135
1136#if USE_CHECKER
1137 if (cpu->checker) {
1138 // Need to check the instruction before its fault is processed
1139 cpu->checker->verify(head_inst);
1140 }
1141#endif
1142
1143 assert(!thread[tid]->inSyscall);
1144
1145 // Mark that we're in state update mode so that the trap's
1146 // execution doesn't generate extra squashes.
1147 thread[tid]->inSyscall = true;
1148
1149 // Execute the trap. Although it's slightly unrealistic in
1150 // terms of timing (as it doesn't wait for the full timing of
1151 // the trap event to complete before updating state), it's
1152 // needed to update the state as soon as possible. This
1153 // prevents external agents from changing any specific state
1154 // that the trap need.
1155 cpu->trap(inst_fault, tid, head_inst->staticInst);
1156
1157 // Exit state update mode to avoid accidental updating.
1158 thread[tid]->inSyscall = false;
1159
1160 commitStatus[tid] = TrapPending;
1161
1162 DPRINTF(Commit, "Committing instruction with fault [sn:%lli]\n",
1163 head_inst->seqNum);
1164 if (head_inst->traceData) {
1165 if (DTRACE(ExecFaulting)) {
1166 head_inst->traceData->setFetchSeq(head_inst->seqNum);
1167 head_inst->traceData->setCPSeq(thread[tid]->numInst);
1168 head_inst->traceData->dump();
1169 }
1170 delete head_inst->traceData;
1171 head_inst->traceData = NULL;
1172 }
1173
1174 // Generate trap squash event.
1175 generateTrapEvent(tid);
1176 return false;
1177 }
1178
1179 updateComInstStats(head_inst);
1180
1181 if (FullSystem) {
1182 if (thread[tid]->profile) {
1183 thread[tid]->profilePC = head_inst->instAddr();
1184 ProfileNode *node = thread[tid]->profile->consume(
1185 thread[tid]->getTC(), head_inst->staticInst);
1186
1187 if (node)
1188 thread[tid]->profileNode = node;
1189 }
1190 if (CPA::available()) {
1191 if (head_inst->isControl()) {
1192 ThreadContext *tc = thread[tid]->getTC();
1193 CPA::cpa()->swAutoBegin(tc, head_inst->nextInstAddr());
1194 }
1195 }
1196 }
1197 DPRINTF(Commit, "Committing instruction with [sn:%lli] PC %s\n",
1198 head_inst->seqNum, head_inst->pcState());
1199 if (head_inst->traceData) {
1200 head_inst->traceData->setFetchSeq(head_inst->seqNum);
1201 head_inst->traceData->setCPSeq(thread[tid]->numInst);
1202 head_inst->traceData->dump();
1203 delete head_inst->traceData;
1204 head_inst->traceData = NULL;
1205 }
1206
1207 // Update the commit rename map
1208 for (int i = 0; i < head_inst->numDestRegs(); i++) {
1209 renameMap[tid]->setEntry(head_inst->flattenedDestRegIdx(i),
1210 head_inst->renamedDestRegIdx(i));
1211 }
1212
1213 // Finally clear the head ROB entry.
1214 rob->retireHead(tid);
1215
1216#if TRACING_ON
1217 // Print info needed by the pipeline activity viewer.
1218 DPRINTFR(O3PipeView, "O3PipeView:fetch:%llu:0x%08llx:%d:%llu:%s\n",
1219 head_inst->fetchTick,
1220 head_inst->instAddr(),
1221 head_inst->microPC(),
1222 head_inst->seqNum,
1223 head_inst->staticInst->disassemble(head_inst->instAddr()));
1224 DPRINTFR(O3PipeView, "O3PipeView:decode:%llu\n", head_inst->decodeTick);
1225 DPRINTFR(O3PipeView, "O3PipeView:rename:%llu\n", head_inst->renameTick);
1226 DPRINTFR(O3PipeView, "O3PipeView:dispatch:%llu\n", head_inst->dispatchTick);
1227 DPRINTFR(O3PipeView, "O3PipeView:issue:%llu\n", head_inst->issueTick);
1228 DPRINTFR(O3PipeView, "O3PipeView:complete:%llu\n", head_inst->completeTick);
1229 DPRINTFR(O3PipeView, "O3PipeView:retire:%llu\n", curTick());
1230#endif
1231
1232 // If this was a store, record it for this cycle.
1233 if (head_inst->isStore())
1234 committedStores[tid] = true;
1235
1236 // Return true to indicate that we have committed an instruction.
1237 return true;
1238}
1239
1240template <class Impl>
1241void
1242DefaultCommit<Impl>::getInsts()
1243{
1244 DPRINTF(Commit, "Getting instructions from Rename stage.\n");
1245
1246 // Read any renamed instructions and place them into the ROB.
1247 int insts_to_process = std::min((int)renameWidth, fromRename->size);
1248
1249 for (int inst_num = 0; inst_num < insts_to_process; ++inst_num) {
1250 DynInstPtr inst;
1251
1252 inst = fromRename->insts[inst_num];
1253 ThreadID tid = inst->threadNumber;
1254
1255 if (!inst->isSquashed() &&
1256 commitStatus[tid] != ROBSquashing &&
1257 commitStatus[tid] != TrapPending) {
1258 changedROBNumEntries[tid] = true;
1259
1260 DPRINTF(Commit, "Inserting PC %s [sn:%i] [tid:%i] into ROB.\n",
1261 inst->pcState(), inst->seqNum, tid);
1262
1263 rob->insertInst(inst);
1264
1265 assert(rob->getThreadEntries(tid) <= rob->getMaxEntries(tid));
1266
1267 youngestSeqNum[tid] = inst->seqNum;
1268 } else {
1269 DPRINTF(Commit, "Instruction PC %s [sn:%i] [tid:%i] was "
1270 "squashed, skipping.\n",
1271 inst->pcState(), inst->seqNum, tid);
1272 }
1273 }
1274}
1275
1276template <class Impl>
1277void
1278DefaultCommit<Impl>::skidInsert()
1279{
1280 DPRINTF(Commit, "Attempting to any instructions from rename into "
1281 "skidBuffer.\n");
1282
1283 for (int inst_num = 0; inst_num < fromRename->size; ++inst_num) {
1284 DynInstPtr inst = fromRename->insts[inst_num];
1285
1286 if (!inst->isSquashed()) {
1287 DPRINTF(Commit, "Inserting PC %s [sn:%i] [tid:%i] into ",
1288 "skidBuffer.\n", inst->pcState(), inst->seqNum,
1289 inst->threadNumber);
1290 skidBuffer.push(inst);
1291 } else {
1292 DPRINTF(Commit, "Instruction PC %s [sn:%i] [tid:%i] was "
1293 "squashed, skipping.\n",
1294 inst->pcState(), inst->seqNum, inst->threadNumber);
1295 }
1296 }
1297}
1298
1299template <class Impl>
1300void
1301DefaultCommit<Impl>::markCompletedInsts()
1302{
1303 // Grab completed insts out of the IEW instruction queue, and mark
1304 // instructions completed within the ROB.
1305 for (int inst_num = 0;
1306 inst_num < fromIEW->size && fromIEW->insts[inst_num];
1307 ++inst_num)
1308 {
1309 if (!fromIEW->insts[inst_num]->isSquashed()) {
1310 DPRINTF(Commit, "[tid:%i]: Marking PC %s, [sn:%lli] ready "
1311 "within ROB.\n",
1312 fromIEW->insts[inst_num]->threadNumber,
1313 fromIEW->insts[inst_num]->pcState(),
1314 fromIEW->insts[inst_num]->seqNum);
1315
1316 // Mark the instruction as ready to commit.
1317 fromIEW->insts[inst_num]->setCanCommit();
1318 }
1319 }
1320}
1321
1322template <class Impl>
1323bool
1324DefaultCommit<Impl>::robDoneSquashing()
1325{
1326 list<ThreadID>::iterator threads = activeThreads->begin();
1327 list<ThreadID>::iterator end = activeThreads->end();
1328
1329 while (threads != end) {
1330 ThreadID tid = *threads++;
1331
1332 if (!rob->isDoneSquashing(tid))
1333 return false;
1334 }
1335
1336 return true;
1337}
1338
1339template <class Impl>
1340void
1341DefaultCommit<Impl>::updateComInstStats(DynInstPtr &inst)
1342{
1343 ThreadID tid = inst->threadNumber;
1344
1345 //
1346 // Pick off the software prefetches
1347 //
1348#ifdef TARGET_ALPHA
1349 if (inst->isDataPrefetch()) {
1350 statComSwp[tid]++;
1351 } else {
1352 statComInst[tid]++;
1353 }
1354#else
1355 statComInst[tid]++;
1356#endif
1357
1358 //
1359 // Control Instructions
1360 //
1361 if (inst->isControl())
1362 statComBranches[tid]++;
1363
1364 //
1365 // Memory references
1366 //
1367 if (inst->isMemRef()) {
1368 statComRefs[tid]++;
1369
1370 if (inst->isLoad()) {
1371 statComLoads[tid]++;
1372 }
1373 }
1374
1375 if (inst->isMemBarrier()) {
1376 statComMembars[tid]++;
1377 }
1378
1379 // Integer Instruction
1380 if (inst->isInteger())
1381 statComInteger[tid]++;
1382
1383 // Floating Point Instruction
1384 if (inst->isFloating())
1385 statComFloating[tid]++;
1386
1387 // Function Calls
1388 if (inst->isCall())
1389 statComFunctionCalls[tid]++;
1390
1391}
1392
1393////////////////////////////////////////
1394// //
1395// SMT COMMIT POLICY MAINTAINED HERE //
1396// //
1397////////////////////////////////////////
1398template <class Impl>
1399ThreadID
1400DefaultCommit<Impl>::getCommittingThread()
1401{
1402 if (numThreads > 1) {
1403 switch (commitPolicy) {
1404
1405 case Aggressive:
1406 //If Policy is Aggressive, commit will call
1407 //this function multiple times per
1408 //cycle
1409 return oldestReady();
1410
1411 case RoundRobin:
1412 return roundRobin();
1413
1414 case OldestReady:
1415 return oldestReady();
1416
1417 default:
1418 return InvalidThreadID;
1419 }
1420 } else {
1421 assert(!activeThreads->empty());
1422 ThreadID tid = activeThreads->front();
1423
1424 if (commitStatus[tid] == Running ||
1425 commitStatus[tid] == Idle ||
1426 commitStatus[tid] == FetchTrapPending) {
1427 return tid;
1428 } else {
1429 return InvalidThreadID;
1430 }
1431 }
1432}
1433
1434template<class Impl>
1435ThreadID
1436DefaultCommit<Impl>::roundRobin()
1437{
1438 list<ThreadID>::iterator pri_iter = priority_list.begin();
1439 list<ThreadID>::iterator end = priority_list.end();
1440
1441 while (pri_iter != end) {
1442 ThreadID tid = *pri_iter;
1443
1444 if (commitStatus[tid] == Running ||
1445 commitStatus[tid] == Idle ||
1446 commitStatus[tid] == FetchTrapPending) {
1447
1448 if (rob->isHeadReady(tid)) {
1449 priority_list.erase(pri_iter);
1450 priority_list.push_back(tid);
1451
1452 return tid;
1453 }
1454 }
1455
1456 pri_iter++;
1457 }
1458
1459 return InvalidThreadID;
1460}
1461
1462template<class Impl>
1463ThreadID
1464DefaultCommit<Impl>::oldestReady()
1465{
1466 unsigned oldest = 0;
1467 bool first = true;
1468
1469 list<ThreadID>::iterator threads = activeThreads->begin();
1470 list<ThreadID>::iterator end = activeThreads->end();
1471
1472 while (threads != end) {
1473 ThreadID tid = *threads++;
1474
1475 if (!rob->isEmpty(tid) &&
1476 (commitStatus[tid] == Running ||
1477 commitStatus[tid] == Idle ||
1478 commitStatus[tid] == FetchTrapPending)) {
1479
1480 if (rob->isHeadReady(tid)) {
1481
1482 DynInstPtr head_inst = rob->readHeadInst(tid);
1483
1484 if (first) {
1485 oldest = tid;
1486 first = false;
1487 } else if (head_inst->seqNum < oldest) {
1488 oldest = tid;
1489 }
1490 }
1491 }
1492 }
1493
1494 if (!first) {
1495 return oldest;
1496 } else {
1497 return InvalidThreadID;
1498 }
1499}
861
862 toIEW->commitInfo[tid].pc = fromIEW->pc[tid];
863
864 if (toIEW->commitInfo[tid].mispredictInst) {
865 ++branchMispredicts;
866 }
867 }
868
869 }
870
871 setNextStatus();
872
873 if (squashCounter != numThreads) {
874 // If we're not currently squashing, then get instructions.
875 getInsts();
876
877 // Try to commit any instructions.
878 commitInsts();
879 }
880
881 //Check for any activity
882 threads = activeThreads->begin();
883
884 while (threads != end) {
885 ThreadID tid = *threads++;
886
887 if (changedROBNumEntries[tid]) {
888 toIEW->commitInfo[tid].usedROB = true;
889 toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
890
891 wroteToTimeBuffer = true;
892 changedROBNumEntries[tid] = false;
893 if (rob->isEmpty(tid))
894 checkEmptyROB[tid] = true;
895 }
896
897 // ROB is only considered "empty" for previous stages if: a)
898 // ROB is empty, b) there are no outstanding stores, c) IEW
899 // stage has received any information regarding stores that
900 // committed.
901 // c) is checked by making sure to not consider the ROB empty
902 // on the same cycle as when stores have been committed.
903 // @todo: Make this handle multi-cycle communication between
904 // commit and IEW.
905 if (checkEmptyROB[tid] && rob->isEmpty(tid) &&
906 !iewStage->hasStoresToWB(tid) && !committedStores[tid]) {
907 checkEmptyROB[tid] = false;
908 toIEW->commitInfo[tid].usedROB = true;
909 toIEW->commitInfo[tid].emptyROB = true;
910 toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
911 wroteToTimeBuffer = true;
912 }
913
914 }
915}
916
917template <class Impl>
918void
919DefaultCommit<Impl>::commitInsts()
920{
921 ////////////////////////////////////
922 // Handle commit
923 // Note that commit will be handled prior to putting new
924 // instructions in the ROB so that the ROB only tries to commit
925 // instructions it has in this current cycle, and not instructions
926 // it is writing in during this cycle. Can't commit and squash
927 // things at the same time...
928 ////////////////////////////////////
929
930 DPRINTF(Commit, "Trying to commit instructions in the ROB.\n");
931
932 unsigned num_committed = 0;
933
934 DynInstPtr head_inst;
935
936 // Commit as many instructions as possible until the commit bandwidth
937 // limit is reached, or it becomes impossible to commit any more.
938 while (num_committed < commitWidth) {
939 int commit_thread = getCommittingThread();
940
941 if (commit_thread == -1 || !rob->isHeadReady(commit_thread))
942 break;
943
944 head_inst = rob->readHeadInst(commit_thread);
945
946 ThreadID tid = head_inst->threadNumber;
947
948 assert(tid == commit_thread);
949
950 DPRINTF(Commit, "Trying to commit head instruction, [sn:%i] [tid:%i]\n",
951 head_inst->seqNum, tid);
952
953 // If the head instruction is squashed, it is ready to retire
954 // (be removed from the ROB) at any time.
955 if (head_inst->isSquashed()) {
956
957 DPRINTF(Commit, "Retiring squashed instruction from "
958 "ROB.\n");
959
960 rob->retireHead(commit_thread);
961
962 ++commitSquashedInsts;
963
964 // Record that the number of ROB entries has changed.
965 changedROBNumEntries[tid] = true;
966 } else {
967 pc[tid] = head_inst->pcState();
968
969 // Increment the total number of non-speculative instructions
970 // executed.
971 // Hack for now: it really shouldn't happen until after the
972 // commit is deemed to be successful, but this count is needed
973 // for syscalls.
974 thread[tid]->funcExeInst++;
975
976 // Try to commit the head instruction.
977 bool commit_success = commitHead(head_inst, num_committed);
978
979 if (commit_success) {
980 ++num_committed;
981
982 changedROBNumEntries[tid] = true;
983
984 // Set the doneSeqNum to the youngest committed instruction.
985 toIEW->commitInfo[tid].doneSeqNum = head_inst->seqNum;
986
987 ++commitCommittedInsts;
988
989 // To match the old model, don't count nops and instruction
990 // prefetches towards the total commit count.
991 if (!head_inst->isNop() && !head_inst->isInstPrefetch()) {
992 cpu->instDone(tid);
993 }
994
995 // Updates misc. registers.
996 head_inst->updateMiscRegs();
997
998 cpu->traceFunctions(pc[tid].instAddr());
999
1000 TheISA::advancePC(pc[tid], head_inst->staticInst);
1001
1002 // Keep track of the last sequence number commited
1003 lastCommitedSeqNum[tid] = head_inst->seqNum;
1004
1005 // If this is an instruction that doesn't play nicely with
1006 // others squash everything and restart fetch
1007 if (head_inst->isSquashAfter())
1008 squashAfter(tid, head_inst, head_inst->seqNum);
1009
1010 int count = 0;
1011 Addr oldpc;
1012 // Debug statement. Checks to make sure we're not
1013 // currently updating state while handling PC events.
1014 assert(!thread[tid]->inSyscall && !thread[tid]->trapPending);
1015 do {
1016 oldpc = pc[tid].instAddr();
1017 cpu->system->pcEventQueue.service(thread[tid]->getTC());
1018 count++;
1019 } while (oldpc != pc[tid].instAddr());
1020 if (count > 1) {
1021 DPRINTF(Commit,
1022 "PC skip function event, stopping commit\n");
1023 break;
1024 }
1025 } else {
1026 DPRINTF(Commit, "Unable to commit head instruction PC:%s "
1027 "[tid:%i] [sn:%i].\n",
1028 head_inst->pcState(), tid ,head_inst->seqNum);
1029 break;
1030 }
1031 }
1032 }
1033
1034 DPRINTF(CommitRate, "%i\n", num_committed);
1035 numCommittedDist.sample(num_committed);
1036
1037 if (num_committed == commitWidth) {
1038 commitEligibleSamples++;
1039 }
1040}
1041
1042template <class Impl>
1043bool
1044DefaultCommit<Impl>::commitHead(DynInstPtr &head_inst, unsigned inst_num)
1045{
1046 assert(head_inst);
1047
1048 ThreadID tid = head_inst->threadNumber;
1049
1050 // If the instruction is not executed yet, then it will need extra
1051 // handling. Signal backwards that it should be executed.
1052 if (!head_inst->isExecuted()) {
1053 // Keep this number correct. We have not yet actually executed
1054 // and committed this instruction.
1055 thread[tid]->funcExeInst--;
1056
1057 if (head_inst->isNonSpeculative() ||
1058 head_inst->isStoreConditional() ||
1059 head_inst->isMemBarrier() ||
1060 head_inst->isWriteBarrier()) {
1061
1062 DPRINTF(Commit, "Encountered a barrier or non-speculative "
1063 "instruction [sn:%lli] at the head of the ROB, PC %s.\n",
1064 head_inst->seqNum, head_inst->pcState());
1065
1066 if (inst_num > 0 || iewStage->hasStoresToWB(tid)) {
1067 DPRINTF(Commit, "Waiting for all stores to writeback.\n");
1068 return false;
1069 }
1070
1071 toIEW->commitInfo[tid].nonSpecSeqNum = head_inst->seqNum;
1072
1073 // Change the instruction so it won't try to commit again until
1074 // it is executed.
1075 head_inst->clearCanCommit();
1076
1077 ++commitNonSpecStalls;
1078
1079 return false;
1080 } else if (head_inst->isLoad()) {
1081 if (inst_num > 0 || iewStage->hasStoresToWB(tid)) {
1082 DPRINTF(Commit, "Waiting for all stores to writeback.\n");
1083 return false;
1084 }
1085
1086 assert(head_inst->uncacheable());
1087 DPRINTF(Commit, "[sn:%lli]: Uncached load, PC %s.\n",
1088 head_inst->seqNum, head_inst->pcState());
1089
1090 // Send back the non-speculative instruction's sequence
1091 // number. Tell the lsq to re-execute the load.
1092 toIEW->commitInfo[tid].nonSpecSeqNum = head_inst->seqNum;
1093 toIEW->commitInfo[tid].uncached = true;
1094 toIEW->commitInfo[tid].uncachedLoad = head_inst;
1095
1096 head_inst->clearCanCommit();
1097
1098 return false;
1099 } else {
1100 panic("Trying to commit un-executed instruction "
1101 "of unknown type!\n");
1102 }
1103 }
1104
1105 if (head_inst->isThreadSync()) {
1106 // Not handled for now.
1107 panic("Thread sync instructions are not handled yet.\n");
1108 }
1109
1110 // Check if the instruction caused a fault. If so, trap.
1111 Fault inst_fault = head_inst->getFault();
1112
1113 // Stores mark themselves as completed.
1114 if (!head_inst->isStore() && inst_fault == NoFault) {
1115 head_inst->setCompleted();
1116 }
1117
1118#if USE_CHECKER
1119 // Use checker prior to updating anything due to traps or PC
1120 // based events.
1121 if (cpu->checker) {
1122 cpu->checker->verify(head_inst);
1123 }
1124#endif
1125
1126 if (inst_fault != NoFault) {
1127 DPRINTF(Commit, "Inst [sn:%lli] PC %s has a fault\n",
1128 head_inst->seqNum, head_inst->pcState());
1129
1130 if (iewStage->hasStoresToWB(tid) || inst_num > 0) {
1131 DPRINTF(Commit, "Stores outstanding, fault must wait.\n");
1132 return false;
1133 }
1134
1135 head_inst->setCompleted();
1136
1137#if USE_CHECKER
1138 if (cpu->checker) {
1139 // Need to check the instruction before its fault is processed
1140 cpu->checker->verify(head_inst);
1141 }
1142#endif
1143
1144 assert(!thread[tid]->inSyscall);
1145
1146 // Mark that we're in state update mode so that the trap's
1147 // execution doesn't generate extra squashes.
1148 thread[tid]->inSyscall = true;
1149
1150 // Execute the trap. Although it's slightly unrealistic in
1151 // terms of timing (as it doesn't wait for the full timing of
1152 // the trap event to complete before updating state), it's
1153 // needed to update the state as soon as possible. This
1154 // prevents external agents from changing any specific state
1155 // that the trap need.
1156 cpu->trap(inst_fault, tid, head_inst->staticInst);
1157
1158 // Exit state update mode to avoid accidental updating.
1159 thread[tid]->inSyscall = false;
1160
1161 commitStatus[tid] = TrapPending;
1162
1163 DPRINTF(Commit, "Committing instruction with fault [sn:%lli]\n",
1164 head_inst->seqNum);
1165 if (head_inst->traceData) {
1166 if (DTRACE(ExecFaulting)) {
1167 head_inst->traceData->setFetchSeq(head_inst->seqNum);
1168 head_inst->traceData->setCPSeq(thread[tid]->numInst);
1169 head_inst->traceData->dump();
1170 }
1171 delete head_inst->traceData;
1172 head_inst->traceData = NULL;
1173 }
1174
1175 // Generate trap squash event.
1176 generateTrapEvent(tid);
1177 return false;
1178 }
1179
1180 updateComInstStats(head_inst);
1181
1182 if (FullSystem) {
1183 if (thread[tid]->profile) {
1184 thread[tid]->profilePC = head_inst->instAddr();
1185 ProfileNode *node = thread[tid]->profile->consume(
1186 thread[tid]->getTC(), head_inst->staticInst);
1187
1188 if (node)
1189 thread[tid]->profileNode = node;
1190 }
1191 if (CPA::available()) {
1192 if (head_inst->isControl()) {
1193 ThreadContext *tc = thread[tid]->getTC();
1194 CPA::cpa()->swAutoBegin(tc, head_inst->nextInstAddr());
1195 }
1196 }
1197 }
1198 DPRINTF(Commit, "Committing instruction with [sn:%lli] PC %s\n",
1199 head_inst->seqNum, head_inst->pcState());
1200 if (head_inst->traceData) {
1201 head_inst->traceData->setFetchSeq(head_inst->seqNum);
1202 head_inst->traceData->setCPSeq(thread[tid]->numInst);
1203 head_inst->traceData->dump();
1204 delete head_inst->traceData;
1205 head_inst->traceData = NULL;
1206 }
1207
1208 // Update the commit rename map
1209 for (int i = 0; i < head_inst->numDestRegs(); i++) {
1210 renameMap[tid]->setEntry(head_inst->flattenedDestRegIdx(i),
1211 head_inst->renamedDestRegIdx(i));
1212 }
1213
1214 // Finally clear the head ROB entry.
1215 rob->retireHead(tid);
1216
1217#if TRACING_ON
1218 // Print info needed by the pipeline activity viewer.
1219 DPRINTFR(O3PipeView, "O3PipeView:fetch:%llu:0x%08llx:%d:%llu:%s\n",
1220 head_inst->fetchTick,
1221 head_inst->instAddr(),
1222 head_inst->microPC(),
1223 head_inst->seqNum,
1224 head_inst->staticInst->disassemble(head_inst->instAddr()));
1225 DPRINTFR(O3PipeView, "O3PipeView:decode:%llu\n", head_inst->decodeTick);
1226 DPRINTFR(O3PipeView, "O3PipeView:rename:%llu\n", head_inst->renameTick);
1227 DPRINTFR(O3PipeView, "O3PipeView:dispatch:%llu\n", head_inst->dispatchTick);
1228 DPRINTFR(O3PipeView, "O3PipeView:issue:%llu\n", head_inst->issueTick);
1229 DPRINTFR(O3PipeView, "O3PipeView:complete:%llu\n", head_inst->completeTick);
1230 DPRINTFR(O3PipeView, "O3PipeView:retire:%llu\n", curTick());
1231#endif
1232
1233 // If this was a store, record it for this cycle.
1234 if (head_inst->isStore())
1235 committedStores[tid] = true;
1236
1237 // Return true to indicate that we have committed an instruction.
1238 return true;
1239}
1240
1241template <class Impl>
1242void
1243DefaultCommit<Impl>::getInsts()
1244{
1245 DPRINTF(Commit, "Getting instructions from Rename stage.\n");
1246
1247 // Read any renamed instructions and place them into the ROB.
1248 int insts_to_process = std::min((int)renameWidth, fromRename->size);
1249
1250 for (int inst_num = 0; inst_num < insts_to_process; ++inst_num) {
1251 DynInstPtr inst;
1252
1253 inst = fromRename->insts[inst_num];
1254 ThreadID tid = inst->threadNumber;
1255
1256 if (!inst->isSquashed() &&
1257 commitStatus[tid] != ROBSquashing &&
1258 commitStatus[tid] != TrapPending) {
1259 changedROBNumEntries[tid] = true;
1260
1261 DPRINTF(Commit, "Inserting PC %s [sn:%i] [tid:%i] into ROB.\n",
1262 inst->pcState(), inst->seqNum, tid);
1263
1264 rob->insertInst(inst);
1265
1266 assert(rob->getThreadEntries(tid) <= rob->getMaxEntries(tid));
1267
1268 youngestSeqNum[tid] = inst->seqNum;
1269 } else {
1270 DPRINTF(Commit, "Instruction PC %s [sn:%i] [tid:%i] was "
1271 "squashed, skipping.\n",
1272 inst->pcState(), inst->seqNum, tid);
1273 }
1274 }
1275}
1276
1277template <class Impl>
1278void
1279DefaultCommit<Impl>::skidInsert()
1280{
1281 DPRINTF(Commit, "Attempting to any instructions from rename into "
1282 "skidBuffer.\n");
1283
1284 for (int inst_num = 0; inst_num < fromRename->size; ++inst_num) {
1285 DynInstPtr inst = fromRename->insts[inst_num];
1286
1287 if (!inst->isSquashed()) {
1288 DPRINTF(Commit, "Inserting PC %s [sn:%i] [tid:%i] into ",
1289 "skidBuffer.\n", inst->pcState(), inst->seqNum,
1290 inst->threadNumber);
1291 skidBuffer.push(inst);
1292 } else {
1293 DPRINTF(Commit, "Instruction PC %s [sn:%i] [tid:%i] was "
1294 "squashed, skipping.\n",
1295 inst->pcState(), inst->seqNum, inst->threadNumber);
1296 }
1297 }
1298}
1299
1300template <class Impl>
1301void
1302DefaultCommit<Impl>::markCompletedInsts()
1303{
1304 // Grab completed insts out of the IEW instruction queue, and mark
1305 // instructions completed within the ROB.
1306 for (int inst_num = 0;
1307 inst_num < fromIEW->size && fromIEW->insts[inst_num];
1308 ++inst_num)
1309 {
1310 if (!fromIEW->insts[inst_num]->isSquashed()) {
1311 DPRINTF(Commit, "[tid:%i]: Marking PC %s, [sn:%lli] ready "
1312 "within ROB.\n",
1313 fromIEW->insts[inst_num]->threadNumber,
1314 fromIEW->insts[inst_num]->pcState(),
1315 fromIEW->insts[inst_num]->seqNum);
1316
1317 // Mark the instruction as ready to commit.
1318 fromIEW->insts[inst_num]->setCanCommit();
1319 }
1320 }
1321}
1322
1323template <class Impl>
1324bool
1325DefaultCommit<Impl>::robDoneSquashing()
1326{
1327 list<ThreadID>::iterator threads = activeThreads->begin();
1328 list<ThreadID>::iterator end = activeThreads->end();
1329
1330 while (threads != end) {
1331 ThreadID tid = *threads++;
1332
1333 if (!rob->isDoneSquashing(tid))
1334 return false;
1335 }
1336
1337 return true;
1338}
1339
1340template <class Impl>
1341void
1342DefaultCommit<Impl>::updateComInstStats(DynInstPtr &inst)
1343{
1344 ThreadID tid = inst->threadNumber;
1345
1346 //
1347 // Pick off the software prefetches
1348 //
1349#ifdef TARGET_ALPHA
1350 if (inst->isDataPrefetch()) {
1351 statComSwp[tid]++;
1352 } else {
1353 statComInst[tid]++;
1354 }
1355#else
1356 statComInst[tid]++;
1357#endif
1358
1359 //
1360 // Control Instructions
1361 //
1362 if (inst->isControl())
1363 statComBranches[tid]++;
1364
1365 //
1366 // Memory references
1367 //
1368 if (inst->isMemRef()) {
1369 statComRefs[tid]++;
1370
1371 if (inst->isLoad()) {
1372 statComLoads[tid]++;
1373 }
1374 }
1375
1376 if (inst->isMemBarrier()) {
1377 statComMembars[tid]++;
1378 }
1379
1380 // Integer Instruction
1381 if (inst->isInteger())
1382 statComInteger[tid]++;
1383
1384 // Floating Point Instruction
1385 if (inst->isFloating())
1386 statComFloating[tid]++;
1387
1388 // Function Calls
1389 if (inst->isCall())
1390 statComFunctionCalls[tid]++;
1391
1392}
1393
1394////////////////////////////////////////
1395// //
1396// SMT COMMIT POLICY MAINTAINED HERE //
1397// //
1398////////////////////////////////////////
1399template <class Impl>
1400ThreadID
1401DefaultCommit<Impl>::getCommittingThread()
1402{
1403 if (numThreads > 1) {
1404 switch (commitPolicy) {
1405
1406 case Aggressive:
1407 //If Policy is Aggressive, commit will call
1408 //this function multiple times per
1409 //cycle
1410 return oldestReady();
1411
1412 case RoundRobin:
1413 return roundRobin();
1414
1415 case OldestReady:
1416 return oldestReady();
1417
1418 default:
1419 return InvalidThreadID;
1420 }
1421 } else {
1422 assert(!activeThreads->empty());
1423 ThreadID tid = activeThreads->front();
1424
1425 if (commitStatus[tid] == Running ||
1426 commitStatus[tid] == Idle ||
1427 commitStatus[tid] == FetchTrapPending) {
1428 return tid;
1429 } else {
1430 return InvalidThreadID;
1431 }
1432 }
1433}
1434
1435template<class Impl>
1436ThreadID
1437DefaultCommit<Impl>::roundRobin()
1438{
1439 list<ThreadID>::iterator pri_iter = priority_list.begin();
1440 list<ThreadID>::iterator end = priority_list.end();
1441
1442 while (pri_iter != end) {
1443 ThreadID tid = *pri_iter;
1444
1445 if (commitStatus[tid] == Running ||
1446 commitStatus[tid] == Idle ||
1447 commitStatus[tid] == FetchTrapPending) {
1448
1449 if (rob->isHeadReady(tid)) {
1450 priority_list.erase(pri_iter);
1451 priority_list.push_back(tid);
1452
1453 return tid;
1454 }
1455 }
1456
1457 pri_iter++;
1458 }
1459
1460 return InvalidThreadID;
1461}
1462
1463template<class Impl>
1464ThreadID
1465DefaultCommit<Impl>::oldestReady()
1466{
1467 unsigned oldest = 0;
1468 bool first = true;
1469
1470 list<ThreadID>::iterator threads = activeThreads->begin();
1471 list<ThreadID>::iterator end = activeThreads->end();
1472
1473 while (threads != end) {
1474 ThreadID tid = *threads++;
1475
1476 if (!rob->isEmpty(tid) &&
1477 (commitStatus[tid] == Running ||
1478 commitStatus[tid] == Idle ||
1479 commitStatus[tid] == FetchTrapPending)) {
1480
1481 if (rob->isHeadReady(tid)) {
1482
1483 DynInstPtr head_inst = rob->readHeadInst(tid);
1484
1485 if (first) {
1486 oldest = tid;
1487 first = false;
1488 } else if (head_inst->seqNum < oldest) {
1489 oldest = tid;
1490 }
1491 }
1492 }
1493 }
1494
1495 if (!first) {
1496 return oldest;
1497 } else {
1498 return InvalidThreadID;
1499 }
1500}