base.cc (12085:de78ea63e0ca) base.cc (12122:20512f6810d7)
1/*
2 * Copyright (c) 2011-2012,2016 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2011 Regents of the University of California
16 * Copyright (c) 2013 Advanced Micro Devices, Inc.
17 * Copyright (c) 2013 Mark D. Hill and David A. Wood
18 * All rights reserved.
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions are
22 * met: redistributions of source code must retain the above copyright
23 * notice, this list of conditions and the following disclaimer;
24 * redistributions in binary form must reproduce the above copyright
25 * notice, this list of conditions and the following disclaimer in the
26 * documentation and/or other materials provided with the distribution;
27 * neither the name of the copyright holders nor the names of its
28 * contributors may be used to endorse or promote products derived from
29 * this software without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
36 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
37 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
38 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
39 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
41 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42 *
43 * Authors: Steve Reinhardt
44 * Nathan Binkert
45 * Rick Strong
46 */
47
48#include "cpu/base.hh"
49
50#include <iostream>
51#include <sstream>
52#include <string>
53
54#include "arch/tlb.hh"
55#include "base/cprintf.hh"
56#include "base/loader/symtab.hh"
57#include "base/misc.hh"
58#include "base/output.hh"
59#include "base/trace.hh"
60#include "cpu/checker/cpu.hh"
61#include "cpu/cpuevent.hh"
62#include "cpu/profile.hh"
63#include "cpu/thread_context.hh"
64#include "debug/Mwait.hh"
65#include "debug/SyscallVerbose.hh"
66#include "mem/page_table.hh"
67#include "params/BaseCPU.hh"
68#include "sim/clocked_object.hh"
69#include "sim/full_system.hh"
70#include "sim/process.hh"
71#include "sim/sim_events.hh"
72#include "sim/sim_exit.hh"
73#include "sim/system.hh"
74
75// Hack
76#include "sim/stat_control.hh"
77
78using namespace std;
79
80vector<BaseCPU *> BaseCPU::cpuList;
81
82// This variable reflects the max number of threads in any CPU. Be
83// careful to only use it once all the CPUs that you care about have
84// been initialized
85int maxThreadsPerCPU = 1;
86
87CPUProgressEvent::CPUProgressEvent(BaseCPU *_cpu, Tick ival)
88 : Event(Event::Progress_Event_Pri), _interval(ival), lastNumInst(0),
89 cpu(_cpu), _repeatEvent(true)
90{
91 if (_interval)
92 cpu->schedule(this, curTick() + _interval);
93}
94
95void
96CPUProgressEvent::process()
97{
98 Counter temp = cpu->totalOps();
99
100 if (_repeatEvent)
101 cpu->schedule(this, curTick() + _interval);
102
103 if (cpu->switchedOut()) {
104 return;
105 }
106
107#ifndef NDEBUG
108 double ipc = double(temp - lastNumInst) / (_interval / cpu->clockPeriod());
109
110 DPRINTFN("%s progress event, total committed:%i, progress insts committed: "
111 "%lli, IPC: %0.8d\n", cpu->name(), temp, temp - lastNumInst,
112 ipc);
113 ipc = 0.0;
114#else
115 cprintf("%lli: %s progress event, total committed:%i, progress insts "
116 "committed: %lli\n", curTick(), cpu->name(), temp,
117 temp - lastNumInst);
118#endif
119 lastNumInst = temp;
120}
121
122const char *
123CPUProgressEvent::description() const
124{
125 return "CPU Progress";
126}
127
128BaseCPU::BaseCPU(Params *p, bool is_checker)
129 : MemObject(p), instCnt(0), _cpuId(p->cpu_id), _socketId(p->socket_id),
130 _instMasterId(p->system->getMasterId(name() + ".inst")),
131 _dataMasterId(p->system->getMasterId(name() + ".data")),
132 _taskId(ContextSwitchTaskId::Unknown), _pid(invldPid),
133 _switchedOut(p->switched_out), _cacheLineSize(p->system->cacheLineSize()),
134 interrupts(p->interrupts), profileEvent(NULL),
135 numThreads(p->numThreads), system(p->system),
136 functionTraceStream(nullptr), currentFunctionStart(0),
137 currentFunctionEnd(0), functionEntryTick(0),
138 addressMonitor(p->numThreads),
139 syscallRetryLatency(p->syscallRetryLatency)
140{
141 // if Python did not provide a valid ID, do it here
142 if (_cpuId == -1 ) {
143 _cpuId = cpuList.size();
144 }
145
146 // add self to global list of CPUs
147 cpuList.push_back(this);
148
149 DPRINTF(SyscallVerbose, "Constructing CPU with id %d, socket id %d\n",
150 _cpuId, _socketId);
151
152 if (numThreads > maxThreadsPerCPU)
153 maxThreadsPerCPU = numThreads;
154
155 // allocate per-thread instruction-based event queues
156 comInstEventQueue = new EventQueue *[numThreads];
157 for (ThreadID tid = 0; tid < numThreads; ++tid)
158 comInstEventQueue[tid] =
159 new EventQueue("instruction-based event queue");
160
161 //
162 // set up instruction-count-based termination events, if any
163 //
164 if (p->max_insts_any_thread != 0) {
165 const char *cause = "a thread reached the max instruction count";
166 for (ThreadID tid = 0; tid < numThreads; ++tid)
167 scheduleInstStop(tid, p->max_insts_any_thread, cause);
168 }
169
170 // Set up instruction-count-based termination events for SimPoints
171 // Typically, there are more than one action points.
172 // Simulation.py is responsible to take the necessary actions upon
173 // exitting the simulation loop.
174 if (!p->simpoint_start_insts.empty()) {
175 const char *cause = "simpoint starting point found";
176 for (size_t i = 0; i < p->simpoint_start_insts.size(); ++i)
177 scheduleInstStop(0, p->simpoint_start_insts[i], cause);
178 }
179
180 if (p->max_insts_all_threads != 0) {
181 const char *cause = "all threads reached the max instruction count";
182
183 // allocate & initialize shared downcounter: each event will
184 // decrement this when triggered; simulation will terminate
185 // when counter reaches 0
186 int *counter = new int;
187 *counter = numThreads;
188 for (ThreadID tid = 0; tid < numThreads; ++tid) {
189 Event *event = new CountedExitEvent(cause, *counter);
190 comInstEventQueue[tid]->schedule(event, p->max_insts_all_threads);
191 }
192 }
193
194 // allocate per-thread load-based event queues
195 comLoadEventQueue = new EventQueue *[numThreads];
196 for (ThreadID tid = 0; tid < numThreads; ++tid)
197 comLoadEventQueue[tid] = new EventQueue("load-based event queue");
198
199 //
200 // set up instruction-count-based termination events, if any
201 //
202 if (p->max_loads_any_thread != 0) {
203 const char *cause = "a thread reached the max load count";
204 for (ThreadID tid = 0; tid < numThreads; ++tid)
205 scheduleLoadStop(tid, p->max_loads_any_thread, cause);
206 }
207
208 if (p->max_loads_all_threads != 0) {
209 const char *cause = "all threads reached the max load count";
210 // allocate & initialize shared downcounter: each event will
211 // decrement this when triggered; simulation will terminate
212 // when counter reaches 0
213 int *counter = new int;
214 *counter = numThreads;
215 for (ThreadID tid = 0; tid < numThreads; ++tid) {
216 Event *event = new CountedExitEvent(cause, *counter);
217 comLoadEventQueue[tid]->schedule(event, p->max_loads_all_threads);
218 }
219 }
220
221 functionTracingEnabled = false;
222 if (p->function_trace) {
223 const string fname = csprintf("ftrace.%s", name());
224 functionTraceStream = simout.findOrCreate(fname)->stream();
225
226 currentFunctionStart = currentFunctionEnd = 0;
227 functionEntryTick = p->function_trace_start;
228
229 if (p->function_trace_start == 0) {
230 functionTracingEnabled = true;
231 } else {
232 Event *event = new EventFunctionWrapper(
233 [this]{ enableFunctionTrace(); }, name(), true);
234 schedule(event, p->function_trace_start);
235 }
236 }
237
238 // The interrupts should always be present unless this CPU is
239 // switched in later or in case it is a checker CPU
240 if (!params()->switched_out && !is_checker) {
241 fatal_if(interrupts.size() != numThreads,
242 "CPU %s has %i interrupt controllers, but is expecting one "
243 "per thread (%i)\n",
244 name(), interrupts.size(), numThreads);
245 for (ThreadID tid = 0; tid < numThreads; tid++)
246 interrupts[tid]->setCPU(this);
247 }
248
249 if (FullSystem) {
250 if (params()->profile)
251 profileEvent = new ProfileEvent(this, params()->profile);
252 }
253 tracer = params()->tracer;
254
255 if (params()->isa.size() != numThreads) {
256 fatal("Number of ISAs (%i) assigned to the CPU does not equal number "
257 "of threads (%i).\n", params()->isa.size(), numThreads);
258 }
259}
260
261void
262BaseCPU::enableFunctionTrace()
263{
264 functionTracingEnabled = true;
265}
266
267BaseCPU::~BaseCPU()
268{
269 delete profileEvent;
270 delete[] comLoadEventQueue;
271 delete[] comInstEventQueue;
272}
273
274void
275BaseCPU::armMonitor(ThreadID tid, Addr address)
276{
277 assert(tid < numThreads);
278 AddressMonitor &monitor = addressMonitor[tid];
279
280 monitor.armed = true;
281 monitor.vAddr = address;
282 monitor.pAddr = 0x0;
283 DPRINTF(Mwait,"[tid:%d] Armed monitor (vAddr=0x%lx)\n", tid, address);
284}
285
286bool
287BaseCPU::mwait(ThreadID tid, PacketPtr pkt)
288{
289 assert(tid < numThreads);
290 AddressMonitor &monitor = addressMonitor[tid];
291
292 if (!monitor.gotWakeup) {
293 int block_size = cacheLineSize();
294 uint64_t mask = ~((uint64_t)(block_size - 1));
295
296 assert(pkt->req->hasPaddr());
297 monitor.pAddr = pkt->getAddr() & mask;
298 monitor.waiting = true;
299
300 DPRINTF(Mwait,"[tid:%d] mwait called (vAddr=0x%lx, "
301 "line's paddr=0x%lx)\n", tid, monitor.vAddr, monitor.pAddr);
302 return true;
303 } else {
304 monitor.gotWakeup = false;
305 return false;
306 }
307}
308
309void
310BaseCPU::mwaitAtomic(ThreadID tid, ThreadContext *tc, TheISA::TLB *dtb)
311{
312 assert(tid < numThreads);
313 AddressMonitor &monitor = addressMonitor[tid];
314
315 Request req;
316 Addr addr = monitor.vAddr;
317 int block_size = cacheLineSize();
318 uint64_t mask = ~((uint64_t)(block_size - 1));
319 int size = block_size;
320
321 //The address of the next line if it crosses a cache line boundary.
322 Addr secondAddr = roundDown(addr + size - 1, block_size);
323
324 if (secondAddr > addr)
325 size = secondAddr - addr;
326
327 req.setVirt(0, addr, size, 0x0, dataMasterId(), tc->instAddr());
328
329 // translate to physical address
330 Fault fault = dtb->translateAtomic(&req, tc, BaseTLB::Read);
331 assert(fault == NoFault);
332
333 monitor.pAddr = req.getPaddr() & mask;
334 monitor.waiting = true;
335
336 DPRINTF(Mwait,"[tid:%d] mwait called (vAddr=0x%lx, line's paddr=0x%lx)\n",
337 tid, monitor.vAddr, monitor.pAddr);
338}
339
340void
341BaseCPU::init()
342{
343 if (!params()->switched_out) {
344 registerThreadContexts();
345
346 verifyMemoryMode();
347 }
348}
349
350void
351BaseCPU::startup()
352{
353 if (FullSystem) {
354 if (!params()->switched_out && profileEvent)
355 schedule(profileEvent, curTick());
356 }
357
358 if (params()->progress_interval) {
359 new CPUProgressEvent(this, params()->progress_interval);
360 }
361
362 // Assumption CPU start to operate instantaneously without any latency
363 if (ClockedObject::pwrState() == Enums::PwrState::UNDEFINED)
364 ClockedObject::pwrState(Enums::PwrState::ON);
365
366}
367
368ProbePoints::PMUUPtr
369BaseCPU::pmuProbePoint(const char *name)
370{
371 ProbePoints::PMUUPtr ptr;
372 ptr.reset(new ProbePoints::PMU(getProbeManager(), name));
373
374 return ptr;
375}
376
377void
378BaseCPU::regProbePoints()
379{
380 ppCycles = pmuProbePoint("Cycles");
381
382 ppRetiredInsts = pmuProbePoint("RetiredInsts");
383 ppRetiredLoads = pmuProbePoint("RetiredLoads");
384 ppRetiredStores = pmuProbePoint("RetiredStores");
385 ppRetiredBranches = pmuProbePoint("RetiredBranches");
386}
387
388void
389BaseCPU::probeInstCommit(const StaticInstPtr &inst)
390{
391 if (!inst->isMicroop() || inst->isLastMicroop())
392 ppRetiredInsts->notify(1);
393
394
395 if (inst->isLoad())
396 ppRetiredLoads->notify(1);
397
398 if (inst->isStore())
399 ppRetiredStores->notify(1);
400
401 if (inst->isControl())
402 ppRetiredBranches->notify(1);
403}
404
405void
406BaseCPU::regStats()
407{
408 MemObject::regStats();
409
410 using namespace Stats;
411
412 numCycles
413 .name(name() + ".numCycles")
414 .desc("number of cpu cycles simulated")
415 ;
416
417 numWorkItemsStarted
418 .name(name() + ".numWorkItemsStarted")
419 .desc("number of work items this cpu started")
420 ;
421
422 numWorkItemsCompleted
423 .name(name() + ".numWorkItemsCompleted")
424 .desc("number of work items this cpu completed")
425 ;
426
427 int size = threadContexts.size();
428 if (size > 1) {
429 for (int i = 0; i < size; ++i) {
430 stringstream namestr;
431 ccprintf(namestr, "%s.ctx%d", name(), i);
432 threadContexts[i]->regStats(namestr.str());
433 }
434 } else if (size == 1)
435 threadContexts[0]->regStats(name());
436}
437
438BaseMasterPort &
439BaseCPU::getMasterPort(const string &if_name, PortID idx)
440{
441 // Get the right port based on name. This applies to all the
442 // subclasses of the base CPU and relies on their implementation
443 // of getDataPort and getInstPort. In all cases there methods
444 // return a MasterPort pointer.
445 if (if_name == "dcache_port")
446 return getDataPort();
447 else if (if_name == "icache_port")
448 return getInstPort();
449 else
450 return MemObject::getMasterPort(if_name, idx);
451}
452
453void
454BaseCPU::registerThreadContexts()
455{
456 assert(system->multiThread || numThreads == 1);
457
458 ThreadID size = threadContexts.size();
459 for (ThreadID tid = 0; tid < size; ++tid) {
460 ThreadContext *tc = threadContexts[tid];
461
462 if (system->multiThread) {
463 tc->setContextId(system->registerThreadContext(tc));
464 } else {
465 tc->setContextId(system->registerThreadContext(tc, _cpuId));
466 }
467
468 if (!FullSystem)
469 tc->getProcessPtr()->assignThreadContext(tc->contextId());
470 }
471}
472
473
474int
475BaseCPU::findContext(ThreadContext *tc)
476{
477 ThreadID size = threadContexts.size();
478 for (ThreadID tid = 0; tid < size; ++tid) {
479 if (tc == threadContexts[tid])
480 return tid;
481 }
482 return 0;
483}
484
485void
486BaseCPU::activateContext(ThreadID thread_num)
487{
488 // For any active thread running, update CPU power state to active (ON)
489 ClockedObject::pwrState(Enums::PwrState::ON);
490}
491
492void
493BaseCPU::suspendContext(ThreadID thread_num)
494{
495 // Check if all threads are suspended
496 for (auto t : threadContexts) {
497 if (t->status() != ThreadContext::Suspended) {
498 return;
499 }
500 }
501
502 // All CPU threads suspended, enter lower power state for the CPU
503 ClockedObject::pwrState(Enums::PwrState::CLK_GATED);
504}
505
506void
507BaseCPU::switchOut()
508{
509 assert(!_switchedOut);
510 _switchedOut = true;
511 if (profileEvent && profileEvent->scheduled())
512 deschedule(profileEvent);
513
514 // Flush all TLBs in the CPU to avoid having stale translations if
515 // it gets switched in later.
516 flushTLBs();
517}
518
519void
520BaseCPU::takeOverFrom(BaseCPU *oldCPU)
521{
522 assert(threadContexts.size() == oldCPU->threadContexts.size());
523 assert(_cpuId == oldCPU->cpuId());
524 assert(_switchedOut);
525 assert(oldCPU != this);
526 _pid = oldCPU->getPid();
527 _taskId = oldCPU->taskId();
528 _switchedOut = false;
529
530 ThreadID size = threadContexts.size();
531 for (ThreadID i = 0; i < size; ++i) {
532 ThreadContext *newTC = threadContexts[i];
533 ThreadContext *oldTC = oldCPU->threadContexts[i];
534
535 newTC->takeOverFrom(oldTC);
536
537 CpuEvent::replaceThreadContext(oldTC, newTC);
538
539 assert(newTC->contextId() == oldTC->contextId());
540 assert(newTC->threadId() == oldTC->threadId());
541 system->replaceThreadContext(newTC, newTC->contextId());
542
543 /* This code no longer works since the zero register (e.g.,
544 * r31 on Alpha) doesn't necessarily contain zero at this
545 * point.
546 if (DTRACE(Context))
547 ThreadContext::compare(oldTC, newTC);
548 */
549
550 BaseMasterPort *old_itb_port = oldTC->getITBPtr()->getMasterPort();
551 BaseMasterPort *old_dtb_port = oldTC->getDTBPtr()->getMasterPort();
552 BaseMasterPort *new_itb_port = newTC->getITBPtr()->getMasterPort();
553 BaseMasterPort *new_dtb_port = newTC->getDTBPtr()->getMasterPort();
554
555 // Move over any table walker ports if they exist
556 if (new_itb_port) {
557 assert(!new_itb_port->isConnected());
558 assert(old_itb_port);
559 assert(old_itb_port->isConnected());
560 BaseSlavePort &slavePort = old_itb_port->getSlavePort();
561 old_itb_port->unbind();
562 new_itb_port->bind(slavePort);
563 }
564 if (new_dtb_port) {
565 assert(!new_dtb_port->isConnected());
566 assert(old_dtb_port);
567 assert(old_dtb_port->isConnected());
568 BaseSlavePort &slavePort = old_dtb_port->getSlavePort();
569 old_dtb_port->unbind();
570 new_dtb_port->bind(slavePort);
571 }
572 newTC->getITBPtr()->takeOverFrom(oldTC->getITBPtr());
573 newTC->getDTBPtr()->takeOverFrom(oldTC->getDTBPtr());
574
575 // Checker whether or not we have to transfer CheckerCPU
576 // objects over in the switch
577 CheckerCPU *oldChecker = oldTC->getCheckerCpuPtr();
578 CheckerCPU *newChecker = newTC->getCheckerCpuPtr();
579 if (oldChecker && newChecker) {
580 BaseMasterPort *old_checker_itb_port =
581 oldChecker->getITBPtr()->getMasterPort();
582 BaseMasterPort *old_checker_dtb_port =
583 oldChecker->getDTBPtr()->getMasterPort();
584 BaseMasterPort *new_checker_itb_port =
585 newChecker->getITBPtr()->getMasterPort();
586 BaseMasterPort *new_checker_dtb_port =
587 newChecker->getDTBPtr()->getMasterPort();
588
589 newChecker->getITBPtr()->takeOverFrom(oldChecker->getITBPtr());
590 newChecker->getDTBPtr()->takeOverFrom(oldChecker->getDTBPtr());
591
592 // Move over any table walker ports if they exist for checker
593 if (new_checker_itb_port) {
594 assert(!new_checker_itb_port->isConnected());
595 assert(old_checker_itb_port);
596 assert(old_checker_itb_port->isConnected());
597 BaseSlavePort &slavePort =
598 old_checker_itb_port->getSlavePort();
599 old_checker_itb_port->unbind();
600 new_checker_itb_port->bind(slavePort);
601 }
602 if (new_checker_dtb_port) {
603 assert(!new_checker_dtb_port->isConnected());
604 assert(old_checker_dtb_port);
605 assert(old_checker_dtb_port->isConnected());
606 BaseSlavePort &slavePort =
607 old_checker_dtb_port->getSlavePort();
608 old_checker_dtb_port->unbind();
609 new_checker_dtb_port->bind(slavePort);
610 }
611 }
612 }
613
614 interrupts = oldCPU->interrupts;
615 for (ThreadID tid = 0; tid < numThreads; tid++) {
616 interrupts[tid]->setCPU(this);
617 }
618 oldCPU->interrupts.clear();
619
620 if (FullSystem) {
621 for (ThreadID i = 0; i < size; ++i)
622 threadContexts[i]->profileClear();
623
624 if (profileEvent)
625 schedule(profileEvent, curTick());
626 }
627
628 // All CPUs have an instruction and a data port, and the new CPU's
629 // ports are dangling while the old CPU has its ports connected
630 // already. Unbind the old CPU and then bind the ports of the one
631 // we are switching to.
632 assert(!getInstPort().isConnected());
633 assert(oldCPU->getInstPort().isConnected());
634 BaseSlavePort &inst_peer_port = oldCPU->getInstPort().getSlavePort();
635 oldCPU->getInstPort().unbind();
636 getInstPort().bind(inst_peer_port);
637
638 assert(!getDataPort().isConnected());
639 assert(oldCPU->getDataPort().isConnected());
640 BaseSlavePort &data_peer_port = oldCPU->getDataPort().getSlavePort();
641 oldCPU->getDataPort().unbind();
642 getDataPort().bind(data_peer_port);
643}
644
645void
646BaseCPU::flushTLBs()
647{
648 for (ThreadID i = 0; i < threadContexts.size(); ++i) {
649 ThreadContext &tc(*threadContexts[i]);
650 CheckerCPU *checker(tc.getCheckerCpuPtr());
651
652 tc.getITBPtr()->flushAll();
653 tc.getDTBPtr()->flushAll();
654 if (checker) {
655 checker->getITBPtr()->flushAll();
656 checker->getDTBPtr()->flushAll();
657 }
658 }
659}
660
661
662BaseCPU::ProfileEvent::ProfileEvent(BaseCPU *_cpu, Tick _interval)
663 : cpu(_cpu), interval(_interval)
664{ }
665
666void
667BaseCPU::ProfileEvent::process()
668{
669 ThreadID size = cpu->threadContexts.size();
670 for (ThreadID i = 0; i < size; ++i) {
671 ThreadContext *tc = cpu->threadContexts[i];
672 tc->profileSample();
673 }
674
675 cpu->schedule(this, curTick() + interval);
676}
677
678void
679BaseCPU::serialize(CheckpointOut &cp) const
680{
681 SERIALIZE_SCALAR(instCnt);
682
683 if (!_switchedOut) {
684 /* Unlike _pid, _taskId is not serialized, as they are dynamically
685 * assigned unique ids that are only meaningful for the duration of
686 * a specific run. We will need to serialize the entire taskMap in
687 * system. */
688 SERIALIZE_SCALAR(_pid);
689
690 // Serialize the threads, this is done by the CPU implementation.
691 for (ThreadID i = 0; i < numThreads; ++i) {
692 ScopedCheckpointSection sec(cp, csprintf("xc.%i", i));
693 interrupts[i]->serialize(cp);
694 serializeThread(cp, i);
695 }
696 }
697}
698
699void
700BaseCPU::unserialize(CheckpointIn &cp)
701{
702 UNSERIALIZE_SCALAR(instCnt);
703
704 if (!_switchedOut) {
705 UNSERIALIZE_SCALAR(_pid);
706
707 // Unserialize the threads, this is done by the CPU implementation.
708 for (ThreadID i = 0; i < numThreads; ++i) {
709 ScopedCheckpointSection sec(cp, csprintf("xc.%i", i));
710 interrupts[i]->unserialize(cp);
711 unserializeThread(cp, i);
712 }
713 }
714}
715
716void
717BaseCPU::scheduleInstStop(ThreadID tid, Counter insts, const char *cause)
718{
719 const Tick now(comInstEventQueue[tid]->getCurTick());
720 Event *event(new LocalSimLoopExitEvent(cause, 0));
721
722 comInstEventQueue[tid]->schedule(event, now + insts);
723}
724
725uint64_t
726BaseCPU::getCurrentInstCount(ThreadID tid)
727{
728 return Tick(comInstEventQueue[tid]->getCurTick());
729}
730
731AddressMonitor::AddressMonitor() {
732 armed = false;
733 waiting = false;
734 gotWakeup = false;
735}
736
737bool AddressMonitor::doMonitor(PacketPtr pkt) {
738 assert(pkt->req->hasPaddr());
739 if (armed && waiting) {
740 if (pAddr == pkt->getAddr()) {
741 DPRINTF(Mwait,"pAddr=0x%lx invalidated: waking up core\n",
742 pkt->getAddr());
743 waiting = false;
744 return true;
745 }
746 }
747 return false;
748}
749
750void
751BaseCPU::scheduleLoadStop(ThreadID tid, Counter loads, const char *cause)
752{
753 const Tick now(comLoadEventQueue[tid]->getCurTick());
754 Event *event(new LocalSimLoopExitEvent(cause, 0));
755
756 comLoadEventQueue[tid]->schedule(event, now + loads);
757}
758
759
760void
761BaseCPU::traceFunctionsInternal(Addr pc)
762{
763 if (!debugSymbolTable)
764 return;
765
766 // if pc enters different function, print new function symbol and
767 // update saved range. Otherwise do nothing.
768 if (pc < currentFunctionStart || pc >= currentFunctionEnd) {
769 string sym_str;
770 bool found = debugSymbolTable->findNearestSymbol(pc, sym_str,
771 currentFunctionStart,
772 currentFunctionEnd);
773
774 if (!found) {
775 // no symbol found: use addr as label
776 sym_str = csprintf("0x%x", pc);
777 currentFunctionStart = pc;
778 currentFunctionEnd = pc + 1;
779 }
780
781 ccprintf(*functionTraceStream, " (%d)\n%d: %s",
782 curTick() - functionEntryTick, curTick(), sym_str);
783 functionEntryTick = curTick();
784 }
785}
1/*
2 * Copyright (c) 2011-2012,2016 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * Copyright (c) 2011 Regents of the University of California
16 * Copyright (c) 2013 Advanced Micro Devices, Inc.
17 * Copyright (c) 2013 Mark D. Hill and David A. Wood
18 * All rights reserved.
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions are
22 * met: redistributions of source code must retain the above copyright
23 * notice, this list of conditions and the following disclaimer;
24 * redistributions in binary form must reproduce the above copyright
25 * notice, this list of conditions and the following disclaimer in the
26 * documentation and/or other materials provided with the distribution;
27 * neither the name of the copyright holders nor the names of its
28 * contributors may be used to endorse or promote products derived from
29 * this software without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
36 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
37 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
38 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
39 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
41 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42 *
43 * Authors: Steve Reinhardt
44 * Nathan Binkert
45 * Rick Strong
46 */
47
48#include "cpu/base.hh"
49
50#include <iostream>
51#include <sstream>
52#include <string>
53
54#include "arch/tlb.hh"
55#include "base/cprintf.hh"
56#include "base/loader/symtab.hh"
57#include "base/misc.hh"
58#include "base/output.hh"
59#include "base/trace.hh"
60#include "cpu/checker/cpu.hh"
61#include "cpu/cpuevent.hh"
62#include "cpu/profile.hh"
63#include "cpu/thread_context.hh"
64#include "debug/Mwait.hh"
65#include "debug/SyscallVerbose.hh"
66#include "mem/page_table.hh"
67#include "params/BaseCPU.hh"
68#include "sim/clocked_object.hh"
69#include "sim/full_system.hh"
70#include "sim/process.hh"
71#include "sim/sim_events.hh"
72#include "sim/sim_exit.hh"
73#include "sim/system.hh"
74
75// Hack
76#include "sim/stat_control.hh"
77
78using namespace std;
79
80vector<BaseCPU *> BaseCPU::cpuList;
81
82// This variable reflects the max number of threads in any CPU. Be
83// careful to only use it once all the CPUs that you care about have
84// been initialized
85int maxThreadsPerCPU = 1;
86
87CPUProgressEvent::CPUProgressEvent(BaseCPU *_cpu, Tick ival)
88 : Event(Event::Progress_Event_Pri), _interval(ival), lastNumInst(0),
89 cpu(_cpu), _repeatEvent(true)
90{
91 if (_interval)
92 cpu->schedule(this, curTick() + _interval);
93}
94
95void
96CPUProgressEvent::process()
97{
98 Counter temp = cpu->totalOps();
99
100 if (_repeatEvent)
101 cpu->schedule(this, curTick() + _interval);
102
103 if (cpu->switchedOut()) {
104 return;
105 }
106
107#ifndef NDEBUG
108 double ipc = double(temp - lastNumInst) / (_interval / cpu->clockPeriod());
109
110 DPRINTFN("%s progress event, total committed:%i, progress insts committed: "
111 "%lli, IPC: %0.8d\n", cpu->name(), temp, temp - lastNumInst,
112 ipc);
113 ipc = 0.0;
114#else
115 cprintf("%lli: %s progress event, total committed:%i, progress insts "
116 "committed: %lli\n", curTick(), cpu->name(), temp,
117 temp - lastNumInst);
118#endif
119 lastNumInst = temp;
120}
121
122const char *
123CPUProgressEvent::description() const
124{
125 return "CPU Progress";
126}
127
128BaseCPU::BaseCPU(Params *p, bool is_checker)
129 : MemObject(p), instCnt(0), _cpuId(p->cpu_id), _socketId(p->socket_id),
130 _instMasterId(p->system->getMasterId(name() + ".inst")),
131 _dataMasterId(p->system->getMasterId(name() + ".data")),
132 _taskId(ContextSwitchTaskId::Unknown), _pid(invldPid),
133 _switchedOut(p->switched_out), _cacheLineSize(p->system->cacheLineSize()),
134 interrupts(p->interrupts), profileEvent(NULL),
135 numThreads(p->numThreads), system(p->system),
136 functionTraceStream(nullptr), currentFunctionStart(0),
137 currentFunctionEnd(0), functionEntryTick(0),
138 addressMonitor(p->numThreads),
139 syscallRetryLatency(p->syscallRetryLatency)
140{
141 // if Python did not provide a valid ID, do it here
142 if (_cpuId == -1 ) {
143 _cpuId = cpuList.size();
144 }
145
146 // add self to global list of CPUs
147 cpuList.push_back(this);
148
149 DPRINTF(SyscallVerbose, "Constructing CPU with id %d, socket id %d\n",
150 _cpuId, _socketId);
151
152 if (numThreads > maxThreadsPerCPU)
153 maxThreadsPerCPU = numThreads;
154
155 // allocate per-thread instruction-based event queues
156 comInstEventQueue = new EventQueue *[numThreads];
157 for (ThreadID tid = 0; tid < numThreads; ++tid)
158 comInstEventQueue[tid] =
159 new EventQueue("instruction-based event queue");
160
161 //
162 // set up instruction-count-based termination events, if any
163 //
164 if (p->max_insts_any_thread != 0) {
165 const char *cause = "a thread reached the max instruction count";
166 for (ThreadID tid = 0; tid < numThreads; ++tid)
167 scheduleInstStop(tid, p->max_insts_any_thread, cause);
168 }
169
170 // Set up instruction-count-based termination events for SimPoints
171 // Typically, there are more than one action points.
172 // Simulation.py is responsible to take the necessary actions upon
173 // exitting the simulation loop.
174 if (!p->simpoint_start_insts.empty()) {
175 const char *cause = "simpoint starting point found";
176 for (size_t i = 0; i < p->simpoint_start_insts.size(); ++i)
177 scheduleInstStop(0, p->simpoint_start_insts[i], cause);
178 }
179
180 if (p->max_insts_all_threads != 0) {
181 const char *cause = "all threads reached the max instruction count";
182
183 // allocate & initialize shared downcounter: each event will
184 // decrement this when triggered; simulation will terminate
185 // when counter reaches 0
186 int *counter = new int;
187 *counter = numThreads;
188 for (ThreadID tid = 0; tid < numThreads; ++tid) {
189 Event *event = new CountedExitEvent(cause, *counter);
190 comInstEventQueue[tid]->schedule(event, p->max_insts_all_threads);
191 }
192 }
193
194 // allocate per-thread load-based event queues
195 comLoadEventQueue = new EventQueue *[numThreads];
196 for (ThreadID tid = 0; tid < numThreads; ++tid)
197 comLoadEventQueue[tid] = new EventQueue("load-based event queue");
198
199 //
200 // set up instruction-count-based termination events, if any
201 //
202 if (p->max_loads_any_thread != 0) {
203 const char *cause = "a thread reached the max load count";
204 for (ThreadID tid = 0; tid < numThreads; ++tid)
205 scheduleLoadStop(tid, p->max_loads_any_thread, cause);
206 }
207
208 if (p->max_loads_all_threads != 0) {
209 const char *cause = "all threads reached the max load count";
210 // allocate & initialize shared downcounter: each event will
211 // decrement this when triggered; simulation will terminate
212 // when counter reaches 0
213 int *counter = new int;
214 *counter = numThreads;
215 for (ThreadID tid = 0; tid < numThreads; ++tid) {
216 Event *event = new CountedExitEvent(cause, *counter);
217 comLoadEventQueue[tid]->schedule(event, p->max_loads_all_threads);
218 }
219 }
220
221 functionTracingEnabled = false;
222 if (p->function_trace) {
223 const string fname = csprintf("ftrace.%s", name());
224 functionTraceStream = simout.findOrCreate(fname)->stream();
225
226 currentFunctionStart = currentFunctionEnd = 0;
227 functionEntryTick = p->function_trace_start;
228
229 if (p->function_trace_start == 0) {
230 functionTracingEnabled = true;
231 } else {
232 Event *event = new EventFunctionWrapper(
233 [this]{ enableFunctionTrace(); }, name(), true);
234 schedule(event, p->function_trace_start);
235 }
236 }
237
238 // The interrupts should always be present unless this CPU is
239 // switched in later or in case it is a checker CPU
240 if (!params()->switched_out && !is_checker) {
241 fatal_if(interrupts.size() != numThreads,
242 "CPU %s has %i interrupt controllers, but is expecting one "
243 "per thread (%i)\n",
244 name(), interrupts.size(), numThreads);
245 for (ThreadID tid = 0; tid < numThreads; tid++)
246 interrupts[tid]->setCPU(this);
247 }
248
249 if (FullSystem) {
250 if (params()->profile)
251 profileEvent = new ProfileEvent(this, params()->profile);
252 }
253 tracer = params()->tracer;
254
255 if (params()->isa.size() != numThreads) {
256 fatal("Number of ISAs (%i) assigned to the CPU does not equal number "
257 "of threads (%i).\n", params()->isa.size(), numThreads);
258 }
259}
260
261void
262BaseCPU::enableFunctionTrace()
263{
264 functionTracingEnabled = true;
265}
266
267BaseCPU::~BaseCPU()
268{
269 delete profileEvent;
270 delete[] comLoadEventQueue;
271 delete[] comInstEventQueue;
272}
273
274void
275BaseCPU::armMonitor(ThreadID tid, Addr address)
276{
277 assert(tid < numThreads);
278 AddressMonitor &monitor = addressMonitor[tid];
279
280 monitor.armed = true;
281 monitor.vAddr = address;
282 monitor.pAddr = 0x0;
283 DPRINTF(Mwait,"[tid:%d] Armed monitor (vAddr=0x%lx)\n", tid, address);
284}
285
286bool
287BaseCPU::mwait(ThreadID tid, PacketPtr pkt)
288{
289 assert(tid < numThreads);
290 AddressMonitor &monitor = addressMonitor[tid];
291
292 if (!monitor.gotWakeup) {
293 int block_size = cacheLineSize();
294 uint64_t mask = ~((uint64_t)(block_size - 1));
295
296 assert(pkt->req->hasPaddr());
297 monitor.pAddr = pkt->getAddr() & mask;
298 monitor.waiting = true;
299
300 DPRINTF(Mwait,"[tid:%d] mwait called (vAddr=0x%lx, "
301 "line's paddr=0x%lx)\n", tid, monitor.vAddr, monitor.pAddr);
302 return true;
303 } else {
304 monitor.gotWakeup = false;
305 return false;
306 }
307}
308
309void
310BaseCPU::mwaitAtomic(ThreadID tid, ThreadContext *tc, TheISA::TLB *dtb)
311{
312 assert(tid < numThreads);
313 AddressMonitor &monitor = addressMonitor[tid];
314
315 Request req;
316 Addr addr = monitor.vAddr;
317 int block_size = cacheLineSize();
318 uint64_t mask = ~((uint64_t)(block_size - 1));
319 int size = block_size;
320
321 //The address of the next line if it crosses a cache line boundary.
322 Addr secondAddr = roundDown(addr + size - 1, block_size);
323
324 if (secondAddr > addr)
325 size = secondAddr - addr;
326
327 req.setVirt(0, addr, size, 0x0, dataMasterId(), tc->instAddr());
328
329 // translate to physical address
330 Fault fault = dtb->translateAtomic(&req, tc, BaseTLB::Read);
331 assert(fault == NoFault);
332
333 monitor.pAddr = req.getPaddr() & mask;
334 monitor.waiting = true;
335
336 DPRINTF(Mwait,"[tid:%d] mwait called (vAddr=0x%lx, line's paddr=0x%lx)\n",
337 tid, monitor.vAddr, monitor.pAddr);
338}
339
340void
341BaseCPU::init()
342{
343 if (!params()->switched_out) {
344 registerThreadContexts();
345
346 verifyMemoryMode();
347 }
348}
349
350void
351BaseCPU::startup()
352{
353 if (FullSystem) {
354 if (!params()->switched_out && profileEvent)
355 schedule(profileEvent, curTick());
356 }
357
358 if (params()->progress_interval) {
359 new CPUProgressEvent(this, params()->progress_interval);
360 }
361
362 // Assumption CPU start to operate instantaneously without any latency
363 if (ClockedObject::pwrState() == Enums::PwrState::UNDEFINED)
364 ClockedObject::pwrState(Enums::PwrState::ON);
365
366}
367
368ProbePoints::PMUUPtr
369BaseCPU::pmuProbePoint(const char *name)
370{
371 ProbePoints::PMUUPtr ptr;
372 ptr.reset(new ProbePoints::PMU(getProbeManager(), name));
373
374 return ptr;
375}
376
377void
378BaseCPU::regProbePoints()
379{
380 ppCycles = pmuProbePoint("Cycles");
381
382 ppRetiredInsts = pmuProbePoint("RetiredInsts");
383 ppRetiredLoads = pmuProbePoint("RetiredLoads");
384 ppRetiredStores = pmuProbePoint("RetiredStores");
385 ppRetiredBranches = pmuProbePoint("RetiredBranches");
386}
387
388void
389BaseCPU::probeInstCommit(const StaticInstPtr &inst)
390{
391 if (!inst->isMicroop() || inst->isLastMicroop())
392 ppRetiredInsts->notify(1);
393
394
395 if (inst->isLoad())
396 ppRetiredLoads->notify(1);
397
398 if (inst->isStore())
399 ppRetiredStores->notify(1);
400
401 if (inst->isControl())
402 ppRetiredBranches->notify(1);
403}
404
405void
406BaseCPU::regStats()
407{
408 MemObject::regStats();
409
410 using namespace Stats;
411
412 numCycles
413 .name(name() + ".numCycles")
414 .desc("number of cpu cycles simulated")
415 ;
416
417 numWorkItemsStarted
418 .name(name() + ".numWorkItemsStarted")
419 .desc("number of work items this cpu started")
420 ;
421
422 numWorkItemsCompleted
423 .name(name() + ".numWorkItemsCompleted")
424 .desc("number of work items this cpu completed")
425 ;
426
427 int size = threadContexts.size();
428 if (size > 1) {
429 for (int i = 0; i < size; ++i) {
430 stringstream namestr;
431 ccprintf(namestr, "%s.ctx%d", name(), i);
432 threadContexts[i]->regStats(namestr.str());
433 }
434 } else if (size == 1)
435 threadContexts[0]->regStats(name());
436}
437
438BaseMasterPort &
439BaseCPU::getMasterPort(const string &if_name, PortID idx)
440{
441 // Get the right port based on name. This applies to all the
442 // subclasses of the base CPU and relies on their implementation
443 // of getDataPort and getInstPort. In all cases there methods
444 // return a MasterPort pointer.
445 if (if_name == "dcache_port")
446 return getDataPort();
447 else if (if_name == "icache_port")
448 return getInstPort();
449 else
450 return MemObject::getMasterPort(if_name, idx);
451}
452
453void
454BaseCPU::registerThreadContexts()
455{
456 assert(system->multiThread || numThreads == 1);
457
458 ThreadID size = threadContexts.size();
459 for (ThreadID tid = 0; tid < size; ++tid) {
460 ThreadContext *tc = threadContexts[tid];
461
462 if (system->multiThread) {
463 tc->setContextId(system->registerThreadContext(tc));
464 } else {
465 tc->setContextId(system->registerThreadContext(tc, _cpuId));
466 }
467
468 if (!FullSystem)
469 tc->getProcessPtr()->assignThreadContext(tc->contextId());
470 }
471}
472
473
474int
475BaseCPU::findContext(ThreadContext *tc)
476{
477 ThreadID size = threadContexts.size();
478 for (ThreadID tid = 0; tid < size; ++tid) {
479 if (tc == threadContexts[tid])
480 return tid;
481 }
482 return 0;
483}
484
485void
486BaseCPU::activateContext(ThreadID thread_num)
487{
488 // For any active thread running, update CPU power state to active (ON)
489 ClockedObject::pwrState(Enums::PwrState::ON);
490}
491
492void
493BaseCPU::suspendContext(ThreadID thread_num)
494{
495 // Check if all threads are suspended
496 for (auto t : threadContexts) {
497 if (t->status() != ThreadContext::Suspended) {
498 return;
499 }
500 }
501
502 // All CPU threads suspended, enter lower power state for the CPU
503 ClockedObject::pwrState(Enums::PwrState::CLK_GATED);
504}
505
506void
507BaseCPU::switchOut()
508{
509 assert(!_switchedOut);
510 _switchedOut = true;
511 if (profileEvent && profileEvent->scheduled())
512 deschedule(profileEvent);
513
514 // Flush all TLBs in the CPU to avoid having stale translations if
515 // it gets switched in later.
516 flushTLBs();
517}
518
519void
520BaseCPU::takeOverFrom(BaseCPU *oldCPU)
521{
522 assert(threadContexts.size() == oldCPU->threadContexts.size());
523 assert(_cpuId == oldCPU->cpuId());
524 assert(_switchedOut);
525 assert(oldCPU != this);
526 _pid = oldCPU->getPid();
527 _taskId = oldCPU->taskId();
528 _switchedOut = false;
529
530 ThreadID size = threadContexts.size();
531 for (ThreadID i = 0; i < size; ++i) {
532 ThreadContext *newTC = threadContexts[i];
533 ThreadContext *oldTC = oldCPU->threadContexts[i];
534
535 newTC->takeOverFrom(oldTC);
536
537 CpuEvent::replaceThreadContext(oldTC, newTC);
538
539 assert(newTC->contextId() == oldTC->contextId());
540 assert(newTC->threadId() == oldTC->threadId());
541 system->replaceThreadContext(newTC, newTC->contextId());
542
543 /* This code no longer works since the zero register (e.g.,
544 * r31 on Alpha) doesn't necessarily contain zero at this
545 * point.
546 if (DTRACE(Context))
547 ThreadContext::compare(oldTC, newTC);
548 */
549
550 BaseMasterPort *old_itb_port = oldTC->getITBPtr()->getMasterPort();
551 BaseMasterPort *old_dtb_port = oldTC->getDTBPtr()->getMasterPort();
552 BaseMasterPort *new_itb_port = newTC->getITBPtr()->getMasterPort();
553 BaseMasterPort *new_dtb_port = newTC->getDTBPtr()->getMasterPort();
554
555 // Move over any table walker ports if they exist
556 if (new_itb_port) {
557 assert(!new_itb_port->isConnected());
558 assert(old_itb_port);
559 assert(old_itb_port->isConnected());
560 BaseSlavePort &slavePort = old_itb_port->getSlavePort();
561 old_itb_port->unbind();
562 new_itb_port->bind(slavePort);
563 }
564 if (new_dtb_port) {
565 assert(!new_dtb_port->isConnected());
566 assert(old_dtb_port);
567 assert(old_dtb_port->isConnected());
568 BaseSlavePort &slavePort = old_dtb_port->getSlavePort();
569 old_dtb_port->unbind();
570 new_dtb_port->bind(slavePort);
571 }
572 newTC->getITBPtr()->takeOverFrom(oldTC->getITBPtr());
573 newTC->getDTBPtr()->takeOverFrom(oldTC->getDTBPtr());
574
575 // Checker whether or not we have to transfer CheckerCPU
576 // objects over in the switch
577 CheckerCPU *oldChecker = oldTC->getCheckerCpuPtr();
578 CheckerCPU *newChecker = newTC->getCheckerCpuPtr();
579 if (oldChecker && newChecker) {
580 BaseMasterPort *old_checker_itb_port =
581 oldChecker->getITBPtr()->getMasterPort();
582 BaseMasterPort *old_checker_dtb_port =
583 oldChecker->getDTBPtr()->getMasterPort();
584 BaseMasterPort *new_checker_itb_port =
585 newChecker->getITBPtr()->getMasterPort();
586 BaseMasterPort *new_checker_dtb_port =
587 newChecker->getDTBPtr()->getMasterPort();
588
589 newChecker->getITBPtr()->takeOverFrom(oldChecker->getITBPtr());
590 newChecker->getDTBPtr()->takeOverFrom(oldChecker->getDTBPtr());
591
592 // Move over any table walker ports if they exist for checker
593 if (new_checker_itb_port) {
594 assert(!new_checker_itb_port->isConnected());
595 assert(old_checker_itb_port);
596 assert(old_checker_itb_port->isConnected());
597 BaseSlavePort &slavePort =
598 old_checker_itb_port->getSlavePort();
599 old_checker_itb_port->unbind();
600 new_checker_itb_port->bind(slavePort);
601 }
602 if (new_checker_dtb_port) {
603 assert(!new_checker_dtb_port->isConnected());
604 assert(old_checker_dtb_port);
605 assert(old_checker_dtb_port->isConnected());
606 BaseSlavePort &slavePort =
607 old_checker_dtb_port->getSlavePort();
608 old_checker_dtb_port->unbind();
609 new_checker_dtb_port->bind(slavePort);
610 }
611 }
612 }
613
614 interrupts = oldCPU->interrupts;
615 for (ThreadID tid = 0; tid < numThreads; tid++) {
616 interrupts[tid]->setCPU(this);
617 }
618 oldCPU->interrupts.clear();
619
620 if (FullSystem) {
621 for (ThreadID i = 0; i < size; ++i)
622 threadContexts[i]->profileClear();
623
624 if (profileEvent)
625 schedule(profileEvent, curTick());
626 }
627
628 // All CPUs have an instruction and a data port, and the new CPU's
629 // ports are dangling while the old CPU has its ports connected
630 // already. Unbind the old CPU and then bind the ports of the one
631 // we are switching to.
632 assert(!getInstPort().isConnected());
633 assert(oldCPU->getInstPort().isConnected());
634 BaseSlavePort &inst_peer_port = oldCPU->getInstPort().getSlavePort();
635 oldCPU->getInstPort().unbind();
636 getInstPort().bind(inst_peer_port);
637
638 assert(!getDataPort().isConnected());
639 assert(oldCPU->getDataPort().isConnected());
640 BaseSlavePort &data_peer_port = oldCPU->getDataPort().getSlavePort();
641 oldCPU->getDataPort().unbind();
642 getDataPort().bind(data_peer_port);
643}
644
645void
646BaseCPU::flushTLBs()
647{
648 for (ThreadID i = 0; i < threadContexts.size(); ++i) {
649 ThreadContext &tc(*threadContexts[i]);
650 CheckerCPU *checker(tc.getCheckerCpuPtr());
651
652 tc.getITBPtr()->flushAll();
653 tc.getDTBPtr()->flushAll();
654 if (checker) {
655 checker->getITBPtr()->flushAll();
656 checker->getDTBPtr()->flushAll();
657 }
658 }
659}
660
661
662BaseCPU::ProfileEvent::ProfileEvent(BaseCPU *_cpu, Tick _interval)
663 : cpu(_cpu), interval(_interval)
664{ }
665
666void
667BaseCPU::ProfileEvent::process()
668{
669 ThreadID size = cpu->threadContexts.size();
670 for (ThreadID i = 0; i < size; ++i) {
671 ThreadContext *tc = cpu->threadContexts[i];
672 tc->profileSample();
673 }
674
675 cpu->schedule(this, curTick() + interval);
676}
677
678void
679BaseCPU::serialize(CheckpointOut &cp) const
680{
681 SERIALIZE_SCALAR(instCnt);
682
683 if (!_switchedOut) {
684 /* Unlike _pid, _taskId is not serialized, as they are dynamically
685 * assigned unique ids that are only meaningful for the duration of
686 * a specific run. We will need to serialize the entire taskMap in
687 * system. */
688 SERIALIZE_SCALAR(_pid);
689
690 // Serialize the threads, this is done by the CPU implementation.
691 for (ThreadID i = 0; i < numThreads; ++i) {
692 ScopedCheckpointSection sec(cp, csprintf("xc.%i", i));
693 interrupts[i]->serialize(cp);
694 serializeThread(cp, i);
695 }
696 }
697}
698
699void
700BaseCPU::unserialize(CheckpointIn &cp)
701{
702 UNSERIALIZE_SCALAR(instCnt);
703
704 if (!_switchedOut) {
705 UNSERIALIZE_SCALAR(_pid);
706
707 // Unserialize the threads, this is done by the CPU implementation.
708 for (ThreadID i = 0; i < numThreads; ++i) {
709 ScopedCheckpointSection sec(cp, csprintf("xc.%i", i));
710 interrupts[i]->unserialize(cp);
711 unserializeThread(cp, i);
712 }
713 }
714}
715
716void
717BaseCPU::scheduleInstStop(ThreadID tid, Counter insts, const char *cause)
718{
719 const Tick now(comInstEventQueue[tid]->getCurTick());
720 Event *event(new LocalSimLoopExitEvent(cause, 0));
721
722 comInstEventQueue[tid]->schedule(event, now + insts);
723}
724
725uint64_t
726BaseCPU::getCurrentInstCount(ThreadID tid)
727{
728 return Tick(comInstEventQueue[tid]->getCurTick());
729}
730
731AddressMonitor::AddressMonitor() {
732 armed = false;
733 waiting = false;
734 gotWakeup = false;
735}
736
737bool AddressMonitor::doMonitor(PacketPtr pkt) {
738 assert(pkt->req->hasPaddr());
739 if (armed && waiting) {
740 if (pAddr == pkt->getAddr()) {
741 DPRINTF(Mwait,"pAddr=0x%lx invalidated: waking up core\n",
742 pkt->getAddr());
743 waiting = false;
744 return true;
745 }
746 }
747 return false;
748}
749
750void
751BaseCPU::scheduleLoadStop(ThreadID tid, Counter loads, const char *cause)
752{
753 const Tick now(comLoadEventQueue[tid]->getCurTick());
754 Event *event(new LocalSimLoopExitEvent(cause, 0));
755
756 comLoadEventQueue[tid]->schedule(event, now + loads);
757}
758
759
760void
761BaseCPU::traceFunctionsInternal(Addr pc)
762{
763 if (!debugSymbolTable)
764 return;
765
766 // if pc enters different function, print new function symbol and
767 // update saved range. Otherwise do nothing.
768 if (pc < currentFunctionStart || pc >= currentFunctionEnd) {
769 string sym_str;
770 bool found = debugSymbolTable->findNearestSymbol(pc, sym_str,
771 currentFunctionStart,
772 currentFunctionEnd);
773
774 if (!found) {
775 // no symbol found: use addr as label
776 sym_str = csprintf("0x%x", pc);
777 currentFunctionStart = pc;
778 currentFunctionEnd = pc + 1;
779 }
780
781 ccprintf(*functionTraceStream, " (%d)\n%d: %s",
782 curTick() - functionEntryTick, curTick(), sym_str);
783 functionEntryTick = curTick();
784 }
785}
786
787bool
788BaseCPU::waitForRemoteGDB() const
789{
790 return params()->wait_for_remote_gdb;
791}