1/*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Nathan Binkert
29 * Erik Hallnor
30 */
31
32/** @file
33 * Declaration of Statistics objects.
34 */
35
36/**
37* @todo
38*
39* Generalized N-dimensinal vector
40* documentation
41* key stats
42* interval stats
43* -- these both can use the same function that prints out a
44* specific set of stats
45* VectorStandardDeviation totals
46* Document Namespaces
47*/
48#ifndef __BASE_STATISTICS_HH__
49#define __BASE_STATISTICS_HH__
50
51#include <algorithm>
52#include <cassert>
53#include <cmath>
54#include <functional>
55#include <iosfwd>
56#include <string>
57#include <vector>
58
59#include "base/cprintf.hh"
60#include "base/intmath.hh"
61#include "base/refcnt.hh"
62#include "base/str.hh"
63#include "base/stats/bin.hh"
64#include "base/stats/flags.hh"
65#include "base/stats/visit.hh"
66#include "base/stats/types.hh"
67#include "config/stats_binning.hh"
68#include "sim/host.hh"
69
70class Callback;
71
72/** The current simulated cycle. */
73extern Tick curTick;
74
75/* A namespace for all of the Statistics */
76namespace Stats {
77
78/* Contains the statistic implementation details */
79//////////////////////////////////////////////////////////////////////
80//
81// Statistics Framework Base classes
82//
83//////////////////////////////////////////////////////////////////////
84struct StatData
85{
86 /** The name of the stat. */
87 std::string name;
88 /** The description of the stat. */
89 std::string desc;
90 /** The formatting flags. */
91 StatFlags flags;
92 /** The display precision. */
93 int precision;
94 /** A pointer to a prerequisite Stat. */
95 const StatData *prereq;
96 /**
97 * A unique stat ID for each stat in the simulator.
98 * Can be used externally for lookups as well as for debugging.
99 */
100 int id;
101
102 StatData();
103 virtual ~StatData();
104
105 /**
106 * @return true if the stat is binned.
107 */
108 virtual bool binned() const = 0;
109
110 /**
111 * Reset the corresponding stat to the default state.
112 */
113 virtual void reset() = 0;
114
115 /**
116 * @return true if this stat has a value and satisfies its
117 * requirement as a prereq
118 */
119 virtual bool zero() const = 0;
120
121 /**
122 * Check that this stat has been set up properly and is ready for
123 * use
124 * @return true for success
125 */
126 virtual bool check() const = 0;
127 bool baseCheck() const;
128
129 /**
130 * Visitor entry for outputing statistics data
131 */
132 virtual void visit(Visit &visitor) = 0;
133
134 /**
135 * Checks if the first stat's name is alphabetically less than the second.
136 * This function breaks names up at periods and considers each subname
137 * separately.
138 * @param stat1 The first stat.
139 * @param stat2 The second stat.
140 * @return stat1's name is alphabetically before stat2's
141 */
142 static bool less(StatData *stat1, StatData *stat2);
143};
144
145class ScalarData : public StatData
146{
147 public:
148 virtual Counter value() const = 0;
149 virtual Result result() const = 0;
150 virtual Result total() const = 0;
151 virtual void visit(Visit &visitor) { visitor.visit(*this); }
152};
153
154template <class Stat>
155class ScalarStatData : public ScalarData
156{
157 protected:
158 Stat &s;
159
160 public:
161 ScalarStatData(Stat &stat) : s(stat) {}
162
163 virtual bool binned() const { return s.binned(); }
164 virtual bool check() const { return s.check(); }
165 virtual Counter value() const { return s.value(); }
166 virtual Result result() const { return s.result(); }
167 virtual Result total() const { return s.total(); }
168 virtual void reset() { s.reset(); }
169 virtual bool zero() const { return s.zero(); }
170};
171
172struct VectorData : public StatData
173{
174 /** Names and descriptions of subfields. */
175 mutable std::vector<std::string> subnames;
176 mutable std::vector<std::string> subdescs;
177
178 virtual size_t size() const = 0;
179 virtual const VCounter &value() const = 0;
180 virtual const VResult &result() const = 0;
181 virtual Result total() const = 0;
182 void update()
183 {
184 if (!subnames.empty()) {
185 int s = size();
186 if (subnames.size() < s)
187 subnames.resize(s);
188
189 if (subdescs.size() < s)
190 subdescs.resize(s);
191 }
192 }
193};
194
195template <class Stat>
196class VectorStatData : public VectorData
197{
198 protected:
199 Stat &s;
200 mutable VCounter cvec;
201 mutable VResult rvec;
202
203 public:
204 VectorStatData(Stat &stat) : s(stat) {}
205
206 virtual bool binned() const { return s.binned(); }
207 virtual bool check() const { return s.check(); }
208 virtual bool zero() const { return s.zero(); }
209 virtual void reset() { s.reset(); }
210
211 virtual size_t size() const { return s.size(); }
212 virtual VCounter &value() const
213 {
214 s.value(cvec);
215 return cvec;
216 }
217 virtual const VResult &result() const
218 {
219 s.result(rvec);
220 return rvec;
221 }
222 virtual Result total() const { return s.total(); }
223 virtual void visit(Visit &visitor)
224 {
225 update();
226 s.update(this);
227 visitor.visit(*this);
228 }
229};
230
231struct DistDataData
232{
233 Counter min_val;
234 Counter max_val;
235 Counter underflow;
236 Counter overflow;
237 VCounter cvec;
238 Counter sum;
239 Counter squares;
240 Counter samples;
241
242 Counter min;
243 Counter max;
244 Counter bucket_size;
245 int size;
246 bool fancy;
247};
248
249struct DistData : public StatData
250{
251 /** Local storage for the entry values, used for printing. */
252 DistDataData data;
253};
254
255template <class Stat>
256class DistStatData : public DistData
257{
258 protected:
259 Stat &s;
260
261 public:
262 DistStatData(Stat &stat) : s(stat) {}
263
264 virtual bool binned() const { return s.binned(); }
265 virtual bool check() const { return s.check(); }
266 virtual void reset() { s.reset(); }
267 virtual bool zero() const { return s.zero(); }
268 virtual void visit(Visit &visitor)
269 {
270 s.update(this);
271 visitor.visit(*this);
272 }
273};
274
275struct VectorDistData : public StatData
276{
277 std::vector<DistDataData> data;
278
279 /** Names and descriptions of subfields. */
280 mutable std::vector<std::string> subnames;
281 mutable std::vector<std::string> subdescs;
282
283 /** Local storage for the entry values, used for printing. */
284 mutable VResult rvec;
285
286 virtual size_t size() const = 0;
287 void update()
288 {
289 int s = size();
290 if (subnames.size() < s)
291 subnames.resize(s);
292
293 if (subdescs.size() < s)
294 subdescs.resize(s);
295 }
296};
297
298template <class Stat>
299class VectorDistStatData : public VectorDistData
300{
301 protected:
302 Stat &s;
303 typedef typename Stat::bin_t bin_t;
304
305 public:
306 VectorDistStatData(Stat &stat) : s(stat) {}
307
308 virtual bool binned() const { return bin_t::binned; }
309 virtual bool check() const { return s.check(); }
310 virtual void reset() { s.reset(); }
311 virtual size_t size() const { return s.size(); }
312 virtual bool zero() const { return s.zero(); }
313 virtual void visit(Visit &visitor)
314 {
315 update();
316 s.update(this);
317 visitor.visit(*this);
318 }
319};
320
321struct Vector2dData : public StatData
322{
323 /** Names and descriptions of subfields. */
324 std::vector<std::string> subnames;
325 std::vector<std::string> subdescs;
326 std::vector<std::string> y_subnames;
327
328 /** Local storage for the entry values, used for printing. */
329 mutable VCounter cvec;
330 mutable int x;
331 mutable int y;
332
333 void update()
334 {
335 if (subnames.size() < x)
336 subnames.resize(x);
337 }
338};
339
340template <class Stat>
341class Vector2dStatData : public Vector2dData
342{
343 protected:
344 Stat &s;
345 typedef typename Stat::bin_t bin_t;
346
347 public:
348 Vector2dStatData(Stat &stat) : s(stat) {}
349
350 virtual bool binned() const { return bin_t::binned; }
351 virtual bool check() const { return s.check(); }
352 virtual void reset() { s.reset(); }
353 virtual bool zero() const { return s.zero(); }
354 virtual void visit(Visit &visitor)
355 {
356 update();
357 s.update(this);
358 visitor.visit(*this);
359 }
360};
361
362
363class DataAccess
364{
365 protected:
366 StatData *find() const;
367 void map(StatData *data);
368
369 StatData *statData();
370 const StatData *statData() const;
371
372 void setInit();
373 void setPrint();
374};
375
376template <class Parent, class Child, template <class> class Data>
377class Wrap : public Child
378{
379 protected:
380 Parent &self() { return *reinterpret_cast<Parent *>(this); }
381
382 protected:
383 Data<Child> *statData()
384 {
385 StatData *__data = DataAccess::statData();
386 Data<Child> *ptr = dynamic_cast<Data<Child> *>(__data);
387 assert(ptr);
388 return ptr;
389 }
390
391 public:
392 const Data<Child> *statData() const
393 {
394 const StatData *__data = DataAccess::statData();
395 const Data<Child> *ptr = dynamic_cast<const Data<Child> *>(__data);
396 assert(ptr);
397 return ptr;
398 }
399
400 protected:
401 /**
402 * Copy constructor, copies are not allowed.
403 */
404 Wrap(const Wrap &stat);
405 /**
406 * Can't copy stats.
407 */
408 void operator=(const Wrap &);
409
410 public:
411 Wrap()
412 {
413 map(new Data<Child>(*this));
414 }
415
416 /**
417 * Set the name and marks this stat to print at the end of simulation.
418 * @param name The new name.
419 * @return A reference to this stat.
420 */
421 Parent &name(const std::string &_name)
422 {
423 Data<Child> *data = this->statData();
424 data->name = _name;
425 this->setPrint();
426 return this->self();
427 }
428
429 /**
430 * Set the description and marks this stat to print at the end of
431 * simulation.
432 * @param desc The new description.
433 * @return A reference to this stat.
434 */
435 Parent &desc(const std::string &_desc)
436 {
437 this->statData()->desc = _desc;
438 return this->self();
439 }
440
441 /**
442 * Set the precision and marks this stat to print at the end of simulation.
443 * @param p The new precision
444 * @return A reference to this stat.
445 */
446 Parent &precision(int _precision)
447 {
448 this->statData()->precision = _precision;
449 return this->self();
450 }
451
452 /**
453 * Set the flags and marks this stat to print at the end of simulation.
454 * @param f The new flags.
455 * @return A reference to this stat.
456 */
457 Parent &flags(StatFlags _flags)
458 {
459 this->statData()->flags |= _flags;
460 return this->self();
461 }
462
463 /**
464 * Set the prerequisite stat and marks this stat to print at the end of
465 * simulation.
466 * @param prereq The prerequisite stat.
467 * @return A reference to this stat.
468 */
469 template <class Stat>
470 Parent &prereq(const Stat &prereq)
471 {
472 this->statData()->prereq = prereq.statData();
473 return this->self();
474 }
475};
476
477template <class Parent, class Child, template <class Child> class Data>
478class WrapVec : public Wrap<Parent, Child, Data>
479{
480 public:
481 // The following functions are specific to vectors. If you use them
482 // in a non vector context, you will get a nice compiler error!
483
484 /**
485 * Set the subfield name for the given index, and marks this stat to print
486 * at the end of simulation.
487 * @param index The subfield index.
488 * @param name The new name of the subfield.
489 * @return A reference to this stat.
490 */
491 Parent &subname(int index, const std::string &name)
492 {
493 std::vector<std::string> &subn = this->statData()->subnames;
494 if (subn.size() <= index)
495 subn.resize(index + 1);
496 subn[index] = name;
497 return this->self();
498 }
499
500 /**
501 * Set the subfield description for the given index and marks this stat to
502 * print at the end of simulation.
503 * @param index The subfield index.
504 * @param desc The new description of the subfield
505 * @return A reference to this stat.
506 */
507 Parent &subdesc(int index, const std::string &desc)
508 {
509 std::vector<std::string> &subd = this->statData()->subdescs;
510 if (subd.size() <= index)
511 subd.resize(index + 1);
512 subd[index] = desc;
513
514 return this->self();
515 }
516
517};
518
519template <class Parent, class Child, template <class Child> class Data>
520class WrapVec2d : public WrapVec<Parent, Child, Data>
521{
522 public:
523 /**
524 * @warning This makes the assumption that if you're gonna subnames a 2d
525 * vector, you're subnaming across all y
526 */
527 Parent &ysubnames(const char **names)
528 {
529 Data<Child> *data = this->statData();
530 data->y_subnames.resize(this->y);
531 for (int i = 0; i < this->y; ++i)
532 data->y_subnames[i] = names[i];
533 return this->self();
534 }
535 Parent &ysubname(int index, const std::string subname)
536 {
537 Data<Child> *data = this->statData();
538 assert(index < this->y);
539 data->y_subnames.resize(this->y);
540 data->y_subnames[index] = subname.c_str();
541 return this->self();
542 }
543};
544
545//////////////////////////////////////////////////////////////////////
546//
547// Simple Statistics
548//
549//////////////////////////////////////////////////////////////////////
550
551/**
552 * Templatized storage and interface for a simple scalar stat.
553 */
554struct StatStor
555{
556 public:
557 /** The paramaters for this storage type, none for a scalar. */
558 struct Params { };
559
560 private:
561 /** The statistic value. */
562 Counter data;
563
564 public:
565 /**
566 * Builds this storage element and calls the base constructor of the
567 * datatype.
568 */
569 StatStor(const Params &) : data(Counter()) {}
570
571 /**
572 * The the stat to the given value.
573 * @param val The new value.
574 * @param p The paramters of this storage type.
575 */
576 void set(Counter val, const Params &p) { data = val; }
577 /**
578 * Increment the stat by the given value.
579 * @param val The new value.
580 * @param p The paramters of this storage type.
581 */
582 void inc(Counter val, const Params &p) { data += val; }
583 /**
584 * Decrement the stat by the given value.
585 * @param val The new value.
586 * @param p The paramters of this storage type.
587 */
588 void dec(Counter val, const Params &p) { data -= val; }
589 /**
590 * Return the value of this stat as its base type.
591 * @param p The params of this storage type.
592 * @return The value of this stat.
593 */
594 Counter value(const Params &p) const { return data; }
595 /**
596 * Return the value of this stat as a result type.
597 * @param p The parameters of this storage type.
598 * @return The value of this stat.
599 */
600 Result result(const Params &p) const { return (Result)data; }
601 /**
602 * Reset stat value to default
603 */
604 void reset() { data = Counter(); }
605
606 /**
607 * @return true if zero value
608 */
609 bool zero() const { return data == Counter(); }
610};
611
612/**
613 * Templatized storage and interface to a per-cycle average stat. This keeps
614 * a current count and updates a total (count * cycles) when this count
615 * changes. This allows the quick calculation of a per cycle count of the item
616 * being watched. This is good for keeping track of residencies in structures
617 * among other things.
618 * @todo add lateny to the stat and fix binning.
619 */
620struct AvgStor
621{
622 public:
623 /** The paramaters for this storage type */
624 struct Params
625 {
626 /**
627 * The current count. We stash this here because the current
628 * value is not a binned value.
629 */
630 Counter current;
631 };
632
633 private:
634 /** The total count for all cycles. */
635 mutable Result total;
636 /** The cycle that current last changed. */
637 mutable Tick last;
638
639 public:
640 /**
641 * Build and initializes this stat storage.
642 */
643 AvgStor(Params &p) : total(0), last(0) { p.current = Counter(); }
644
645 /**
646 * Set the current count to the one provided, update the total and last
647 * set values.
648 * @param val The new count.
649 * @param p The parameters for this storage.
650 */
651 void set(Counter val, Params &p) {
652 total += p.current * (curTick - last);
653 last = curTick;
654 p.current = val;
655 }
656
657 /**
658 * Increment the current count by the provided value, calls set.
659 * @param val The amount to increment.
660 * @param p The parameters for this storage.
661 */
662 void inc(Counter val, Params &p) { set(p.current + val, p); }
663
664 /**
665 * Deccrement the current count by the provided value, calls set.
666 * @param val The amount to decrement.
667 * @param p The parameters for this storage.
668 */
669 void dec(Counter val, Params &p) { set(p.current - val, p); }
670
671 /**
672 * Return the current count.
673 * @param p The parameters for this storage.
674 * @return The current count.
675 */
676 Counter value(const Params &p) const { return p.current; }
677
678 /**
679 * Return the current average.
680 * @param p The parameters for this storage.
681 * @return The current average.
682 */
683 Result result(const Params &p) const
684 {
685 total += p.current * (curTick - last);
686 last = curTick;
687 return (Result)(total + p.current) / (Result)(curTick + 1);
688 }
689
690 /**
691 * Reset stat value to default
692 */
693 void reset()
694 {
695 total = 0;
696 last = curTick;
697 }
698
699 /**
700 * @return true if zero value
701 */
702 bool zero() const { return total == 0.0; }
703};
704
705/**
706 * Implementation of a scalar stat. The type of stat is determined by the
707 * Storage template. The storage for this stat is held within the Bin class.
708 * This allows for breaking down statistics across multiple bins easily.
709 */
710template <class Storage, class Bin>
711class ScalarBase : public DataAccess
712{
713 public:
714 /** Define the params of the storage class. */
715 typedef typename Storage::Params params_t;
716 /** Define the bin type. */
717 typedef typename Bin::template Bin<Storage> bin_t;
718
719 protected:
720 /** The bin of this stat. */
721 bin_t bin;
722 /** The parameters for this stat. */
723 params_t params;
724
725 protected:
726 /**
727 * Retrieve the storage from the bin.
728 * @return The storage object for this stat.
729 */
730 Storage *data() { return bin.data(params); }
731 /**
732 * Retrieve a const pointer to the storage from the bin.
733 * @return A const pointer to the storage object for this stat.
734 */
735 const Storage *data() const
736 {
737 bin_t *_bin = const_cast<bin_t *>(&bin);
738 params_t *_params = const_cast<params_t *>(&params);
739 return _bin->data(*_params);
740 }
741
742 public:
743 /**
744 * Return the current value of this stat as its base type.
745 * @return The current value.
746 */
747 Counter value() const { return data()->value(params); }
748
749 public:
750 /**
751 * Create and initialize this stat, register it with the database.
752 */
753 ScalarBase()
754 {
755 bin.init(params);
756 }
757
758 public:
759 // Common operators for stats
760 /**
761 * Increment the stat by 1. This calls the associated storage object inc
762 * function.
763 */
764 void operator++() { data()->inc(1, params); }
765 /**
766 * Decrement the stat by 1. This calls the associated storage object dec
767 * function.
768 */
769 void operator--() { data()->dec(1, params); }
770
771 /** Increment the stat by 1. */
772 void operator++(int) { ++*this; }
773 /** Decrement the stat by 1. */
774 void operator--(int) { --*this; }
775
776 /**
777 * Set the data value to the given value. This calls the associated storage
778 * object set function.
779 * @param v The new value.
780 */
781 template <typename U>
782 void operator=(const U &v) { data()->set(v, params); }
783
784 /**
785 * Increment the stat by the given value. This calls the associated
786 * storage object inc function.
787 * @param v The value to add.
788 */
789 template <typename U>
790 void operator+=(const U &v) { data()->inc(v, params); }
791
792 /**
793 * Decrement the stat by the given value. This calls the associated
794 * storage object dec function.
795 * @param v The value to substract.
796 */
797 template <typename U>
798 void operator-=(const U &v) { data()->dec(v, params); }
799
800 /**
801 * Return the number of elements, always 1 for a scalar.
802 * @return 1.
803 */
804 size_t size() const { return 1; }
805 /**
806 * Return true if stat is binned.
807 *@return True is stat is binned.
808 */
809 bool binned() const { return bin_t::binned; }
810
811 bool check() const { return bin.initialized(); }
812
813 /**
814 * Reset stat value to default
815 */
816 void reset() { bin.reset(); }
817
818 Counter value() { return data()->value(params); }
819
820 Result result() { return data()->result(params); }
821
822 Result total() { return result(); }
823
824 bool zero() { return result() == 0.0; }
825
826};
827
828class ProxyData : public ScalarData
829{
830 public:
831 virtual void visit(Visit &visitor) { visitor.visit(*this); }
832 virtual bool binned() const { return false; }
833 virtual std::string str() const { return to_string(value()); }
834 virtual size_t size() const { return 1; }
835 virtual bool zero() const { return value() == 0; }
836 virtual bool check() const { return true; }
837 virtual void reset() { }
838};
839
840template <class T>
841class ValueProxy : public ProxyData
842{
843 private:
844 T *scalar;
845
846 public:
847 ValueProxy(T &val) : scalar(&val) {}
848 virtual Counter value() const { return *scalar; }
849 virtual Result result() const { return *scalar; }
850 virtual Result total() const { return *scalar; }
851};
852
853template <class T>
854class FunctorProxy : public ProxyData
855{
856 private:
857 T *functor;
858
859 public:
860 FunctorProxy(T &func) : functor(&func) {}
861 virtual Counter value() const { return (*functor)(); }
862 virtual Result result() const { return (*functor)(); }
863 virtual Result total() const { return (*functor)(); }
864};
865
866class ValueBase : public DataAccess
867{
868 private:
869 ProxyData *proxy;
870
871 public:
872 ValueBase() : proxy(NULL) { }
873 ~ValueBase() { if (proxy) delete proxy; }
874
875 template <class T>
876 void scalar(T &value)
877 {
878 proxy = new ValueProxy<T>(value);
879 setInit();
880 }
881
882 template <class T>
883 void functor(T &func)
884 {
885 proxy = new FunctorProxy<T>(func);
886 setInit();
887 }
888
889 Counter value() { return proxy->value(); }
890 Result result() const { return proxy->result(); }
891 Result total() const { return proxy->total(); };
892 size_t size() const { return proxy->size(); }
893
894 bool binned() const { return proxy->binned(); }
895 std::string str() const { return proxy->str(); }
896 bool zero() const { return proxy->zero(); }
897 bool check() const { return proxy != NULL; }
898 void reset() { }
899};
900
901//////////////////////////////////////////////////////////////////////
902//
903// Vector Statistics
904//
905//////////////////////////////////////////////////////////////////////
906template <class Storage, class Bin>
907class ScalarProxy;
908
909/**
910 * Implementation of a vector of stats. The type of stat is determined by the
911 * Storage class. @sa ScalarBase
912 */
913template <class Storage, class Bin>
914class VectorBase : public DataAccess
915{
916 public:
917 /** Define the params of the storage class. */
918 typedef typename Storage::Params params_t;
919 /** Define the bin type. */
920 typedef typename Bin::template VectorBin<Storage> bin_t;
921
922 protected:
923 /** The bin of this stat. */
924 bin_t bin;
925 /** The parameters for this stat. */
926 params_t params;
927
928 protected:
929 /**
930 * Retrieve the storage from the bin for the given index.
931 * @param index The vector index to access.
932 * @return The storage object at the given index.
933 */
934 Storage *data(int index) { return bin.data(index, params); }
935 /**
936 * Retrieve a const pointer to the storage from the bin
937 * for the given index.
938 * @param index The vector index to access.
939 * @return A const pointer to the storage object at the given index.
940 */
941 const Storage *data(int index) const
942 {
943 bin_t *_bin = const_cast<bin_t *>(&bin);
944 params_t *_params = const_cast<params_t *>(&params);
945 return _bin->data(index, *_params);
946 }
947
948 public:
949 void value(VCounter &vec) const
950 {
951 vec.resize(size());
952 for (int i = 0; i < size(); ++i)
953 vec[i] = data(i)->value(params);
954 }
955
956 /**
957 * Copy the values to a local vector and return a reference to it.
958 * @return A reference to a vector of the stat values.
959 */
960 void result(VResult &vec) const
961 {
962 vec.resize(size());
963 for (int i = 0; i < size(); ++i)
964 vec[i] = data(i)->result(params);
965 }
966
967 /**
968 * @return True is stat is binned.
969 */
970 bool binned() const { return bin_t::binned; }
971
972 /**
973 * Return a total of all entries in this vector.
974 * @return The total of all vector entries.
975 */
976 Result total() const {
977 Result total = 0.0;
978 for (int i = 0; i < size(); ++i)
979 total += data(i)->result(params);
980 return total;
981 }
982
983 /**
984 * @return the number of elements in this vector.
985 */
986 size_t size() const { return bin.size(); }
987
988 bool zero() const
989 {
990 for (int i = 0; i < size(); ++i)
991 if (data(i)->zero())
992 return true;
993 return false;
994 }
995
996 bool check() const { return bin.initialized(); }
997 void reset() { bin.reset(); }
998
999 public:
1000 VectorBase() {}
1001
1002 /** Friend this class with the associated scalar proxy. */
1003 friend class ScalarProxy<Storage, Bin>;
1004
1005 /**
1006 * Return a reference (ScalarProxy) to the stat at the given index.
1007 * @param index The vector index to access.
1008 * @return A reference of the stat.
1009 */
1010 ScalarProxy<Storage, Bin> operator[](int index);
1011
1012 void update(StatData *data) {}
1013};
1014
1015const StatData * getStatData(const void *stat);
1016
1017/**
1018 * A proxy class to access the stat at a given index in a VectorBase stat.
1019 * Behaves like a ScalarBase.
1020 */
1021template <class Storage, class Bin>
1022class ScalarProxy
1023{
1024 public:
1025 /** Define the params of the storage class. */
1026 typedef typename Storage::Params params_t;
1027 /** Define the bin type. */
1028 typedef typename Bin::template VectorBin<Storage> bin_t;
1029
1030 private:
1031 /** Pointer to the bin in the parent VectorBase. */
1032 bin_t *bin;
1033 /** Pointer to the params in the parent VectorBase. */
1034 params_t *params;
1035 /** The index to access in the parent VectorBase. */
1036 int index;
1037 /** Keep a pointer to the original stat so was can get data */
1038 void *stat;
1039
1040 protected:
1041 /**
1042 * Retrieve the storage from the bin.
1043 * @return The storage from the bin for this stat.
1044 */
1045 Storage *data() { return bin->data(index, *params); }
1046 /**
1047 * Retrieve a const pointer to the storage from the bin.
1048 * @return A const pointer to the storage for this stat.
1049 */
1050 const Storage *data() const
1051 {
1052 bin_t *_bin = const_cast<bin_t *>(bin);
1053 params_t *_params = const_cast<params_t *>(params);
1054 return _bin->data(index, *_params);
1055 }
1056
1057 public:
1058 /**
1059 * Return the current value of this stat as its base type.
1060 * @return The current value.
1061 */
1062 Counter value() const { return data()->value(*params); }
1063
1064 /**
1065 * Return the current value of this statas a result type.
1066 * @return The current value.
1067 */
1068 Result result() const { return data()->result(*params); }
1069
1070 public:
1071 /**
1072 * Create and initialize this proxy, do not register it with the database.
1073 * @param b The bin to use.
1074 * @param p The params to use.
1075 * @param i The index to access.
1076 */
1077 ScalarProxy(bin_t &b, params_t &p, int i, void *s)
1078 : bin(&b), params(&p), index(i), stat(s) {}
1079 /**
1080 * Create a copy of the provided ScalarProxy.
1081 * @param sp The proxy to copy.
1082 */
1083 ScalarProxy(const ScalarProxy &sp)
1084 : bin(sp.bin), params(sp.params), index(sp.index), stat(sp.stat) {}
1085 /**
1086 * Set this proxy equal to the provided one.
1087 * @param sp The proxy to copy.
1088 * @return A reference to this proxy.
1089 */
1090 const ScalarProxy &operator=(const ScalarProxy &sp) {
1091 bin = sp.bin;
1092 params = sp.params;
1093 index = sp.index;
1094 stat = sp.stat;
1095 return *this;
1096 }
1097
1098 public:
1099 // Common operators for stats
1100 /**
1101 * Increment the stat by 1. This calls the associated storage object inc
1102 * function.
1103 */
1104 void operator++() { data()->inc(1, *params); }
1105 /**
1106 * Decrement the stat by 1. This calls the associated storage object dec
1107 * function.
1108 */
1109 void operator--() { data()->dec(1, *params); }
1110
1111 /** Increment the stat by 1. */
1112 void operator++(int) { ++*this; }
1113 /** Decrement the stat by 1. */
1114 void operator--(int) { --*this; }
1115
1116 /**
1117 * Set the data value to the given value. This calls the associated storage
1118 * object set function.
1119 * @param v The new value.
1120 */
1121 template <typename U>
1122 void operator=(const U &v) { data()->set(v, *params); }
1123
1124 /**
1125 * Increment the stat by the given value. This calls the associated
1126 * storage object inc function.
1127 * @param v The value to add.
1128 */
1129 template <typename U>
1130 void operator+=(const U &v) { data()->inc(v, *params); }
1131
1132 /**
1133 * Decrement the stat by the given value. This calls the associated
1134 * storage object dec function.
1135 * @param v The value to substract.
1136 */
1137 template <typename U>
1138 void operator-=(const U &v) { data()->dec(v, *params); }
1139
1140 /**
1141 * Return the number of elements, always 1 for a scalar.
1142 * @return 1.
1143 */
1144 size_t size() const { return 1; }
1145
1146 /**
1147 * Return true if stat is binned.
1148 *@return false since Proxies aren't printed/binned
1149 */
1150 bool binned() const { return false; }
1151
1152 /**
1153 * This stat has no state. Nothing to reset
1154 */
1155 void reset() { }
1156
1157 public:
1158 const StatData *statData() const { return getStatData(stat); }
1159 std::string str() const
1160 {
1161 return csprintf("%s[%d]", this->statData()->name, index);
1162
1163 }
1164};
1165
1166template <class Storage, class Bin>
1167inline ScalarProxy<Storage, Bin>
1168VectorBase<Storage, Bin>::operator[](int index)
1169{
1170 assert (index >= 0 && index < size());
1171 return ScalarProxy<Storage, Bin>(bin, params, index, this);
1172}
1173
1174template <class Storage, class Bin>
1175class VectorProxy;
1176
1177template <class Storage, class Bin>
1178class Vector2dBase : public DataAccess
1179{
1180 public:
1181 typedef typename Storage::Params params_t;
1182 typedef typename Bin::template VectorBin<Storage> bin_t;
1183
1184 protected:
1185 size_t x;
1186 size_t y;
1187 bin_t bin;
1188 params_t params;
1189
1190 protected:
1191 Storage *data(int index) { return bin.data(index, params); }
1192 const Storage *data(int index) const
1193 {
1194 bin_t *_bin = const_cast<bin_t *>(&bin);
1195 params_t *_params = const_cast<params_t *>(&params);
1196 return _bin->data(index, *_params);
1197 }
1198
1199 public:
1200 Vector2dBase() {}
1201
1202 void update(Vector2dData *data)
1203 {
1204 int size = this->size();
1205 data->cvec.resize(size);
1206 for (int i = 0; i < size; ++i)
1207 data->cvec[i] = this->data(i)->value(params);
1208 }
1209
1210 std::string ysubname(int i) const { return (*this->y_subnames)[i]; }
1211
1212 friend class VectorProxy<Storage, Bin>;
1213 VectorProxy<Storage, Bin> operator[](int index);
1214
1215 size_t size() const { return bin.size(); }
1216 bool zero() const { return data(0)->value(params) == 0.0; }
1217
1218 /**
1219 * Reset stat value to default
1220 */
1221 void reset() { bin.reset(); }
1222
1223 bool check() { return bin.initialized(); }
1224};
1225
1226template <class Storage, class Bin>
1227class VectorProxy
1228{
1229 public:
1230 typedef typename Storage::Params params_t;
1231 typedef typename Bin::template VectorBin<Storage> bin_t;
1232
1233 private:
1234 bin_t *bin;
1235 params_t *params;
1236 int offset;
1237 int len;
1238 void *stat;
1239
1240 private:
1241 mutable VResult *vec;
1242
1243 Storage *data(int index) {
1244 assert(index < len);
1245 return bin->data(offset + index, *params);
1246 }
1247
1248 const Storage *data(int index) const {
1249 bin_t *_bin = const_cast<bin_t *>(bin);
1250 params_t *_params = const_cast<params_t *>(params);
1251 return _bin->data(offset + index, *_params);
1252 }
1253
1254 public:
1255 const VResult &result() const {
1256 if (vec)
1257 vec->resize(size());
1258 else
1259 vec = new VResult(size());
1260
1261 for (int i = 0; i < size(); ++i)
1262 (*vec)[i] = data(i)->result(*params);
1263
1264 return *vec;
1265 }
1266
1267 Result total() const {
1268 Result total = 0.0;
1269 for (int i = 0; i < size(); ++i)
1270 total += data(i)->result(*params);
1271 return total;
1272 }
1273
1274 public:
1275 VectorProxy(bin_t &b, params_t &p, int o, int l, void *s)
1276 : bin(&b), params(&p), offset(o), len(l), stat(s), vec(NULL)
1277 {
1278 }
1279
1280 VectorProxy(const VectorProxy &sp)
1281 : bin(sp.bin), params(sp.params), offset(sp.offset), len(sp.len),
1282 stat(sp.stat), vec(NULL)
1283 {
1284 }
1285
1286 ~VectorProxy()
1287 {
1288 if (vec)
1289 delete vec;
1290 }
1291
1292 const VectorProxy &operator=(const VectorProxy &sp)
1293 {
1294 bin = sp.bin;
1295 params = sp.params;
1296 offset = sp.offset;
1297 len = sp.len;
1298 stat = sp.stat;
1299 if (vec)
1300 delete vec;
1301 vec = NULL;
1302 return *this;
1303 }
1304
1305 ScalarProxy<Storage, Bin> operator[](int index)
1306 {
1307 assert (index >= 0 && index < size());
1308 return ScalarProxy<Storage, Bin>(*bin, *params, offset + index, stat);
1309 }
1310
1311 size_t size() const { return len; }
1312
1313 /**
1314 * Return true if stat is binned.
1315 *@return false since Proxies aren't printed/binned
1316 */
1317 bool binned() const { return false; }
1318
1319 /**
1320 * This stat has no state. Nothing to reset.
1321 */
1322 void reset() { }
1323};
1324
1325template <class Storage, class Bin>
1326inline VectorProxy<Storage, Bin>
1327Vector2dBase<Storage, Bin>::operator[](int index)
1328{
1329 int offset = index * y;
1330 assert (index >= 0 && offset < size());
1331 return VectorProxy<Storage, Bin>(bin, params, offset, y, this);
1332}
1333
1334//////////////////////////////////////////////////////////////////////
1335//
1336// Non formula statistics
1337//
1338//////////////////////////////////////////////////////////////////////
1339
1340/**
1341 * Templatized storage and interface for a distrbution stat.
1342 */
1343struct DistStor
1344{
1345 public:
1346 /** The parameters for a distribution stat. */
1347 struct Params
1348 {
1349 /** The minimum value to track. */
1350 Counter min;
1351 /** The maximum value to track. */
1352 Counter max;
1353 /** The number of entries in each bucket. */
1354 Counter bucket_size;
1355 /** The number of buckets. Equal to (max-min)/bucket_size. */
1356 int size;
1357 };
1358 enum { fancy = false };
1359
1360 private:
1361 /** The smallest value sampled. */
1362 Counter min_val;
1363 /** The largest value sampled. */
1364 Counter max_val;
1365 /** The number of values sampled less than min. */
1366 Counter underflow;
1367 /** The number of values sampled more than max. */
1368 Counter overflow;
1369 /** The current sum. */
1370 Counter sum;
1371 /** The sum of squares. */
1372 Counter squares;
1373 /** The number of samples. */
1374 Counter samples;
1375 /** Counter for each bucket. */
1376 VCounter cvec;
1377
1378 public:
1379 /**
1380 * Construct this storage with the supplied params.
1381 * @param params The parameters.
1382 */
1383 DistStor(const Params &params)
1384 : min_val(INT_MAX), max_val(INT_MIN), underflow(Counter()),
1385 overflow(Counter()), sum(Counter()), squares(Counter()),
1386 samples(Counter()), cvec(params.size)
1387 {
1388 reset();
1389 }
1390
1391 /**
1392 * Add a value to the distribution for the given number of times.
1393 * @param val The value to add.
1394 * @param number The number of times to add the value.
1395 * @param params The paramters of the distribution.
1396 */
1397 void sample(Counter val, int number, const Params &params)
1398 {
1399 if (val < params.min)
1400 underflow += number;
1401 else if (val > params.max)
1402 overflow += number;
1403 else {
1404 int index = (int)floor((val - params.min) / params.bucket_size);
1405 assert(index < size(params));
1406 cvec[index] += number;
1407 }
1408
1409 if (val < min_val)
1410 min_val = val;
1411
1412 if (val > max_val)
1413 max_val = val;
1414
1415 Counter sample = val * number;
1416 sum += sample;
1417 squares += sample * sample;
1418 samples += number;
1419 }
1420
1421 /**
1422 * Return the number of buckets in this distribution.
1423 * @return the number of buckets.
1424 * @todo Is it faster to return the size from the parameters?
1425 */
1426 size_t size(const Params &) const { return cvec.size(); }
1427
1428 /**
1429 * Returns true if any calls to sample have been made.
1430 * @param params The paramters of the distribution.
1431 * @return True if any values have been sampled.
1432 */
1433 bool zero(const Params &params) const
1434 {
1435 return samples == Counter();
1436 }
1437
1438 void update(DistDataData *data, const Params &params)
1439 {
1440 data->min = params.min;
1441 data->max = params.max;
1442 data->bucket_size = params.bucket_size;
1443 data->size = params.size;
1444
1445 data->min_val = (min_val == INT_MAX) ? 0 : min_val;
1446 data->max_val = (max_val == INT_MIN) ? 0 : max_val;
1447 data->underflow = underflow;
1448 data->overflow = overflow;
1449 data->cvec.resize(params.size);
1450 for (int i = 0; i < params.size; ++i)
1451 data->cvec[i] = cvec[i];
1452
1453 data->sum = sum;
1454 data->squares = squares;
1455 data->samples = samples;
1456 }
1457
1458 /**
1459 * Reset stat value to default
1460 */
1461 void reset()
1462 {
1463 min_val = INT_MAX;
1464 max_val = INT_MIN;
1465 underflow = 0;
1466 overflow = 0;
1467
1468 int size = cvec.size();
1469 for (int i = 0; i < size; ++i)
1470 cvec[i] = Counter();
1471
1472 sum = Counter();
1473 squares = Counter();
1474 samples = Counter();
1475 }
1476};
1477
1478/**
1479 * Templatized storage and interface for a distribution that calculates mean
1480 * and variance.
1481 */
1482struct FancyStor
1483{
1484 public:
1485 /**
1486 * No paramters for this storage.
1487 */
1488 struct Params {};
1489 enum { fancy = true };
1490
1491 private:
1492 /** The current sum. */
1493 Counter sum;
1494 /** The sum of squares. */
1495 Counter squares;
1496 /** The number of samples. */
1497 Counter samples;
1498
1499 public:
1500 /**
1501 * Create and initialize this storage.
1502 */
1503 FancyStor(const Params &)
1504 : sum(Counter()), squares(Counter()), samples(Counter())
1505 { }
1506
1507 /**
1508 * Add a value the given number of times to this running average.
1509 * Update the running sum and sum of squares, increment the number of
1510 * values seen by the given number.
1511 * @param val The value to add.
1512 * @param number The number of times to add the value.
1513 * @param p The parameters of this stat.
1514 */
1515 void sample(Counter val, int number, const Params &p)
1516 {
1517 Counter value = val * number;
1518 sum += value;
1519 squares += value * value;
1520 samples += number;
1521 }
1522
1523 void update(DistDataData *data, const Params &params)
1524 {
1525 data->sum = sum;
1526 data->squares = squares;
1527 data->samples = samples;
1528 }
1529
1530 /**
1531 * Return the number of entries in this stat, 1
1532 * @return 1.
1533 */
1534 size_t size(const Params &) const { return 1; }
1535
1536 /**
1537 * Return true if no samples have been added.
1538 * @return True if no samples have been added.
1539 */
1540 bool zero(const Params &) const { return samples == Counter(); }
1541
1542 /**
1543 * Reset stat value to default
1544 */
1545 void reset()
1546 {
1547 sum = Counter();
1548 squares = Counter();
1549 samples = Counter();
1550 }
1551};
1552
1553/**
1554 * Templatized storage for distribution that calculates per cycle mean and
1555 * variance.
1556 */
1557struct AvgFancy
1558{
1559 public:
1560 /** No parameters for this storage. */
1561 struct Params {};
1562 enum { fancy = true };
1563
1564 private:
1565 /** Current total. */
1566 Counter sum;
1567 /** Current sum of squares. */
1568 Counter squares;
1569
1570 public:
1571 /**
1572 * Create and initialize this storage.
1573 */
1574 AvgFancy(const Params &) : sum(Counter()), squares(Counter()) {}
1575
1576 /**
1577 * Add a value to the distribution for the given number of times.
1578 * Update the running sum and sum of squares.
1579 * @param val The value to add.
1580 * @param number The number of times to add the value.
1581 * @param p The paramters of the distribution.
1582 */
1583 void sample(Counter val, int number, const Params &p)
1584 {
1585 Counter value = val * number;
1586 sum += value;
1587 squares += value * value;
1588 }
1589
1590 void update(DistDataData *data, const Params &params)
1591 {
1592 data->sum = sum;
1593 data->squares = squares;
1594 data->samples = curTick;
1595 }
1596
1597 /**
1598 * Return the number of entries, in this case 1.
1599 * @return 1.
1600 */
1601 size_t size(const Params &params) const { return 1; }
1602 /**
1603 * Return true if no samples have been added.
1604 * @return True if the sum is zero.
1605 */
1606 bool zero(const Params &params) const { return sum == Counter(); }
1607 /**
1608 * Reset stat value to default
1609 */
1610 void reset()
1611 {
1612 sum = Counter();
1613 squares = Counter();
1614 }
1615};
1616
1617/**
1618 * Implementation of a distribution stat. The type of distribution is
1619 * determined by the Storage template. @sa ScalarBase
1620 */
1621template <class Storage, class Bin>
1622class DistBase : public DataAccess
1623{
1624 public:
1625 /** Define the params of the storage class. */
1626 typedef typename Storage::Params params_t;
1627 /** Define the bin type. */
1628 typedef typename Bin::template Bin<Storage> bin_t;
1629
1630 protected:
1631 /** The bin of this stat. */
1632 bin_t bin;
1633 /** The parameters for this stat. */
1634 params_t params;
1635
1636 protected:
1637 /**
1638 * Retrieve the storage from the bin.
1639 * @return The storage object for this stat.
1640 */
1641 Storage *data() { return bin.data(params); }
1642 /**
1643 * Retrieve a const pointer to the storage from the bin.
1644 * @return A const pointer to the storage object for this stat.
1645 */
1646 const Storage *data() const
1647 {
1648 bin_t *_bin = const_cast<bin_t *>(&bin);
1649 params_t *_params = const_cast<params_t *>(&params);
1650 return _bin->data(*_params);
1651 }
1652
1653 public:
1654 DistBase() { }
1655
1656 /**
1657 * Add a value to the distribtion n times. Calls sample on the storage
1658 * class.
1659 * @param v The value to add.
1660 * @param n The number of times to add it, defaults to 1.
1661 */
1662 template <typename U>
1663 void sample(const U &v, int n = 1) { data()->sample(v, n, params); }
1664
1665 /**
1666 * Return the number of entries in this stat.
1667 * @return The number of entries.
1668 */
1669 size_t size() const { return data()->size(params); }
1670 /**
1671 * Return true if no samples have been added.
1672 * @return True if there haven't been any samples.
1673 */
1674 bool zero() const { return data()->zero(params); }
1675
1676 void update(DistData *base)
1677 {
1678 base->data.fancy = Storage::fancy;
1679 data()->update(&(base->data), params);
1680 }
1681 /**
1682 * @return True is stat is binned.
1683 */
1684 bool binned() const { return bin_t::binned; }
1685 /**
1686 * Reset stat value to default
1687 */
1688 void reset()
1689 {
1690 bin.reset();
1691 }
1692
1693 bool check() { return bin.initialized(); }
1694};
1695
1696template <class Storage, class Bin>
1697class DistProxy;
1698
1699template <class Storage, class Bin>
1700class VectorDistBase : public DataAccess
1701{
1702 public:
1703 typedef typename Storage::Params params_t;
1704 typedef typename Bin::template VectorBin<Storage> bin_t;
1705
1706 protected:
1707 bin_t bin;
1708 params_t params;
1709
1710 protected:
1711 Storage *data(int index) { return bin.data(index, params); }
1712 const Storage *data(int index) const
1713 {
1714 bin_t *_bin = const_cast<bin_t *>(&bin);
1715 params_t *_params = const_cast<params_t *>(&params);
1716 return _bin->data(index, *_params);
1717 }
1718
1719 public:
1720 VectorDistBase() {}
1721
1722 friend class DistProxy<Storage, Bin>;
1723 DistProxy<Storage, Bin> operator[](int index);
1724 const DistProxy<Storage, Bin> operator[](int index) const;
1725
1726 size_t size() const { return bin.size(); }
1727 bool zero() const { return false; }
1728 /**
1729 * Return true if stat is binned.
1730 *@return True is stat is binned.
1731 */
1732 bool binned() const { return bin_t::binned; }
1733 /**
1734 * Reset stat value to default
1735 */
1736 void reset() { bin.reset(); }
1737
1738 bool check() { return bin.initialized(); }
1739 void update(VectorDistData *base)
1740 {
1741 int size = this->size();
1742 base->data.resize(size);
1743 for (int i = 0; i < size; ++i) {
1744 base->data[i].fancy = Storage::fancy;
1745 data(i)->update(&(base->data[i]), params);
1746 }
1747 }
1748};
1749
1750template <class Storage, class Bin>
1751class DistProxy
1752{
1753 public:
1754 typedef typename Storage::Params params_t;
1755 typedef typename Bin::template Bin<Storage> bin_t;
1756 typedef VectorDistBase<Storage, Bin> base_t;
1757
1758 private:
1759 union {
1760 base_t *stat;
1761 const base_t *cstat;
1762 };
1763 int index;
1764
1765 protected:
1766 Storage *data() { return stat->data(index); }
1767 const Storage *data() const { return cstat->data(index); }
1768
1769 public:
1770 DistProxy(const VectorDistBase<Storage, Bin> &s, int i)
1771 : cstat(&s), index(i) {}
1772 DistProxy(const DistProxy &sp)
1773 : cstat(sp.cstat), index(sp.index) {}
1774 const DistProxy &operator=(const DistProxy &sp) {
1775 cstat = sp.cstat; index = sp.index; return *this;
1776 }
1777
1778 public:
1779 template <typename U>
1780 void sample(const U &v, int n = 1) { data()->sample(v, n, cstat->params); }
1781
1782 size_t size() const { return 1; }
1783 bool zero() const { return data()->zero(cstat->params); }
1784 /**
1785 * Return true if stat is binned.
1786 *@return false since Proxies are not binned/printed.
1787 */
1788 bool binned() const { return false; }
1789 /**
1790 * Proxy has no state. Nothing to reset.
1791 */
1792 void reset() { }
1793};
1794
1795template <class Storage, class Bin>
1796inline DistProxy<Storage, Bin>
1797VectorDistBase<Storage, Bin>::operator[](int index)
1798{
1799 assert (index >= 0 && index < size());
1800 return DistProxy<Storage, Bin>(*this, index);
1801}
1802
1803template <class Storage, class Bin>
1804inline const DistProxy<Storage, Bin>
1805VectorDistBase<Storage, Bin>::operator[](int index) const
1806{
1807 assert (index >= 0 && index < size());
1808 return DistProxy<Storage, Bin>(*this, index);
1809}
1810
1811#if 0
1812template <class Storage, class Bin>
1813Result
1814VectorDistBase<Storage, Bin>::total(int index) const
1815{
1816 int total = 0;
1817 for (int i=0; i < x_size(); ++i) {
1818 total += data(i)->result(*params);
1819 }
1820}
1821#endif
1822
1823//////////////////////////////////////////////////////////////////////
1824//
1825// Formula Details
1826//
1827//////////////////////////////////////////////////////////////////////
1828
1829/**
1830 * Base class for formula statistic node. These nodes are used to build a tree
1831 * that represents the formula.
1832 */
1833class Node : public RefCounted
1834{
1835 public:
1836 /**
1837 * Return the number of nodes in the subtree starting at this node.
1838 * @return the number of nodes in this subtree.
1839 */
1840 virtual size_t size() const = 0;
1841 /**
1842 * Return the result vector of this subtree.
1843 * @return The result vector of this subtree.
1844 */
1845 virtual const VResult &result() const = 0;
1846 /**
1847 * Return the total of the result vector.
1848 * @return The total of the result vector.
1849 */
1850 virtual Result total() const = 0;
1851 /**
1852 * Return true if stat is binned.
1853 *@return True is stat is binned.
1854 */
1855 virtual bool binned() const = 0;
1856
1857 /**
1858 *
1859 */
1860 virtual std::string str() const = 0;
1861};
1862
1863/** Reference counting pointer to a function Node. */
1864typedef RefCountingPtr<Node> NodePtr;
1865
1866class ScalarStatNode : public Node
1867{
1868 private:
1869 const ScalarData *data;
1870 mutable VResult vresult;
1871
1872 public:
1873 ScalarStatNode(const ScalarData *d) : data(d), vresult(1) {}
1874 virtual const VResult &result() const
1875 {
1876 vresult[0] = data->result();
1877 return vresult;
1878 }
1879 virtual Result total() const { return data->result(); };
1880
1881 virtual size_t size() const { return 1; }
1882 /**
1883 * Return true if stat is binned.
1884 *@return True is stat is binned.
1885 */
1886 virtual bool binned() const { return data->binned(); }
1887
1888 /**
1889 *
1890 */
1891 virtual std::string str() const { return data->name; }
1892};
1893
1894template <class Storage, class Bin>
1895class ScalarProxyNode : public Node
1896{
1897 private:
1898 const ScalarProxy<Storage, Bin> proxy;
1899 mutable VResult vresult;
1900
1901 public:
1902 ScalarProxyNode(const ScalarProxy<Storage, Bin> &p)
1903 : proxy(p), vresult(1) { }
1904 virtual const VResult &result() const
1905 {
1906 vresult[0] = proxy.result();
1907 return vresult;
1908 }
1909 virtual Result total() const { return proxy.result(); };
1910
1911 virtual size_t size() const { return 1; }
1912 /**
1913 * Return true if stat is binned.
1914 *@return True is stat is binned.
1915 */
1916 virtual bool binned() const { return proxy.binned(); }
1917
1918 /**
1919 *
1920 */
1921 virtual std::string str() const { return proxy.str(); }
1922};
1923
1924class VectorStatNode : public Node
1925{
1926 private:
1927 const VectorData *data;
1928
1929 public:
1930 VectorStatNode(const VectorData *d) : data(d) { }
1931 virtual const VResult &result() const { return data->result(); }
1932 virtual Result total() const { return data->total(); };
1933
1934 virtual size_t size() const { return data->size(); }
1935 /**
1936 * Return true if stat is binned.
1937 *@return True is stat is binned.
1938 */
1939 virtual bool binned() const { return data->binned(); }
1940
1941 virtual std::string str() const { return data->name; }
1942};
1943
1944template <class T>
1945class ConstNode : public Node
1946{
1947 private:
1948 VResult vresult;
1949
1950 public:
1951 ConstNode(T s) : vresult(1, (Result)s) {}
1952 const VResult &result() const { return vresult; }
1953 virtual Result total() const { return vresult[0]; };
1954 virtual size_t size() const { return 1; }
1955
1956 /**
1957 * Return true if stat is binned.
1958 *@return False since constants aren't binned.
1959 */
1960 virtual bool binned() const { return false; }
1961
1962 virtual std::string str() const { return to_string(vresult[0]); }
1963};
1964
1965template <class Op>
1966struct OpString;
1967
1968template<>
1969struct OpString<std::plus<Result> >
1970{
1971 static std::string str() { return "+"; }
1972};
1973
1974template<>
1975struct OpString<std::minus<Result> >
1976{
1977 static std::string str() { return "-"; }
1978};
1979
1980template<>
1981struct OpString<std::multiplies<Result> >
1982{
1983 static std::string str() { return "*"; }
1984};
1985
1986template<>
1987struct OpString<std::divides<Result> >
1988{
1989 static std::string str() { return "/"; }
1990};
1991
1992template<>
1993struct OpString<std::modulus<Result> >
1994{
1995 static std::string str() { return "%"; }
1996};
1997
1998template<>
1999struct OpString<std::negate<Result> >
2000{
2001 static std::string str() { return "-"; }
2002};
2003
2004template <class Op>
2005class UnaryNode : public Node
2006{
2007 public:
2008 NodePtr l;
2009 mutable VResult vresult;
2010
2011 public:
2012 UnaryNode(NodePtr &p) : l(p) {}
2013
2014 const VResult &result() const
2015 {
2016 const VResult &lvec = l->result();
2017 int size = lvec.size();
2018
2019 assert(size > 0);
2020
2021 vresult.resize(size);
2022 Op op;
2023 for (int i = 0; i < size; ++i)
2024 vresult[i] = op(lvec[i]);
2025
2026 return vresult;
2027 }
2028
2029 Result total() const {
2030 Op op;
2031 return op(l->total());
2032 }
2033
2034 virtual size_t size() const { return l->size(); }
2035 /**
2036 * Return true if child of node is binned.
2037 *@return True if child of node is binned.
2038 */
2039 virtual bool binned() const { return l->binned(); }
2040
2041 virtual std::string str() const
2042 {
2043 return OpString<Op>::str() + l->str();
2044 }
2045};
2046
2047template <class Op>
2048class BinaryNode : public Node
2049{
2050 public:
2051 NodePtr l;
2052 NodePtr r;
2053 mutable VResult vresult;
2054
2055 public:
2056 BinaryNode(NodePtr &a, NodePtr &b) : l(a), r(b) {}
2057
2058 const VResult &result() const
2059 {
2060 Op op;
2061 const VResult &lvec = l->result();
2062 const VResult &rvec = r->result();
2063
2064 assert(lvec.size() > 0 && rvec.size() > 0);
2065
2066 if (lvec.size() == 1 && rvec.size() == 1) {
2067 vresult.resize(1);
2068 vresult[0] = op(lvec[0], rvec[0]);
2069 } else if (lvec.size() == 1) {
2070 int size = rvec.size();
2071 vresult.resize(size);
2072 for (int i = 0; i < size; ++i)
2073 vresult[i] = op(lvec[0], rvec[i]);
2074 } else if (rvec.size() == 1) {
2075 int size = lvec.size();
2076 vresult.resize(size);
2077 for (int i = 0; i < size; ++i)
2078 vresult[i] = op(lvec[i], rvec[0]);
2079 } else if (rvec.size() == lvec.size()) {
2080 int size = rvec.size();
2081 vresult.resize(size);
2082 for (int i = 0; i < size; ++i)
2083 vresult[i] = op(lvec[i], rvec[i]);
2084 }
2085
2086 return vresult;
2087 }
2088
2089 Result total() const {
2090 Op op;
2091 return op(l->total(), r->total());
2092 }
2093
2094 virtual size_t size() const {
2095 int ls = l->size();
2096 int rs = r->size();
2097 if (ls == 1)
2098 return rs;
2099 else if (rs == 1)
2100 return ls;
2101 else {
2102 assert(ls == rs && "Node vector sizes are not equal");
2103 return ls;
2104 }
2105 }
2106 /**
2107 * Return true if any children of node are binned
2108 *@return True if either child of node is binned.
2109 */
2110 virtual bool binned() const { return (l->binned() || r->binned()); }
2111
2112 virtual std::string str() const
2113 {
2114 return csprintf("(%s %s %s)", l->str(), OpString<Op>::str(), r->str());
2115 }
2116};
2117
2118template <class Op>
2119class SumNode : public Node
2120{
2121 public:
2122 NodePtr l;
2123 mutable VResult vresult;
2124
2125 public:
2126 SumNode(NodePtr &p) : l(p), vresult(1) {}
2127
2128 const VResult &result() const
2129 {
2130 const VResult &lvec = l->result();
2131 int size = lvec.size();
2132 assert(size > 0);
2133
2134 vresult[0] = 0.0;
2135
2136 Op op;
2137 for (int i = 0; i < size; ++i)
2138 vresult[0] = op(vresult[0], lvec[i]);
2139
2140 return vresult;
2141 }
2142
2143 Result total() const
2144 {
2145 const VResult &lvec = l->result();
2146 int size = lvec.size();
2147 assert(size > 0);
2148
2149 Result vresult = 0.0;
2150
2151 Op op;
2152 for (int i = 0; i < size; ++i)
2153 vresult = op(vresult, lvec[i]);
2154
2155 return vresult;
2156 }
2157
2158 virtual size_t size() const { return 1; }
2159 /**
2160 * Return true if child of node is binned.
2161 *@return True if child of node is binned.
2162 */
2163 virtual bool binned() const { return l->binned(); }
2164
2165 virtual std::string str() const
2166 {
2167 return csprintf("total(%s)", l->str());
2168 }
2169};
2170
2171
2172//////////////////////////////////////////////////////////////////////
2173//
2174// Visible Statistics Types
2175//
2176//////////////////////////////////////////////////////////////////////
2177/**
2178 * @defgroup VisibleStats "Statistic Types"
2179 * These are the statistics that are used in the simulator. By default these
2180 * store counters and don't use binning, but are templatized to accept any type
2181 * and any Bin class.
2182 * @{
2183 */
2184
2185/**
2186 * This is an easy way to assign all your stats to be binned or not
2187 * binned. If the typedef is NoBin, nothing is binned. If it is
2188 * MainBin, then all stats are binned under that Bin.
2189 */
2190#if STATS_BINNING
2191typedef MainBin DefaultBin;
2192#else
2193typedef NoBin DefaultBin;
2194#endif
2195
2196/**
2197 * This is a simple scalar statistic, like a counter.
2198 * @sa Stat, ScalarBase, StatStor
2199 */
2200template <class Bin = DefaultBin>
2201class Scalar
2202 : public Wrap<Scalar<Bin>,
2203 ScalarBase<StatStor, Bin>,
2204 ScalarStatData>
2205{
2206 public:
2207 /** The base implementation. */
2208 typedef ScalarBase<StatStor, Bin> Base;
2209
2210 Scalar()
2211 {
2212 this->setInit();
2213 }
2214
2215 /**
2216 * Sets the stat equal to the given value. Calls the base implementation
2217 * of operator=
2218 * @param v The new value.
2219 */
2220 template <typename U>
2221 void operator=(const U &v) { Base::operator=(v); }
2222};
2223
2224class Value
2225 : public Wrap<Value,
2226 ValueBase,
2227 ScalarStatData>
2228{
2229 public:
2230 /** The base implementation. */
2231 typedef ValueBase Base;
2232
2233 template <class T>
2234 Value &scalar(T &value)
2235 {
2236 Base::scalar(value);
2237 return *this;
2238 }
2239
2240 template <class T>
2241 Value &functor(T &func)
2242 {
2243 Base::functor(func);
2244 return *this;
2245 }
2246};
2247
2248/**
2249 * A stat that calculates the per cycle average of a value.
2250 * @sa Stat, ScalarBase, AvgStor
2251 */
2252template <class Bin = DefaultBin>
2253class Average
2254 : public Wrap<Average<Bin>,
2255 ScalarBase<AvgStor, Bin>,
2256 ScalarStatData>
2257{
2258 public:
2259 /** The base implementation. */
2260 typedef ScalarBase<AvgStor, Bin> Base;
2261
2262 Average()
2263 {
2264 this->setInit();
2265 }
2266
2267 /**
2268 * Sets the stat equal to the given value. Calls the base implementation
2269 * of operator=
2270 * @param v The new value.
2271 */
2272 template <typename U>
2273 void operator=(const U &v) { Base::operator=(v); }
2274};
2275
2276/**
2277 * A vector of scalar stats.
2278 * @sa Stat, VectorBase, StatStor
2279 */
2280template <class Bin = DefaultBin>
2281class Vector
2282 : public WrapVec<Vector<Bin>,
2283 VectorBase<StatStor, Bin>,
2284 VectorStatData>
2285{
2286 public:
2287 /** The base implementation. */
2288 typedef ScalarBase<StatStor, Bin> Base;
2289
2290 /**
2291 * Set this vector to have the given size.
2292 * @param size The new size.
2293 * @return A reference to this stat.
2294 */
2295 Vector &init(size_t size) {
2296 this->bin.init(size, this->params);
2297 this->setInit();
2298
2299 return *this;
2300 }
2301};
2302
2303/**
2304 * A vector of Average stats.
2305 * @sa Stat, VectorBase, AvgStor
2306 */
2307template <class Bin = DefaultBin>
2308class AverageVector
2309 : public WrapVec<AverageVector<Bin>,
2310 VectorBase<AvgStor, Bin>,
2311 VectorStatData>
2312{
2313 public:
2314 /**
2315 * Set this vector to have the given size.
2316 * @param size The new size.
2317 * @return A reference to this stat.
2318 */
2319 AverageVector &init(size_t size) {
2320 this->bin.init(size, this->params);
2321 this->setInit();
2322
2323 return *this;
2324 }
2325};
2326
2327/**
2328 * A 2-Dimensional vecto of scalar stats.
2329 * @sa Stat, Vector2dBase, StatStor
2330 */
2331template <class Bin = DefaultBin>
2332class Vector2d
2333 : public WrapVec2d<Vector2d<Bin>,
2334 Vector2dBase<StatStor, Bin>,
2335 Vector2dStatData>
2336{
2337 public:
2338 Vector2d &init(size_t _x, size_t _y) {
2339 this->statData()->x = this->x = _x;
2340 this->statData()->y = this->y = _y;
2341 this->bin.init(this->x * this->y, this->params);
2342 this->setInit();
2343
2344 return *this;
2345 }
2346};
2347
2348/**
2349 * A simple distribution stat.
2350 * @sa Stat, DistBase, DistStor
2351 */
2352template <class Bin = DefaultBin>
2353class Distribution
2354 : public Wrap<Distribution<Bin>,
2355 DistBase<DistStor, Bin>,
2356 DistStatData>
2357{
2358 public:
2359 /** Base implementation. */
2360 typedef DistBase<DistStor, Bin> Base;
2361 /** The Parameter type. */
2362 typedef typename DistStor::Params Params;
2363
2364 public:
2365 /**
2366 * Set the parameters of this distribution. @sa DistStor::Params
2367 * @param min The minimum value of the distribution.
2368 * @param max The maximum value of the distribution.
2369 * @param bkt The number of values in each bucket.
2370 * @return A reference to this distribution.
2371 */
2372 Distribution &init(Counter min, Counter max, Counter bkt) {
2373 this->params.min = min;
2374 this->params.max = max;
2375 this->params.bucket_size = bkt;
2376 this->params.size = (int)rint((max - min) / bkt + 1.0);
2377 this->bin.init(this->params);
2378 this->setInit();
2379
2380 return *this;
2381 }
2382};
2383
2384/**
2385 * Calculates the mean and variance of all the samples.
2386 * @sa Stat, DistBase, FancyStor
2387 */
2388template <class Bin = DefaultBin>
2389class StandardDeviation
2390 : public Wrap<StandardDeviation<Bin>,
2391 DistBase<FancyStor, Bin>,
2392 DistStatData>
2393{
2394 public:
2395 /** The base implementation */
2396 typedef DistBase<DistStor, Bin> Base;
2397 /** The parameter type. */
2398 typedef typename DistStor::Params Params;
2399
2400 public:
2401 /**
2402 * Construct and initialize this distribution.
2403 */
2404 StandardDeviation() {
2405 this->bin.init(this->params);
2406 this->setInit();
2407 }
2408};
2409
2410/**
2411 * Calculates the per cycle mean and variance of the samples.
2412 * @sa Stat, DistBase, AvgFancy
2413 */
2414template <class Bin = DefaultBin>
2415class AverageDeviation
2416 : public Wrap<AverageDeviation<Bin>,
2417 DistBase<AvgFancy, Bin>,
2418 DistStatData>
2419{
2420 public:
2421 /** The base implementation */
2422 typedef DistBase<DistStor, Bin> Base;
2423 /** The parameter type. */
2424 typedef typename DistStor::Params Params;
2425
2426 public:
2427 /**
2428 * Construct and initialize this distribution.
2429 */
2430 AverageDeviation()
2431 {
2432 this->bin.init(this->params);
2433 this->setInit();
2434 }
2435};
2436
2437/**
2438 * A vector of distributions.
2439 * @sa Stat, VectorDistBase, DistStor
2440 */
2441template <class Bin = DefaultBin>
2442class VectorDistribution
2443 : public WrapVec<VectorDistribution<Bin>,
2444 VectorDistBase<DistStor, Bin>,
2445 VectorDistStatData>
2446{
2447 public:
2448 /** The base implementation */
2449 typedef VectorDistBase<DistStor, Bin> Base;
2450 /** The parameter type. */
2451 typedef typename DistStor::Params Params;
2452
2453 public:
2454 /**
2455 * Initialize storage and parameters for this distribution.
2456 * @param size The size of the vector (the number of distributions).
2457 * @param min The minimum value of the distribution.
2458 * @param max The maximum value of the distribution.
2459 * @param bkt The number of values in each bucket.
2460 * @return A reference to this distribution.
2461 */
2462 VectorDistribution &init(int size, Counter min, Counter max, Counter bkt) {
2463 this->params.min = min;
2464 this->params.max = max;
2465 this->params.bucket_size = bkt;
2466 this->params.size = (int)rint((max - min) / bkt + 1.0);
2467 this->bin.init(size, this->params);
2468 this->setInit();
2469
2470 return *this;
2471 }
2472};
2473
2474/**
2475 * This is a vector of StandardDeviation stats.
2476 * @sa Stat, VectorDistBase, FancyStor
2477 */
2478template <class Bin = DefaultBin>
2479class VectorStandardDeviation
2480 : public WrapVec<VectorStandardDeviation<Bin>,
2481 VectorDistBase<FancyStor, Bin>,
2482 VectorDistStatData>
2483{
2484 public:
2485 /** The base implementation */
2486 typedef VectorDistBase<FancyStor, Bin> Base;
2487 /** The parameter type. */
2488 typedef typename DistStor::Params Params;
2489
2490 public:
2491 /**
2492 * Initialize storage for this distribution.
2493 * @param size The size of the vector.
2494 * @return A reference to this distribution.
2495 */
2496 VectorStandardDeviation &init(int size) {
2497 this->bin.init(size, this->params);
2498 this->setInit();
2499
2500 return *this;
2501 }
2502};
2503
2504/**
2505 * This is a vector of AverageDeviation stats.
2506 * @sa Stat, VectorDistBase, AvgFancy
2507 */
2508template <class Bin = DefaultBin>
2509class VectorAverageDeviation
2510 : public WrapVec<VectorAverageDeviation<Bin>,
2511 VectorDistBase<AvgFancy, Bin>,
2512 VectorDistStatData>
2513{
2514 public:
2515 /** The base implementation */
2516 typedef VectorDistBase<AvgFancy, Bin> Base;
2517 /** The parameter type. */
2518 typedef typename DistStor::Params Params;
2519
2520 public:
2521 /**
2522 * Initialize storage for this distribution.
2523 * @param size The size of the vector.
2524 * @return A reference to this distribution.
2525 */
2526 VectorAverageDeviation &init(int size) {
2527 this->bin.init(size, this->params);
2528 this->setInit();
2529
2530 return *this;
2531 }
2532};
2533
2534/**
2535 * A formula for statistics that is calculated when printed. A formula is
2536 * stored as a tree of Nodes that represent the equation to calculate.
2537 * @sa Stat, ScalarStat, VectorStat, Node, Temp
2538 */
2539class FormulaBase : public DataAccess
2540{
2541 protected:
2542 /** The root of the tree which represents the Formula */
2543 NodePtr root;
2544 friend class Temp;
2545
2546 public:
2547 /**
2548 * Return the result of the Fomula in a vector. If there were no Vector
2549 * components to the Formula, then the vector is size 1. If there were,
2550 * like x/y with x being a vector of size 3, then the result returned will
2551 * be x[0]/y, x[1]/y, x[2]/y, respectively.
2552 * @return The result vector.
2553 */
2554 void result(VResult &vec) const;
2555
2556 /**
2557 * Return the total Formula result. If there is a Vector
2558 * component to this Formula, then this is the result of the
2559 * Formula if the formula is applied after summing all the
2560 * components of the Vector. For example, if Formula is x/y where
2561 * x is size 3, then total() will return (x[1]+x[2]+x[3])/y. If
2562 * there is no Vector component, total() returns the same value as
2563 * the first entry in the VResult val() returns.
2564 * @return The total of the result vector.
2565 */
2566 Result total() const;
2567
2568 /**
2569 * Return the number of elements in the tree.
2570 */
2571 size_t size() const;
2572
2573 /**
2574 * Return true if Formula is binned. i.e. any of its children
2575 * nodes are binned
2576 * @return True if Formula is binned.
2577 */
2578 bool binned() const;
2579
2580 bool check() const { return true; }
2581
2582 /**
2583 * Formulas don't need to be reset
2584 */
2585 void reset();
2586
2587 /**
2588 *
2589 */
2590 bool zero() const;
2591
2592 /**
2593 *
2594 */
2595 void update(StatData *);
2596
2597 std::string str() const;
2598};
2599
2600class FormulaData : public VectorData
2601{
2602 public:
2603 virtual std::string str() const = 0;
2604 virtual bool check() const { return true; }
2605};
2606
2607template <class Stat>
2608class FormulaStatData : public FormulaData
2609{
2610 protected:
2611 Stat &s;
2612 mutable VResult vec;
2613 mutable VCounter cvec;
2614
2615 public:
2616 FormulaStatData(Stat &stat) : s(stat) {}
2617
2618 virtual bool binned() const { return s.binned(); }
2619 virtual bool zero() const { return s.zero(); }
2620 virtual void reset() { s.reset(); }
2621
2622 virtual size_t size() const { return s.size(); }
2623 virtual const VResult &result() const
2624 {
2625 s.result(vec);
2626 return vec;
2627 }
2628 virtual Result total() const { return s.total(); }
2629 virtual VCounter &value() const { return cvec; }
2630 virtual void visit(Visit &visitor)
2631 {
2632 update();
2633 s.update(this);
2634 visitor.visit(*this);
2635 }
2636 virtual std::string str() const { return s.str(); }
2637};
2638
2639class Temp;
2640class Formula
2641 : public WrapVec<Formula,
2642 FormulaBase,
2643 FormulaStatData>
2644{
2645 public:
2646 /**
2647 * Create and initialize thie formula, and register it with the database.
2648 */
2649 Formula();
2650
2651 /**
2652 * Create a formula with the given root node, register it with the
2653 * database.
2654 * @param r The root of the expression tree.
2655 */
2656 Formula(Temp r);
2657
2658 /**
2659 * Set an unitialized Formula to the given root.
2660 * @param r The root of the expression tree.
2661 * @return a reference to this formula.
2662 */
2663 const Formula &operator=(Temp r);
2664
2665 /**
2666 * Add the given tree to the existing one.
2667 * @param r The root of the expression tree.
2668 * @return a reference to this formula.
2669 */
2670 const Formula &operator+=(Temp r);
2671};
2672
2673class FormulaNode : public Node
2674{
2675 private:
2676 const Formula &formula;
2677 mutable VResult vec;
2678
2679 public:
2680 FormulaNode(const Formula &f) : formula(f) {}
2681
2682 virtual size_t size() const { return formula.size(); }
2683 virtual const VResult &result() const { formula.result(vec); return vec; }
2684 virtual Result total() const { return formula.total(); }
2685 virtual bool binned() const { return formula.binned(); }
2686
2687 virtual std::string str() const { return formula.str(); }
2688};
2689
2690/**
2691 * Helper class to construct formula node trees.
2692 */
2693class Temp
2694{
2695 protected:
2696 /**
2697 * Pointer to a Node object.
2698 */
2699 NodePtr node;
2700
2701 public:
2702 /**
2703 * Copy the given pointer to this class.
2704 * @param n A pointer to a Node object to copy.
2705 */
2706 Temp(NodePtr n) : node(n) { }
2707
2708 /**
2709 * Return the node pointer.
2710 * @return the node pointer.
2711 */
2712 operator NodePtr&() { return node;}
2713
2714 public:
2715 /**
2716 * Create a new ScalarStatNode.
2717 * @param s The ScalarStat to place in a node.
2718 */
2719 template <class Bin>
2720 Temp(const Scalar<Bin> &s)
2721 : node(new ScalarStatNode(s.statData())) { }
2722
2723 /**
2724 * Create a new ScalarStatNode.
2725 * @param s The ScalarStat to place in a node.
2726 */
2727 Temp(const Value &s)
2728 : node(new ScalarStatNode(s.statData())) { }
2729
2730 /**
2731 * Create a new ScalarStatNode.
2732 * @param s The ScalarStat to place in a node.
2733 */
2734 template <class Bin>
2735 Temp(const Average<Bin> &s)
2736 : node(new ScalarStatNode(s.statData())) { }
2737
2738 /**
2739 * Create a new VectorStatNode.
2740 * @param s The VectorStat to place in a node.
2741 */
2742 template <class Bin>
2743 Temp(const Vector<Bin> &s)
2744 : node(new VectorStatNode(s.statData())) { }
2745
2746 /**
2747 *
2748 */
2749 Temp(const Formula &f)
2750 : node(new FormulaNode(f)) { }
2751
2752 /**
2753 * Create a new ScalarProxyNode.
2754 * @param p The ScalarProxy to place in a node.
2755 */
2756 template <class Storage, class Bin>
2757 Temp(const ScalarProxy<Storage, Bin> &p)
2758 : node(new ScalarProxyNode<Storage, Bin>(p)) { }
2759
2760 /**
2761 * Create a ConstNode
2762 * @param value The value of the const node.
2763 */
2764 Temp(signed char value)
2765 : node(new ConstNode<signed char>(value)) {}
2766
2767 /**
2768 * Create a ConstNode
2769 * @param value The value of the const node.
2770 */
2771 Temp(unsigned char value)
2772 : node(new ConstNode<unsigned char>(value)) {}
2773
2774 /**
2775 * Create a ConstNode
2776 * @param value The value of the const node.
2777 */
2778 Temp(signed short value)
2779 : node(new ConstNode<signed short>(value)) {}
2780
2781 /**
2782 * Create a ConstNode
2783 * @param value The value of the const node.
2784 */
2785 Temp(unsigned short value)
2786 : node(new ConstNode<unsigned short>(value)) {}
2787
2788 /**
2789 * Create a ConstNode
2790 * @param value The value of the const node.
2791 */
2792 Temp(signed int value)
2793 : node(new ConstNode<signed int>(value)) {}
2794
2795 /**
2796 * Create a ConstNode
2797 * @param value The value of the const node.
2798 */
2799 Temp(unsigned int value)
2800 : node(new ConstNode<unsigned int>(value)) {}
2801
2802 /**
2803 * Create a ConstNode
2804 * @param value The value of the const node.
2805 */
2806 Temp(signed long value)
2807 : node(new ConstNode<signed long>(value)) {}
2808
2809 /**
2810 * Create a ConstNode
2811 * @param value The value of the const node.
2812 */
2813 Temp(unsigned long value)
2814 : node(new ConstNode<unsigned long>(value)) {}
2815
2816 /**
2817 * Create a ConstNode
2818 * @param value The value of the const node.
2819 */
2820 Temp(signed long long value)
2821 : node(new ConstNode<signed long long>(value)) {}
2822
2823 /**
2824 * Create a ConstNode
2825 * @param value The value of the const node.
2826 */
2827 Temp(unsigned long long value)
2828 : node(new ConstNode<unsigned long long>(value)) {}
2829
2830 /**
2831 * Create a ConstNode
2832 * @param value The value of the const node.
2833 */
2834 Temp(float value)
2835 : node(new ConstNode<float>(value)) {}
2836
2837 /**
2838 * Create a ConstNode
2839 * @param value The value of the const node.
2840 */
2841 Temp(double value)
2842 : node(new ConstNode<double>(value)) {}
2843};
2844
2845
2846/**
2847 * @}
2848 */
2849
2850void check();
2851void reset();
2852void registerResetCallback(Callback *cb);
2853
2854inline Temp
2855operator+(Temp l, Temp r)
2856{
2857 return NodePtr(new BinaryNode<std::plus<Result> >(l, r));
2858}
2859
2860inline Temp
2861operator-(Temp l, Temp r)
2862{
2863 return NodePtr(new BinaryNode<std::minus<Result> >(l, r));
2864}
2865
2866inline Temp
2867operator*(Temp l, Temp r)
2868{
2869 return NodePtr(new BinaryNode<std::multiplies<Result> >(l, r));
2870}
2871
2872inline Temp
2873operator/(Temp l, Temp r)
2874{
2875 return NodePtr(new BinaryNode<std::divides<Result> >(l, r));
2876}
2877
2878inline Temp
2879operator-(Temp l)
2880{
2881 return NodePtr(new UnaryNode<std::negate<Result> >(l));
2882}
2883
2884template <typename T>
2885inline Temp
2886constant(T val)
2887{
2888 return NodePtr(new ConstNode<T>(val));
2889}
2890
2891inline Temp
2892sum(Temp val)
2893{
2894 return NodePtr(new SumNode<std::plus<Result> >(val));
2895}
2896
2897/* namespace Stats */ }
2898
2899#endif // __BASE_STATISTICS_HH__