Deleted Added
sdiff udiff text old ( 8832:247fee427324 ) new ( 8887:20ea02da9c53 )
full compact
1/*
2 * Copyright (c) 2011 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Kevin Lim
41 */
42
43#ifndef __CPU_CHECKER_CPU_HH__
44#define __CPU_CHECKER_CPU_HH__
45
46#include <list>
47#include <map>
48#include <queue>
49
50#include "arch/predecoder.hh"
51#include "arch/types.hh"
52#include "base/statistics.hh"
53#include "cpu/base.hh"
54#include "cpu/base_dyn_inst.hh"
55#include "cpu/pc_event.hh"
56#include "cpu/simple_thread.hh"
57#include "cpu/static_inst.hh"
58#include "debug/Checker.hh"
59#include "params/CheckerCPU.hh"
60#include "sim/eventq.hh"
61
62// forward declarations
63namespace TheISA
64{
65 class TLB;
66}
67
68template <class>
69class BaseDynInst;
70class ThreadContext;
71class Request;
72
73/**
74 * CheckerCPU class. Dynamically verifies instructions as they are
75 * completed by making sure that the instruction and its results match
76 * the independent execution of the benchmark inside the checker. The
77 * checker verifies instructions in order, regardless of the order in
78 * which instructions complete. There are certain results that can
79 * not be verified, specifically the result of a store conditional or
80 * the values of uncached accesses. In these cases, and with
81 * instructions marked as "IsUnverifiable", the checker assumes that
82 * the value from the main CPU's execution is correct and simply
83 * copies that value. It provides a CheckerThreadContext (see
84 * checker/thread_context.hh) that provides hooks for updating the
85 * Checker's state through any ThreadContext accesses. This allows the
86 * checker to be able to correctly verify instructions, even with
87 * external accesses to the ThreadContext that change state.
88 */
89class CheckerCPU : public BaseCPU
90{
91 protected:
92 typedef TheISA::MachInst MachInst;
93 typedef TheISA::FloatReg FloatReg;
94 typedef TheISA::FloatRegBits FloatRegBits;
95 typedef TheISA::MiscReg MiscReg;
96
97 /** id attached to all issued requests */
98 MasterID masterId;
99 public:
100 virtual void init();
101
102 public:
103 typedef CheckerCPUParams Params;
104 const Params *params() const
105 { return reinterpret_cast<const Params *>(_params); }
106 CheckerCPU(Params *p);
107 virtual ~CheckerCPU();
108
109 std::vector<Process*> workload;
110
111 void setSystem(System *system);
112
113 System *systemPtr;
114
115 void setIcachePort(CpuPort *icache_port);
116
117 CpuPort *icachePort;
118
119 void setDcachePort(CpuPort *dcache_port);
120
121 CpuPort *dcachePort;
122
123 CpuPort &getDataPort()
124 {
125 panic("Not supported on checker!");
126 return *dcachePort;
127 }
128
129 CpuPort &getInstPort()
130 {
131 panic("Not supported on checker!");
132 return *icachePort;
133 }
134
135 virtual Port *getPort(const std::string &name, int idx)
136 {
137 panic("Not supported on checker!");
138 return NULL;
139 }
140
141 public:
142 // Primary thread being run.
143 SimpleThread *thread;
144
145 ThreadContext *tc;
146
147 TheISA::TLB *itb;
148 TheISA::TLB *dtb;
149
150 Addr dbg_vtophys(Addr addr);
151
152 union Result {
153 uint64_t integer;
154 double dbl;
155 void set(uint64_t i) { integer = i; }
156 void set(double d) { dbl = d; }
157 void get(uint64_t& i) { i = integer; }
158 void get(double& d) { d = dbl; }
159 };
160
161 // ISAs like ARM can have multiple destination registers to check,
162 // keep them all in a std::queue
163 std::queue<Result> result;
164
165 // current instruction
166 TheISA::MachInst machInst;
167
168 // Pointer to the one memory request.
169 RequestPtr memReq;
170
171 StaticInstPtr curStaticInst;
172 StaticInstPtr curMacroStaticInst;
173
174 // number of simulated instructions
175 Counter numInst;
176 Counter startNumInst;
177
178 std::queue<int> miscRegIdxs;
179
180 TheISA::TLB* getITBPtr() { return itb; }
181 TheISA::TLB* getDTBPtr() { return dtb; }
182
183 virtual Counter totalInsts() const
184 {
185 return 0;
186 }
187
188 virtual Counter totalOps() const
189 {
190 return 0;
191 }
192
193 // number of simulated loads
194 Counter numLoad;
195 Counter startNumLoad;
196
197 virtual void serialize(std::ostream &os);
198 virtual void unserialize(Checkpoint *cp, const std::string &section);
199
200 // These functions are only used in CPU models that split
201 // effective address computation from the actual memory access.
202 void setEA(Addr EA) { panic("SimpleCPU::setEA() not implemented\n"); }
203 Addr getEA() { panic("SimpleCPU::getEA() not implemented\n"); }
204
205 // The register accessor methods provide the index of the
206 // instruction's operand (e.g., 0 or 1), not the architectural
207 // register index, to simplify the implementation of register
208 // renaming. We find the architectural register index by indexing
209 // into the instruction's own operand index table. Note that a
210 // raw pointer to the StaticInst is provided instead of a
211 // ref-counted StaticInstPtr to redice overhead. This is fine as
212 // long as these methods don't copy the pointer into any long-term
213 // storage (which is pretty hard to imagine they would have reason
214 // to do).
215
216 uint64_t readIntRegOperand(const StaticInst *si, int idx)
217 {
218 return thread->readIntReg(si->srcRegIdx(idx));
219 }
220
221 FloatReg readFloatRegOperand(const StaticInst *si, int idx)
222 {
223 int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
224 return thread->readFloatReg(reg_idx);
225 }
226
227 FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx)
228 {
229 int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
230 return thread->readFloatRegBits(reg_idx);
231 }
232
233 template <class T>
234 void setResult(T t)
235 {
236 Result instRes;
237 instRes.set(t);
238 result.push(instRes);
239 }
240
241 void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
242 {
243 thread->setIntReg(si->destRegIdx(idx), val);
244 setResult<uint64_t>(val);
245 }
246
247 void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
248 {
249 int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
250 thread->setFloatReg(reg_idx, val);
251 setResult<double>(val);
252 }
253
254 void setFloatRegOperandBits(const StaticInst *si, int idx,
255 FloatRegBits val)
256 {
257 int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
258 thread->setFloatRegBits(reg_idx, val);
259 setResult<uint64_t>(val);
260 }
261
262 bool readPredicate() { return thread->readPredicate(); }
263 void setPredicate(bool val)
264 {
265 thread->setPredicate(val);
266 }
267
268 TheISA::PCState pcState() { return thread->pcState(); }
269 void pcState(const TheISA::PCState &val)
270 {
271 DPRINTF(Checker, "Changing PC to %s, old PC %s.\n",
272 val, thread->pcState());
273 thread->pcState(val);
274 }
275 Addr instAddr() { return thread->instAddr(); }
276 Addr nextInstAddr() { return thread->nextInstAddr(); }
277 MicroPC microPC() { return thread->microPC(); }
278 //////////////////////////////////////////
279
280 MiscReg readMiscRegNoEffect(int misc_reg)
281 {
282 return thread->readMiscRegNoEffect(misc_reg);
283 }
284
285 MiscReg readMiscReg(int misc_reg)
286 {
287 return thread->readMiscReg(misc_reg);
288 }
289
290 void setMiscRegNoEffect(int misc_reg, const MiscReg &val)
291 {
292 miscRegIdxs.push(misc_reg);
293 return thread->setMiscRegNoEffect(misc_reg, val);
294 }
295
296 void setMiscReg(int misc_reg, const MiscReg &val)
297 {
298 miscRegIdxs.push(misc_reg);
299 return thread->setMiscReg(misc_reg, val);
300 }
301
302 MiscReg readMiscRegOperand(const StaticInst *si, int idx)
303 {
304 int reg_idx = si->srcRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
305 return thread->readMiscReg(reg_idx);
306 }
307
308 void setMiscRegOperand(
309 const StaticInst *si, int idx, const MiscReg &val)
310 {
311 int reg_idx = si->destRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
312 return thread->setMiscReg(reg_idx, val);
313 }
314 /////////////////////////////////////////
315
316 void recordPCChange(const TheISA::PCState &val)
317 {
318 changedPC = true;
319 newPCState = val;
320 }
321
322 void demapPage(Addr vaddr, uint64_t asn)
323 {
324 this->itb->demapPage(vaddr, asn);
325 this->dtb->demapPage(vaddr, asn);
326 }
327
328 void demapInstPage(Addr vaddr, uint64_t asn)
329 {
330 this->itb->demapPage(vaddr, asn);
331 }
332
333 void demapDataPage(Addr vaddr, uint64_t asn)
334 {
335 this->dtb->demapPage(vaddr, asn);
336 }
337
338 Fault readMem(Addr addr, uint8_t *data, unsigned size, unsigned flags);
339 Fault writeMem(uint8_t *data, unsigned size,
340 Addr addr, unsigned flags, uint64_t *res);
341
342 void setStCondFailures(unsigned sc_failures)
343 {}
344 /////////////////////////////////////////////////////
345
346 Fault hwrei() { return thread->hwrei(); }
347 bool simPalCheck(int palFunc) { return thread->simPalCheck(palFunc); }
348 void wakeup() { }
349 // Assume that the normal CPU's call to syscall was successful.
350 // The checker's state would have already been updated by the syscall.
351 void syscall(uint64_t callnum) { }
352
353 void handleError()
354 {
355 if (exitOnError)
356 dumpAndExit();
357 }
358
359 bool checkFlags(Request *unverified_req, Addr vAddr,
360 Addr pAddr, int flags);
361
362 void dumpAndExit();
363
364 ThreadContext *tcBase() { return tc; }
365 SimpleThread *threadBase() { return thread; }
366
367 Result unverifiedResult;
368 Request *unverifiedReq;
369 uint8_t *unverifiedMemData;
370
371 bool changedPC;
372 bool willChangePC;
373 TheISA::PCState newPCState;
374 bool changedNextPC;
375 bool exitOnError;
376 bool updateOnError;
377 bool warnOnlyOnLoadError;
378
379 InstSeqNum youngestSN;
380};
381
382/**
383 * Templated Checker class. This Checker class is templated on the
384 * DynInstPtr of the instruction type that will be verified. Proper
385 * template instantiations of the Checker must be placed at the bottom
386 * of checker/cpu.cc.
387 */
388template <class Impl>
389class Checker : public CheckerCPU
390{
391 private:
392 typedef typename Impl::DynInstPtr DynInstPtr;
393
394 public:
395 Checker(Params *p)
396 : CheckerCPU(p), updateThisCycle(false), unverifiedInst(NULL),
397 predecoder(NULL)
398 { }
399
400 void switchOut();
401 void takeOverFrom(BaseCPU *oldCPU);
402
403 void advancePC(Fault fault);
404
405 void verify(DynInstPtr &inst);
406
407 void validateInst(DynInstPtr &inst);
408 void validateExecution(DynInstPtr &inst);
409 void validateState();
410
411 void copyResult(DynInstPtr &inst, uint64_t mismatch_val, int start_idx);
412 void handlePendingInt();
413
414 private:
415 void handleError(DynInstPtr &inst)
416 {
417 if (exitOnError) {
418 dumpAndExit(inst);
419 } else if (updateOnError) {
420 updateThisCycle = true;
421 }
422 }
423
424 void dumpAndExit(DynInstPtr &inst);
425
426 bool updateThisCycle;
427
428 DynInstPtr unverifiedInst;
429 TheISA::Predecoder predecoder;
430
431 std::list<DynInstPtr> instList;
432 typedef typename std::list<DynInstPtr>::iterator InstListIt;
433 void dumpInsts();
434};
435
436#endif // __CPU_CHECKER_CPU_HH__