1/*
2 * Copyright (c) 2011-2012,2016-2017 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2011 Regents of the University of California
16 * Copyright (c) 2013 Advanced Micro Devices, Inc.
17 * Copyright (c) 2013 Mark D. Hill and David A. Wood
18 * All rights reserved.
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions are
22 * met: redistributions of source code must retain the above copyright
23 * notice, this list of conditions and the following disclaimer;
24 * redistributions in binary form must reproduce the above copyright
25 * notice, this list of conditions and the following disclaimer in the
26 * documentation and/or other materials provided with the distribution;
27 * neither the name of the copyright holders nor the names of its
28 * contributors may be used to endorse or promote products derived from
29 * this software without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
36 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
37 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
38 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
39 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
41 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42 *
43 * Authors: Steve Reinhardt
44 * Nathan Binkert
45 * Rick Strong
46 */
47
48#include "cpu/base.hh"
49
50#include <iostream>
51#include <sstream>
52#include <string>
53
54#include "arch/generic/tlb.hh"
55#include "base/cprintf.hh"
56#include "base/loader/symtab.hh"
57#include "base/logging.hh"
58#include "base/output.hh"
59#include "base/trace.hh"
60#include "cpu/checker/cpu.hh"
61#include "cpu/cpuevent.hh"
62#include "cpu/profile.hh"
63#include "cpu/thread_context.hh"
64#include "debug/Mwait.hh"
65#include "debug/SyscallVerbose.hh"
66#include "mem/page_table.hh"
67#include "params/BaseCPU.hh"
68#include "sim/clocked_object.hh"
69#include "sim/full_system.hh"
70#include "sim/process.hh"
71#include "sim/sim_events.hh"
72#include "sim/sim_exit.hh"
73#include "sim/system.hh"
74
75// Hack
76#include "sim/stat_control.hh"
77
78using namespace std;
79
80vector<BaseCPU *> BaseCPU::cpuList;
81
82// This variable reflects the max number of threads in any CPU. Be
83// careful to only use it once all the CPUs that you care about have
84// been initialized
85int maxThreadsPerCPU = 1;
86
87CPUProgressEvent::CPUProgressEvent(BaseCPU *_cpu, Tick ival)
88 : Event(Event::Progress_Event_Pri), _interval(ival), lastNumInst(0),
89 cpu(_cpu), _repeatEvent(true)
90{
91 if (_interval)
92 cpu->schedule(this, curTick() + _interval);
93}
94
95void
96CPUProgressEvent::process()
97{
98 Counter temp = cpu->totalOps();
99
100 if (_repeatEvent)
101 cpu->schedule(this, curTick() + _interval);
102
103 if (cpu->switchedOut()) {
104 return;
105 }
106
107#ifndef NDEBUG
108 double ipc = double(temp - lastNumInst) / (_interval / cpu->clockPeriod());
109
110 DPRINTFN("%s progress event, total committed:%i, progress insts committed: "
111 "%lli, IPC: %0.8d\n", cpu->name(), temp, temp - lastNumInst,
112 ipc);
113 ipc = 0.0;
114#else
115 cprintf("%lli: %s progress event, total committed:%i, progress insts "
116 "committed: %lli\n", curTick(), cpu->name(), temp,
117 temp - lastNumInst);
118#endif
119 lastNumInst = temp;
120}
121
122const char *
123CPUProgressEvent::description() const
124{
125 return "CPU Progress";
126}
127
128BaseCPU::BaseCPU(Params *p, bool is_checker)
129 : MemObject(p), instCnt(0), _cpuId(p->cpu_id), _socketId(p->socket_id),
130 _instMasterId(p->system->getMasterId(this, "inst")),
131 _dataMasterId(p->system->getMasterId(this, "data")),
132 _taskId(ContextSwitchTaskId::Unknown), _pid(invldPid),
133 _switchedOut(p->switched_out), _cacheLineSize(p->system->cacheLineSize()),
134 interrupts(p->interrupts), profileEvent(NULL),
135 numThreads(p->numThreads), system(p->system),
136 previousCycle(0), previousState(CPU_STATE_SLEEP),
137 functionTraceStream(nullptr), currentFunctionStart(0),
138 currentFunctionEnd(0), functionEntryTick(0),
139 addressMonitor(p->numThreads),
140 syscallRetryLatency(p->syscallRetryLatency),
141 pwrGatingLatency(p->pwr_gating_latency),
142 powerGatingOnIdle(p->power_gating_on_idle),
143 enterPwrGatingEvent([this]{ enterPwrGating(); }, name())
144{
145 // if Python did not provide a valid ID, do it here
146 if (_cpuId == -1 ) {
147 _cpuId = cpuList.size();
148 }
149
150 // add self to global list of CPUs
151 cpuList.push_back(this);
152
153 DPRINTF(SyscallVerbose, "Constructing CPU with id %d, socket id %d\n",
154 _cpuId, _socketId);
155
156 if (numThreads > maxThreadsPerCPU)
157 maxThreadsPerCPU = numThreads;
158
159 // allocate per-thread instruction-based event queues
160 comInstEventQueue = new EventQueue *[numThreads];
161 for (ThreadID tid = 0; tid < numThreads; ++tid)
162 comInstEventQueue[tid] =
163 new EventQueue("instruction-based event queue");
164
165 //
166 // set up instruction-count-based termination events, if any
167 //
168 if (p->max_insts_any_thread != 0) {
169 const char *cause = "a thread reached the max instruction count";
170 for (ThreadID tid = 0; tid < numThreads; ++tid)
171 scheduleInstStop(tid, p->max_insts_any_thread, cause);
172 }
173
174 // Set up instruction-count-based termination events for SimPoints
175 // Typically, there are more than one action points.
176 // Simulation.py is responsible to take the necessary actions upon
177 // exitting the simulation loop.
178 if (!p->simpoint_start_insts.empty()) {
179 const char *cause = "simpoint starting point found";
180 for (size_t i = 0; i < p->simpoint_start_insts.size(); ++i)
181 scheduleInstStop(0, p->simpoint_start_insts[i], cause);
182 }
183
184 if (p->max_insts_all_threads != 0) {
185 const char *cause = "all threads reached the max instruction count";
186
187 // allocate & initialize shared downcounter: each event will
188 // decrement this when triggered; simulation will terminate
189 // when counter reaches 0
190 int *counter = new int;
191 *counter = numThreads;
192 for (ThreadID tid = 0; tid < numThreads; ++tid) {
193 Event *event = new CountedExitEvent(cause, *counter);
194 comInstEventQueue[tid]->schedule(event, p->max_insts_all_threads);
195 }
196 }
197
198 // allocate per-thread load-based event queues
199 comLoadEventQueue = new EventQueue *[numThreads];
200 for (ThreadID tid = 0; tid < numThreads; ++tid)
201 comLoadEventQueue[tid] = new EventQueue("load-based event queue");
202
203 //
204 // set up instruction-count-based termination events, if any
205 //
206 if (p->max_loads_any_thread != 0) {
207 const char *cause = "a thread reached the max load count";
208 for (ThreadID tid = 0; tid < numThreads; ++tid)
209 scheduleLoadStop(tid, p->max_loads_any_thread, cause);
210 }
211
212 if (p->max_loads_all_threads != 0) {
213 const char *cause = "all threads reached the max load count";
214 // allocate & initialize shared downcounter: each event will
215 // decrement this when triggered; simulation will terminate
216 // when counter reaches 0
217 int *counter = new int;
218 *counter = numThreads;
219 for (ThreadID tid = 0; tid < numThreads; ++tid) {
220 Event *event = new CountedExitEvent(cause, *counter);
221 comLoadEventQueue[tid]->schedule(event, p->max_loads_all_threads);
222 }
223 }
224
225 functionTracingEnabled = false;
226 if (p->function_trace) {
227 const string fname = csprintf("ftrace.%s", name());
228 functionTraceStream = simout.findOrCreate(fname)->stream();
229
230 currentFunctionStart = currentFunctionEnd = 0;
231 functionEntryTick = p->function_trace_start;
232
233 if (p->function_trace_start == 0) {
234 functionTracingEnabled = true;
235 } else {
236 Event *event = new EventFunctionWrapper(
237 [this]{ enableFunctionTrace(); }, name(), true);
238 schedule(event, p->function_trace_start);
239 }
240 }
241
242 // The interrupts should always be present unless this CPU is
243 // switched in later or in case it is a checker CPU
244 if (!params()->switched_out && !is_checker) {
245 fatal_if(interrupts.size() != numThreads,
246 "CPU %s has %i interrupt controllers, but is expecting one "
247 "per thread (%i)\n",
248 name(), interrupts.size(), numThreads);
249 for (ThreadID tid = 0; tid < numThreads; tid++)
250 interrupts[tid]->setCPU(this);
251 }
252
253 if (FullSystem) {
254 if (params()->profile)
255 profileEvent = new EventFunctionWrapper(
256 [this]{ processProfileEvent(); },
257 name());
258 }
259 tracer = params()->tracer;
260
261 if (params()->isa.size() != numThreads) {
262 fatal("Number of ISAs (%i) assigned to the CPU does not equal number "
263 "of threads (%i).\n", params()->isa.size(), numThreads);
264 }
265}
266
267void
268BaseCPU::enableFunctionTrace()
269{
270 functionTracingEnabled = true;
271}
272
273BaseCPU::~BaseCPU()
274{
275 delete profileEvent;
276 delete[] comLoadEventQueue;
277 delete[] comInstEventQueue;
278}
279
280void
281BaseCPU::armMonitor(ThreadID tid, Addr address)
282{
283 assert(tid < numThreads);
284 AddressMonitor &monitor = addressMonitor[tid];
285
286 monitor.armed = true;
287 monitor.vAddr = address;
288 monitor.pAddr = 0x0;
289 DPRINTF(Mwait,"[tid:%d] Armed monitor (vAddr=0x%lx)\n", tid, address);
290}
291
292bool
293BaseCPU::mwait(ThreadID tid, PacketPtr pkt)
294{
295 assert(tid < numThreads);
296 AddressMonitor &monitor = addressMonitor[tid];
297
298 if (!monitor.gotWakeup) {
299 int block_size = cacheLineSize();
300 uint64_t mask = ~((uint64_t)(block_size - 1));
301
302 assert(pkt->req->hasPaddr());
303 monitor.pAddr = pkt->getAddr() & mask;
304 monitor.waiting = true;
305
306 DPRINTF(Mwait,"[tid:%d] mwait called (vAddr=0x%lx, "
307 "line's paddr=0x%lx)\n", tid, monitor.vAddr, monitor.pAddr);
308 return true;
309 } else {
310 monitor.gotWakeup = false;
311 return false;
312 }
313}
314
315void
316BaseCPU::mwaitAtomic(ThreadID tid, ThreadContext *tc, BaseTLB *dtb)
317{
318 assert(tid < numThreads);
319 AddressMonitor &monitor = addressMonitor[tid];
320
321 RequestPtr req = std::make_shared<Request>();
322
323 Addr addr = monitor.vAddr;
324 int block_size = cacheLineSize();
325 uint64_t mask = ~((uint64_t)(block_size - 1));
326 int size = block_size;
327
328 //The address of the next line if it crosses a cache line boundary.
329 Addr secondAddr = roundDown(addr + size - 1, block_size);
330
331 if (secondAddr > addr)
332 size = secondAddr - addr;
333
334 req->setVirt(0, addr, size, 0x0, dataMasterId(), tc->instAddr());
335
336 // translate to physical address
337 Fault fault = dtb->translateAtomic(req, tc, BaseTLB::Read);
338 assert(fault == NoFault);
339
340 monitor.pAddr = req->getPaddr() & mask;
341 monitor.waiting = true;
342
343 DPRINTF(Mwait,"[tid:%d] mwait called (vAddr=0x%lx, line's paddr=0x%lx)\n",
344 tid, monitor.vAddr, monitor.pAddr);
345}
346
347void
348BaseCPU::init()
349{
350 if (!params()->switched_out) {
351 registerThreadContexts();
352
353 verifyMemoryMode();
354 }
355}
356
357void
358BaseCPU::startup()
359{
360 if (FullSystem) {
361 if (!params()->switched_out && profileEvent)
362 schedule(profileEvent, curTick());
363 }
364
365 if (params()->progress_interval) {
366 new CPUProgressEvent(this, params()->progress_interval);
367 }
368
369 if (_switchedOut)
370 ClockedObject::pwrState(Enums::PwrState::OFF);
371
372 // Assumption CPU start to operate instantaneously without any latency
373 if (ClockedObject::pwrState() == Enums::PwrState::UNDEFINED)
374 ClockedObject::pwrState(Enums::PwrState::ON);
375
376}
377
378ProbePoints::PMUUPtr
379BaseCPU::pmuProbePoint(const char *name)
380{
381 ProbePoints::PMUUPtr ptr;
382 ptr.reset(new ProbePoints::PMU(getProbeManager(), name));
383
384 return ptr;
385}
386
387void
388BaseCPU::regProbePoints()
389{
390 ppAllCycles = pmuProbePoint("Cycles");
391 ppActiveCycles = pmuProbePoint("ActiveCycles");
392
393 ppRetiredInsts = pmuProbePoint("RetiredInsts");
394 ppRetiredLoads = pmuProbePoint("RetiredLoads");
395 ppRetiredStores = pmuProbePoint("RetiredStores");
396 ppRetiredBranches = pmuProbePoint("RetiredBranches");
397
398 ppSleeping = new ProbePointArg<bool>(this->getProbeManager(),
399 "Sleeping");
400}
401
402void
403BaseCPU::probeInstCommit(const StaticInstPtr &inst)
404{
405 if (!inst->isMicroop() || inst->isLastMicroop())
406 ppRetiredInsts->notify(1);
407
408
409 if (inst->isLoad())
410 ppRetiredLoads->notify(1);
411
412 if (inst->isStore())
412 if (inst->isStore() || inst->isAtomic())
413 ppRetiredStores->notify(1);
414
415 if (inst->isControl())
416 ppRetiredBranches->notify(1);
417}
418
419void
420BaseCPU::regStats()
421{
422 MemObject::regStats();
423
424 using namespace Stats;
425
426 numCycles
427 .name(name() + ".numCycles")
428 .desc("number of cpu cycles simulated")
429 ;
430
431 numWorkItemsStarted
432 .name(name() + ".numWorkItemsStarted")
433 .desc("number of work items this cpu started")
434 ;
435
436 numWorkItemsCompleted
437 .name(name() + ".numWorkItemsCompleted")
438 .desc("number of work items this cpu completed")
439 ;
440
441 int size = threadContexts.size();
442 if (size > 1) {
443 for (int i = 0; i < size; ++i) {
444 stringstream namestr;
445 ccprintf(namestr, "%s.ctx%d", name(), i);
446 threadContexts[i]->regStats(namestr.str());
447 }
448 } else if (size == 1)
449 threadContexts[0]->regStats(name());
450}
451
452BaseMasterPort &
453BaseCPU::getMasterPort(const string &if_name, PortID idx)
454{
455 // Get the right port based on name. This applies to all the
456 // subclasses of the base CPU and relies on their implementation
457 // of getDataPort and getInstPort. In all cases there methods
458 // return a MasterPort pointer.
459 if (if_name == "dcache_port")
460 return getDataPort();
461 else if (if_name == "icache_port")
462 return getInstPort();
463 else
464 return MemObject::getMasterPort(if_name, idx);
465}
466
467void
468BaseCPU::registerThreadContexts()
469{
470 assert(system->multiThread || numThreads == 1);
471
472 ThreadID size = threadContexts.size();
473 for (ThreadID tid = 0; tid < size; ++tid) {
474 ThreadContext *tc = threadContexts[tid];
475
476 if (system->multiThread) {
477 tc->setContextId(system->registerThreadContext(tc));
478 } else {
479 tc->setContextId(system->registerThreadContext(tc, _cpuId));
480 }
481
482 if (!FullSystem)
483 tc->getProcessPtr()->assignThreadContext(tc->contextId());
484 }
485}
486
487void
488BaseCPU::deschedulePowerGatingEvent()
489{
490 if (enterPwrGatingEvent.scheduled()){
491 deschedule(enterPwrGatingEvent);
492 }
493}
494
495void
496BaseCPU::schedulePowerGatingEvent()
497{
498 for (auto tc : threadContexts) {
499 if (tc->status() == ThreadContext::Active)
500 return;
501 }
502
503 if (ClockedObject::pwrState() == Enums::PwrState::CLK_GATED &&
504 powerGatingOnIdle) {
505 assert(!enterPwrGatingEvent.scheduled());
506 // Schedule a power gating event when clock gated for the specified
507 // amount of time
508 schedule(enterPwrGatingEvent, clockEdge(pwrGatingLatency));
509 }
510}
511
512int
513BaseCPU::findContext(ThreadContext *tc)
514{
515 ThreadID size = threadContexts.size();
516 for (ThreadID tid = 0; tid < size; ++tid) {
517 if (tc == threadContexts[tid])
518 return tid;
519 }
520 return 0;
521}
522
523void
524BaseCPU::activateContext(ThreadID thread_num)
525{
526 // Squash enter power gating event while cpu gets activated
527 if (enterPwrGatingEvent.scheduled())
528 deschedule(enterPwrGatingEvent);
529 // For any active thread running, update CPU power state to active (ON)
530 ClockedObject::pwrState(Enums::PwrState::ON);
531
532 updateCycleCounters(CPU_STATE_WAKEUP);
533}
534
535void
536BaseCPU::suspendContext(ThreadID thread_num)
537{
538 // Check if all threads are suspended
539 for (auto t : threadContexts) {
540 if (t->status() != ThreadContext::Suspended) {
541 return;
542 }
543 }
544
545 // All CPU thread are suspended, update cycle count
546 updateCycleCounters(CPU_STATE_SLEEP);
547
548 // All CPU threads suspended, enter lower power state for the CPU
549 ClockedObject::pwrState(Enums::PwrState::CLK_GATED);
550
551 // If pwrGatingLatency is set to 0 then this mechanism is disabled
552 if (powerGatingOnIdle) {
553 // Schedule power gating event when clock gated for pwrGatingLatency
554 // cycles
555 schedule(enterPwrGatingEvent, clockEdge(pwrGatingLatency));
556 }
557}
558
559void
560BaseCPU::haltContext(ThreadID thread_num)
561{
562 updateCycleCounters(BaseCPU::CPU_STATE_SLEEP);
563}
564
565void
566BaseCPU::enterPwrGating(void)
567{
568 ClockedObject::pwrState(Enums::PwrState::OFF);
569}
570
571void
572BaseCPU::switchOut()
573{
574 assert(!_switchedOut);
575 _switchedOut = true;
576 if (profileEvent && profileEvent->scheduled())
577 deschedule(profileEvent);
578
579 // Flush all TLBs in the CPU to avoid having stale translations if
580 // it gets switched in later.
581 flushTLBs();
582
583 // Go to the power gating state
584 ClockedObject::pwrState(Enums::PwrState::OFF);
585}
586
587void
588BaseCPU::takeOverFrom(BaseCPU *oldCPU)
589{
590 assert(threadContexts.size() == oldCPU->threadContexts.size());
591 assert(_cpuId == oldCPU->cpuId());
592 assert(_switchedOut);
593 assert(oldCPU != this);
594 _pid = oldCPU->getPid();
595 _taskId = oldCPU->taskId();
596 // Take over the power state of the switchedOut CPU
597 ClockedObject::pwrState(oldCPU->pwrState());
598
599 previousState = oldCPU->previousState;
600 previousCycle = oldCPU->previousCycle;
601
602 _switchedOut = false;
603
604 ThreadID size = threadContexts.size();
605 for (ThreadID i = 0; i < size; ++i) {
606 ThreadContext *newTC = threadContexts[i];
607 ThreadContext *oldTC = oldCPU->threadContexts[i];
608
609 newTC->takeOverFrom(oldTC);
610
611 CpuEvent::replaceThreadContext(oldTC, newTC);
612
613 assert(newTC->contextId() == oldTC->contextId());
614 assert(newTC->threadId() == oldTC->threadId());
615 system->replaceThreadContext(newTC, newTC->contextId());
616
617 /* This code no longer works since the zero register (e.g.,
618 * r31 on Alpha) doesn't necessarily contain zero at this
619 * point.
620 if (DTRACE(Context))
621 ThreadContext::compare(oldTC, newTC);
622 */
623
624 BaseMasterPort *old_itb_port = oldTC->getITBPtr()->getMasterPort();
625 BaseMasterPort *old_dtb_port = oldTC->getDTBPtr()->getMasterPort();
626 BaseMasterPort *new_itb_port = newTC->getITBPtr()->getMasterPort();
627 BaseMasterPort *new_dtb_port = newTC->getDTBPtr()->getMasterPort();
628
629 // Move over any table walker ports if they exist
630 if (new_itb_port) {
631 assert(!new_itb_port->isConnected());
632 assert(old_itb_port);
633 assert(old_itb_port->isConnected());
634 BaseSlavePort &slavePort = old_itb_port->getSlavePort();
635 old_itb_port->unbind();
636 new_itb_port->bind(slavePort);
637 }
638 if (new_dtb_port) {
639 assert(!new_dtb_port->isConnected());
640 assert(old_dtb_port);
641 assert(old_dtb_port->isConnected());
642 BaseSlavePort &slavePort = old_dtb_port->getSlavePort();
643 old_dtb_port->unbind();
644 new_dtb_port->bind(slavePort);
645 }
646 newTC->getITBPtr()->takeOverFrom(oldTC->getITBPtr());
647 newTC->getDTBPtr()->takeOverFrom(oldTC->getDTBPtr());
648
649 // Checker whether or not we have to transfer CheckerCPU
650 // objects over in the switch
651 CheckerCPU *oldChecker = oldTC->getCheckerCpuPtr();
652 CheckerCPU *newChecker = newTC->getCheckerCpuPtr();
653 if (oldChecker && newChecker) {
654 BaseMasterPort *old_checker_itb_port =
655 oldChecker->getITBPtr()->getMasterPort();
656 BaseMasterPort *old_checker_dtb_port =
657 oldChecker->getDTBPtr()->getMasterPort();
658 BaseMasterPort *new_checker_itb_port =
659 newChecker->getITBPtr()->getMasterPort();
660 BaseMasterPort *new_checker_dtb_port =
661 newChecker->getDTBPtr()->getMasterPort();
662
663 newChecker->getITBPtr()->takeOverFrom(oldChecker->getITBPtr());
664 newChecker->getDTBPtr()->takeOverFrom(oldChecker->getDTBPtr());
665
666 // Move over any table walker ports if they exist for checker
667 if (new_checker_itb_port) {
668 assert(!new_checker_itb_port->isConnected());
669 assert(old_checker_itb_port);
670 assert(old_checker_itb_port->isConnected());
671 BaseSlavePort &slavePort =
672 old_checker_itb_port->getSlavePort();
673 old_checker_itb_port->unbind();
674 new_checker_itb_port->bind(slavePort);
675 }
676 if (new_checker_dtb_port) {
677 assert(!new_checker_dtb_port->isConnected());
678 assert(old_checker_dtb_port);
679 assert(old_checker_dtb_port->isConnected());
680 BaseSlavePort &slavePort =
681 old_checker_dtb_port->getSlavePort();
682 old_checker_dtb_port->unbind();
683 new_checker_dtb_port->bind(slavePort);
684 }
685 }
686 }
687
688 interrupts = oldCPU->interrupts;
689 for (ThreadID tid = 0; tid < numThreads; tid++) {
690 interrupts[tid]->setCPU(this);
691 }
692 oldCPU->interrupts.clear();
693
694 if (FullSystem) {
695 for (ThreadID i = 0; i < size; ++i)
696 threadContexts[i]->profileClear();
697
698 if (profileEvent)
699 schedule(profileEvent, curTick());
700 }
701
702 // All CPUs have an instruction and a data port, and the new CPU's
703 // ports are dangling while the old CPU has its ports connected
704 // already. Unbind the old CPU and then bind the ports of the one
705 // we are switching to.
706 assert(!getInstPort().isConnected());
707 assert(oldCPU->getInstPort().isConnected());
708 BaseSlavePort &inst_peer_port = oldCPU->getInstPort().getSlavePort();
709 oldCPU->getInstPort().unbind();
710 getInstPort().bind(inst_peer_port);
711
712 assert(!getDataPort().isConnected());
713 assert(oldCPU->getDataPort().isConnected());
714 BaseSlavePort &data_peer_port = oldCPU->getDataPort().getSlavePort();
715 oldCPU->getDataPort().unbind();
716 getDataPort().bind(data_peer_port);
717}
718
719void
720BaseCPU::flushTLBs()
721{
722 for (ThreadID i = 0; i < threadContexts.size(); ++i) {
723 ThreadContext &tc(*threadContexts[i]);
724 CheckerCPU *checker(tc.getCheckerCpuPtr());
725
726 tc.getITBPtr()->flushAll();
727 tc.getDTBPtr()->flushAll();
728 if (checker) {
729 checker->getITBPtr()->flushAll();
730 checker->getDTBPtr()->flushAll();
731 }
732 }
733}
734
735void
736BaseCPU::processProfileEvent()
737{
738 ThreadID size = threadContexts.size();
739
740 for (ThreadID i = 0; i < size; ++i)
741 threadContexts[i]->profileSample();
742
743 schedule(profileEvent, curTick() + params()->profile);
744}
745
746void
747BaseCPU::serialize(CheckpointOut &cp) const
748{
749 SERIALIZE_SCALAR(instCnt);
750
751 if (!_switchedOut) {
752 /* Unlike _pid, _taskId is not serialized, as they are dynamically
753 * assigned unique ids that are only meaningful for the duration of
754 * a specific run. We will need to serialize the entire taskMap in
755 * system. */
756 SERIALIZE_SCALAR(_pid);
757
758 // Serialize the threads, this is done by the CPU implementation.
759 for (ThreadID i = 0; i < numThreads; ++i) {
760 ScopedCheckpointSection sec(cp, csprintf("xc.%i", i));
761 interrupts[i]->serialize(cp);
762 serializeThread(cp, i);
763 }
764 }
765}
766
767void
768BaseCPU::unserialize(CheckpointIn &cp)
769{
770 UNSERIALIZE_SCALAR(instCnt);
771
772 if (!_switchedOut) {
773 UNSERIALIZE_SCALAR(_pid);
774
775 // Unserialize the threads, this is done by the CPU implementation.
776 for (ThreadID i = 0; i < numThreads; ++i) {
777 ScopedCheckpointSection sec(cp, csprintf("xc.%i", i));
778 interrupts[i]->unserialize(cp);
779 unserializeThread(cp, i);
780 }
781 }
782}
783
784void
785BaseCPU::scheduleInstStop(ThreadID tid, Counter insts, const char *cause)
786{
787 const Tick now(comInstEventQueue[tid]->getCurTick());
788 Event *event(new LocalSimLoopExitEvent(cause, 0));
789
790 comInstEventQueue[tid]->schedule(event, now + insts);
791}
792
793uint64_t
794BaseCPU::getCurrentInstCount(ThreadID tid)
795{
796 return Tick(comInstEventQueue[tid]->getCurTick());
797}
798
799AddressMonitor::AddressMonitor() {
800 armed = false;
801 waiting = false;
802 gotWakeup = false;
803}
804
805bool AddressMonitor::doMonitor(PacketPtr pkt) {
806 assert(pkt->req->hasPaddr());
807 if (armed && waiting) {
808 if (pAddr == pkt->getAddr()) {
809 DPRINTF(Mwait,"pAddr=0x%lx invalidated: waking up core\n",
810 pkt->getAddr());
811 waiting = false;
812 return true;
813 }
814 }
815 return false;
816}
817
818void
819BaseCPU::scheduleLoadStop(ThreadID tid, Counter loads, const char *cause)
820{
821 const Tick now(comLoadEventQueue[tid]->getCurTick());
822 Event *event(new LocalSimLoopExitEvent(cause, 0));
823
824 comLoadEventQueue[tid]->schedule(event, now + loads);
825}
826
827
828void
829BaseCPU::traceFunctionsInternal(Addr pc)
830{
831 if (!debugSymbolTable)
832 return;
833
834 // if pc enters different function, print new function symbol and
835 // update saved range. Otherwise do nothing.
836 if (pc < currentFunctionStart || pc >= currentFunctionEnd) {
837 string sym_str;
838 bool found = debugSymbolTable->findNearestSymbol(pc, sym_str,
839 currentFunctionStart,
840 currentFunctionEnd);
841
842 if (!found) {
843 // no symbol found: use addr as label
844 sym_str = csprintf("0x%x", pc);
845 currentFunctionStart = pc;
846 currentFunctionEnd = pc + 1;
847 }
848
849 ccprintf(*functionTraceStream, " (%d)\n%d: %s",
850 curTick() - functionEntryTick, curTick(), sym_str);
851 functionEntryTick = curTick();
852 }
853}
854
855bool
856BaseCPU::waitForRemoteGDB() const
857{
858 return params()->wait_for_remote_gdb;
859}