base.cc (8922:17f037ad8918) base.cc (8948:e95ee70f876c)
1/*
2 * Copyright (c) 2011-2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2011 Regents of the University of California
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 * Nathan Binkert
43 * Rick Strong
44 */
45
46#include <iostream>
47#include <sstream>
48#include <string>
49
50#include "arch/tlb.hh"
51#include "base/loader/symtab.hh"
52#include "base/cprintf.hh"
53#include "base/misc.hh"
54#include "base/output.hh"
55#include "base/trace.hh"
56#include "cpu/base.hh"
57#include "cpu/checker/cpu.hh"
58#include "cpu/cpuevent.hh"
59#include "cpu/profile.hh"
60#include "cpu/thread_context.hh"
61#include "debug/SyscallVerbose.hh"
62#include "params/BaseCPU.hh"
63#include "sim/full_system.hh"
64#include "sim/process.hh"
65#include "sim/sim_events.hh"
66#include "sim/sim_exit.hh"
67#include "sim/system.hh"
68
69// Hack
70#include "sim/stat_control.hh"
71
72using namespace std;
73
74vector<BaseCPU *> BaseCPU::cpuList;
75
76// This variable reflects the max number of threads in any CPU. Be
77// careful to only use it once all the CPUs that you care about have
78// been initialized
79int maxThreadsPerCPU = 1;
80
81CPUProgressEvent::CPUProgressEvent(BaseCPU *_cpu, Tick ival)
82 : Event(Event::Progress_Event_Pri), _interval(ival), lastNumInst(0),
83 cpu(_cpu), _repeatEvent(true)
84{
85 if (_interval)
86 cpu->schedule(this, curTick() + _interval);
87}
88
89void
90CPUProgressEvent::process()
91{
92 Counter temp = cpu->totalOps();
93#ifndef NDEBUG
94 double ipc = double(temp - lastNumInst) / (_interval / cpu->ticks(1));
95
96 DPRINTFN("%s progress event, total committed:%i, progress insts committed: "
97 "%lli, IPC: %0.8d\n", cpu->name(), temp, temp - lastNumInst,
98 ipc);
99 ipc = 0.0;
100#else
101 cprintf("%lli: %s progress event, total committed:%i, progress insts "
102 "committed: %lli\n", curTick(), cpu->name(), temp,
103 temp - lastNumInst);
104#endif
105 lastNumInst = temp;
106
107 if (_repeatEvent)
108 cpu->schedule(this, curTick() + _interval);
109}
110
111const char *
112CPUProgressEvent::description() const
113{
114 return "CPU Progress";
115}
116
117BaseCPU::BaseCPU(Params *p, bool is_checker)
118 : MemObject(p), clock(p->clock), instCnt(0), _cpuId(p->cpu_id),
119 _instMasterId(p->system->getMasterId(name() + ".inst")),
120 _dataMasterId(p->system->getMasterId(name() + ".data")),
121 interrupts(p->interrupts),
122 numThreads(p->numThreads), system(p->system),
123 phase(p->phase)
124{
125// currentTick = curTick();
126
127 // if Python did not provide a valid ID, do it here
128 if (_cpuId == -1 ) {
129 _cpuId = cpuList.size();
130 }
131
132 // add self to global list of CPUs
133 cpuList.push_back(this);
134
135 DPRINTF(SyscallVerbose, "Constructing CPU with id %d\n", _cpuId);
136
137 if (numThreads > maxThreadsPerCPU)
138 maxThreadsPerCPU = numThreads;
139
140 // allocate per-thread instruction-based event queues
141 comInstEventQueue = new EventQueue *[numThreads];
142 for (ThreadID tid = 0; tid < numThreads; ++tid)
143 comInstEventQueue[tid] =
144 new EventQueue("instruction-based event queue");
145
146 //
147 // set up instruction-count-based termination events, if any
148 //
149 if (p->max_insts_any_thread != 0) {
150 const char *cause = "a thread reached the max instruction count";
151 for (ThreadID tid = 0; tid < numThreads; ++tid) {
152 Event *event = new SimLoopExitEvent(cause, 0);
153 comInstEventQueue[tid]->schedule(event, p->max_insts_any_thread);
154 }
155 }
156
157 if (p->max_insts_all_threads != 0) {
158 const char *cause = "all threads reached the max instruction count";
159
160 // allocate & initialize shared downcounter: each event will
161 // decrement this when triggered; simulation will terminate
162 // when counter reaches 0
163 int *counter = new int;
164 *counter = numThreads;
165 for (ThreadID tid = 0; tid < numThreads; ++tid) {
166 Event *event = new CountedExitEvent(cause, *counter);
167 comInstEventQueue[tid]->schedule(event, p->max_insts_all_threads);
168 }
169 }
170
171 // allocate per-thread load-based event queues
172 comLoadEventQueue = new EventQueue *[numThreads];
173 for (ThreadID tid = 0; tid < numThreads; ++tid)
174 comLoadEventQueue[tid] = new EventQueue("load-based event queue");
175
176 //
177 // set up instruction-count-based termination events, if any
178 //
179 if (p->max_loads_any_thread != 0) {
180 const char *cause = "a thread reached the max load count";
181 for (ThreadID tid = 0; tid < numThreads; ++tid) {
182 Event *event = new SimLoopExitEvent(cause, 0);
183 comLoadEventQueue[tid]->schedule(event, p->max_loads_any_thread);
184 }
185 }
186
187 if (p->max_loads_all_threads != 0) {
188 const char *cause = "all threads reached the max load count";
189 // allocate & initialize shared downcounter: each event will
190 // decrement this when triggered; simulation will terminate
191 // when counter reaches 0
192 int *counter = new int;
193 *counter = numThreads;
194 for (ThreadID tid = 0; tid < numThreads; ++tid) {
195 Event *event = new CountedExitEvent(cause, *counter);
196 comLoadEventQueue[tid]->schedule(event, p->max_loads_all_threads);
197 }
198 }
199
200 functionTracingEnabled = false;
201 if (p->function_trace) {
202 const string fname = csprintf("ftrace.%s", name());
203 functionTraceStream = simout.find(fname);
204 if (!functionTraceStream)
205 functionTraceStream = simout.create(fname);
206
207 currentFunctionStart = currentFunctionEnd = 0;
208 functionEntryTick = p->function_trace_start;
209
210 if (p->function_trace_start == 0) {
211 functionTracingEnabled = true;
212 } else {
213 typedef EventWrapper<BaseCPU, &BaseCPU::enableFunctionTrace> wrap;
214 Event *event = new wrap(this, true);
215 schedule(event, p->function_trace_start);
216 }
217 }
218
219 // The interrupts should always be present unless this CPU is
220 // switched in later or in case it is a checker CPU
221 if (!params()->defer_registration && !is_checker) {
222 if (interrupts) {
223 interrupts->setCPU(this);
224 } else {
225 fatal("CPU %s has no interrupt controller.\n"
226 "Ensure createInterruptController() is called.\n", name());
227 }
228 }
229
230 if (FullSystem) {
231 profileEvent = NULL;
232 if (params()->profile)
233 profileEvent = new ProfileEvent(this, params()->profile);
234 }
235 tracer = params()->tracer;
236}
237
238void
239BaseCPU::enableFunctionTrace()
240{
241 functionTracingEnabled = true;
242}
243
244BaseCPU::~BaseCPU()
245{
246}
247
248void
249BaseCPU::init()
250{
251 if (!params()->defer_registration)
252 registerThreadContexts();
253}
254
255void
256BaseCPU::startup()
257{
258 if (FullSystem) {
259 if (!params()->defer_registration && profileEvent)
260 schedule(profileEvent, curTick());
261 }
262
263 if (params()->progress_interval) {
264 Tick num_ticks = ticks(params()->progress_interval);
265
266 new CPUProgressEvent(this, num_ticks);
267 }
268}
269
270
271void
272BaseCPU::regStats()
273{
274 using namespace Stats;
275
276 numCycles
277 .name(name() + ".numCycles")
278 .desc("number of cpu cycles simulated")
279 ;
280
281 numWorkItemsStarted
282 .name(name() + ".numWorkItemsStarted")
283 .desc("number of work items this cpu started")
284 ;
285
286 numWorkItemsCompleted
287 .name(name() + ".numWorkItemsCompleted")
288 .desc("number of work items this cpu completed")
289 ;
290
291 int size = threadContexts.size();
292 if (size > 1) {
293 for (int i = 0; i < size; ++i) {
294 stringstream namestr;
295 ccprintf(namestr, "%s.ctx%d", name(), i);
296 threadContexts[i]->regStats(namestr.str());
297 }
298 } else if (size == 1)
299 threadContexts[0]->regStats(name());
300}
301
302MasterPort &
303BaseCPU::getMasterPort(const string &if_name, int idx)
304{
305 // Get the right port based on name. This applies to all the
306 // subclasses of the base CPU and relies on their implementation
307 // of getDataPort and getInstPort. In all cases there methods
308 // return a CpuPort pointer.
309 if (if_name == "dcache_port")
310 return getDataPort();
311 else if (if_name == "icache_port")
312 return getInstPort();
313 else
314 return MemObject::getMasterPort(if_name, idx);
315}
316
317Tick
318BaseCPU::nextCycle()
319{
320 Tick next_tick = curTick() - phase + clock - 1;
321 next_tick -= (next_tick % clock);
322 next_tick += phase;
323 return next_tick;
324}
325
326Tick
327BaseCPU::nextCycle(Tick begin_tick)
328{
329 Tick next_tick = begin_tick;
330 if (next_tick % clock != 0)
331 next_tick = next_tick - (next_tick % clock) + clock;
332 next_tick += phase;
333
334 assert(next_tick >= curTick());
335 return next_tick;
336}
337
338void
339BaseCPU::registerThreadContexts()
340{
341 ThreadID size = threadContexts.size();
342 for (ThreadID tid = 0; tid < size; ++tid) {
343 ThreadContext *tc = threadContexts[tid];
344
345 /** This is so that contextId and cpuId match where there is a
346 * 1cpu:1context relationship. Otherwise, the order of registration
347 * could affect the assignment and cpu 1 could have context id 3, for
348 * example. We may even want to do something like this for SMT so that
349 * cpu 0 has the lowest thread contexts and cpu N has the highest, but
350 * I'll just do this for now
351 */
352 if (numThreads == 1)
353 tc->setContextId(system->registerThreadContext(tc, _cpuId));
354 else
355 tc->setContextId(system->registerThreadContext(tc));
356
357 if (!FullSystem)
358 tc->getProcessPtr()->assignThreadContext(tc->contextId());
359 }
360}
361
362
363int
364BaseCPU::findContext(ThreadContext *tc)
365{
366 ThreadID size = threadContexts.size();
367 for (ThreadID tid = 0; tid < size; ++tid) {
368 if (tc == threadContexts[tid])
369 return tid;
370 }
371 return 0;
372}
373
374void
375BaseCPU::switchOut()
376{
377 if (profileEvent && profileEvent->scheduled())
378 deschedule(profileEvent);
379}
380
381void
382BaseCPU::takeOverFrom(BaseCPU *oldCPU)
383{
384 assert(threadContexts.size() == oldCPU->threadContexts.size());
385
386 _cpuId = oldCPU->cpuId();
387
388 ThreadID size = threadContexts.size();
389 for (ThreadID i = 0; i < size; ++i) {
390 ThreadContext *newTC = threadContexts[i];
391 ThreadContext *oldTC = oldCPU->threadContexts[i];
392
393 newTC->takeOverFrom(oldTC);
394
395 CpuEvent::replaceThreadContext(oldTC, newTC);
396
397 assert(newTC->contextId() == oldTC->contextId());
398 assert(newTC->threadId() == oldTC->threadId());
399 system->replaceThreadContext(newTC, newTC->contextId());
400
401 /* This code no longer works since the zero register (e.g.,
402 * r31 on Alpha) doesn't necessarily contain zero at this
403 * point.
404 if (DTRACE(Context))
405 ThreadContext::compare(oldTC, newTC);
406 */
407
408 MasterPort *old_itb_port = oldTC->getITBPtr()->getMasterPort();
409 MasterPort *old_dtb_port = oldTC->getDTBPtr()->getMasterPort();
410 MasterPort *new_itb_port = newTC->getITBPtr()->getMasterPort();
411 MasterPort *new_dtb_port = newTC->getDTBPtr()->getMasterPort();
412
413 // Move over any table walker ports if they exist
414 if (new_itb_port && !new_itb_port->isConnected()) {
415 assert(old_itb_port);
416 SlavePort &slavePort = old_itb_port->getSlavePort();
417 new_itb_port->bind(slavePort);
418 }
419 if (new_dtb_port && !new_dtb_port->isConnected()) {
420 assert(old_dtb_port);
421 SlavePort &slavePort = old_dtb_port->getSlavePort();
422 new_dtb_port->bind(slavePort);
423 }
424
425 // Checker whether or not we have to transfer CheckerCPU
426 // objects over in the switch
427 CheckerCPU *oldChecker = oldTC->getCheckerCpuPtr();
428 CheckerCPU *newChecker = newTC->getCheckerCpuPtr();
429 if (oldChecker && newChecker) {
430 MasterPort *old_checker_itb_port =
431 oldChecker->getITBPtr()->getMasterPort();
432 MasterPort *old_checker_dtb_port =
433 oldChecker->getDTBPtr()->getMasterPort();
434 MasterPort *new_checker_itb_port =
435 newChecker->getITBPtr()->getMasterPort();
436 MasterPort *new_checker_dtb_port =
437 newChecker->getDTBPtr()->getMasterPort();
438
439 // Move over any table walker ports if they exist for checker
440 if (new_checker_itb_port && !new_checker_itb_port->isConnected()) {
441 assert(old_checker_itb_port);
442 SlavePort &slavePort = old_checker_itb_port->getSlavePort();;
443 new_checker_itb_port->bind(slavePort);
444 }
445 if (new_checker_dtb_port && !new_checker_dtb_port->isConnected()) {
446 assert(old_checker_dtb_port);
447 SlavePort &slavePort = old_checker_dtb_port->getSlavePort();;
448 new_checker_dtb_port->bind(slavePort);
449 }
450 }
451 }
452
453 interrupts = oldCPU->interrupts;
454 interrupts->setCPU(this);
455
456 if (FullSystem) {
457 for (ThreadID i = 0; i < size; ++i)
458 threadContexts[i]->profileClear();
459
460 if (profileEvent)
461 schedule(profileEvent, curTick());
462 }
463
464 // Connect new CPU to old CPU's memory only if new CPU isn't
465 // connected to anything. Also connect old CPU's memory to new
466 // CPU.
467 if (!getInstPort().isConnected()) {
468 getInstPort().bind(oldCPU->getInstPort().getSlavePort());
469 }
470
471 if (!getDataPort().isConnected()) {
472 getDataPort().bind(oldCPU->getDataPort().getSlavePort());
473 }
474}
475
476
477BaseCPU::ProfileEvent::ProfileEvent(BaseCPU *_cpu, Tick _interval)
478 : cpu(_cpu), interval(_interval)
479{ }
480
481void
482BaseCPU::ProfileEvent::process()
483{
484 ThreadID size = cpu->threadContexts.size();
485 for (ThreadID i = 0; i < size; ++i) {
486 ThreadContext *tc = cpu->threadContexts[i];
487 tc->profileSample();
488 }
489
490 cpu->schedule(this, curTick() + interval);
491}
492
493void
494BaseCPU::serialize(std::ostream &os)
495{
496 SERIALIZE_SCALAR(instCnt);
497 interrupts->serialize(os);
498}
499
500void
501BaseCPU::unserialize(Checkpoint *cp, const std::string &section)
502{
503 UNSERIALIZE_SCALAR(instCnt);
504 interrupts->unserialize(cp, section);
505}
506
507void
508BaseCPU::traceFunctionsInternal(Addr pc)
509{
510 if (!debugSymbolTable)
511 return;
512
513 // if pc enters different function, print new function symbol and
514 // update saved range. Otherwise do nothing.
515 if (pc < currentFunctionStart || pc >= currentFunctionEnd) {
516 string sym_str;
517 bool found = debugSymbolTable->findNearestSymbol(pc, sym_str,
518 currentFunctionStart,
519 currentFunctionEnd);
520
521 if (!found) {
522 // no symbol found: use addr as label
523 sym_str = csprintf("0x%x", pc);
524 currentFunctionStart = pc;
525 currentFunctionEnd = pc + 1;
526 }
527
528 ccprintf(*functionTraceStream, " (%d)\n%d: %s",
529 curTick() - functionEntryTick, curTick(), sym_str);
530 functionEntryTick = curTick();
531 }
532}
533
534bool
535BaseCPU::CpuPort::recvTiming(PacketPtr pkt)
536{
1/*
2 * Copyright (c) 2011-2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2011 Regents of the University of California
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 * Nathan Binkert
43 * Rick Strong
44 */
45
46#include <iostream>
47#include <sstream>
48#include <string>
49
50#include "arch/tlb.hh"
51#include "base/loader/symtab.hh"
52#include "base/cprintf.hh"
53#include "base/misc.hh"
54#include "base/output.hh"
55#include "base/trace.hh"
56#include "cpu/base.hh"
57#include "cpu/checker/cpu.hh"
58#include "cpu/cpuevent.hh"
59#include "cpu/profile.hh"
60#include "cpu/thread_context.hh"
61#include "debug/SyscallVerbose.hh"
62#include "params/BaseCPU.hh"
63#include "sim/full_system.hh"
64#include "sim/process.hh"
65#include "sim/sim_events.hh"
66#include "sim/sim_exit.hh"
67#include "sim/system.hh"
68
69// Hack
70#include "sim/stat_control.hh"
71
72using namespace std;
73
74vector<BaseCPU *> BaseCPU::cpuList;
75
76// This variable reflects the max number of threads in any CPU. Be
77// careful to only use it once all the CPUs that you care about have
78// been initialized
79int maxThreadsPerCPU = 1;
80
81CPUProgressEvent::CPUProgressEvent(BaseCPU *_cpu, Tick ival)
82 : Event(Event::Progress_Event_Pri), _interval(ival), lastNumInst(0),
83 cpu(_cpu), _repeatEvent(true)
84{
85 if (_interval)
86 cpu->schedule(this, curTick() + _interval);
87}
88
89void
90CPUProgressEvent::process()
91{
92 Counter temp = cpu->totalOps();
93#ifndef NDEBUG
94 double ipc = double(temp - lastNumInst) / (_interval / cpu->ticks(1));
95
96 DPRINTFN("%s progress event, total committed:%i, progress insts committed: "
97 "%lli, IPC: %0.8d\n", cpu->name(), temp, temp - lastNumInst,
98 ipc);
99 ipc = 0.0;
100#else
101 cprintf("%lli: %s progress event, total committed:%i, progress insts "
102 "committed: %lli\n", curTick(), cpu->name(), temp,
103 temp - lastNumInst);
104#endif
105 lastNumInst = temp;
106
107 if (_repeatEvent)
108 cpu->schedule(this, curTick() + _interval);
109}
110
111const char *
112CPUProgressEvent::description() const
113{
114 return "CPU Progress";
115}
116
117BaseCPU::BaseCPU(Params *p, bool is_checker)
118 : MemObject(p), clock(p->clock), instCnt(0), _cpuId(p->cpu_id),
119 _instMasterId(p->system->getMasterId(name() + ".inst")),
120 _dataMasterId(p->system->getMasterId(name() + ".data")),
121 interrupts(p->interrupts),
122 numThreads(p->numThreads), system(p->system),
123 phase(p->phase)
124{
125// currentTick = curTick();
126
127 // if Python did not provide a valid ID, do it here
128 if (_cpuId == -1 ) {
129 _cpuId = cpuList.size();
130 }
131
132 // add self to global list of CPUs
133 cpuList.push_back(this);
134
135 DPRINTF(SyscallVerbose, "Constructing CPU with id %d\n", _cpuId);
136
137 if (numThreads > maxThreadsPerCPU)
138 maxThreadsPerCPU = numThreads;
139
140 // allocate per-thread instruction-based event queues
141 comInstEventQueue = new EventQueue *[numThreads];
142 for (ThreadID tid = 0; tid < numThreads; ++tid)
143 comInstEventQueue[tid] =
144 new EventQueue("instruction-based event queue");
145
146 //
147 // set up instruction-count-based termination events, if any
148 //
149 if (p->max_insts_any_thread != 0) {
150 const char *cause = "a thread reached the max instruction count";
151 for (ThreadID tid = 0; tid < numThreads; ++tid) {
152 Event *event = new SimLoopExitEvent(cause, 0);
153 comInstEventQueue[tid]->schedule(event, p->max_insts_any_thread);
154 }
155 }
156
157 if (p->max_insts_all_threads != 0) {
158 const char *cause = "all threads reached the max instruction count";
159
160 // allocate & initialize shared downcounter: each event will
161 // decrement this when triggered; simulation will terminate
162 // when counter reaches 0
163 int *counter = new int;
164 *counter = numThreads;
165 for (ThreadID tid = 0; tid < numThreads; ++tid) {
166 Event *event = new CountedExitEvent(cause, *counter);
167 comInstEventQueue[tid]->schedule(event, p->max_insts_all_threads);
168 }
169 }
170
171 // allocate per-thread load-based event queues
172 comLoadEventQueue = new EventQueue *[numThreads];
173 for (ThreadID tid = 0; tid < numThreads; ++tid)
174 comLoadEventQueue[tid] = new EventQueue("load-based event queue");
175
176 //
177 // set up instruction-count-based termination events, if any
178 //
179 if (p->max_loads_any_thread != 0) {
180 const char *cause = "a thread reached the max load count";
181 for (ThreadID tid = 0; tid < numThreads; ++tid) {
182 Event *event = new SimLoopExitEvent(cause, 0);
183 comLoadEventQueue[tid]->schedule(event, p->max_loads_any_thread);
184 }
185 }
186
187 if (p->max_loads_all_threads != 0) {
188 const char *cause = "all threads reached the max load count";
189 // allocate & initialize shared downcounter: each event will
190 // decrement this when triggered; simulation will terminate
191 // when counter reaches 0
192 int *counter = new int;
193 *counter = numThreads;
194 for (ThreadID tid = 0; tid < numThreads; ++tid) {
195 Event *event = new CountedExitEvent(cause, *counter);
196 comLoadEventQueue[tid]->schedule(event, p->max_loads_all_threads);
197 }
198 }
199
200 functionTracingEnabled = false;
201 if (p->function_trace) {
202 const string fname = csprintf("ftrace.%s", name());
203 functionTraceStream = simout.find(fname);
204 if (!functionTraceStream)
205 functionTraceStream = simout.create(fname);
206
207 currentFunctionStart = currentFunctionEnd = 0;
208 functionEntryTick = p->function_trace_start;
209
210 if (p->function_trace_start == 0) {
211 functionTracingEnabled = true;
212 } else {
213 typedef EventWrapper<BaseCPU, &BaseCPU::enableFunctionTrace> wrap;
214 Event *event = new wrap(this, true);
215 schedule(event, p->function_trace_start);
216 }
217 }
218
219 // The interrupts should always be present unless this CPU is
220 // switched in later or in case it is a checker CPU
221 if (!params()->defer_registration && !is_checker) {
222 if (interrupts) {
223 interrupts->setCPU(this);
224 } else {
225 fatal("CPU %s has no interrupt controller.\n"
226 "Ensure createInterruptController() is called.\n", name());
227 }
228 }
229
230 if (FullSystem) {
231 profileEvent = NULL;
232 if (params()->profile)
233 profileEvent = new ProfileEvent(this, params()->profile);
234 }
235 tracer = params()->tracer;
236}
237
238void
239BaseCPU::enableFunctionTrace()
240{
241 functionTracingEnabled = true;
242}
243
244BaseCPU::~BaseCPU()
245{
246}
247
248void
249BaseCPU::init()
250{
251 if (!params()->defer_registration)
252 registerThreadContexts();
253}
254
255void
256BaseCPU::startup()
257{
258 if (FullSystem) {
259 if (!params()->defer_registration && profileEvent)
260 schedule(profileEvent, curTick());
261 }
262
263 if (params()->progress_interval) {
264 Tick num_ticks = ticks(params()->progress_interval);
265
266 new CPUProgressEvent(this, num_ticks);
267 }
268}
269
270
271void
272BaseCPU::regStats()
273{
274 using namespace Stats;
275
276 numCycles
277 .name(name() + ".numCycles")
278 .desc("number of cpu cycles simulated")
279 ;
280
281 numWorkItemsStarted
282 .name(name() + ".numWorkItemsStarted")
283 .desc("number of work items this cpu started")
284 ;
285
286 numWorkItemsCompleted
287 .name(name() + ".numWorkItemsCompleted")
288 .desc("number of work items this cpu completed")
289 ;
290
291 int size = threadContexts.size();
292 if (size > 1) {
293 for (int i = 0; i < size; ++i) {
294 stringstream namestr;
295 ccprintf(namestr, "%s.ctx%d", name(), i);
296 threadContexts[i]->regStats(namestr.str());
297 }
298 } else if (size == 1)
299 threadContexts[0]->regStats(name());
300}
301
302MasterPort &
303BaseCPU::getMasterPort(const string &if_name, int idx)
304{
305 // Get the right port based on name. This applies to all the
306 // subclasses of the base CPU and relies on their implementation
307 // of getDataPort and getInstPort. In all cases there methods
308 // return a CpuPort pointer.
309 if (if_name == "dcache_port")
310 return getDataPort();
311 else if (if_name == "icache_port")
312 return getInstPort();
313 else
314 return MemObject::getMasterPort(if_name, idx);
315}
316
317Tick
318BaseCPU::nextCycle()
319{
320 Tick next_tick = curTick() - phase + clock - 1;
321 next_tick -= (next_tick % clock);
322 next_tick += phase;
323 return next_tick;
324}
325
326Tick
327BaseCPU::nextCycle(Tick begin_tick)
328{
329 Tick next_tick = begin_tick;
330 if (next_tick % clock != 0)
331 next_tick = next_tick - (next_tick % clock) + clock;
332 next_tick += phase;
333
334 assert(next_tick >= curTick());
335 return next_tick;
336}
337
338void
339BaseCPU::registerThreadContexts()
340{
341 ThreadID size = threadContexts.size();
342 for (ThreadID tid = 0; tid < size; ++tid) {
343 ThreadContext *tc = threadContexts[tid];
344
345 /** This is so that contextId and cpuId match where there is a
346 * 1cpu:1context relationship. Otherwise, the order of registration
347 * could affect the assignment and cpu 1 could have context id 3, for
348 * example. We may even want to do something like this for SMT so that
349 * cpu 0 has the lowest thread contexts and cpu N has the highest, but
350 * I'll just do this for now
351 */
352 if (numThreads == 1)
353 tc->setContextId(system->registerThreadContext(tc, _cpuId));
354 else
355 tc->setContextId(system->registerThreadContext(tc));
356
357 if (!FullSystem)
358 tc->getProcessPtr()->assignThreadContext(tc->contextId());
359 }
360}
361
362
363int
364BaseCPU::findContext(ThreadContext *tc)
365{
366 ThreadID size = threadContexts.size();
367 for (ThreadID tid = 0; tid < size; ++tid) {
368 if (tc == threadContexts[tid])
369 return tid;
370 }
371 return 0;
372}
373
374void
375BaseCPU::switchOut()
376{
377 if (profileEvent && profileEvent->scheduled())
378 deschedule(profileEvent);
379}
380
381void
382BaseCPU::takeOverFrom(BaseCPU *oldCPU)
383{
384 assert(threadContexts.size() == oldCPU->threadContexts.size());
385
386 _cpuId = oldCPU->cpuId();
387
388 ThreadID size = threadContexts.size();
389 for (ThreadID i = 0; i < size; ++i) {
390 ThreadContext *newTC = threadContexts[i];
391 ThreadContext *oldTC = oldCPU->threadContexts[i];
392
393 newTC->takeOverFrom(oldTC);
394
395 CpuEvent::replaceThreadContext(oldTC, newTC);
396
397 assert(newTC->contextId() == oldTC->contextId());
398 assert(newTC->threadId() == oldTC->threadId());
399 system->replaceThreadContext(newTC, newTC->contextId());
400
401 /* This code no longer works since the zero register (e.g.,
402 * r31 on Alpha) doesn't necessarily contain zero at this
403 * point.
404 if (DTRACE(Context))
405 ThreadContext::compare(oldTC, newTC);
406 */
407
408 MasterPort *old_itb_port = oldTC->getITBPtr()->getMasterPort();
409 MasterPort *old_dtb_port = oldTC->getDTBPtr()->getMasterPort();
410 MasterPort *new_itb_port = newTC->getITBPtr()->getMasterPort();
411 MasterPort *new_dtb_port = newTC->getDTBPtr()->getMasterPort();
412
413 // Move over any table walker ports if they exist
414 if (new_itb_port && !new_itb_port->isConnected()) {
415 assert(old_itb_port);
416 SlavePort &slavePort = old_itb_port->getSlavePort();
417 new_itb_port->bind(slavePort);
418 }
419 if (new_dtb_port && !new_dtb_port->isConnected()) {
420 assert(old_dtb_port);
421 SlavePort &slavePort = old_dtb_port->getSlavePort();
422 new_dtb_port->bind(slavePort);
423 }
424
425 // Checker whether or not we have to transfer CheckerCPU
426 // objects over in the switch
427 CheckerCPU *oldChecker = oldTC->getCheckerCpuPtr();
428 CheckerCPU *newChecker = newTC->getCheckerCpuPtr();
429 if (oldChecker && newChecker) {
430 MasterPort *old_checker_itb_port =
431 oldChecker->getITBPtr()->getMasterPort();
432 MasterPort *old_checker_dtb_port =
433 oldChecker->getDTBPtr()->getMasterPort();
434 MasterPort *new_checker_itb_port =
435 newChecker->getITBPtr()->getMasterPort();
436 MasterPort *new_checker_dtb_port =
437 newChecker->getDTBPtr()->getMasterPort();
438
439 // Move over any table walker ports if they exist for checker
440 if (new_checker_itb_port && !new_checker_itb_port->isConnected()) {
441 assert(old_checker_itb_port);
442 SlavePort &slavePort = old_checker_itb_port->getSlavePort();;
443 new_checker_itb_port->bind(slavePort);
444 }
445 if (new_checker_dtb_port && !new_checker_dtb_port->isConnected()) {
446 assert(old_checker_dtb_port);
447 SlavePort &slavePort = old_checker_dtb_port->getSlavePort();;
448 new_checker_dtb_port->bind(slavePort);
449 }
450 }
451 }
452
453 interrupts = oldCPU->interrupts;
454 interrupts->setCPU(this);
455
456 if (FullSystem) {
457 for (ThreadID i = 0; i < size; ++i)
458 threadContexts[i]->profileClear();
459
460 if (profileEvent)
461 schedule(profileEvent, curTick());
462 }
463
464 // Connect new CPU to old CPU's memory only if new CPU isn't
465 // connected to anything. Also connect old CPU's memory to new
466 // CPU.
467 if (!getInstPort().isConnected()) {
468 getInstPort().bind(oldCPU->getInstPort().getSlavePort());
469 }
470
471 if (!getDataPort().isConnected()) {
472 getDataPort().bind(oldCPU->getDataPort().getSlavePort());
473 }
474}
475
476
477BaseCPU::ProfileEvent::ProfileEvent(BaseCPU *_cpu, Tick _interval)
478 : cpu(_cpu), interval(_interval)
479{ }
480
481void
482BaseCPU::ProfileEvent::process()
483{
484 ThreadID size = cpu->threadContexts.size();
485 for (ThreadID i = 0; i < size; ++i) {
486 ThreadContext *tc = cpu->threadContexts[i];
487 tc->profileSample();
488 }
489
490 cpu->schedule(this, curTick() + interval);
491}
492
493void
494BaseCPU::serialize(std::ostream &os)
495{
496 SERIALIZE_SCALAR(instCnt);
497 interrupts->serialize(os);
498}
499
500void
501BaseCPU::unserialize(Checkpoint *cp, const std::string &section)
502{
503 UNSERIALIZE_SCALAR(instCnt);
504 interrupts->unserialize(cp, section);
505}
506
507void
508BaseCPU::traceFunctionsInternal(Addr pc)
509{
510 if (!debugSymbolTable)
511 return;
512
513 // if pc enters different function, print new function symbol and
514 // update saved range. Otherwise do nothing.
515 if (pc < currentFunctionStart || pc >= currentFunctionEnd) {
516 string sym_str;
517 bool found = debugSymbolTable->findNearestSymbol(pc, sym_str,
518 currentFunctionStart,
519 currentFunctionEnd);
520
521 if (!found) {
522 // no symbol found: use addr as label
523 sym_str = csprintf("0x%x", pc);
524 currentFunctionStart = pc;
525 currentFunctionEnd = pc + 1;
526 }
527
528 ccprintf(*functionTraceStream, " (%d)\n%d: %s",
529 curTick() - functionEntryTick, curTick(), sym_str);
530 functionEntryTick = curTick();
531 }
532}
533
534bool
535BaseCPU::CpuPort::recvTiming(PacketPtr pkt)
536{
537 panic("BaseCPU doesn't expect recvTiming callback!");
537 panic("BaseCPU doesn't expect recvTiming!\n");
538 return true;
539}
540
541void
542BaseCPU::CpuPort::recvRetry()
543{
538 return true;
539}
540
541void
542BaseCPU::CpuPort::recvRetry()
543{
544 panic("BaseCPU doesn't expect recvRetry callback!");
544 panic("BaseCPU doesn't expect recvRetry!\n");
545}
546
545}
546
547Tick
548BaseCPU::CpuPort::recvAtomic(PacketPtr pkt)
549{
550 panic("BaseCPU doesn't expect recvAtomic callback!");
551 return curTick();
552}
553
554void
547void
555BaseCPU::CpuPort::recvFunctional(PacketPtr pkt)
548BaseCPU::CpuPort::recvFunctionalSnoop(PacketPtr pkt)
556{
549{
557 // No internal storage to update (in the general case). In the
558 // long term this should never be called, but that assumed a split
559 // into master/slave and request/response.
550 // No internal storage to update (in the general case). A CPU with
551 // internal storage, e.g. an LSQ that should be part of the
552 // coherent memory has to check against stored data.
560}
553}