cpu.hh (9023:e9201a7bce59) cpu.hh (9176:6807aa361e80)
1/*
2 * Copyright (c) 2011 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 */
42
43#ifndef __CPU_CHECKER_CPU_HH__
44#define __CPU_CHECKER_CPU_HH__
45
46#include <list>
47#include <map>
48#include <queue>
49
50#include "arch/types.hh"
51#include "base/statistics.hh"
52#include "cpu/base.hh"
53#include "cpu/base_dyn_inst.hh"
54#include "cpu/pc_event.hh"
55#include "cpu/simple_thread.hh"
56#include "cpu/static_inst.hh"
57#include "debug/Checker.hh"
58#include "params/CheckerCPU.hh"
59#include "sim/eventq.hh"
60
61// forward declarations
62namespace TheISA
63{
64 class TLB;
65}
66
67template <class>
68class BaseDynInst;
69class ThreadContext;
70class Request;
71
72/**
73 * CheckerCPU class. Dynamically verifies instructions as they are
74 * completed by making sure that the instruction and its results match
75 * the independent execution of the benchmark inside the checker. The
76 * checker verifies instructions in order, regardless of the order in
77 * which instructions complete. There are certain results that can
78 * not be verified, specifically the result of a store conditional or
79 * the values of uncached accesses. In these cases, and with
80 * instructions marked as "IsUnverifiable", the checker assumes that
81 * the value from the main CPU's execution is correct and simply
82 * copies that value. It provides a CheckerThreadContext (see
83 * checker/thread_context.hh) that provides hooks for updating the
84 * Checker's state through any ThreadContext accesses. This allows the
85 * checker to be able to correctly verify instructions, even with
86 * external accesses to the ThreadContext that change state.
87 */
88class CheckerCPU : public BaseCPU
89{
90 protected:
91 typedef TheISA::MachInst MachInst;
92 typedef TheISA::FloatReg FloatReg;
93 typedef TheISA::FloatRegBits FloatRegBits;
94 typedef TheISA::MiscReg MiscReg;
95
96 /** id attached to all issued requests */
97 MasterID masterId;
98 public:
99 virtual void init();
100
1/*
2 * Copyright (c) 2011 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 */
42
43#ifndef __CPU_CHECKER_CPU_HH__
44#define __CPU_CHECKER_CPU_HH__
45
46#include <list>
47#include <map>
48#include <queue>
49
50#include "arch/types.hh"
51#include "base/statistics.hh"
52#include "cpu/base.hh"
53#include "cpu/base_dyn_inst.hh"
54#include "cpu/pc_event.hh"
55#include "cpu/simple_thread.hh"
56#include "cpu/static_inst.hh"
57#include "debug/Checker.hh"
58#include "params/CheckerCPU.hh"
59#include "sim/eventq.hh"
60
61// forward declarations
62namespace TheISA
63{
64 class TLB;
65}
66
67template <class>
68class BaseDynInst;
69class ThreadContext;
70class Request;
71
72/**
73 * CheckerCPU class. Dynamically verifies instructions as they are
74 * completed by making sure that the instruction and its results match
75 * the independent execution of the benchmark inside the checker. The
76 * checker verifies instructions in order, regardless of the order in
77 * which instructions complete. There are certain results that can
78 * not be verified, specifically the result of a store conditional or
79 * the values of uncached accesses. In these cases, and with
80 * instructions marked as "IsUnverifiable", the checker assumes that
81 * the value from the main CPU's execution is correct and simply
82 * copies that value. It provides a CheckerThreadContext (see
83 * checker/thread_context.hh) that provides hooks for updating the
84 * Checker's state through any ThreadContext accesses. This allows the
85 * checker to be able to correctly verify instructions, even with
86 * external accesses to the ThreadContext that change state.
87 */
88class CheckerCPU : public BaseCPU
89{
90 protected:
91 typedef TheISA::MachInst MachInst;
92 typedef TheISA::FloatReg FloatReg;
93 typedef TheISA::FloatRegBits FloatRegBits;
94 typedef TheISA::MiscReg MiscReg;
95
96 /** id attached to all issued requests */
97 MasterID masterId;
98 public:
99 virtual void init();
100
101 public:
102 typedef CheckerCPUParams Params;
101 typedef CheckerCPUParams Params;
103 const Params *params() const
104 { return reinterpret_cast<const Params *>(_params); }
105 CheckerCPU(Params *p);
106 virtual ~CheckerCPU();
107
102 CheckerCPU(Params *p);
103 virtual ~CheckerCPU();
104
108 std::vector<Process*> workload;
109
110 void setSystem(System *system);
111
105 void setSystem(System *system);
106
112 System *systemPtr;
113
114 void setIcachePort(CpuPort *icache_port);
115
107 void setIcachePort(CpuPort *icache_port);
108
116 CpuPort *icachePort;
117
118 void setDcachePort(CpuPort *dcache_port);
119
109 void setDcachePort(CpuPort *dcache_port);
110
120 CpuPort *dcachePort;
121
122 CpuPort &getDataPort()
123 {
111 CpuPort &getDataPort()
112 {
124 panic("Not supported on checker!");
113 // the checker does not have ports on its own so return the
114 // data port of the actual CPU core
115 assert(dcachePort);
125 return *dcachePort;
126 }
127
128 CpuPort &getInstPort()
129 {
116 return *dcachePort;
117 }
118
119 CpuPort &getInstPort()
120 {
130 panic("Not supported on checker!");
121 // the checker does not have ports on its own so return the
122 // data port of the actual CPU core
123 assert(icachePort);
131 return *icachePort;
132 }
133
124 return *icachePort;
125 }
126
134 public:
135 // Primary thread being run.
136 SimpleThread *thread;
127 protected:
137
128
129 std::vector<Process*> workload;
130
131 System *systemPtr;
132
133 CpuPort *icachePort;
134 CpuPort *dcachePort;
135
138 ThreadContext *tc;
139
140 TheISA::TLB *itb;
141 TheISA::TLB *dtb;
142
143 Addr dbg_vtophys(Addr addr);
144
145 union Result {
146 uint64_t integer;
147 double dbl;
148 void set(uint64_t i) { integer = i; }
149 void set(double d) { dbl = d; }
150 void get(uint64_t& i) { i = integer; }
151 void get(double& d) { d = dbl; }
152 };
153
154 // ISAs like ARM can have multiple destination registers to check,
155 // keep them all in a std::queue
156 std::queue<Result> result;
157
158 // Pointer to the one memory request.
159 RequestPtr memReq;
160
161 StaticInstPtr curStaticInst;
162 StaticInstPtr curMacroStaticInst;
163
164 // number of simulated instructions
165 Counter numInst;
166 Counter startNumInst;
167
168 std::queue<int> miscRegIdxs;
169
136 ThreadContext *tc;
137
138 TheISA::TLB *itb;
139 TheISA::TLB *dtb;
140
141 Addr dbg_vtophys(Addr addr);
142
143 union Result {
144 uint64_t integer;
145 double dbl;
146 void set(uint64_t i) { integer = i; }
147 void set(double d) { dbl = d; }
148 void get(uint64_t& i) { i = integer; }
149 void get(double& d) { d = dbl; }
150 };
151
152 // ISAs like ARM can have multiple destination registers to check,
153 // keep them all in a std::queue
154 std::queue<Result> result;
155
156 // Pointer to the one memory request.
157 RequestPtr memReq;
158
159 StaticInstPtr curStaticInst;
160 StaticInstPtr curMacroStaticInst;
161
162 // number of simulated instructions
163 Counter numInst;
164 Counter startNumInst;
165
166 std::queue<int> miscRegIdxs;
167
168 public:
169
170 // Primary thread being run.
171 SimpleThread *thread;
172
170 TheISA::TLB* getITBPtr() { return itb; }
171 TheISA::TLB* getDTBPtr() { return dtb; }
172
173 virtual Counter totalInsts() const
174 {
175 return 0;
176 }
177
178 virtual Counter totalOps() const
179 {
180 return 0;
181 }
182
183 // number of simulated loads
184 Counter numLoad;
185 Counter startNumLoad;
186
187 virtual void serialize(std::ostream &os);
188 virtual void unserialize(Checkpoint *cp, const std::string &section);
189
190 // These functions are only used in CPU models that split
191 // effective address computation from the actual memory access.
192 void setEA(Addr EA) { panic("SimpleCPU::setEA() not implemented\n"); }
193 Addr getEA() { panic("SimpleCPU::getEA() not implemented\n"); }
194
195 // The register accessor methods provide the index of the
196 // instruction's operand (e.g., 0 or 1), not the architectural
197 // register index, to simplify the implementation of register
198 // renaming. We find the architectural register index by indexing
199 // into the instruction's own operand index table. Note that a
200 // raw pointer to the StaticInst is provided instead of a
201 // ref-counted StaticInstPtr to redice overhead. This is fine as
202 // long as these methods don't copy the pointer into any long-term
203 // storage (which is pretty hard to imagine they would have reason
204 // to do).
205
206 uint64_t readIntRegOperand(const StaticInst *si, int idx)
207 {
208 return thread->readIntReg(si->srcRegIdx(idx));
209 }
210
211 FloatReg readFloatRegOperand(const StaticInst *si, int idx)
212 {
213 int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
214 return thread->readFloatReg(reg_idx);
215 }
216
217 FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx)
218 {
219 int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
220 return thread->readFloatRegBits(reg_idx);
221 }
222
223 template <class T>
224 void setResult(T t)
225 {
226 Result instRes;
227 instRes.set(t);
228 result.push(instRes);
229 }
230
231 void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
232 {
233 thread->setIntReg(si->destRegIdx(idx), val);
234 setResult<uint64_t>(val);
235 }
236
237 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
238 {
239 int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
240 thread->setFloatReg(reg_idx, val);
241 setResult<double>(val);
242 }
243
244 void setFloatRegOperandBits(const StaticInst *si, int idx,
245 FloatRegBits val)
246 {
247 int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
248 thread->setFloatRegBits(reg_idx, val);
249 setResult<uint64_t>(val);
250 }
251
252 bool readPredicate() { return thread->readPredicate(); }
253 void setPredicate(bool val)
254 {
255 thread->setPredicate(val);
256 }
257
258 TheISA::PCState pcState() { return thread->pcState(); }
259 void pcState(const TheISA::PCState &val)
260 {
261 DPRINTF(Checker, "Changing PC to %s, old PC %s.\n",
262 val, thread->pcState());
263 thread->pcState(val);
264 }
265 Addr instAddr() { return thread->instAddr(); }
266 Addr nextInstAddr() { return thread->nextInstAddr(); }
267 MicroPC microPC() { return thread->microPC(); }
268 //////////////////////////////////////////
269
270 MiscReg readMiscRegNoEffect(int misc_reg)
271 {
272 return thread->readMiscRegNoEffect(misc_reg);
273 }
274
275 MiscReg readMiscReg(int misc_reg)
276 {
277 return thread->readMiscReg(misc_reg);
278 }
279
280 void setMiscRegNoEffect(int misc_reg, const MiscReg &val)
281 {
282 miscRegIdxs.push(misc_reg);
283 return thread->setMiscRegNoEffect(misc_reg, val);
284 }
285
286 void setMiscReg(int misc_reg, const MiscReg &val)
287 {
288 miscRegIdxs.push(misc_reg);
289 return thread->setMiscReg(misc_reg, val);
290 }
291
292 MiscReg readMiscRegOperand(const StaticInst *si, int idx)
293 {
294 int reg_idx = si->srcRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
295 return thread->readMiscReg(reg_idx);
296 }
297
298 void setMiscRegOperand(
299 const StaticInst *si, int idx, const MiscReg &val)
300 {
301 int reg_idx = si->destRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
302 return thread->setMiscReg(reg_idx, val);
303 }
304
305#if THE_ISA == MIPS_ISA
306 uint64_t readRegOtherThread(int misc_reg)
307 {
308 panic("MIPS MT not defined for CheckerCPU.\n");
309 return 0;
310 }
311
312 void setRegOtherThread(int misc_reg, const TheISA::MiscReg &val)
313 {
314 panic("MIPS MT not defined for CheckerCPU.\n");
315 }
316#endif
317
318 /////////////////////////////////////////
319
320 void recordPCChange(const TheISA::PCState &val)
321 {
322 changedPC = true;
323 newPCState = val;
324 }
325
326 void demapPage(Addr vaddr, uint64_t asn)
327 {
328 this->itb->demapPage(vaddr, asn);
329 this->dtb->demapPage(vaddr, asn);
330 }
331
332 void demapInstPage(Addr vaddr, uint64_t asn)
333 {
334 this->itb->demapPage(vaddr, asn);
335 }
336
337 void demapDataPage(Addr vaddr, uint64_t asn)
338 {
339 this->dtb->demapPage(vaddr, asn);
340 }
341
342 Fault readMem(Addr addr, uint8_t *data, unsigned size, unsigned flags);
343 Fault writeMem(uint8_t *data, unsigned size,
344 Addr addr, unsigned flags, uint64_t *res);
345
346 void setStCondFailures(unsigned sc_failures)
347 {}
348 /////////////////////////////////////////////////////
349
350 Fault hwrei() { return thread->hwrei(); }
351 bool simPalCheck(int palFunc) { return thread->simPalCheck(palFunc); }
352 void wakeup() { }
353 // Assume that the normal CPU's call to syscall was successful.
354 // The checker's state would have already been updated by the syscall.
355 void syscall(uint64_t callnum) { }
356
357 void handleError()
358 {
359 if (exitOnError)
360 dumpAndExit();
361 }
362
363 bool checkFlags(Request *unverified_req, Addr vAddr,
364 Addr pAddr, int flags);
365
366 void dumpAndExit();
367
368 ThreadContext *tcBase() { return tc; }
369 SimpleThread *threadBase() { return thread; }
370
371 Result unverifiedResult;
372 Request *unverifiedReq;
373 uint8_t *unverifiedMemData;
374
375 bool changedPC;
376 bool willChangePC;
377 TheISA::PCState newPCState;
378 bool changedNextPC;
379 bool exitOnError;
380 bool updateOnError;
381 bool warnOnlyOnLoadError;
382
383 InstSeqNum youngestSN;
384};
385
386/**
387 * Templated Checker class. This Checker class is templated on the
388 * DynInstPtr of the instruction type that will be verified. Proper
389 * template instantiations of the Checker must be placed at the bottom
390 * of checker/cpu.cc.
391 */
392template <class Impl>
393class Checker : public CheckerCPU
394{
395 private:
396 typedef typename Impl::DynInstPtr DynInstPtr;
397
398 public:
399 Checker(Params *p)
400 : CheckerCPU(p), updateThisCycle(false), unverifiedInst(NULL)
401 { }
402
403 void switchOut();
404 void takeOverFrom(BaseCPU *oldCPU);
405
406 void advancePC(Fault fault);
407
408 void verify(DynInstPtr &inst);
409
410 void validateInst(DynInstPtr &inst);
411 void validateExecution(DynInstPtr &inst);
412 void validateState();
413
414 void copyResult(DynInstPtr &inst, uint64_t mismatch_val, int start_idx);
415 void handlePendingInt();
416
417 private:
418 void handleError(DynInstPtr &inst)
419 {
420 if (exitOnError) {
421 dumpAndExit(inst);
422 } else if (updateOnError) {
423 updateThisCycle = true;
424 }
425 }
426
427 void dumpAndExit(DynInstPtr &inst);
428
429 bool updateThisCycle;
430
431 DynInstPtr unverifiedInst;
432
433 std::list<DynInstPtr> instList;
434 typedef typename std::list<DynInstPtr>::iterator InstListIt;
435 void dumpInsts();
436};
437
438#endif // __CPU_CHECKER_CPU_HH__
173 TheISA::TLB* getITBPtr() { return itb; }
174 TheISA::TLB* getDTBPtr() { return dtb; }
175
176 virtual Counter totalInsts() const
177 {
178 return 0;
179 }
180
181 virtual Counter totalOps() const
182 {
183 return 0;
184 }
185
186 // number of simulated loads
187 Counter numLoad;
188 Counter startNumLoad;
189
190 virtual void serialize(std::ostream &os);
191 virtual void unserialize(Checkpoint *cp, const std::string &section);
192
193 // These functions are only used in CPU models that split
194 // effective address computation from the actual memory access.
195 void setEA(Addr EA) { panic("SimpleCPU::setEA() not implemented\n"); }
196 Addr getEA() { panic("SimpleCPU::getEA() not implemented\n"); }
197
198 // The register accessor methods provide the index of the
199 // instruction's operand (e.g., 0 or 1), not the architectural
200 // register index, to simplify the implementation of register
201 // renaming. We find the architectural register index by indexing
202 // into the instruction's own operand index table. Note that a
203 // raw pointer to the StaticInst is provided instead of a
204 // ref-counted StaticInstPtr to redice overhead. This is fine as
205 // long as these methods don't copy the pointer into any long-term
206 // storage (which is pretty hard to imagine they would have reason
207 // to do).
208
209 uint64_t readIntRegOperand(const StaticInst *si, int idx)
210 {
211 return thread->readIntReg(si->srcRegIdx(idx));
212 }
213
214 FloatReg readFloatRegOperand(const StaticInst *si, int idx)
215 {
216 int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
217 return thread->readFloatReg(reg_idx);
218 }
219
220 FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx)
221 {
222 int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
223 return thread->readFloatRegBits(reg_idx);
224 }
225
226 template <class T>
227 void setResult(T t)
228 {
229 Result instRes;
230 instRes.set(t);
231 result.push(instRes);
232 }
233
234 void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
235 {
236 thread->setIntReg(si->destRegIdx(idx), val);
237 setResult<uint64_t>(val);
238 }
239
240 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
241 {
242 int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
243 thread->setFloatReg(reg_idx, val);
244 setResult<double>(val);
245 }
246
247 void setFloatRegOperandBits(const StaticInst *si, int idx,
248 FloatRegBits val)
249 {
250 int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
251 thread->setFloatRegBits(reg_idx, val);
252 setResult<uint64_t>(val);
253 }
254
255 bool readPredicate() { return thread->readPredicate(); }
256 void setPredicate(bool val)
257 {
258 thread->setPredicate(val);
259 }
260
261 TheISA::PCState pcState() { return thread->pcState(); }
262 void pcState(const TheISA::PCState &val)
263 {
264 DPRINTF(Checker, "Changing PC to %s, old PC %s.\n",
265 val, thread->pcState());
266 thread->pcState(val);
267 }
268 Addr instAddr() { return thread->instAddr(); }
269 Addr nextInstAddr() { return thread->nextInstAddr(); }
270 MicroPC microPC() { return thread->microPC(); }
271 //////////////////////////////////////////
272
273 MiscReg readMiscRegNoEffect(int misc_reg)
274 {
275 return thread->readMiscRegNoEffect(misc_reg);
276 }
277
278 MiscReg readMiscReg(int misc_reg)
279 {
280 return thread->readMiscReg(misc_reg);
281 }
282
283 void setMiscRegNoEffect(int misc_reg, const MiscReg &val)
284 {
285 miscRegIdxs.push(misc_reg);
286 return thread->setMiscRegNoEffect(misc_reg, val);
287 }
288
289 void setMiscReg(int misc_reg, const MiscReg &val)
290 {
291 miscRegIdxs.push(misc_reg);
292 return thread->setMiscReg(misc_reg, val);
293 }
294
295 MiscReg readMiscRegOperand(const StaticInst *si, int idx)
296 {
297 int reg_idx = si->srcRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
298 return thread->readMiscReg(reg_idx);
299 }
300
301 void setMiscRegOperand(
302 const StaticInst *si, int idx, const MiscReg &val)
303 {
304 int reg_idx = si->destRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
305 return thread->setMiscReg(reg_idx, val);
306 }
307
308#if THE_ISA == MIPS_ISA
309 uint64_t readRegOtherThread(int misc_reg)
310 {
311 panic("MIPS MT not defined for CheckerCPU.\n");
312 return 0;
313 }
314
315 void setRegOtherThread(int misc_reg, const TheISA::MiscReg &val)
316 {
317 panic("MIPS MT not defined for CheckerCPU.\n");
318 }
319#endif
320
321 /////////////////////////////////////////
322
323 void recordPCChange(const TheISA::PCState &val)
324 {
325 changedPC = true;
326 newPCState = val;
327 }
328
329 void demapPage(Addr vaddr, uint64_t asn)
330 {
331 this->itb->demapPage(vaddr, asn);
332 this->dtb->demapPage(vaddr, asn);
333 }
334
335 void demapInstPage(Addr vaddr, uint64_t asn)
336 {
337 this->itb->demapPage(vaddr, asn);
338 }
339
340 void demapDataPage(Addr vaddr, uint64_t asn)
341 {
342 this->dtb->demapPage(vaddr, asn);
343 }
344
345 Fault readMem(Addr addr, uint8_t *data, unsigned size, unsigned flags);
346 Fault writeMem(uint8_t *data, unsigned size,
347 Addr addr, unsigned flags, uint64_t *res);
348
349 void setStCondFailures(unsigned sc_failures)
350 {}
351 /////////////////////////////////////////////////////
352
353 Fault hwrei() { return thread->hwrei(); }
354 bool simPalCheck(int palFunc) { return thread->simPalCheck(palFunc); }
355 void wakeup() { }
356 // Assume that the normal CPU's call to syscall was successful.
357 // The checker's state would have already been updated by the syscall.
358 void syscall(uint64_t callnum) { }
359
360 void handleError()
361 {
362 if (exitOnError)
363 dumpAndExit();
364 }
365
366 bool checkFlags(Request *unverified_req, Addr vAddr,
367 Addr pAddr, int flags);
368
369 void dumpAndExit();
370
371 ThreadContext *tcBase() { return tc; }
372 SimpleThread *threadBase() { return thread; }
373
374 Result unverifiedResult;
375 Request *unverifiedReq;
376 uint8_t *unverifiedMemData;
377
378 bool changedPC;
379 bool willChangePC;
380 TheISA::PCState newPCState;
381 bool changedNextPC;
382 bool exitOnError;
383 bool updateOnError;
384 bool warnOnlyOnLoadError;
385
386 InstSeqNum youngestSN;
387};
388
389/**
390 * Templated Checker class. This Checker class is templated on the
391 * DynInstPtr of the instruction type that will be verified. Proper
392 * template instantiations of the Checker must be placed at the bottom
393 * of checker/cpu.cc.
394 */
395template <class Impl>
396class Checker : public CheckerCPU
397{
398 private:
399 typedef typename Impl::DynInstPtr DynInstPtr;
400
401 public:
402 Checker(Params *p)
403 : CheckerCPU(p), updateThisCycle(false), unverifiedInst(NULL)
404 { }
405
406 void switchOut();
407 void takeOverFrom(BaseCPU *oldCPU);
408
409 void advancePC(Fault fault);
410
411 void verify(DynInstPtr &inst);
412
413 void validateInst(DynInstPtr &inst);
414 void validateExecution(DynInstPtr &inst);
415 void validateState();
416
417 void copyResult(DynInstPtr &inst, uint64_t mismatch_val, int start_idx);
418 void handlePendingInt();
419
420 private:
421 void handleError(DynInstPtr &inst)
422 {
423 if (exitOnError) {
424 dumpAndExit(inst);
425 } else if (updateOnError) {
426 updateThisCycle = true;
427 }
428 }
429
430 void dumpAndExit(DynInstPtr &inst);
431
432 bool updateThisCycle;
433
434 DynInstPtr unverifiedInst;
435
436 std::list<DynInstPtr> instList;
437 typedef typename std::list<DynInstPtr>::iterator InstListIt;
438 void dumpInsts();
439};
440
441#endif // __CPU_CHECKER_CPU_HH__