1/*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Nathan Binkert
29 * Erik Hallnor
29 */
30
31/** @file
32 * Declaration of Statistics objects.
33 */
34
35/**
36* @todo
37*
38* Generalized N-dimensinal vector
39* documentation
40* key stats
41* interval stats
42* -- these both can use the same function that prints out a
43* specific set of stats
44* VectorStandardDeviation totals
45* Document Namespaces
46*/
47#ifndef __BASE_STATISTICS_HH__
48#define __BASE_STATISTICS_HH__
49
50#include <algorithm>
51#include <cassert>
52#ifdef __SUNPRO_CC
53#include <math.h>
54#endif
55#include <cmath>
56#include <functional>
57#include <iosfwd>
58#include <limits>
59#include <string>
60#include <vector>
61
62#include "base/cast.hh"
63#include "base/cprintf.hh"
64#include "base/intmath.hh"
65#include "base/refcnt.hh"
66#include "base/str.hh"
67#include "base/stats/flags.hh"
68#include "base/stats/visit.hh"
69#include "base/stats/types.hh"
70#include "sim/host.hh"
71
72class Callback;
73
74/** The current simulated tick. */
75extern Tick curTick;
76
77/* A namespace for all of the Statistics */
78namespace Stats {
79
80typedef std::numeric_limits<Counter> CounterLimits;
81
82/* Contains the statistic implementation details */
83//////////////////////////////////////////////////////////////////////
84//
85// Statistics Framework Base classes
86//
87//////////////////////////////////////////////////////////////////////
88struct StatData
88class Info
89{
90 public:
91 /** The name of the stat. */
92 std::string name;
93 /** The description of the stat. */
94 std::string desc;
95 /** The formatting flags. */
96 StatFlags flags;
97 /** The display precision. */
98 int precision;
99 /** A pointer to a prerequisite Stat. */
99 const StatData *prereq;
100 const Info *prereq;
101 /**
102 * A unique stat ID for each stat in the simulator.
103 * Can be used externally for lookups as well as for debugging.
104 */
105 int id;
106
106 StatData();
107 virtual ~StatData();
107 public:
108 Info();
109 virtual ~Info();
110
111 /**
112 * Reset the corresponding stat to the default state.
113 */
114 virtual void reset() = 0;
115
116 /**
117 * @return true if this stat has a value and satisfies its
118 * requirement as a prereq
119 */
120 virtual bool zero() const = 0;
121
122 /**
123 * Check that this stat has been set up properly and is ready for
124 * use
125 * @return true for success
126 */
127 virtual bool check() const = 0;
128 bool baseCheck() const;
129
130 /**
131 * Visitor entry for outputing statistics data
132 */
133 virtual void visit(Visit &visitor) = 0;
134
135 /**
136 * Checks if the first stat's name is alphabetically less than the second.
137 * This function breaks names up at periods and considers each subname
138 * separately.
139 * @param stat1 The first stat.
140 * @param stat2 The second stat.
141 * @return stat1's name is alphabetically before stat2's
142 */
141 static bool less(StatData *stat1, StatData *stat2);
143 static bool less(Info *stat1, Info *stat2);
144};
145
144class ScalarData : public StatData
146class ScalarInfoBase : public Info
147{
148 public:
149 virtual Counter value() const = 0;
150 virtual Result result() const = 0;
151 virtual Result total() const = 0;
152 virtual void visit(Visit &visitor) { visitor.visit(*this); }
153};
154
155template <class Stat>
154class ScalarStatData : public ScalarData
156class ScalarInfo : public ScalarInfoBase
157{
158 protected:
159 Stat &s;
160
161 public:
160 ScalarStatData(Stat &stat) : s(stat) {}
162 ScalarInfo(Stat &stat) : s(stat) {}
163
164 virtual bool check() const { return s.check(); }
165 virtual Counter value() const { return s.value(); }
166 virtual Result result() const { return s.result(); }
167 virtual Result total() const { return s.total(); }
168 virtual void reset() { s.reset(); }
169 virtual bool zero() const { return s.zero(); }
170};
171
170struct VectorData : public StatData
172class VectorInfoBase : public Info
173{
174 public:
175 /** Names and descriptions of subfields. */
176 mutable std::vector<std::string> subnames;
177 mutable std::vector<std::string> subdescs;
178
179 public:
180 virtual size_type size() const = 0;
181 virtual const VCounter &value() const = 0;
182 virtual const VResult &result() const = 0;
183 virtual Result total() const = 0;
184
185 void
186 update()
187 {
188 if (!subnames.empty()) {
189 size_type s = size();
190 if (subnames.size() < s)
191 subnames.resize(s);
192
193 if (subdescs.size() < s)
194 subdescs.resize(s);
195 }
196 }
197};
198
199template <class Stat>
196class VectorStatData : public VectorData
200class VectorInfo : public VectorInfoBase
201{
202 protected:
203 Stat &s;
204 mutable VCounter cvec;
205 mutable VResult rvec;
206
207 public:
204 VectorStatData(Stat &stat) : s(stat) {}
208 VectorInfo(Stat &stat) : s(stat) {}
209
210 virtual bool check() const { return s.check(); }
211 virtual bool zero() const { return s.zero(); }
212 virtual void reset() { s.reset(); }
213
214 virtual size_type size() const { return s.size(); }
215
216 virtual VCounter &
217 value() const
218 {
219 s.value(cvec);
220 return cvec;
221 }
222
223 virtual const VResult &
224 result() const
225 {
226 s.result(rvec);
227 return rvec;
228 }
229
230 virtual Result total() const { return s.total(); }
231
232 virtual void
233 visit(Visit &visitor)
234 {
235 update();
236 s.update(this);
237 visitor.visit(*this);
238 }
239};
240
237struct DistDataData
241struct DistData
242{
243 Counter min_val;
244 Counter max_val;
245 Counter underflow;
246 Counter overflow;
247 VCounter cvec;
248 Counter sum;
249 Counter squares;
250 Counter samples;
251
252 Counter min;
253 Counter max;
254 Counter bucket_size;
255 size_type size;
256 bool fancy;
257};
258
255struct DistData : public StatData
259class DistInfoBase : public Info
260{
261 public:
262 /** Local storage for the entry values, used for printing. */
258 DistDataData data;
263 DistData data;
264};
265
266template <class Stat>
262class DistStatData : public DistData
267class DistInfo : public DistInfoBase
268{
269 protected:
270 Stat &s;
271
272 public:
268 DistStatData(Stat &stat) : s(stat) {}
273 DistInfo(Stat &stat) : s(stat) {}
274
275 virtual bool check() const { return s.check(); }
276 virtual void reset() { s.reset(); }
277 virtual bool zero() const { return s.zero(); }
278
279 virtual void
280 visit(Visit &visitor)
281 {
282 s.update(this);
283 visitor.visit(*this);
284 }
285};
286
282struct VectorDistData : public StatData
287class VectorDistInfoBase : public Info
288{
284 std::vector<DistDataData> data;
289 public:
290 std::vector<DistData> data;
291
292 /** Names and descriptions of subfields. */
293 mutable std::vector<std::string> subnames;
294 mutable std::vector<std::string> subdescs;
295
296 protected:
297 /** Local storage for the entry values, used for printing. */
298 mutable VResult rvec;
299
300 public:
301 virtual size_type size() const = 0;
302
303 void
304 update()
305 {
306 size_type s = size();
307 if (subnames.size() < s)
308 subnames.resize(s);
309
310 if (subdescs.size() < s)
311 subdescs.resize(s);
312 }
313};
314
315template <class Stat>
308class VectorDistStatData : public VectorDistData
316class VectorDistInfo : public VectorDistInfoBase
317{
318 protected:
319 Stat &s;
320
321 public:
314 VectorDistStatData(Stat &stat) : s(stat) {}
322 VectorDistInfo(Stat &stat) : s(stat) {}
323
324 virtual bool check() const { return s.check(); }
325 virtual void reset() { s.reset(); }
326 virtual size_type size() const { return s.size(); }
327 virtual bool zero() const { return s.zero(); }
328
329 virtual void
330 visit(Visit &visitor)
331 {
332 update();
333 s.update(this);
334 visitor.visit(*this);
335 }
336};
337
330struct Vector2dData : public StatData
338class Vector2dInfoBase : public Info
339{
340 public:
341 /** Names and descriptions of subfields. */
342 std::vector<std::string> subnames;
343 std::vector<std::string> subdescs;
344 std::vector<std::string> y_subnames;
345
346 /** Local storage for the entry values, used for printing. */
347 mutable VCounter cvec;
348 mutable size_type x;
349 mutable size_type y;
350
351 public:
352 void
353 update()
354 {
355 if (subnames.size() < x)
356 subnames.resize(x);
357 }
358};
359
360template <class Stat>
351class Vector2dStatData : public Vector2dData
361class Vector2dInfo : public Vector2dInfoBase
362{
363 protected:
364 Stat &s;
365
366 public:
357 Vector2dStatData(Stat &stat) : s(stat) {}
367 Vector2dInfo(Stat &stat) : s(stat) {}
368
369 virtual bool check() const { return s.check(); }
370 virtual void reset() { s.reset(); }
371 virtual bool zero() const { return s.zero(); }
372
373 virtual void
374 visit(Visit &visitor)
375 {
376 update();
377 s.update(this);
378 visitor.visit(*this);
379 }
380};
381
372class DataAccess
382class InfoAccess
383{
384 protected:
375 StatData *find() const;
376 void map(StatData *data);
377
378 StatData *statData();
379 const StatData *statData() const;
380
385 Info *find() const;
386 /** Set up an info class for this statistic */
387 void setInfo(Info *info);
388 /** Save Storage class parameters if any */
389 void setInit();
382 void setPrint();
390
391 Info *info();
392 const Info *info() const;
393};
394
385template <class Parent, class Child, template <class> class Data>
395template <class Parent, class Child, template <class> class Info>
396class Wrap : public Child
397{
398 public:
399 typedef Parent ParentType;
400 typedef Child ChildType;
401 typedef Info<Child> InfoType;
402
403 protected:
404 Parent &self() { return *reinterpret_cast<Parent *>(this); }
405
406 protected:
392 Data<Child> *
393 statData()
407 InfoType *
408 info()
409 {
395 StatData *__data = DataAccess::statData();
396 Data<Child> *ptr = dynamic_cast<Data<Child> *>(__data);
397 assert(ptr);
398 return ptr;
410 return safe_cast<InfoType *>(InfoAccess::info());
411 }
412
413 public:
402 const Data<Child> *
403 statData() const
414 const InfoType *
415 info() const
416 {
405 const StatData *__data = DataAccess::statData();
406 const Data<Child> *ptr = dynamic_cast<const Data<Child> *>(__data);
407 assert(ptr);
408 return ptr;
417 return safe_cast<const InfoType *>(InfoAccess::info());
418 }
419
420 protected:
421 /**
422 * Copy constructor, copies are not allowed.
423 */
424 Wrap(const Wrap &stat);
425
426 /**
427 * Can't copy stats.
428 */
429 void operator=(const Wrap &);
430
431 public:
432 Wrap()
433 {
425 this->map(new Data<Child>(*this));
434 this->setInfo(new InfoType(*this));
435 }
436
437 /**
438 * Set the name and marks this stat to print at the end of simulation.
439 * @param name The new name.
440 * @return A reference to this stat.
441 */
442 Parent &
443 name(const std::string &_name)
444 {
436 Data<Child> *data = this->statData();
437 data->name = _name;
438 this->setPrint();
445 InfoType *info = this->info();
446 info->name = _name;
447 info->flags |= print;
448 return this->self();
449 }
450
451 /**
452 * Set the description and marks this stat to print at the end of
453 * simulation.
454 * @param desc The new description.
455 * @return A reference to this stat.
456 */
457 Parent &
458 desc(const std::string &_desc)
459 {
451 this->statData()->desc = _desc;
460 this->info()->desc = _desc;
461 return this->self();
462 }
463
464 /**
465 * Set the precision and marks this stat to print at the end of simulation.
466 * @param p The new precision
467 * @return A reference to this stat.
468 */
469 Parent &
470 precision(int _precision)
471 {
463 this->statData()->precision = _precision;
472 this->info()->precision = _precision;
473 return this->self();
474 }
475
476 /**
477 * Set the flags and marks this stat to print at the end of simulation.
478 * @param f The new flags.
479 * @return A reference to this stat.
480 */
481 Parent &
482 flags(StatFlags _flags)
483 {
475 this->statData()->flags |= _flags;
484 this->info()->flags |= _flags;
485 return this->self();
486 }
487
488 /**
489 * Set the prerequisite stat and marks this stat to print at the end of
490 * simulation.
491 * @param prereq The prerequisite stat.
492 * @return A reference to this stat.
493 */
494 template <class Stat>
495 Parent &
496 prereq(const Stat &prereq)
497 {
489 this->statData()->prereq = prereq.statData();
498 this->info()->prereq = prereq.info();
499 return this->self();
500 }
501};
502
494template <class Parent, class Child, template <class Child> class Data>
495class WrapVec : public Wrap<Parent, Child, Data>
503template <class Parent, class Child, template <class Child> class Info>
504class WrapVec : public Wrap<Parent, Child, Info>
505{
506 public:
507 typedef Parent ParentType;
508 typedef Child ChildType;
509 typedef Info<Child> InfoType;
510
511 public:
512 // The following functions are specific to vectors. If you use them
513 // in a non vector context, you will get a nice compiler error!
514
515 /**
516 * Set the subfield name for the given index, and marks this stat to print
517 * at the end of simulation.
518 * @param index The subfield index.
519 * @param name The new name of the subfield.
520 * @return A reference to this stat.
521 */
522 Parent &
523 subname(off_type index, const std::string &name)
524 {
511 std::vector<std::string> &subn = this->statData()->subnames;
525 std::vector<std::string> &subn = this->info()->subnames;
526 if (subn.size() <= index)
527 subn.resize(index + 1);
528 subn[index] = name;
529 return this->self();
530 }
531
532 /**
533 * Set the subfield description for the given index and marks this stat to
534 * print at the end of simulation.
535 * @param index The subfield index.
536 * @param desc The new description of the subfield
537 * @return A reference to this stat.
538 */
539 Parent &
540 subdesc(off_type index, const std::string &desc)
541 {
528 std::vector<std::string> &subd = this->statData()->subdescs;
542 std::vector<std::string> &subd = this->info()->subdescs;
543 if (subd.size() <= index)
544 subd.resize(index + 1);
545 subd[index] = desc;
546
547 return this->self();
548 }
549
550};
551
538template <class Parent, class Child, template <class Child> class Data>
539class WrapVec2d : public WrapVec<Parent, Child, Data>
552template <class Parent, class Child, template <class Child> class Info>
553class WrapVec2d : public WrapVec<Parent, Child, Info>
554{
555 public:
556 typedef Parent ParentType;
557 typedef Child ChildType;
558 typedef Info<Child> InfoType;
559
560 public:
561 /**
562 * @warning This makes the assumption that if you're gonna subnames a 2d
563 * vector, you're subnaming across all y
564 */
565 Parent &
566 ysubnames(const char **names)
567 {
549 Data<Child> *data = this->statData();
550 data->y_subnames.resize(this->y);
568 InfoType *info = this->info();
569 info->y_subnames.resize(this->y);
570 for (off_type i = 0; i < this->y; ++i)
552 data->y_subnames[i] = names[i];
571 info->y_subnames[i] = names[i];
572 return this->self();
573 }
574
575 Parent &
576 ysubname(off_type index, const std::string subname)
577 {
559 Data<Child> *data = this->statData();
578 InfoType *info = this->info();
579 assert(index < this->y);
561 data->y_subnames.resize(this->y);
562 data->y_subnames[index] = subname.c_str();
580 info->y_subnames.resize(this->y);
581 info->y_subnames[index] = subname.c_str();
582 return this->self();
583 }
584};
585
586//////////////////////////////////////////////////////////////////////
587//
588// Simple Statistics
589//
590//////////////////////////////////////////////////////////////////////
591
592/**
593 * Templatized storage and interface for a simple scalar stat.
594 */
576struct StatStor
595class StatStor
596{
597 public:
598 /** The paramaters for this storage type, none for a scalar. */
599 struct Params { };
600
601 private:
602 /** The statistic value. */
603 Counter data;
604
605 public:
606 /**
607 * Builds this storage element and calls the base constructor of the
608 * datatype.
609 */
610 StatStor(const Params &) : data(Counter()) {}
611
612 /**
613 * The the stat to the given value.
614 * @param val The new value.
615 * @param p The paramters of this storage type.
616 */
617 void set(Counter val, const Params &p) { data = val; }
618 /**
619 * Increment the stat by the given value.
620 * @param val The new value.
621 * @param p The paramters of this storage type.
622 */
623 void inc(Counter val, const Params &p) { data += val; }
624 /**
625 * Decrement the stat by the given value.
626 * @param val The new value.
627 * @param p The paramters of this storage type.
628 */
629 void dec(Counter val, const Params &p) { data -= val; }
630 /**
631 * Return the value of this stat as its base type.
632 * @param p The params of this storage type.
633 * @return The value of this stat.
634 */
635 Counter value(const Params &p) const { return data; }
636 /**
637 * Return the value of this stat as a result type.
638 * @param p The parameters of this storage type.
639 * @return The value of this stat.
640 */
641 Result result(const Params &p) const { return (Result)data; }
642 /**
643 * Reset stat value to default
644 */
645 void reset() { data = Counter(); }
646
647 /**
648 * @return true if zero value
649 */
650 bool zero() const { return data == Counter(); }
651};
652
653/**
654 * Templatized storage and interface to a per-tick average stat. This keeps
655 * a current count and updates a total (count * ticks) when this count
656 * changes. This allows the quick calculation of a per tick count of the item
657 * being watched. This is good for keeping track of residencies in structures
658 * among other things.
659 */
641struct AvgStor
660class AvgStor
661{
662 public:
663 /** The paramaters for this storage type */
664 struct Params { };
665
666 private:
667 /** The current count. */
668 Counter current;
669 /** The total count for all tick. */
670 mutable Result total;
671 /** The tick that current last changed. */
672 mutable Tick last;
673
674 public:
675 /**
676 * Build and initializes this stat storage.
677 */
678 AvgStor(Params &p) : current(0), total(0), last(0) { }
679
680 /**
681 * Set the current count to the one provided, update the total and last
682 * set values.
683 * @param val The new count.
684 * @param p The parameters for this storage.
685 */
686 void
668 set(Counter val, Params &p) {
687 set(Counter val, Params &p)
688 {
689 total += current * (curTick - last);
690 last = curTick;
691 current = val;
692 }
693
694 /**
695 * Increment the current count by the provided value, calls set.
696 * @param val The amount to increment.
697 * @param p The parameters for this storage.
698 */
699 void inc(Counter val, Params &p) { set(current + val, p); }
700
701 /**
702 * Deccrement the current count by the provided value, calls set.
703 * @param val The amount to decrement.
704 * @param p The parameters for this storage.
705 */
706 void dec(Counter val, Params &p) { set(current - val, p); }
707
708 /**
709 * Return the current count.
710 * @param p The parameters for this storage.
711 * @return The current count.
712 */
713 Counter value(const Params &p) const { return current; }
714
715 /**
716 * Return the current average.
717 * @param p The parameters for this storage.
718 * @return The current average.
719 */
720 Result
721 result(const Params &p) const
722 {
723 total += current * (curTick - last);
724 last = curTick;
725 return (Result)(total + current) / (Result)(curTick + 1);
726 }
727
728 /**
729 * Reset stat value to default
730 */
731 void
732 reset()
733 {
734 total = 0;
735 last = curTick;
736 }
737
738 /**
739 * @return true if zero value
740 */
741 bool zero() const { return total == 0.0; }
742};
743
744/**
745 * Implementation of a scalar stat. The type of stat is determined by the
746 * Storage template.
747 */
748template <class Stor>
729class ScalarBase : public DataAccess
749class ScalarBase : public InfoAccess
750{
751 public:
752 typedef Stor Storage;
753
754 /** Define the params of the storage class. */
755 typedef typename Storage::Params Params;
756
757 protected:
758 /** The storage of this stat. */
759 char storage[sizeof(Storage)] __attribute__ ((aligned (8)));
760
761 /** The parameters for this stat. */
762 Params params;
763
764 protected:
765 /**
766 * Retrieve the storage.
767 * @param index The vector index to access.
768 * @return The storage object at the given index.
769 */
770 Storage *
771 data()
772 {
773 return reinterpret_cast<Storage *>(storage);
774 }
775
776 /**
777 * Retrieve a const pointer to the storage.
778 * for the given index.
779 * @param index The vector index to access.
780 * @return A const pointer to the storage object at the given index.
781 */
782 const Storage *
783 data() const
784 {
785 return reinterpret_cast<const Storage *>(storage);
786 }
787
788 void
789 doInit()
790 {
791 new (storage) Storage(params);
792 setInit();
793 }
794
795 public:
796 /**
797 * Return the current value of this stat as its base type.
798 * @return The current value.
799 */
800 Counter value() const { return data()->value(params); }
801
802 public:
803 /**
804 * Create and initialize this stat, register it with the database.
805 */
806 ScalarBase()
807 { }
808
809 public:
810 // Common operators for stats
811 /**
812 * Increment the stat by 1. This calls the associated storage object inc
813 * function.
814 */
815 void operator++() { data()->inc(1, params); }
816 /**
817 * Decrement the stat by 1. This calls the associated storage object dec
818 * function.
819 */
820 void operator--() { data()->dec(1, params); }
821
822 /** Increment the stat by 1. */
823 void operator++(int) { ++*this; }
824 /** Decrement the stat by 1. */
825 void operator--(int) { --*this; }
826
827 /**
828 * Set the data value to the given value. This calls the associated storage
829 * object set function.
830 * @param v The new value.
831 */
832 template <typename U>
833 void operator=(const U &v) { data()->set(v, params); }
834
835 /**
836 * Increment the stat by the given value. This calls the associated
837 * storage object inc function.
838 * @param v The value to add.
839 */
840 template <typename U>
841 void operator+=(const U &v) { data()->inc(v, params); }
842
843 /**
844 * Decrement the stat by the given value. This calls the associated
845 * storage object dec function.
846 * @param v The value to substract.
847 */
848 template <typename U>
849 void operator-=(const U &v) { data()->dec(v, params); }
850
851 /**
852 * Return the number of elements, always 1 for a scalar.
853 * @return 1.
854 */
855 size_type size() const { return 1; }
856
857 bool check() const { return true; }
858
859 /**
860 * Reset stat value to default
861 */
862 void reset() { data()->reset(); }
863
864 Counter value() { return data()->value(params); }
865
866 Result result() { return data()->result(params); }
867
868 Result total() { return result(); }
869
870 bool zero() { return result() == 0.0; }
871
872};
873
854class ProxyData : public ScalarData
874class ProxyInfo : public ScalarInfoBase
875{
876 public:
877 virtual void visit(Visit &visitor) { visitor.visit(*this); }
878 virtual std::string str() const { return to_string(value()); }
879 virtual size_type size() const { return 1; }
880 virtual bool zero() const { return value() == 0; }
881 virtual bool check() const { return true; }
882 virtual void reset() { }
883};
884
885template <class T>
866class ValueProxy : public ProxyData
886class ValueProxy : public ProxyInfo
887{
888 private:
889 T *scalar;
890
891 public:
892 ValueProxy(T &val) : scalar(&val) {}
893 virtual Counter value() const { return *scalar; }
894 virtual Result result() const { return *scalar; }
895 virtual Result total() const { return *scalar; }
896};
897
898template <class T>
879class FunctorProxy : public ProxyData
899class FunctorProxy : public ProxyInfo
900{
901 private:
902 T *functor;
903
904 public:
905 FunctorProxy(T &func) : functor(&func) {}
906 virtual Counter value() const { return (*functor)(); }
907 virtual Result result() const { return (*functor)(); }
908 virtual Result total() const { return (*functor)(); }
909};
910
891class ValueBase : public DataAccess
911class ValueBase : public InfoAccess
912{
913 private:
894 ProxyData *proxy;
914 ProxyInfo *proxy;
915
916 public:
917 ValueBase() : proxy(NULL) { }
918 ~ValueBase() { if (proxy) delete proxy; }
919
920 template <class T>
921 void
922 scalar(T &value)
923 {
924 proxy = new ValueProxy<T>(value);
925 setInit();
926 }
927
928 template <class T>
929 void
930 functor(T &func)
931 {
932 proxy = new FunctorProxy<T>(func);
933 setInit();
934 }
935
936 Counter value() { return proxy->value(); }
937 Result result() const { return proxy->result(); }
938 Result total() const { return proxy->total(); };
939 size_type size() const { return proxy->size(); }
940
941 std::string str() const { return proxy->str(); }
942 bool zero() const { return proxy->zero(); }
943 bool check() const { return proxy != NULL; }
944 void reset() { }
945};
946
947//////////////////////////////////////////////////////////////////////
948//
949// Vector Statistics
950//
951//////////////////////////////////////////////////////////////////////
952
953/**
954 * A proxy class to access the stat at a given index in a VectorBase stat.
955 * Behaves like a ScalarBase.
956 */
957template <class Stat>
958class ScalarProxy
959{
960 private:
961 /** Pointer to the parent Vector. */
962 Stat *stat;
963
964 /** The index to access in the parent VectorBase. */
965 off_type index;
966
967 public:
968 /**
969 * Return the current value of this stat as its base type.
970 * @return The current value.
971 */
972 Counter value() const { return stat->data(index)->value(stat->params); }
973
974 /**
975 * Return the current value of this statas a result type.
976 * @return The current value.
977 */
978 Result result() const { return stat->data(index)->result(stat->params); }
979
980 public:
981 /**
982 * Create and initialize this proxy, do not register it with the database.
983 * @param p The params to use.
984 * @param i The index to access.
985 */
986 ScalarProxy(Stat *s, off_type i)
987 : stat(s), index(i)
988 {
989 assert(stat);
990 }
991
992 /**
993 * Create a copy of the provided ScalarProxy.
994 * @param sp The proxy to copy.
995 */
996 ScalarProxy(const ScalarProxy &sp)
997 : stat(sp.stat), index(sp.index)
998 {}
999
1000 /**
1001 * Set this proxy equal to the provided one.
1002 * @param sp The proxy to copy.
1003 * @return A reference to this proxy.
1004 */
1005 const ScalarProxy &
986 operator=(const ScalarProxy &sp) {
1006 operator=(const ScalarProxy &sp)
1007 {
1008 stat = sp.stat;
1009 index = sp.index;
1010 return *this;
1011 }
1012
1013 public:
1014 // Common operators for stats
1015 /**
1016 * Increment the stat by 1. This calls the associated storage object inc
1017 * function.
1018 */
1019 void operator++() { stat->data(index)->inc(1, stat->params); }
1020 /**
1021 * Decrement the stat by 1. This calls the associated storage object dec
1022 * function.
1023 */
1024 void operator--() { stat->data(index)->dec(1, stat->params); }
1025
1026 /** Increment the stat by 1. */
1027 void operator++(int) { ++*this; }
1028 /** Decrement the stat by 1. */
1029 void operator--(int) { --*this; }
1030
1031 /**
1032 * Set the data value to the given value. This calls the associated storage
1033 * object set function.
1034 * @param v The new value.
1035 */
1036 template <typename U>
1037 void
1038 operator=(const U &v)
1039 {
1040 stat->data(index)->set(v, stat->params);
1041 }
1042
1043 /**
1044 * Increment the stat by the given value. This calls the associated
1045 * storage object inc function.
1046 * @param v The value to add.
1047 */
1048 template <typename U>
1049 void
1050 operator+=(const U &v)
1051 {
1052 stat->data(index)->inc(v, stat->params);
1053 }
1054
1055 /**
1056 * Decrement the stat by the given value. This calls the associated
1057 * storage object dec function.
1058 * @param v The value to substract.
1059 */
1060 template <typename U>
1061 void
1062 operator-=(const U &v)
1063 {
1064 stat->data(index)->dec(v, stat->params);
1065 }
1066
1067 /**
1068 * Return the number of elements, always 1 for a scalar.
1069 * @return 1.
1070 */
1071 size_type size() const { return 1; }
1072
1073 /**
1074 * This stat has no state. Nothing to reset
1075 */
1076 void reset() { }
1077
1078 public:
1079 std::string
1080 str() const
1081 {
1061 return csprintf("%s[%d]", stat->statData()->name, index);
1082 return csprintf("%s[%d]", stat->info()->name, index);
1083 }
1084};
1085
1086/**
1087 * Implementation of a vector of stats. The type of stat is determined by the
1088 * Storage class. @sa ScalarBase
1089 */
1090template <class Stor>
1070class VectorBase : public DataAccess
1091class VectorBase : public InfoAccess
1092{
1093 public:
1094 typedef Stor Storage;
1095
1096 /** Define the params of the storage class. */
1097 typedef typename Storage::Params Params;
1098
1099 /** Proxy type */
1100 typedef ScalarProxy<VectorBase<Storage> > Proxy;
1101
1102 friend class ScalarProxy<VectorBase<Storage> >;
1103
1104 protected:
1105 /** The storage of this stat. */
1106 Storage *storage;
1107 size_type _size;
1108
1109 /** The parameters for this stat. */
1110 Params params;
1111
1112 protected:
1113 /**
1114 * Retrieve the storage.
1115 * @param index The vector index to access.
1116 * @return The storage object at the given index.
1117 */
1118 Storage *data(off_type index) { return &storage[index]; }
1119
1120 /**
1121 * Retrieve a const pointer to the storage.
1122 * @param index The vector index to access.
1123 * @return A const pointer to the storage object at the given index.
1124 */
1125 const Storage *data(off_type index) const { return &storage[index]; }
1126
1127 void
1128 doInit(size_type s)
1129 {
1130 assert(s > 0 && "size must be positive!");
1131 assert(!storage && "already initialized");
1132 _size = s;
1133
1134 char *ptr = new char[_size * sizeof(Storage)];
1135 storage = reinterpret_cast<Storage *>(ptr);
1136
1137 for (off_type i = 0; i < _size; ++i)
1138 new (&storage[i]) Storage(params);
1139
1140 setInit();
1141 }
1142
1143 public:
1144 void
1145 value(VCounter &vec) const
1146 {
1147 vec.resize(size());
1148 for (off_type i = 0; i < size(); ++i)
1149 vec[i] = data(i)->value(params);
1150 }
1151
1152 /**
1153 * Copy the values to a local vector and return a reference to it.
1154 * @return A reference to a vector of the stat values.
1155 */
1156 void
1157 result(VResult &vec) const
1158 {
1159 vec.resize(size());
1160 for (off_type i = 0; i < size(); ++i)
1161 vec[i] = data(i)->result(params);
1162 }
1163
1164 /**
1165 * Return a total of all entries in this vector.
1166 * @return The total of all vector entries.
1167 */
1168 Result
1169 total() const
1170 {
1171 Result total = 0.0;
1172 for (off_type i = 0; i < size(); ++i)
1173 total += data(i)->result(params);
1174 return total;
1175 }
1176
1177 /**
1178 * @return the number of elements in this vector.
1179 */
1180 size_type size() const { return _size; }
1181
1182 bool
1183 zero() const
1184 {
1185 for (off_type i = 0; i < size(); ++i)
1186 if (data(i)->zero())
1187 return false;
1188 return true;
1189 }
1190
1191 bool
1192 check() const
1193 {
1194 return storage != NULL;
1195 }
1196
1197 void
1198 reset()
1199 {
1200 for (off_type i = 0; i < size(); ++i)
1201 data(i)->reset();
1202 }
1203
1204 public:
1205 VectorBase()
1206 : storage(NULL)
1207 {}
1208
1209 ~VectorBase()
1210 {
1211 if (!storage)
1212 return;
1213
1214 for (off_type i = 0; i < _size; ++i)
1215 data(i)->~Storage();
1216 delete [] reinterpret_cast<char *>(storage);
1217 }
1218
1219 /**
1220 * Return a reference (ScalarProxy) to the stat at the given index.
1221 * @param index The vector index to access.
1222 * @return A reference of the stat.
1223 */
1224 Proxy
1225 operator[](off_type index)
1226 {
1227 assert (index >= 0 && index < size());
1228 return Proxy(this, index);
1229 }
1230
1210 void update(StatData *data) {}
1231 void update(Info *data) {}
1232};
1233
1234template <class Stat>
1235class VectorProxy
1236{
1237 private:
1238 Stat *stat;
1239 off_type offset;
1240 size_type len;
1241
1242 private:
1243 mutable VResult vec;
1244
1245 typename Stat::Storage *
1246 data(off_type index)
1247 {
1248 assert(index < len);
1249 return stat->data(offset + index);
1250 }
1251
1252 const typename Stat::Storage *
1253 data(off_type index) const
1254 {
1255 assert(index < len);
1256 return const_cast<Stat *>(stat)->data(offset + index);
1257 }
1258
1259 public:
1260 const VResult &
1261 result() const
1262 {
1263 vec.resize(size());
1264
1265 for (off_type i = 0; i < size(); ++i)
1266 vec[i] = data(i)->result(stat->params);
1267
1268 return vec;
1269 }
1270
1271 Result
1272 total() const
1273 {
1274 Result total = 0;
1275 for (off_type i = 0; i < size(); ++i)
1276 total += data(i)->result(stat->params);
1277 return total;
1278 }
1279
1280 public:
1281 VectorProxy(Stat *s, off_type o, size_type l)
1282 : stat(s), offset(o), len(l)
1283 {
1284 }
1285
1286 VectorProxy(const VectorProxy &sp)
1287 : stat(sp.stat), offset(sp.offset), len(sp.len)
1288 {
1289 }
1290
1291 const VectorProxy &
1292 operator=(const VectorProxy &sp)
1293 {
1294 stat = sp.stat;
1295 offset = sp.offset;
1296 len = sp.len;
1297 return *this;
1298 }
1299
1300 ScalarProxy<Stat>
1301 operator[](off_type index)
1302 {
1303 assert (index >= 0 && index < size());
1304 return ScalarProxy<Stat>(stat, offset + index);
1305 }
1306
1307 size_type size() const { return len; }
1308
1309 /**
1310 * This stat has no state. Nothing to reset.
1311 */
1312 void reset() { }
1313};
1314
1315template <class Stor>
1295class Vector2dBase : public DataAccess
1316class Vector2dBase : public InfoAccess
1317{
1318 public:
1319 typedef Stor Storage;
1320 typedef typename Storage::Params Params;
1321 typedef VectorProxy<Vector2dBase<Storage> > Proxy;
1322 friend class ScalarProxy<Vector2dBase<Storage> >;
1323 friend class VectorProxy<Vector2dBase<Storage> >;
1324
1325 protected:
1326 size_type x;
1327 size_type y;
1328 size_type _size;
1329 Storage *storage;
1330 Params params;
1331
1332 protected:
1333 Storage *data(off_type index) { return &storage[index]; }
1334 const Storage *data(off_type index) const { return &storage[index]; }
1335
1336 void
1337 doInit(size_type _x, size_type _y)
1338 {
1339 assert(_x > 0 && _y > 0 && "sizes must be positive!");
1340 assert(!storage && "already initialized");
1341
1321 Vector2dData *statdata = dynamic_cast<Vector2dData *>(find());
1342 Vector2dInfoBase *info = dynamic_cast<Vector2dInfoBase *>(find());
1343
1344 x = _x;
1345 y = _y;
1325 statdata->x = _x;
1326 statdata->y = _y;
1346 info->x = _x;
1347 info->y = _y;
1348 _size = x * y;
1349
1350 char *ptr = new char[_size * sizeof(Storage)];
1351 storage = reinterpret_cast<Storage *>(ptr);
1352
1353 for (off_type i = 0; i < _size; ++i)
1354 new (&storage[i]) Storage(params);
1355
1356 setInit();
1357 }
1358
1359 public:
1360 Vector2dBase()
1361 : storage(NULL)
1362 {}
1363
1364 ~Vector2dBase()
1365 {
1366 if (!storage)
1367 return;
1368
1369 for (off_type i = 0; i < _size; ++i)
1370 data(i)->~Storage();
1371 delete [] reinterpret_cast<char *>(storage);
1372 }
1373
1374 void
1354 update(Vector2dData *newdata)
1375 update(Vector2dInfoBase *newinfo)
1376 {
1377 size_type size = this->size();
1357 newdata->cvec.resize(size);
1378 newinfo->cvec.resize(size);
1379 for (off_type i = 0; i < size; ++i)
1359 newdata->cvec[i] = data(i)->value(params);
1380 newinfo->cvec[i] = data(i)->value();
1381 }
1382
1383 std::string ysubname(off_type i) const { return (*this->y_subnames)[i]; }
1384
1385 Proxy
1386 operator[](off_type index)
1387 {
1388 off_type offset = index * y;
1389 assert (index >= 0 && offset + index < size());
1390 return Proxy(this, offset, y);
1391 }
1392
1393
1394 size_type
1395 size() const
1396 {
1397 return _size;
1398 }
1399
1400 bool
1401 zero() const
1402 {
1403 return data(0)->zero();
1404#if 0
1405 for (off_type i = 0; i < size(); ++i)
1406 if (!data(i)->zero())
1407 return false;
1408 return true;
1409#endif
1410 }
1411
1412 /**
1413 * Reset stat value to default
1414 */
1415 void
1416 reset()
1417 {
1418 for (off_type i = 0; i < size(); ++i)
1419 data(i)->reset();
1420 }
1421
1422 bool
1423 check()
1424 {
1425 return storage != NULL;
1426 }
1427};
1428
1429//////////////////////////////////////////////////////////////////////
1430//
1431// Non formula statistics
1432//
1433//////////////////////////////////////////////////////////////////////
1434
1435/**
1436 * Templatized storage and interface for a distrbution stat.
1437 */
1417struct DistStor
1438class DistStor
1439{
1440 public:
1441 /** The parameters for a distribution stat. */
1442 struct Params
1443 {
1444 /** The minimum value to track. */
1445 Counter min;
1446 /** The maximum value to track. */
1447 Counter max;
1448 /** The number of entries in each bucket. */
1449 Counter bucket_size;
1450 /** The number of buckets. Equal to (max-min)/bucket_size. */
1451 size_type size;
1452 };
1453 enum { fancy = false };
1454
1455 private:
1456 /** The smallest value sampled. */
1457 Counter min_val;
1458 /** The largest value sampled. */
1459 Counter max_val;
1460 /** The number of values sampled less than min. */
1461 Counter underflow;
1462 /** The number of values sampled more than max. */
1463 Counter overflow;
1464 /** The current sum. */
1465 Counter sum;
1466 /** The sum of squares. */
1467 Counter squares;
1468 /** The number of samples. */
1469 Counter samples;
1470 /** Counter for each bucket. */
1471 VCounter cvec;
1472
1473 public:
1474 DistStor(const Params &params)
1475 : cvec(params.size)
1476 {
1477 reset();
1478 }
1479
1480 /**
1481 * Add a value to the distribution for the given number of times.
1482 * @param val The value to add.
1483 * @param number The number of times to add the value.
1484 * @param params The paramters of the distribution.
1485 */
1486 void
1487 sample(Counter val, int number, const Params &params)
1488 {
1489 if (val < params.min)
1490 underflow += number;
1491 else if (val > params.max)
1492 overflow += number;
1493 else {
1494 size_type index =
1495 (size_type)std::floor((val - params.min) / params.bucket_size);
1496 assert(index < size(params));
1497 cvec[index] += number;
1498 }
1499
1500 if (val < min_val)
1501 min_val = val;
1502
1503 if (val > max_val)
1504 max_val = val;
1505
1506 Counter sample = val * number;
1507 sum += sample;
1508 squares += sample * sample;
1509 samples += number;
1510 }
1511
1512 /**
1513 * Return the number of buckets in this distribution.
1514 * @return the number of buckets.
1515 * @todo Is it faster to return the size from the parameters?
1516 */
1517 size_type size(const Params &) const { return cvec.size(); }
1518
1519 /**
1520 * Returns true if any calls to sample have been made.
1521 * @param params The paramters of the distribution.
1522 * @return True if any values have been sampled.
1523 */
1524 bool
1525 zero(const Params &params) const
1526 {
1527 return samples == Counter();
1528 }
1529
1530 void
1510 update(DistDataData *data, const Params &params)
1531 update(DistData *data, const Params ¶ms)
1532 {
1533 data->min = params.min;
1534 data->max = params.max;
1535 data->bucket_size = params.bucket_size;
1536 data->size = params.size;
1537
1538 data->min_val = (min_val == CounterLimits::max()) ? 0 : min_val;
1539 data->max_val = (max_val == CounterLimits::min()) ? 0 : max_val;
1540 data->underflow = underflow;
1541 data->overflow = overflow;
1542 data->cvec.resize(params.size);
1543 for (off_type i = 0; i < params.size; ++i)
1544 data->cvec[i] = cvec[i];
1545
1546 data->sum = sum;
1547 data->squares = squares;
1548 data->samples = samples;
1549 }
1550
1551 /**
1552 * Reset stat value to default
1553 */
1554 void
1555 reset()
1556 {
1557 min_val = CounterLimits::max();
1558 max_val = CounterLimits::min();
1559 underflow = 0;
1560 overflow = 0;
1561
1562 size_type size = cvec.size();
1563 for (off_type i = 0; i < size; ++i)
1564 cvec[i] = Counter();
1565
1566 sum = Counter();
1567 squares = Counter();
1568 samples = Counter();
1569 }
1570};
1571
1572/**
1573 * Templatized storage and interface for a distribution that calculates mean
1574 * and variance.
1575 */
1555struct FancyStor
1576class FancyStor
1577{
1578 public:
1579 /**
1580 * No paramters for this storage.
1581 */
1582 struct Params {};
1583 enum { fancy = true };
1584
1585 private:
1586 /** The current sum. */
1587 Counter sum;
1588 /** The sum of squares. */
1589 Counter squares;
1590 /** The number of samples. */
1591 Counter samples;
1592
1593 public:
1594 /**
1595 * Create and initialize this storage.
1596 */
1597 FancyStor(const Params &)
1598 : sum(Counter()), squares(Counter()), samples(Counter())
1599 { }
1600
1601 /**
1602 * Add a value the given number of times to this running average.
1603 * Update the running sum and sum of squares, increment the number of
1604 * values seen by the given number.
1605 * @param val The value to add.
1606 * @param number The number of times to add the value.
1607 * @param p The parameters of this stat.
1608 */
1609 void
1610 sample(Counter val, int number, const Params &p)
1611 {
1612 Counter value = val * number;
1613 sum += value;
1614 squares += value * value;
1615 samples += number;
1616 }
1617
1618 void
1598 update(DistDataData *data, const Params &params)
1619 update(DistData *data, const Params ¶ms)
1620 {
1621 data->sum = sum;
1622 data->squares = squares;
1623 data->samples = samples;
1624 }
1625
1626 /**
1627 * Return the number of entries in this stat, 1
1628 * @return 1.
1629 */
1630 size_type size(const Params &) const { return 1; }
1631
1632 /**
1633 * Return true if no samples have been added.
1634 * @return True if no samples have been added.
1635 */
1636 bool zero(const Params &) const { return samples == Counter(); }
1637
1638 /**
1639 * Reset stat value to default
1640 */
1641 void
1642 reset()
1643 {
1644 sum = Counter();
1645 squares = Counter();
1646 samples = Counter();
1647 }
1648};
1649
1650/**
1651 * Templatized storage for distribution that calculates per tick mean and
1652 * variance.
1653 */
1633struct AvgFancy
1654class AvgFancy
1655{
1656 public:
1657 /** No parameters for this storage. */
1658 struct Params {};
1659 enum { fancy = true };
1660
1661 private:
1662 /** Current total. */
1663 Counter sum;
1664 /** Current sum of squares. */
1665 Counter squares;
1666
1667 public:
1668 /**
1669 * Create and initialize this storage.
1670 */
1671 AvgFancy(const Params &) : sum(Counter()), squares(Counter()) {}
1672
1673 /**
1674 * Add a value to the distribution for the given number of times.
1675 * Update the running sum and sum of squares.
1676 * @param val The value to add.
1677 * @param number The number of times to add the value.
1678 * @param p The paramters of the distribution.
1679 */
1680 void
1681 sample(Counter val, int number, const Params &p)
1682 {
1683 Counter value = val * number;
1684 sum += value;
1685 squares += value * value;
1686 }
1687
1688 void
1668 update(DistDataData *data, const Params &params)
1689 update(DistData *data, const Params ¶ms)
1690 {
1691 data->sum = sum;
1692 data->squares = squares;
1693 data->samples = curTick;
1694 }
1695
1696 /**
1697 * Return the number of entries, in this case 1.
1698 * @return 1.
1699 */
1700 size_type size(const Params &params) const { return 1; }
1701
1702 /**
1703 * Return true if no samples have been added.
1704 * @return True if the sum is zero.
1705 */
1706 bool zero(const Params &params) const { return sum == Counter(); }
1707
1708 /**
1709 * Reset stat value to default
1710 */
1711 void
1712 reset()
1713 {
1714 sum = Counter();
1715 squares = Counter();
1716 }
1717};
1718
1719/**
1720 * Implementation of a distribution stat. The type of distribution is
1721 * determined by the Storage template. @sa ScalarBase
1722 */
1723template <class Stor>
1703class DistBase : public DataAccess
1724class DistBase : public InfoAccess
1725{
1726 public:
1727 typedef Stor Storage;
1728 /** Define the params of the storage class. */
1729 typedef typename Storage::Params Params;
1730
1731 protected:
1732 /** The storage for this stat. */
1733 char storage[sizeof(Storage)] __attribute__ ((aligned (8)));
1734
1735 /** The parameters for this stat. */
1736 Params params;
1737
1738 protected:
1739 /**
1740 * Retrieve the storage.
1741 * @return The storage object for this stat.
1742 */
1743 Storage *
1744 data()
1745 {
1746 return reinterpret_cast<Storage *>(storage);
1747 }
1748
1749 /**
1750 * Retrieve a const pointer to the storage.
1751 * @return A const pointer to the storage object for this stat.
1752 */
1753 const Storage *
1754 data() const
1755 {
1756 return reinterpret_cast<const Storage *>(storage);
1757 }
1758
1759 void
1760 doInit()
1761 {
1762 new (storage) Storage(params);
1763 setInit();
1764 }
1765
1766 public:
1767 DistBase() { }
1768
1769 /**
1770 * Add a value to the distribtion n times. Calls sample on the storage
1771 * class.
1772 * @param v The value to add.
1773 * @param n The number of times to add it, defaults to 1.
1774 */
1775 template <typename U>
1776 void sample(const U &v, int n = 1) { data()->sample(v, n, params); }
1777
1778 /**
1779 * Return the number of entries in this stat.
1780 * @return The number of entries.
1781 */
1782 size_type size() const { return data()->size(params); }
1783 /**
1784 * Return true if no samples have been added.
1785 * @return True if there haven't been any samples.
1786 */
1787 bool zero() const { return data()->zero(params); }
1788
1789 void
1769 update(DistData *base)
1790 update(DistInfoBase *base)
1791 {
1792 base->data.fancy = Storage::fancy;
1793 data()->update(&(base->data), params);
1794 }
1795
1796 /**
1797 * Reset stat value to default
1798 */
1799 void
1800 reset()
1801 {
1802 data()->reset();
1803 }
1804
1805 bool
1806 check()
1807 {
1808 return true;
1809 }
1810};
1811
1812template <class Stat>
1813class DistProxy;
1814
1815template <class Stor>
1795class VectorDistBase : public DataAccess
1816class VectorDistBase : public InfoAccess
1817{
1818 public:
1819 typedef Stor Storage;
1820 typedef typename Storage::Params Params;
1821 typedef DistProxy<VectorDistBase<Storage> > Proxy;
1822 friend class DistProxy<VectorDistBase<Storage> >;
1823
1824 protected:
1825 Storage *storage;
1826 size_type _size;
1827 Params params;
1828
1829 protected:
1830 Storage *
1831 data(off_type index)
1832 {
1833 return &storage[index];
1834 }
1835
1836 const Storage *
1837 data(off_type index) const
1838 {
1839 return &storage[index];
1840 }
1841
1842 void
1843 doInit(size_type s)
1844 {
1845 assert(s > 0 && "size must be positive!");
1846 assert(!storage && "already initialized");
1847 _size = s;
1848
1849 char *ptr = new char[_size * sizeof(Storage)];
1850 storage = reinterpret_cast<Storage *>(ptr);
1851
1852 for (off_type i = 0; i < _size; ++i)
1853 new (&storage[i]) Storage(params);
1854
1855 setInit();
1856 }
1857
1858 public:
1859 VectorDistBase()
1860 : storage(NULL)
1861 {}
1862
1863 ~VectorDistBase()
1864 {
1865 if (!storage)
1866 return ;
1867
1868 for (off_type i = 0; i < _size; ++i)
1869 data(i)->~Storage();
1870 delete [] reinterpret_cast<char *>(storage);
1871 }
1872
1873 Proxy operator[](off_type index);
1874
1875 size_type
1876 size() const
1877 {
1878 return _size;
1879 }
1880
1881 bool
1882 zero() const
1883 {
1884 return false;
1885#if 0
1886 for (off_type i = 0; i < size(); ++i)
1887 if (!data(i)->zero(params))
1888 return false;
1889 return true;
1890#endif
1891 }
1892
1893 /**
1894 * Reset stat value to default
1895 */
1896 void
1897 reset()
1898 {
1899 for (off_type i = 0; i < size(); ++i)
1900 data(i)->reset();
1901 }
1902
1903 bool
1904 check()
1905 {
1906 return storage != NULL;
1907 }
1908
1909 void
1889 update(VectorDistData *base)
1910 update(VectorDistInfoBase *base)
1911 {
1912 size_type size = this->size();
1913 base->data.resize(size);
1914 for (off_type i = 0; i < size; ++i) {
1915 base->data[i].fancy = Storage::fancy;
1916 data(i)->update(&(base->data[i]), params);
1917 }
1918 }
1919};
1920
1921template <class Stat>
1922class DistProxy
1923{
1924 private:
1925 Stat *stat;
1926 off_type index;
1927
1928 protected:
1929 typename Stat::Storage *data() { return stat->data(index); }
1930 const typename Stat::Storage *data() const { return stat->data(index); }
1931
1932 public:
1933 DistProxy(Stat *s, off_type i)
1934 : stat(s), index(i)
1935 {}
1936
1937 DistProxy(const DistProxy &sp)
1938 : stat(sp.stat), index(sp.index)
1939 {}
1940
1941 const DistProxy &
1942 operator=(const DistProxy &sp)
1943 {
1944 stat = sp.stat;
1945 index = sp.index;
1946 return *this;
1947 }
1948
1949 public:
1950 template <typename U>
1951 void
1952 sample(const U &v, int n = 1)
1953 {
1954 data()->sample(v, n, stat->params);
1955 }
1956
1957 size_type
1958 size() const
1959 {
1960 return 1;
1961 }
1962
1963 bool
1964 zero() const
1965 {
1966 return data()->zero(stat->params);
1967 }
1968
1969 /**
1970 * Proxy has no state. Nothing to reset.
1971 */
1972 void reset() { }
1973};
1974
1975template <class Storage>
1976inline typename VectorDistBase<Storage>::Proxy
1977VectorDistBase<Storage>::operator[](off_type index)
1978{
1979 assert (index >= 0 && index < size());
1980 return typename VectorDistBase<Storage>::Proxy(this, index);
1981}
1982
1983#if 0
1984template <class Storage>
1985Result
1986VectorDistBase<Storage>::total(off_type index) const
1987{
1988 Result total = 0;
1989 for (off_type i = 0; i < x_size(); ++i)
1990 total += data(i)->result(stat->params);
1991}
1992#endif
1993
1994//////////////////////////////////////////////////////////////////////
1995//
1996// Formula Details
1997//
1998//////////////////////////////////////////////////////////////////////
1999
2000/**
2001 * Base class for formula statistic node. These nodes are used to build a tree
2002 * that represents the formula.
2003 */
2004class Node : public RefCounted
2005{
2006 public:
2007 /**
2008 * Return the number of nodes in the subtree starting at this node.
2009 * @return the number of nodes in this subtree.
2010 */
2011 virtual size_type size() const = 0;
2012 /**
2013 * Return the result vector of this subtree.
2014 * @return The result vector of this subtree.
2015 */
2016 virtual const VResult &result() const = 0;
2017 /**
2018 * Return the total of the result vector.
2019 * @return The total of the result vector.
2020 */
2021 virtual Result total() const = 0;
2022
2023 /**
2024 *
2025 */
2026 virtual std::string str() const = 0;
2027};
2028
2029/** Reference counting pointer to a function Node. */
2030typedef RefCountingPtr<Node> NodePtr;
2031
2032class ScalarStatNode : public Node
2033{
2034 private:
2014 const ScalarData *data;
2035 const ScalarInfoBase *data;
2036 mutable VResult vresult;
2037
2038 public:
2018 ScalarStatNode(const ScalarData *d) : data(d), vresult(1) {}
2039 ScalarStatNode(const ScalarInfoBase *d) : data(d), vresult(1) {}
2040
2041 virtual const VResult &
2042 result() const
2043 {
2044 vresult[0] = data->result();
2045 return vresult;
2046 }
2047
2048 virtual Result total() const { return data->result(); };
2049
2050 virtual size_type size() const { return 1; }
2051
2052 /**
2053 *
2054 */
2055 virtual std::string str() const { return data->name; }
2056};
2057
2058template <class Stat>
2059class ScalarProxyNode : public Node
2060{
2061 private:
2062 const ScalarProxy<Stat> proxy;
2063 mutable VResult vresult;
2064
2065 public:
2066 ScalarProxyNode(const ScalarProxy<Stat> &p)
2067 : proxy(p), vresult(1)
2068 { }
2069
2070 virtual const VResult &
2071 result() const
2072 {
2073 vresult[0] = proxy.result();
2074 return vresult;
2075 }
2076
2077 virtual Result
2078 total() const
2079 {
2080 return proxy.result();
2081 }
2082
2083 virtual size_type
2084 size() const
2085 {
2086 return 1;
2087 }
2088
2089 /**
2090 *
2091 */
2092 virtual std::string
2093 str() const
2094 {
2095 return proxy.str();
2096 }
2097};
2098
2099class VectorStatNode : public Node
2100{
2101 private:
2081 const VectorData *data;
2102 const VectorInfoBase *data;
2103
2104 public:
2084 VectorStatNode(const VectorData *d) : data(d) { }
2105 VectorStatNode(const VectorInfoBase *d) : data(d) { }
2106 virtual const VResult &result() const { return data->result(); }
2107 virtual Result total() const { return data->total(); };
2108
2109 virtual size_type size() const { return data->size(); }
2110
2111 virtual std::string str() const { return data->name; }
2112};
2113
2114template <class T>
2115class ConstNode : public Node
2116{
2117 private:
2118 VResult vresult;
2119
2120 public:
2121 ConstNode(T s) : vresult(1, (Result)s) {}
2122 const VResult &result() const { return vresult; }
2123 virtual Result total() const { return vresult[0]; };
2124 virtual size_type size() const { return 1; }
2125 virtual std::string str() const { return to_string(vresult[0]); }
2126};
2127
2128template <class T>
2129class ConstVectorNode : public Node
2130{
2131 private:
2132 VResult vresult;
2133
2134 public:
2135 ConstVectorNode(const T &s) : vresult(s.begin(), s.end()) {}
2136 const VResult &result() const { return vresult; }
2137
2138 virtual Result
2139 total() const
2140 {
2141 size_type size = this->size();
2142 Result tmp = 0;
2143 for (off_type i = 0; i < size; i++)
2144 tmp += vresult[i];
2145 return tmp;
2146 }
2147
2148 virtual size_type size() const { return vresult.size(); }
2149 virtual std::string
2150 str() const
2151 {
2152 size_type size = this->size();
2153 std::string tmp = "(";
2154 for (off_type i = 0; i < size; i++)
2155 tmp += csprintf("%s ",to_string(vresult[i]));
2156 tmp += ")";
2157 return tmp;
2158 }
2159};
2160
2161template <class Op>
2162struct OpString;
2163
2164template<>
2165struct OpString<std::plus<Result> >
2166{
2167 static std::string str() { return "+"; }
2168};
2169
2170template<>
2171struct OpString<std::minus<Result> >
2172{
2173 static std::string str() { return "-"; }
2174};
2175
2176template<>
2177struct OpString<std::multiplies<Result> >
2178{
2179 static std::string str() { return "*"; }
2180};
2181
2182template<>
2183struct OpString<std::divides<Result> >
2184{
2185 static std::string str() { return "/"; }
2186};
2187
2188template<>
2189struct OpString<std::modulus<Result> >
2190{
2191 static std::string str() { return "%"; }
2192};
2193
2194template<>
2195struct OpString<std::negate<Result> >
2196{
2197 static std::string str() { return "-"; }
2198};
2199
2200template <class Op>
2201class UnaryNode : public Node
2202{
2203 public:
2204 NodePtr l;
2205 mutable VResult vresult;
2206
2207 public:
2208 UnaryNode(NodePtr &p) : l(p) {}
2209
2210 const VResult &
2211 result() const
2212 {
2213 const VResult &lvec = l->result();
2214 size_type size = lvec.size();
2215
2216 assert(size > 0);
2217
2218 vresult.resize(size);
2219 Op op;
2220 for (off_type i = 0; i < size; ++i)
2221 vresult[i] = op(lvec[i]);
2222
2223 return vresult;
2224 }
2225
2226 Result
2227 total() const
2228 {
2229 const VResult &vec = this->result();
2230 Result total = 0;
2231 for (off_type i = 0; i < size(); i++)
2232 total += vec[i];
2233 return total;
2234 }
2235
2236 virtual size_type size() const { return l->size(); }
2237
2238 virtual std::string
2239 str() const
2240 {
2241 return OpString<Op>::str() + l->str();
2242 }
2243};
2244
2245template <class Op>
2246class BinaryNode : public Node
2247{
2248 public:
2249 NodePtr l;
2250 NodePtr r;
2251 mutable VResult vresult;
2252
2253 public:
2254 BinaryNode(NodePtr &a, NodePtr &b) : l(a), r(b) {}
2255
2256 const VResult &
2257 result() const
2258 {
2259 Op op;
2260 const VResult &lvec = l->result();
2261 const VResult &rvec = r->result();
2262
2263 assert(lvec.size() > 0 && rvec.size() > 0);
2264
2265 if (lvec.size() == 1 && rvec.size() == 1) {
2266 vresult.resize(1);
2267 vresult[0] = op(lvec[0], rvec[0]);
2268 } else if (lvec.size() == 1) {
2269 size_type size = rvec.size();
2270 vresult.resize(size);
2271 for (off_type i = 0; i < size; ++i)
2272 vresult[i] = op(lvec[0], rvec[i]);
2273 } else if (rvec.size() == 1) {
2274 size_type size = lvec.size();
2275 vresult.resize(size);
2276 for (off_type i = 0; i < size; ++i)
2277 vresult[i] = op(lvec[i], rvec[0]);
2278 } else if (rvec.size() == lvec.size()) {
2279 size_type size = rvec.size();
2280 vresult.resize(size);
2281 for (off_type i = 0; i < size; ++i)
2282 vresult[i] = op(lvec[i], rvec[i]);
2283 }
2284
2285 return vresult;
2286 }
2287
2288 Result
2289 total() const
2290 {
2291 const VResult &vec = this->result();
2292 Result total = 0;
2293 for (off_type i = 0; i < size(); i++)
2294 total += vec[i];
2295 return total;
2296 }
2297
2298 virtual size_type
2299 size() const
2300 {
2301 size_type ls = l->size();
2302 size_type rs = r->size();
2303 if (ls == 1) {
2304 return rs;
2305 } else if (rs == 1) {
2306 return ls;
2307 } else {
2308 assert(ls == rs && "Node vector sizes are not equal");
2309 return ls;
2310 }
2311 }
2312
2313 virtual std::string
2314 str() const
2315 {
2316 return csprintf("(%s %s %s)", l->str(), OpString<Op>::str(), r->str());
2317 }
2318};
2319
2320template <class Op>
2321class SumNode : public Node
2322{
2323 public:
2324 NodePtr l;
2325 mutable VResult vresult;
2326
2327 public:
2328 SumNode(NodePtr &p) : l(p), vresult(1) {}
2329
2330 const VResult &
2331 result() const
2332 {
2333 const VResult &lvec = l->result();
2334 size_type size = lvec.size();
2335 assert(size > 0);
2336
2337 vresult[0] = 0.0;
2338
2339 Op op;
2340 for (off_type i = 0; i < size; ++i)
2341 vresult[0] = op(vresult[0], lvec[i]);
2342
2343 return vresult;
2344 }
2345
2346 Result
2347 total() const
2348 {
2349 const VResult &lvec = l->result();
2350 size_type size = lvec.size();
2351 assert(size > 0);
2352
2353 Result vresult = 0.0;
2354
2355 Op op;
2356 for (off_type i = 0; i < size; ++i)
2357 vresult = op(vresult, lvec[i]);
2358
2359 return vresult;
2360 }
2361
2362 virtual size_type size() const { return 1; }
2363
2364 virtual std::string
2365 str() const
2366 {
2367 return csprintf("total(%s)", l->str());
2368 }
2369};
2370
2371
2372//////////////////////////////////////////////////////////////////////
2373//
2374// Visible Statistics Types
2375//
2376//////////////////////////////////////////////////////////////////////
2377/**
2378 * @defgroup VisibleStats "Statistic Types"
2379 * These are the statistics that are used in the simulator.
2380 * @{
2381 */
2382
2383/**
2384 * This is a simple scalar statistic, like a counter.
2385 * @sa Stat, ScalarBase, StatStor
2386 */
2387template<int N = 0>
2367class Scalar : public Wrap<Scalar<N>, ScalarBase<StatStor>, ScalarStatData>
2388class Scalar : public Wrap<Scalar<N>, ScalarBase<StatStor>, ScalarInfo>
2389{
2390 public:
2391 /** The base implementation. */
2392 typedef ScalarBase<StatStor> Base;
2393
2394 Scalar()
2395 {
2396 this->doInit();
2397 }
2398
2399 /**
2400 * Sets the stat equal to the given value. Calls the base implementation
2401 * of operator=
2402 * @param v The new value.
2403 */
2404 template <typename U>
2405 void operator=(const U &v) { Base::operator=(v); }
2406};
2407
2387class Value : public Wrap<Value, ValueBase, ScalarStatData>
2408class Value : public Wrap<Value, ValueBase, ScalarInfo>
2409{
2410 public:
2411 /** The base implementation. */
2412 typedef ValueBase Base;
2413
2414 template <class T>
2415 Value &
2416 scalar(T &value)
2417 {
2418 Base::scalar(value);
2419 return *this;
2420 }
2421
2422 template <class T>
2423 Value &
2424 functor(T &func)
2425 {
2426 Base::functor(func);
2427 return *this;
2428 }
2429};
2430
2431/**
2432 * A stat that calculates the per tick average of a value.
2433 * @sa Stat, ScalarBase, AvgStor
2434 */
2435template<int N = 0>
2415class Average : public Wrap<Average<N>, ScalarBase<AvgStor>, ScalarStatData>
2436class Average : public Wrap<Average<N>, ScalarBase<AvgStor>, ScalarInfo>
2437{
2438 public:
2439 /** The base implementation. */
2440 typedef ScalarBase<AvgStor> Base;
2441
2442 Average()
2443 {
2444 this->doInit();
2445 }
2446
2447 /**
2448 * Sets the stat equal to the given value. Calls the base implementation
2449 * of operator=
2450 * @param v The new value.
2451 */
2452 template <typename U>
2453 void
2454 operator=(const U &v)
2455 {
2456 Base::operator=(v);
2457 }
2458};
2459
2460/**
2461 * A vector of scalar stats.
2462 * @sa Stat, VectorBase, StatStor
2463 */
2464template<int N = 0>
2444class Vector : public WrapVec<Vector<N>, VectorBase<StatStor>, VectorStatData>
2465class Vector : public WrapVec<Vector<N>, VectorBase<StatStor>, VectorInfo>
2466{
2467 public:
2468 /** The base implementation. */
2469 typedef ScalarBase<StatStor> Base;
2470
2471 /**
2472 * Set this vector to have the given size.
2473 * @param size The new size.
2474 * @return A reference to this stat.
2475 */
2476 Vector &
2477 init(size_type size)
2478 {
2479 this->doInit(size);
2480 return *this;
2481 }
2482};
2483
2484/**
2485 * A vector of Average stats.
2486 * @sa Stat, VectorBase, AvgStor
2487 */
2488template<int N = 0>
2489class AverageVector
2469 : public WrapVec<AverageVector<N>, VectorBase<AvgStor>, VectorStatData>
2490 : public WrapVec<AverageVector<N>, VectorBase<AvgStor>, VectorInfo>
2491{
2492 public:
2493 /**
2494 * Set this vector to have the given size.
2495 * @param size The new size.
2496 * @return A reference to this stat.
2497 */
2498 AverageVector &
2499 init(size_type size)
2500 {
2501 this->doInit(size);
2502 return *this;
2503 }
2504};
2505
2506/**
2507 * A 2-Dimensional vecto of scalar stats.
2508 * @sa Stat, Vector2dBase, StatStor
2509 */
2510template<int N = 0>
2511class Vector2d
2491 : public WrapVec2d<Vector2d<N>, Vector2dBase<StatStor>, Vector2dStatData>
2512 : public WrapVec2d<Vector2d<N>, Vector2dBase<StatStor>, Vector2dInfo>
2513{
2514 public:
2515 Vector2d &
2516 init(size_type x, size_type y)
2517 {
2518 this->doInit(x, y);
2519 return *this;
2520 }
2521};
2522
2523/**
2524 * A simple distribution stat.
2525 * @sa Stat, DistBase, DistStor
2526 */
2527template<int N = 0>
2528class Distribution
2508 : public Wrap<Distribution<N>, DistBase<DistStor>, DistStatData>
2529 : public Wrap<Distribution<N>, DistBase<DistStor>, DistInfo>
2530{
2531 public:
2532 /** Base implementation. */
2533 typedef DistBase<DistStor> Base;
2534 /** The Parameter type. */
2535 typedef DistStor::Params Params;
2536
2537 public:
2538 /**
2539 * Set the parameters of this distribution. @sa DistStor::Params
2540 * @param min The minimum value of the distribution.
2541 * @param max The maximum value of the distribution.
2542 * @param bkt The number of values in each bucket.
2543 * @return A reference to this distribution.
2544 */
2545 Distribution &
2546 init(Counter min, Counter max, Counter bkt)
2547 {
2548 this->params.min = min;
2549 this->params.max = max;
2550 this->params.bucket_size = bkt;
2551 this->params.size = (size_type)rint((max - min) / bkt + 1.0);
2552 this->doInit();
2553 return *this;
2554 }
2555};
2556
2557/**
2558 * Calculates the mean and variance of all the samples.
2559 * @sa Stat, DistBase, FancyStor
2560 */
2561template<int N = 0>
2562class StandardDeviation
2542 : public Wrap<StandardDeviation<N>, DistBase<FancyStor>, DistStatData>
2563 : public Wrap<StandardDeviation<N>, DistBase<FancyStor>, DistInfo>
2564{
2565 public:
2566 /** The base implementation */
2567 typedef DistBase<DistStor> Base;
2568 /** The parameter type. */
2569 typedef DistStor::Params Params;
2570
2571 public:
2572 /**
2573 * Construct and initialize this distribution.
2574 */
2575 StandardDeviation()
2576 {
2577 this->doInit();
2578 }
2579};
2580
2581/**
2582 * Calculates the per tick mean and variance of the samples.
2583 * @sa Stat, DistBase, AvgFancy
2584 */
2585template<int N = 0>
2586class AverageDeviation
2566 : public Wrap<AverageDeviation<N>, DistBase<AvgFancy>, DistStatData>
2587 : public Wrap<AverageDeviation<N>, DistBase<AvgFancy>, DistInfo>
2588{
2589 public:
2590 /** The base implementation */
2591 typedef DistBase<DistStor> Base;
2592 /** The parameter type. */
2593 typedef DistStor::Params Params;
2594
2595 public:
2596 /**
2597 * Construct and initialize this distribution.
2598 */
2599 AverageDeviation()
2600 {
2601 this->doInit();
2602 }
2603};
2604
2605/**
2606 * A vector of distributions.
2607 * @sa Stat, VectorDistBase, DistStor
2608 */
2609template<int N = 0>
2610class VectorDistribution
2611 : public WrapVec<VectorDistribution<N>,
2612 VectorDistBase<DistStor>,
2592 VectorDistStatData>
2613 VectorDistInfo>
2614{
2615 public:
2616 /** The base implementation */
2617 typedef VectorDistBase<DistStor> Base;
2618 /** The parameter type. */
2619 typedef DistStor::Params Params;
2620
2621 public:
2622 /**
2623 * Initialize storage and parameters for this distribution.
2624 * @param size The size of the vector (the number of distributions).
2625 * @param min The minimum value of the distribution.
2626 * @param max The maximum value of the distribution.
2627 * @param bkt The number of values in each bucket.
2628 * @return A reference to this distribution.
2629 */
2630 VectorDistribution &
2631 init(size_type size, Counter min, Counter max, Counter bkt)
2632 {
2633 this->params.min = min;
2634 this->params.max = max;
2635 this->params.bucket_size = bkt;
2636 this->params.size = rint((max - min) / bkt + 1.0);
2637 this->doInit(size);
2638 return *this;
2639 }
2640};
2641
2642/**
2643 * This is a vector of StandardDeviation stats.
2644 * @sa Stat, VectorDistBase, FancyStor
2645 */
2646template<int N = 0>
2647class VectorStandardDeviation
2648 : public WrapVec<VectorStandardDeviation<N>,
2649 VectorDistBase<FancyStor>,
2629 VectorDistStatData>
2650 VectorDistInfo>
2651{
2652 public:
2653 /** The base implementation */
2654 typedef VectorDistBase<FancyStor> Base;
2655 /** The parameter type. */
2656 typedef DistStor::Params Params;
2657
2658 public:
2659 /**
2660 * Initialize storage for this distribution.
2661 * @param size The size of the vector.
2662 * @return A reference to this distribution.
2663 */
2664 VectorStandardDeviation &
2665 init(size_type size)
2666 {
2667 this->doInit(size);
2668 return *this;
2669 }
2670};
2671
2672/**
2673 * This is a vector of AverageDeviation stats.
2674 * @sa Stat, VectorDistBase, AvgFancy
2675 */
2676template<int N = 0>
2677class VectorAverageDeviation
2678 : public WrapVec<VectorAverageDeviation<N>,
2679 VectorDistBase<AvgFancy>,
2659 VectorDistStatData>
2680 VectorDistInfo>
2681{
2682 public:
2683 /** The base implementation */
2684 typedef VectorDistBase<AvgFancy> Base;
2685 /** The parameter type. */
2686 typedef DistStor::Params Params;
2687
2688 public:
2689 /**
2690 * Initialize storage for this distribution.
2691 * @param size The size of the vector.
2692 * @return A reference to this distribution.
2693 */
2694 VectorAverageDeviation &
2695 init(size_type size)
2696 {
2697 this->doInit(size);
2698 return *this;
2699 }
2700};
2701
2702/**
2703 * A formula for statistics that is calculated when printed. A formula is
2704 * stored as a tree of Nodes that represent the equation to calculate.
2705 * @sa Stat, ScalarStat, VectorStat, Node, Temp
2706 */
2686class FormulaBase : public DataAccess
2707class FormulaBase : public InfoAccess
2708{
2709 protected:
2710 /** The root of the tree which represents the Formula */
2711 NodePtr root;
2712 friend class Temp;
2713
2714 public:
2715 /**
2716 * Return the result of the Fomula in a vector. If there were no Vector
2717 * components to the Formula, then the vector is size 1. If there were,
2718 * like x/y with x being a vector of size 3, then the result returned will
2719 * be x[0]/y, x[1]/y, x[2]/y, respectively.
2720 * @return The result vector.
2721 */
2722 void result(VResult &vec) const;
2723
2724 /**
2725 * Return the total Formula result. If there is a Vector
2726 * component to this Formula, then this is the result of the
2727 * Formula if the formula is applied after summing all the
2728 * components of the Vector. For example, if Formula is x/y where
2729 * x is size 3, then total() will return (x[1]+x[2]+x[3])/y. If
2730 * there is no Vector component, total() returns the same value as
2731 * the first entry in the VResult val() returns.
2732 * @return The total of the result vector.
2733 */
2734 Result total() const;
2735
2736 /**
2737 * Return the number of elements in the tree.
2738 */
2739 size_type size() const;
2740
2741 bool check() const { return true; }
2742
2743 /**
2744 * Formulas don't need to be reset
2745 */
2746 void reset();
2747
2748 /**
2749 *
2750 */
2751 bool zero() const;
2752
2753 /**
2754 *
2755 */
2735 void update(StatData *);
2756 void update(Info *);
2757
2758 std::string str() const;
2759};
2760
2740class FormulaData : public VectorData
2761class FormulaInfoBase : public VectorInfoBase
2762{
2763 public:
2764 virtual std::string str() const = 0;
2765 virtual bool check() const { return true; }
2766};
2767
2768template <class Stat>
2748class FormulaStatData : public FormulaData
2769class FormulaInfo : public FormulaInfoBase
2770{
2771 protected:
2772 Stat &s;
2773 mutable VResult vec;
2774 mutable VCounter cvec;
2775
2776 public:
2756 FormulaStatData(Stat &stat) : s(stat) {}
2777 FormulaInfo(Stat &stat) : s(stat) {}
2778
2779 virtual bool zero() const { return s.zero(); }
2780 virtual void reset() { s.reset(); }
2781
2782 virtual size_type size() const { return s.size(); }
2783
2784 virtual const VResult &
2785 result() const
2786 {
2787 s.result(vec);
2788 return vec;
2789 }
2790 virtual Result total() const { return s.total(); }
2791 virtual VCounter &value() const { return cvec; }
2792
2793 virtual void
2794 visit(Visit &visitor)
2795 {
2796 update();
2797 s.update(this);
2798 visitor.visit(*this);
2799 }
2800
2801 virtual std::string str() const { return s.str(); }
2802};
2803
2804class Temp;
2805class Formula
2806 : public WrapVec<Formula,
2807 FormulaBase,
2787 FormulaStatData>
2808 FormulaInfo>
2809{
2810 public:
2811 /**
2812 * Create and initialize thie formula, and register it with the database.
2813 */
2814 Formula();
2815
2816 /**
2817 * Create a formula with the given root node, register it with the
2818 * database.
2819 * @param r The root of the expression tree.
2820 */
2821 Formula(Temp r);
2822
2823 /**
2824 * Set an unitialized Formula to the given root.
2825 * @param r The root of the expression tree.
2826 * @return a reference to this formula.
2827 */
2828 const Formula &operator=(Temp r);
2829
2830 /**
2831 * Add the given tree to the existing one.
2832 * @param r The root of the expression tree.
2833 * @return a reference to this formula.
2834 */
2835 const Formula &operator+=(Temp r);
2836};
2837
2838class FormulaNode : public Node
2839{
2840 private:
2841 const Formula &formula;
2842 mutable VResult vec;
2843
2844 public:
2845 FormulaNode(const Formula &f) : formula(f) {}
2846
2847 virtual size_type size() const { return formula.size(); }
2848 virtual const VResult &result() const { formula.result(vec); return vec; }
2849 virtual Result total() const { return formula.total(); }
2850
2851 virtual std::string str() const { return formula.str(); }
2852};
2853
2854/**
2855 * Helper class to construct formula node trees.
2856 */
2857class Temp
2858{
2859 protected:
2860 /**
2861 * Pointer to a Node object.
2862 */
2863 NodePtr node;
2864
2865 public:
2866 /**
2867 * Copy the given pointer to this class.
2868 * @param n A pointer to a Node object to copy.
2869 */
2870 Temp(NodePtr n) : node(n) { }
2871
2872 /**
2873 * Return the node pointer.
2874 * @return the node pointer.
2875 */
2876 operator NodePtr&() { return node;}
2877
2878 public:
2879 /**
2880 * Create a new ScalarStatNode.
2881 * @param s The ScalarStat to place in a node.
2882 */
2883 template <int N>
2884 Temp(const Scalar<N> &s)
2864 : node(new ScalarStatNode(s.statData()))
2885 : node(new ScalarStatNode(s.info()))
2886 { }
2887
2888 /**
2889 * Create a new ScalarStatNode.
2890 * @param s The ScalarStat to place in a node.
2891 */
2892 Temp(const Value &s)
2872 : node(new ScalarStatNode(s.statData()))
2893 : node(new ScalarStatNode(s.info()))
2894 { }
2895
2896 /**
2897 * Create a new ScalarStatNode.
2898 * @param s The ScalarStat to place in a node.
2899 */
2900 template <int N>
2901 Temp(const Average<N> &s)
2881 : node(new ScalarStatNode(s.statData()))
2902 : node(new ScalarStatNode(s.info()))
2903 { }
2904
2905 /**
2906 * Create a new VectorStatNode.
2907 * @param s The VectorStat to place in a node.
2908 */
2909 template <int N>
2910 Temp(const Vector<N> &s)
2890 : node(new VectorStatNode(s.statData()))
2911 : node(new VectorStatNode(s.info()))
2912 { }
2913
2914 /**
2915 *
2916 */
2917 Temp(const Formula &f)
2918 : node(new FormulaNode(f))
2919 { }
2920
2921 /**
2922 * Create a new ScalarProxyNode.
2923 * @param p The ScalarProxy to place in a node.
2924 */
2925 template <class Stat>
2926 Temp(const ScalarProxy<Stat> &p)
2927 : node(new ScalarProxyNode<Stat>(p))
2928 { }
2929
2930 /**
2931 * Create a ConstNode
2932 * @param value The value of the const node.
2933 */
2934 Temp(signed char value)
2935 : node(new ConstNode<signed char>(value))
2936 { }
2937
2938 /**
2939 * Create a ConstNode
2940 * @param value The value of the const node.
2941 */
2942 Temp(unsigned char value)
2943 : node(new ConstNode<unsigned char>(value))
2944 { }
2945
2946 /**
2947 * Create a ConstNode
2948 * @param value The value of the const node.
2949 */
2950 Temp(signed short value)
2951 : node(new ConstNode<signed short>(value))
2952 { }
2953
2954 /**
2955 * Create a ConstNode
2956 * @param value The value of the const node.
2957 */
2958 Temp(unsigned short value)
2959 : node(new ConstNode<unsigned short>(value))
2960 { }
2961
2962 /**
2963 * Create a ConstNode
2964 * @param value The value of the const node.
2965 */
2966 Temp(signed int value)
2967 : node(new ConstNode<signed int>(value))
2968 { }
2969
2970 /**
2971 * Create a ConstNode
2972 * @param value The value of the const node.
2973 */
2974 Temp(unsigned int value)
2975 : node(new ConstNode<unsigned int>(value))
2976 { }
2977
2978 /**
2979 * Create a ConstNode
2980 * @param value The value of the const node.
2981 */
2982 Temp(signed long value)
2983 : node(new ConstNode<signed long>(value))
2984 { }
2985
2986 /**
2987 * Create a ConstNode
2988 * @param value The value of the const node.
2989 */
2990 Temp(unsigned long value)
2991 : node(new ConstNode<unsigned long>(value))
2992 { }
2993
2994 /**
2995 * Create a ConstNode
2996 * @param value The value of the const node.
2997 */
2998 Temp(signed long long value)
2999 : node(new ConstNode<signed long long>(value))
3000 { }
3001
3002 /**
3003 * Create a ConstNode
3004 * @param value The value of the const node.
3005 */
3006 Temp(unsigned long long value)
3007 : node(new ConstNode<unsigned long long>(value))
3008 { }
3009
3010 /**
3011 * Create a ConstNode
3012 * @param value The value of the const node.
3013 */
3014 Temp(float value)
3015 : node(new ConstNode<float>(value))
3016 { }
3017
3018 /**
3019 * Create a ConstNode
3020 * @param value The value of the const node.
3021 */
3022 Temp(double value)
3023 : node(new ConstNode<double>(value))
3024 { }
3025};
3026
3027
3028/**
3029 * @}
3030 */
3031
3032void check();
3033void dump();
3034void reset();
3035void registerResetCallback(Callback *cb);
3036
3037inline Temp
3038operator+(Temp l, Temp r)
3039{
3040 return NodePtr(new BinaryNode<std::plus<Result> >(l, r));
3041}
3042
3043inline Temp
3044operator-(Temp l, Temp r)
3045{
3046 return NodePtr(new BinaryNode<std::minus<Result> >(l, r));
3047}
3048
3049inline Temp
3050operator*(Temp l, Temp r)
3051{
3052 return NodePtr(new BinaryNode<std::multiplies<Result> >(l, r));
3053}
3054
3055inline Temp
3056operator/(Temp l, Temp r)
3057{
3058 return NodePtr(new BinaryNode<std::divides<Result> >(l, r));
3059}
3060
3061inline Temp
3062operator-(Temp l)
3063{
3064 return NodePtr(new UnaryNode<std::negate<Result> >(l));
3065}
3066
3067template <typename T>
3068inline Temp
3069constant(T val)
3070{
3071 return NodePtr(new ConstNode<T>(val));
3072}
3073
3074template <typename T>
3075inline Temp
3076constantVector(T val)
3077{
3078 return NodePtr(new ConstVectorNode<T>(val));
3079}
3080
3081inline Temp
3082sum(Temp val)
3083{
3084 return NodePtr(new SumNode<std::plus<Result> >(val));
3085}
3086
3087/* namespace Stats */ }
3088
3089#endif // __BASE_STATISTICS_HH__