statistics.hh (7462:0c61c3cf7639) statistics.hh (7504:ad631c296c9b)
1/*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Nathan Binkert
29 */
30
31/** @file
32 * Declaration of Statistics objects.
33 */
34
35/**
36* @todo
37*
38* Generalized N-dimensinal vector
39* documentation
40* key stats
41* interval stats
42* -- these both can use the same function that prints out a
43* specific set of stats
44* VectorStandardDeviation totals
45* Document Namespaces
46*/
47#ifndef __BASE_STATISTICS_HH__
48#define __BASE_STATISTICS_HH__
49
50#include <algorithm>
51#include <cassert>
52#ifdef __SUNPRO_CC
53#include <math.h>
54#endif
55#include <cmath>
56#include <functional>
57#include <iosfwd>
58#include <list>
59#include <string>
60#include <vector>
61
62#include "base/cast.hh"
63#include "base/cprintf.hh"
64#include "base/intmath.hh"
65#include "base/refcnt.hh"
66#include "base/stats/info.hh"
67#include "base/stats/types.hh"
68#include "base/stats/visit.hh"
69#include "base/str.hh"
70#include "base/types.hh"
71
72class Callback;
73
74/** The current simulated tick. */
75extern Tick curTick;
76
77/* A namespace for all of the Statistics */
78namespace Stats {
79
80template <class Stat, class Base>
81class InfoProxy : public Base
82{
83 protected:
84 Stat &s;
85
86 public:
87 InfoProxy(Stat &stat) : s(stat) {}
88
89 bool check() const { return s.check(); }
90 void prepare() { s.prepare(); }
91 void reset() { s.reset(); }
92 void
93 visit(Visit &visitor)
94 {
95 visitor.visit(*static_cast<Base *>(this));
96 }
97 bool zero() const { return s.zero(); }
98};
99
100template <class Stat>
101class ScalarInfoProxy : public InfoProxy<Stat, ScalarInfo>
102{
103 public:
104 ScalarInfoProxy(Stat &stat) : InfoProxy<Stat, ScalarInfo>(stat) {}
105
106 Counter value() const { return this->s.value(); }
107 Result result() const { return this->s.result(); }
108 Result total() const { return this->s.total(); }
109};
110
111template <class Stat>
112class VectorInfoProxy : public InfoProxy<Stat, VectorInfo>
113{
114 protected:
115 mutable VCounter cvec;
116 mutable VResult rvec;
117
118 public:
119 VectorInfoProxy(Stat &stat) : InfoProxy<Stat, VectorInfo>(stat) {}
120
121 size_type size() const { return this->s.size(); }
122
123 VCounter &
124 value() const
125 {
126 this->s.value(cvec);
127 return cvec;
128 }
129
130 const VResult &
131 result() const
132 {
133 this->s.result(rvec);
134 return rvec;
135 }
136
137 Result total() const { return this->s.total(); }
138};
139
140template <class Stat>
141class DistInfoProxy : public InfoProxy<Stat, DistInfo>
142{
143 public:
144 DistInfoProxy(Stat &stat) : InfoProxy<Stat, DistInfo>(stat) {}
145};
146
147template <class Stat>
148class VectorDistInfoProxy : public InfoProxy<Stat, VectorDistInfo>
149{
150 public:
151 VectorDistInfoProxy(Stat &stat) : InfoProxy<Stat, VectorDistInfo>(stat) {}
152
153 size_type size() const { return this->s.size(); }
154};
155
156template <class Stat>
157class Vector2dInfoProxy : public InfoProxy<Stat, Vector2dInfo>
158{
159 public:
160 Vector2dInfoProxy(Stat &stat) : InfoProxy<Stat, Vector2dInfo>(stat) {}
161};
162
163class InfoAccess
164{
165 protected:
166 /** Set up an info class for this statistic */
167 void setInfo(Info *info);
168 /** Save Storage class parameters if any */
169 void setParams(const StorageParams *params);
170 /** Save Storage class parameters if any */
171 void setInit();
172
173 /** Grab the information class for this statistic */
174 Info *info();
175 /** Grab the information class for this statistic */
176 const Info *info() const;
177
178 public:
179 /**
180 * Reset the stat to the default state.
181 */
182 void reset() { }
183
184 /**
185 * @return true if this stat has a value and satisfies its
186 * requirement as a prereq
187 */
188 bool zero() const { return true; }
189
190 /**
191 * Check that this stat has been set up properly and is ready for
192 * use
193 * @return true for success
194 */
195 bool check() const { return true; }
196};
197
198template <class Derived, template <class> class InfoProxyType>
199class DataWrap : public InfoAccess
200{
201 public:
202 typedef InfoProxyType<Derived> Info;
203
204 protected:
205 Derived &self() { return *static_cast<Derived *>(this); }
206
207 protected:
208 Info *
209 info()
210 {
211 return safe_cast<Info *>(InfoAccess::info());
212 }
213
214 public:
215 const Info *
216 info() const
217 {
218 return safe_cast<const Info *>(InfoAccess::info());
219 }
220
221 protected:
222 /**
223 * Copy constructor, copies are not allowed.
224 */
225 DataWrap(const DataWrap &stat);
226
227 /**
228 * Can't copy stats.
229 */
230 void operator=(const DataWrap &);
231
232 public:
233 DataWrap()
234 {
235 this->setInfo(new Info(self()));
236 }
237
238 /**
239 * Set the name and marks this stat to print at the end of simulation.
240 * @param name The new name.
241 * @return A reference to this stat.
242 */
243 Derived &
244 name(const std::string &name)
245 {
246 Info *info = this->info();
247 info->setName(name);
248 info->flags.set(display);
249 return this->self();
250 }
251 const std::string &name() const { return this->info()->name; }
252
253 /**
254 * Set the description and marks this stat to print at the end of
255 * simulation.
256 * @param desc The new description.
257 * @return A reference to this stat.
258 */
259 Derived &
260 desc(const std::string &_desc)
261 {
262 this->info()->desc = _desc;
263 return this->self();
264 }
265
266 /**
267 * Set the precision and marks this stat to print at the end of simulation.
268 * @param _precision The new precision
269 * @return A reference to this stat.
270 */
271 Derived &
272 precision(int _precision)
273 {
274 this->info()->precision = _precision;
275 return this->self();
276 }
277
278 /**
279 * Set the flags and marks this stat to print at the end of simulation.
280 * @param f The new flags.
281 * @return A reference to this stat.
282 */
283 Derived &
284 flags(Flags _flags)
285 {
286 this->info()->flags.set(_flags);
287 return this->self();
288 }
289
290 /**
291 * Set the prerequisite stat and marks this stat to print at the end of
292 * simulation.
293 * @param prereq The prerequisite stat.
294 * @return A reference to this stat.
295 */
296 template <class Stat>
297 Derived &
298 prereq(const Stat &prereq)
299 {
300 this->info()->prereq = prereq.info();
301 return this->self();
302 }
303};
304
305template <class Derived, template <class> class InfoProxyType>
306class DataWrapVec : public DataWrap<Derived, InfoProxyType>
307{
308 public:
309 typedef InfoProxyType<Derived> Info;
310
311 // The following functions are specific to vectors. If you use them
312 // in a non vector context, you will get a nice compiler error!
313
314 /**
315 * Set the subfield name for the given index, and marks this stat to print
316 * at the end of simulation.
317 * @param index The subfield index.
318 * @param name The new name of the subfield.
319 * @return A reference to this stat.
320 */
321 Derived &
322 subname(off_type index, const std::string &name)
323 {
324 Derived &self = this->self();
325 Info *info = self.info();
326
327 std::vector<std::string> &subn = info->subnames;
328 if (subn.size() <= index)
329 subn.resize(index + 1);
330 subn[index] = name;
331 return self;
332 }
333
334 // The following functions are specific to 2d vectors. If you use
335 // them in a non vector context, you will get a nice compiler
336 // error because info doesn't have the right variables.
337
338 /**
339 * Set the subfield description for the given index and marks this stat to
340 * print at the end of simulation.
341 * @param index The subfield index.
342 * @param desc The new description of the subfield
343 * @return A reference to this stat.
344 */
345 Derived &
346 subdesc(off_type index, const std::string &desc)
347 {
348 Info *info = this->info();
349
350 std::vector<std::string> &subd = info->subdescs;
351 if (subd.size() <= index)
352 subd.resize(index + 1);
353 subd[index] = desc;
354
355 return this->self();
356 }
357
358 void
359 prepare()
360 {
361 Derived &self = this->self();
362 Info *info = this->info();
363
364 size_t size = self.size();
365 for (off_type i = 0; i < size; ++i)
366 self.data(i)->prepare(info);
367 }
368
369 void
370 reset()
371 {
372 Derived &self = this->self();
373 Info *info = this->info();
374
375 size_t size = self.size();
376 for (off_type i = 0; i < size; ++i)
377 self.data(i)->reset(info);
378 }
379};
380
381template <class Derived, template <class> class InfoProxyType>
382class DataWrapVec2d : public DataWrapVec<Derived, InfoProxyType>
383{
384 public:
385 typedef InfoProxyType<Derived> Info;
386
387 /**
388 * @warning This makes the assumption that if you're gonna subnames a 2d
389 * vector, you're subnaming across all y
390 */
391 Derived &
392 ysubnames(const char **names)
393 {
394 Derived &self = this->self();
395 Info *info = this->info();
396
397 info->y_subnames.resize(self.y);
398 for (off_type i = 0; i < self.y; ++i)
399 info->y_subnames[i] = names[i];
400 return self;
401 }
402
403 Derived &
1/*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Nathan Binkert
29 */
30
31/** @file
32 * Declaration of Statistics objects.
33 */
34
35/**
36* @todo
37*
38* Generalized N-dimensinal vector
39* documentation
40* key stats
41* interval stats
42* -- these both can use the same function that prints out a
43* specific set of stats
44* VectorStandardDeviation totals
45* Document Namespaces
46*/
47#ifndef __BASE_STATISTICS_HH__
48#define __BASE_STATISTICS_HH__
49
50#include <algorithm>
51#include <cassert>
52#ifdef __SUNPRO_CC
53#include <math.h>
54#endif
55#include <cmath>
56#include <functional>
57#include <iosfwd>
58#include <list>
59#include <string>
60#include <vector>
61
62#include "base/cast.hh"
63#include "base/cprintf.hh"
64#include "base/intmath.hh"
65#include "base/refcnt.hh"
66#include "base/stats/info.hh"
67#include "base/stats/types.hh"
68#include "base/stats/visit.hh"
69#include "base/str.hh"
70#include "base/types.hh"
71
72class Callback;
73
74/** The current simulated tick. */
75extern Tick curTick;
76
77/* A namespace for all of the Statistics */
78namespace Stats {
79
80template <class Stat, class Base>
81class InfoProxy : public Base
82{
83 protected:
84 Stat &s;
85
86 public:
87 InfoProxy(Stat &stat) : s(stat) {}
88
89 bool check() const { return s.check(); }
90 void prepare() { s.prepare(); }
91 void reset() { s.reset(); }
92 void
93 visit(Visit &visitor)
94 {
95 visitor.visit(*static_cast<Base *>(this));
96 }
97 bool zero() const { return s.zero(); }
98};
99
100template <class Stat>
101class ScalarInfoProxy : public InfoProxy<Stat, ScalarInfo>
102{
103 public:
104 ScalarInfoProxy(Stat &stat) : InfoProxy<Stat, ScalarInfo>(stat) {}
105
106 Counter value() const { return this->s.value(); }
107 Result result() const { return this->s.result(); }
108 Result total() const { return this->s.total(); }
109};
110
111template <class Stat>
112class VectorInfoProxy : public InfoProxy<Stat, VectorInfo>
113{
114 protected:
115 mutable VCounter cvec;
116 mutable VResult rvec;
117
118 public:
119 VectorInfoProxy(Stat &stat) : InfoProxy<Stat, VectorInfo>(stat) {}
120
121 size_type size() const { return this->s.size(); }
122
123 VCounter &
124 value() const
125 {
126 this->s.value(cvec);
127 return cvec;
128 }
129
130 const VResult &
131 result() const
132 {
133 this->s.result(rvec);
134 return rvec;
135 }
136
137 Result total() const { return this->s.total(); }
138};
139
140template <class Stat>
141class DistInfoProxy : public InfoProxy<Stat, DistInfo>
142{
143 public:
144 DistInfoProxy(Stat &stat) : InfoProxy<Stat, DistInfo>(stat) {}
145};
146
147template <class Stat>
148class VectorDistInfoProxy : public InfoProxy<Stat, VectorDistInfo>
149{
150 public:
151 VectorDistInfoProxy(Stat &stat) : InfoProxy<Stat, VectorDistInfo>(stat) {}
152
153 size_type size() const { return this->s.size(); }
154};
155
156template <class Stat>
157class Vector2dInfoProxy : public InfoProxy<Stat, Vector2dInfo>
158{
159 public:
160 Vector2dInfoProxy(Stat &stat) : InfoProxy<Stat, Vector2dInfo>(stat) {}
161};
162
163class InfoAccess
164{
165 protected:
166 /** Set up an info class for this statistic */
167 void setInfo(Info *info);
168 /** Save Storage class parameters if any */
169 void setParams(const StorageParams *params);
170 /** Save Storage class parameters if any */
171 void setInit();
172
173 /** Grab the information class for this statistic */
174 Info *info();
175 /** Grab the information class for this statistic */
176 const Info *info() const;
177
178 public:
179 /**
180 * Reset the stat to the default state.
181 */
182 void reset() { }
183
184 /**
185 * @return true if this stat has a value and satisfies its
186 * requirement as a prereq
187 */
188 bool zero() const { return true; }
189
190 /**
191 * Check that this stat has been set up properly and is ready for
192 * use
193 * @return true for success
194 */
195 bool check() const { return true; }
196};
197
198template <class Derived, template <class> class InfoProxyType>
199class DataWrap : public InfoAccess
200{
201 public:
202 typedef InfoProxyType<Derived> Info;
203
204 protected:
205 Derived &self() { return *static_cast<Derived *>(this); }
206
207 protected:
208 Info *
209 info()
210 {
211 return safe_cast<Info *>(InfoAccess::info());
212 }
213
214 public:
215 const Info *
216 info() const
217 {
218 return safe_cast<const Info *>(InfoAccess::info());
219 }
220
221 protected:
222 /**
223 * Copy constructor, copies are not allowed.
224 */
225 DataWrap(const DataWrap &stat);
226
227 /**
228 * Can't copy stats.
229 */
230 void operator=(const DataWrap &);
231
232 public:
233 DataWrap()
234 {
235 this->setInfo(new Info(self()));
236 }
237
238 /**
239 * Set the name and marks this stat to print at the end of simulation.
240 * @param name The new name.
241 * @return A reference to this stat.
242 */
243 Derived &
244 name(const std::string &name)
245 {
246 Info *info = this->info();
247 info->setName(name);
248 info->flags.set(display);
249 return this->self();
250 }
251 const std::string &name() const { return this->info()->name; }
252
253 /**
254 * Set the description and marks this stat to print at the end of
255 * simulation.
256 * @param desc The new description.
257 * @return A reference to this stat.
258 */
259 Derived &
260 desc(const std::string &_desc)
261 {
262 this->info()->desc = _desc;
263 return this->self();
264 }
265
266 /**
267 * Set the precision and marks this stat to print at the end of simulation.
268 * @param _precision The new precision
269 * @return A reference to this stat.
270 */
271 Derived &
272 precision(int _precision)
273 {
274 this->info()->precision = _precision;
275 return this->self();
276 }
277
278 /**
279 * Set the flags and marks this stat to print at the end of simulation.
280 * @param f The new flags.
281 * @return A reference to this stat.
282 */
283 Derived &
284 flags(Flags _flags)
285 {
286 this->info()->flags.set(_flags);
287 return this->self();
288 }
289
290 /**
291 * Set the prerequisite stat and marks this stat to print at the end of
292 * simulation.
293 * @param prereq The prerequisite stat.
294 * @return A reference to this stat.
295 */
296 template <class Stat>
297 Derived &
298 prereq(const Stat &prereq)
299 {
300 this->info()->prereq = prereq.info();
301 return this->self();
302 }
303};
304
305template <class Derived, template <class> class InfoProxyType>
306class DataWrapVec : public DataWrap<Derived, InfoProxyType>
307{
308 public:
309 typedef InfoProxyType<Derived> Info;
310
311 // The following functions are specific to vectors. If you use them
312 // in a non vector context, you will get a nice compiler error!
313
314 /**
315 * Set the subfield name for the given index, and marks this stat to print
316 * at the end of simulation.
317 * @param index The subfield index.
318 * @param name The new name of the subfield.
319 * @return A reference to this stat.
320 */
321 Derived &
322 subname(off_type index, const std::string &name)
323 {
324 Derived &self = this->self();
325 Info *info = self.info();
326
327 std::vector<std::string> &subn = info->subnames;
328 if (subn.size() <= index)
329 subn.resize(index + 1);
330 subn[index] = name;
331 return self;
332 }
333
334 // The following functions are specific to 2d vectors. If you use
335 // them in a non vector context, you will get a nice compiler
336 // error because info doesn't have the right variables.
337
338 /**
339 * Set the subfield description for the given index and marks this stat to
340 * print at the end of simulation.
341 * @param index The subfield index.
342 * @param desc The new description of the subfield
343 * @return A reference to this stat.
344 */
345 Derived &
346 subdesc(off_type index, const std::string &desc)
347 {
348 Info *info = this->info();
349
350 std::vector<std::string> &subd = info->subdescs;
351 if (subd.size() <= index)
352 subd.resize(index + 1);
353 subd[index] = desc;
354
355 return this->self();
356 }
357
358 void
359 prepare()
360 {
361 Derived &self = this->self();
362 Info *info = this->info();
363
364 size_t size = self.size();
365 for (off_type i = 0; i < size; ++i)
366 self.data(i)->prepare(info);
367 }
368
369 void
370 reset()
371 {
372 Derived &self = this->self();
373 Info *info = this->info();
374
375 size_t size = self.size();
376 for (off_type i = 0; i < size; ++i)
377 self.data(i)->reset(info);
378 }
379};
380
381template <class Derived, template <class> class InfoProxyType>
382class DataWrapVec2d : public DataWrapVec<Derived, InfoProxyType>
383{
384 public:
385 typedef InfoProxyType<Derived> Info;
386
387 /**
388 * @warning This makes the assumption that if you're gonna subnames a 2d
389 * vector, you're subnaming across all y
390 */
391 Derived &
392 ysubnames(const char **names)
393 {
394 Derived &self = this->self();
395 Info *info = this->info();
396
397 info->y_subnames.resize(self.y);
398 for (off_type i = 0; i < self.y; ++i)
399 info->y_subnames[i] = names[i];
400 return self;
401 }
402
403 Derived &
404 ysubname(off_type index, const std::string subname)
404 ysubname(off_type index, const std::string &subname)
405 {
406 Derived &self = this->self();
407 Info *info = this->info();
408
409 assert(index < self.y);
410 info->y_subnames.resize(self.y);
411 info->y_subnames[index] = subname.c_str();
412 return self;
413 }
405 {
406 Derived &self = this->self();
407 Info *info = this->info();
408
409 assert(index < self.y);
410 info->y_subnames.resize(self.y);
411 info->y_subnames[index] = subname.c_str();
412 return self;
413 }
414
415 std::string
416 ysubname(off_type i) const
417 {
418 return this->info()->y_subnames[i];
419 }
420
414};
415
416//////////////////////////////////////////////////////////////////////
417//
418// Simple Statistics
419//
420//////////////////////////////////////////////////////////////////////
421
422/**
423 * Templatized storage and interface for a simple scalar stat.
424 */
425class StatStor
426{
427 private:
428 /** The statistic value. */
429 Counter data;
430
431 public:
432 struct Params : public StorageParams {};
433
434 public:
435 /**
436 * Builds this storage element and calls the base constructor of the
437 * datatype.
438 */
439 StatStor(Info *info)
440 : data(Counter())
441 { }
442
443 /**
444 * The the stat to the given value.
445 * @param val The new value.
446 */
447 void set(Counter val) { data = val; }
448 /**
449 * Increment the stat by the given value.
450 * @param val The new value.
451 */
452 void inc(Counter val) { data += val; }
453 /**
454 * Decrement the stat by the given value.
455 * @param val The new value.
456 */
457 void dec(Counter val) { data -= val; }
458 /**
459 * Return the value of this stat as its base type.
460 * @return The value of this stat.
461 */
462 Counter value() const { return data; }
463 /**
464 * Return the value of this stat as a result type.
465 * @return The value of this stat.
466 */
467 Result result() const { return (Result)data; }
468 /**
469 * Prepare stat data for dumping or serialization
470 */
471 void prepare(Info *info) { }
472 /**
473 * Reset stat value to default
474 */
475 void reset(Info *info) { data = Counter(); }
476
477 /**
478 * @return true if zero value
479 */
480 bool zero() const { return data == Counter(); }
481};
482
483/**
484 * Templatized storage and interface to a per-tick average stat. This keeps
485 * a current count and updates a total (count * ticks) when this count
486 * changes. This allows the quick calculation of a per tick count of the item
487 * being watched. This is good for keeping track of residencies in structures
488 * among other things.
489 */
490class AvgStor
491{
492 private:
493 /** The current count. */
494 Counter current;
495 /** The tick of the last reset */
496 Tick lastReset;
497 /** The total count for all tick. */
498 mutable Result total;
499 /** The tick that current last changed. */
500 mutable Tick last;
501
502 public:
503 struct Params : public StorageParams {};
504
505 public:
506 /**
507 * Build and initializes this stat storage.
508 */
509 AvgStor(Info *info)
510 : current(0), lastReset(0), total(0), last(0)
511 { }
512
513 /**
514 * Set the current count to the one provided, update the total and last
515 * set values.
516 * @param val The new count.
517 */
518 void
519 set(Counter val)
520 {
521 total += current * (curTick - last);
522 last = curTick;
523 current = val;
524 }
525
526 /**
527 * Increment the current count by the provided value, calls set.
528 * @param val The amount to increment.
529 */
530 void inc(Counter val) { set(current + val); }
531
532 /**
533 * Deccrement the current count by the provided value, calls set.
534 * @param val The amount to decrement.
535 */
536 void dec(Counter val) { set(current - val); }
537
538 /**
539 * Return the current count.
540 * @return The current count.
541 */
542 Counter value() const { return current; }
543
544 /**
545 * Return the current average.
546 * @return The current average.
547 */
548 Result
549 result() const
550 {
551 assert(last == curTick);
552 return (Result)(total + current) / (Result)(curTick - lastReset + 1);
553 }
554
555 /**
556 * @return true if zero value
557 */
558 bool zero() const { return total == 0.0; }
559
560 /**
561 * Prepare stat data for dumping or serialization
562 */
563 void
564 prepare(Info *info)
565 {
566 total += current * (curTick - last);
567 last = curTick;
568 }
569
570 /**
571 * Reset stat value to default
572 */
573 void
574 reset(Info *info)
575 {
576 total = 0.0;
577 last = curTick;
578 lastReset = curTick;
579 }
580
581};
582
583/**
584 * Implementation of a scalar stat. The type of stat is determined by the
585 * Storage template.
586 */
587template <class Derived, class Stor>
588class ScalarBase : public DataWrap<Derived, ScalarInfoProxy>
589{
590 public:
591 typedef Stor Storage;
592 typedef typename Stor::Params Params;
593
594 protected:
595 /** The storage of this stat. */
596 char storage[sizeof(Storage)] __attribute__ ((aligned (8)));
597
598 protected:
599 /**
600 * Retrieve the storage.
601 * @param index The vector index to access.
602 * @return The storage object at the given index.
603 */
604 Storage *
605 data()
606 {
607 return reinterpret_cast<Storage *>(storage);
608 }
609
610 /**
611 * Retrieve a const pointer to the storage.
612 * for the given index.
613 * @param index The vector index to access.
614 * @return A const pointer to the storage object at the given index.
615 */
616 const Storage *
617 data() const
618 {
619 return reinterpret_cast<const Storage *>(storage);
620 }
621
622 void
623 doInit()
624 {
625 new (storage) Storage(this->info());
626 this->setInit();
627 }
628
629 public:
630 /**
631 * Return the current value of this stat as its base type.
632 * @return The current value.
633 */
634 Counter value() const { return data()->value(); }
635
636 public:
637 ScalarBase()
638 {
639 this->doInit();
640 }
641
642 public:
643 // Common operators for stats
644 /**
645 * Increment the stat by 1. This calls the associated storage object inc
646 * function.
647 */
648 void operator++() { data()->inc(1); }
649 /**
650 * Decrement the stat by 1. This calls the associated storage object dec
651 * function.
652 */
653 void operator--() { data()->dec(1); }
654
655 /** Increment the stat by 1. */
656 void operator++(int) { ++*this; }
657 /** Decrement the stat by 1. */
658 void operator--(int) { --*this; }
659
660 /**
661 * Set the data value to the given value. This calls the associated storage
662 * object set function.
663 * @param v The new value.
664 */
665 template <typename U>
666 void operator=(const U &v) { data()->set(v); }
667
668 /**
669 * Increment the stat by the given value. This calls the associated
670 * storage object inc function.
671 * @param v The value to add.
672 */
673 template <typename U>
674 void operator+=(const U &v) { data()->inc(v); }
675
676 /**
677 * Decrement the stat by the given value. This calls the associated
678 * storage object dec function.
679 * @param v The value to substract.
680 */
681 template <typename U>
682 void operator-=(const U &v) { data()->dec(v); }
683
684 /**
685 * Return the number of elements, always 1 for a scalar.
686 * @return 1.
687 */
688 size_type size() const { return 1; }
689
690 Counter value() { return data()->value(); }
691
692 Result result() { return data()->result(); }
693
694 Result total() { return result(); }
695
696 bool zero() { return result() == 0.0; }
697
698 void reset() { data()->reset(this->info()); }
699 void prepare() { data()->prepare(this->info()); }
700};
701
702class ProxyInfo : public ScalarInfo
703{
704 public:
705 std::string str() const { return to_string(value()); }
706 size_type size() const { return 1; }
707 bool check() const { return true; }
708 void prepare() { }
709 void reset() { }
710 bool zero() const { return value() == 0; }
711
712 void visit(Visit &visitor) { visitor.visit(*this); }
713};
714
715template <class T>
716class ValueProxy : public ProxyInfo
717{
718 private:
719 T *scalar;
720
721 public:
722 ValueProxy(T &val) : scalar(&val) {}
723 Counter value() const { return *scalar; }
724 Result result() const { return *scalar; }
725 Result total() const { return *scalar; }
726};
727
728template <class T>
729class FunctorProxy : public ProxyInfo
730{
731 private:
732 T *functor;
733
734 public:
735 FunctorProxy(T &func) : functor(&func) {}
736 Counter value() const { return (*functor)(); }
737 Result result() const { return (*functor)(); }
738 Result total() const { return (*functor)(); }
739};
740
741template <class Derived>
742class ValueBase : public DataWrap<Derived, ScalarInfoProxy>
743{
744 private:
745 ProxyInfo *proxy;
746
747 public:
748 ValueBase() : proxy(NULL) { }
749 ~ValueBase() { if (proxy) delete proxy; }
750
751 template <class T>
752 Derived &
753 scalar(T &value)
754 {
755 proxy = new ValueProxy<T>(value);
756 this->setInit();
757 return this->self();
758 }
759
760 template <class T>
761 Derived &
762 functor(T &func)
763 {
764 proxy = new FunctorProxy<T>(func);
765 this->setInit();
766 return this->self();
767 }
768
769 Counter value() { return proxy->value(); }
770 Result result() const { return proxy->result(); }
771 Result total() const { return proxy->total(); };
772 size_type size() const { return proxy->size(); }
773
774 std::string str() const { return proxy->str(); }
775 bool zero() const { return proxy->zero(); }
776 bool check() const { return proxy != NULL; }
777 void prepare() { }
778 void reset() { }
779};
780
781//////////////////////////////////////////////////////////////////////
782//
783// Vector Statistics
784//
785//////////////////////////////////////////////////////////////////////
786
787/**
788 * A proxy class to access the stat at a given index in a VectorBase stat.
789 * Behaves like a ScalarBase.
790 */
791template <class Stat>
792class ScalarProxy
793{
794 private:
795 /** Pointer to the parent Vector. */
796 Stat &stat;
797
798 /** The index to access in the parent VectorBase. */
799 off_type index;
800
801 public:
802 /**
803 * Return the current value of this stat as its base type.
804 * @return The current value.
805 */
806 Counter value() const { return stat.data(index)->value(); }
807
808 /**
809 * Return the current value of this statas a result type.
810 * @return The current value.
811 */
812 Result result() const { return stat.data(index)->result(); }
813
814 public:
815 /**
816 * Create and initialize this proxy, do not register it with the database.
817 * @param i The index to access.
818 */
819 ScalarProxy(Stat &s, off_type i)
820 : stat(s), index(i)
821 {
822 }
823
824 /**
825 * Create a copy of the provided ScalarProxy.
826 * @param sp The proxy to copy.
827 */
828 ScalarProxy(const ScalarProxy &sp)
829 : stat(sp.stat), index(sp.index)
830 {}
831
832 /**
833 * Set this proxy equal to the provided one.
834 * @param sp The proxy to copy.
835 * @return A reference to this proxy.
836 */
837 const ScalarProxy &
838 operator=(const ScalarProxy &sp)
839 {
840 stat = sp.stat;
841 index = sp.index;
842 return *this;
843 }
844
845 public:
846 // Common operators for stats
847 /**
848 * Increment the stat by 1. This calls the associated storage object inc
849 * function.
850 */
851 void operator++() { stat.data(index)->inc(1); }
852 /**
853 * Decrement the stat by 1. This calls the associated storage object dec
854 * function.
855 */
856 void operator--() { stat.data(index)->dec(1); }
857
858 /** Increment the stat by 1. */
859 void operator++(int) { ++*this; }
860 /** Decrement the stat by 1. */
861 void operator--(int) { --*this; }
862
863 /**
864 * Set the data value to the given value. This calls the associated storage
865 * object set function.
866 * @param v The new value.
867 */
868 template <typename U>
869 void
870 operator=(const U &v)
871 {
872 stat.data(index)->set(v);
873 }
874
875 /**
876 * Increment the stat by the given value. This calls the associated
877 * storage object inc function.
878 * @param v The value to add.
879 */
880 template <typename U>
881 void
882 operator+=(const U &v)
883 {
884 stat.data(index)->inc(v);
885 }
886
887 /**
888 * Decrement the stat by the given value. This calls the associated
889 * storage object dec function.
890 * @param v The value to substract.
891 */
892 template <typename U>
893 void
894 operator-=(const U &v)
895 {
896 stat.data(index)->dec(v);
897 }
898
899 /**
900 * Return the number of elements, always 1 for a scalar.
901 * @return 1.
902 */
903 size_type size() const { return 1; }
904
905 public:
906 std::string
907 str() const
908 {
909 return csprintf("%s[%d]", stat.info()->name, index);
910 }
911};
912
913/**
914 * Implementation of a vector of stats. The type of stat is determined by the
915 * Storage class. @sa ScalarBase
916 */
917template <class Derived, class Stor>
918class VectorBase : public DataWrapVec<Derived, VectorInfoProxy>
919{
920 public:
921 typedef Stor Storage;
922 typedef typename Stor::Params Params;
923
924 /** Proxy type */
925 typedef ScalarProxy<Derived> Proxy;
926 friend class ScalarProxy<Derived>;
927 friend class DataWrapVec<Derived, VectorInfoProxy>;
928
929 protected:
930 /** The storage of this stat. */
931 Storage *storage;
932 size_type _size;
933
934 protected:
935 /**
936 * Retrieve the storage.
937 * @param index The vector index to access.
938 * @return The storage object at the given index.
939 */
940 Storage *data(off_type index) { return &storage[index]; }
941
942 /**
943 * Retrieve a const pointer to the storage.
944 * @param index The vector index to access.
945 * @return A const pointer to the storage object at the given index.
946 */
947 const Storage *data(off_type index) const { return &storage[index]; }
948
949 void
950 doInit(size_type s)
951 {
952 assert(s > 0 && "size must be positive!");
953 assert(!storage && "already initialized");
954 _size = s;
955
956 char *ptr = new char[_size * sizeof(Storage)];
957 storage = reinterpret_cast<Storage *>(ptr);
958
959 for (off_type i = 0; i < _size; ++i)
960 new (&storage[i]) Storage(this->info());
961
962 this->setInit();
963 }
964
965 public:
966 void
967 value(VCounter &vec) const
968 {
969 vec.resize(size());
970 for (off_type i = 0; i < size(); ++i)
971 vec[i] = data(i)->value();
972 }
973
974 /**
975 * Copy the values to a local vector and return a reference to it.
976 * @return A reference to a vector of the stat values.
977 */
978 void
979 result(VResult &vec) const
980 {
981 vec.resize(size());
982 for (off_type i = 0; i < size(); ++i)
983 vec[i] = data(i)->result();
984 }
985
986 /**
987 * Return a total of all entries in this vector.
988 * @return The total of all vector entries.
989 */
990 Result
991 total() const
992 {
993 Result total = 0.0;
994 for (off_type i = 0; i < size(); ++i)
995 total += data(i)->result();
996 return total;
997 }
998
999 /**
1000 * @return the number of elements in this vector.
1001 */
1002 size_type size() const { return _size; }
1003
1004 bool
1005 zero() const
1006 {
1007 for (off_type i = 0; i < size(); ++i)
1008 if (data(i)->zero())
1009 return false;
1010 return true;
1011 }
1012
1013 bool
1014 check() const
1015 {
1016 return storage != NULL;
1017 }
1018
1019 public:
1020 VectorBase()
1021 : storage(NULL)
1022 {}
1023
1024 ~VectorBase()
1025 {
1026 if (!storage)
1027 return;
1028
1029 for (off_type i = 0; i < _size; ++i)
1030 data(i)->~Storage();
1031 delete [] reinterpret_cast<char *>(storage);
1032 }
1033
1034 /**
1035 * Set this vector to have the given size.
1036 * @param size The new size.
1037 * @return A reference to this stat.
1038 */
1039 Derived &
1040 init(size_type size)
1041 {
1042 Derived &self = this->self();
1043 self.doInit(size);
1044 return self;
1045 }
1046
1047 /**
1048 * Return a reference (ScalarProxy) to the stat at the given index.
1049 * @param index The vector index to access.
1050 * @return A reference of the stat.
1051 */
1052 Proxy
1053 operator[](off_type index)
1054 {
1055 assert (index >= 0 && index < size());
1056 return Proxy(this->self(), index);
1057 }
1058};
1059
1060template <class Stat>
1061class VectorProxy
1062{
1063 private:
1064 Stat &stat;
1065 off_type offset;
1066 size_type len;
1067
1068 private:
1069 mutable VResult vec;
1070
1071 typename Stat::Storage *
1072 data(off_type index)
1073 {
1074 assert(index < len);
1075 return stat.data(offset + index);
1076 }
1077
1078 const typename Stat::Storage *
1079 data(off_type index) const
1080 {
1081 assert(index < len);
1082 return stat.data(offset + index);
1083 }
1084
1085 public:
1086 const VResult &
1087 result() const
1088 {
1089 vec.resize(size());
1090
1091 for (off_type i = 0; i < size(); ++i)
1092 vec[i] = data(i)->result();
1093
1094 return vec;
1095 }
1096
1097 Result
1098 total() const
1099 {
1100 Result total = 0.0;
1101 for (off_type i = 0; i < size(); ++i)
1102 total += data(i)->result();
1103 return total;
1104 }
1105
1106 public:
1107 VectorProxy(Stat &s, off_type o, size_type l)
1108 : stat(s), offset(o), len(l)
1109 {
1110 }
1111
1112 VectorProxy(const VectorProxy &sp)
1113 : stat(sp.stat), offset(sp.offset), len(sp.len)
1114 {
1115 }
1116
1117 const VectorProxy &
1118 operator=(const VectorProxy &sp)
1119 {
1120 stat = sp.stat;
1121 offset = sp.offset;
1122 len = sp.len;
1123 return *this;
1124 }
1125
1126 ScalarProxy<Stat>
1127 operator[](off_type index)
1128 {
1129 assert (index >= 0 && index < size());
1130 return ScalarProxy<Stat>(stat, offset + index);
1131 }
1132
1133 size_type size() const { return len; }
1134};
1135
1136template <class Derived, class Stor>
1137class Vector2dBase : public DataWrapVec2d<Derived, Vector2dInfoProxy>
1138{
1139 public:
1140 typedef Vector2dInfoProxy<Derived> Info;
1141 typedef Stor Storage;
1142 typedef typename Stor::Params Params;
1143 typedef VectorProxy<Derived> Proxy;
1144 friend class ScalarProxy<Derived>;
1145 friend class VectorProxy<Derived>;
1146 friend class DataWrapVec<Derived, Vector2dInfoProxy>;
1147 friend class DataWrapVec2d<Derived, Vector2dInfoProxy>;
1148
1149 protected:
1150 size_type x;
1151 size_type y;
1152 size_type _size;
1153 Storage *storage;
1154
1155 protected:
1156 Storage *data(off_type index) { return &storage[index]; }
1157 const Storage *data(off_type index) const { return &storage[index]; }
1158
1159 public:
1160 Vector2dBase()
1161 : storage(NULL)
1162 {}
1163
1164 ~Vector2dBase()
1165 {
1166 if (!storage)
1167 return;
1168
1169 for (off_type i = 0; i < _size; ++i)
1170 data(i)->~Storage();
1171 delete [] reinterpret_cast<char *>(storage);
1172 }
1173
1174 Derived &
1175 init(size_type _x, size_type _y)
1176 {
1177 assert(_x > 0 && _y > 0 && "sizes must be positive!");
1178 assert(!storage && "already initialized");
1179
1180 Derived &self = this->self();
1181 Info *info = this->info();
1182
1183 x = _x;
1184 y = _y;
1185 info->x = _x;
1186 info->y = _y;
1187 _size = x * y;
1188
1189 char *ptr = new char[_size * sizeof(Storage)];
1190 storage = reinterpret_cast<Storage *>(ptr);
1191
1192 for (off_type i = 0; i < _size; ++i)
1193 new (&storage[i]) Storage(info);
1194
1195 this->setInit();
1196
1197 return self;
1198 }
1199
421};
422
423//////////////////////////////////////////////////////////////////////
424//
425// Simple Statistics
426//
427//////////////////////////////////////////////////////////////////////
428
429/**
430 * Templatized storage and interface for a simple scalar stat.
431 */
432class StatStor
433{
434 private:
435 /** The statistic value. */
436 Counter data;
437
438 public:
439 struct Params : public StorageParams {};
440
441 public:
442 /**
443 * Builds this storage element and calls the base constructor of the
444 * datatype.
445 */
446 StatStor(Info *info)
447 : data(Counter())
448 { }
449
450 /**
451 * The the stat to the given value.
452 * @param val The new value.
453 */
454 void set(Counter val) { data = val; }
455 /**
456 * Increment the stat by the given value.
457 * @param val The new value.
458 */
459 void inc(Counter val) { data += val; }
460 /**
461 * Decrement the stat by the given value.
462 * @param val The new value.
463 */
464 void dec(Counter val) { data -= val; }
465 /**
466 * Return the value of this stat as its base type.
467 * @return The value of this stat.
468 */
469 Counter value() const { return data; }
470 /**
471 * Return the value of this stat as a result type.
472 * @return The value of this stat.
473 */
474 Result result() const { return (Result)data; }
475 /**
476 * Prepare stat data for dumping or serialization
477 */
478 void prepare(Info *info) { }
479 /**
480 * Reset stat value to default
481 */
482 void reset(Info *info) { data = Counter(); }
483
484 /**
485 * @return true if zero value
486 */
487 bool zero() const { return data == Counter(); }
488};
489
490/**
491 * Templatized storage and interface to a per-tick average stat. This keeps
492 * a current count and updates a total (count * ticks) when this count
493 * changes. This allows the quick calculation of a per tick count of the item
494 * being watched. This is good for keeping track of residencies in structures
495 * among other things.
496 */
497class AvgStor
498{
499 private:
500 /** The current count. */
501 Counter current;
502 /** The tick of the last reset */
503 Tick lastReset;
504 /** The total count for all tick. */
505 mutable Result total;
506 /** The tick that current last changed. */
507 mutable Tick last;
508
509 public:
510 struct Params : public StorageParams {};
511
512 public:
513 /**
514 * Build and initializes this stat storage.
515 */
516 AvgStor(Info *info)
517 : current(0), lastReset(0), total(0), last(0)
518 { }
519
520 /**
521 * Set the current count to the one provided, update the total and last
522 * set values.
523 * @param val The new count.
524 */
525 void
526 set(Counter val)
527 {
528 total += current * (curTick - last);
529 last = curTick;
530 current = val;
531 }
532
533 /**
534 * Increment the current count by the provided value, calls set.
535 * @param val The amount to increment.
536 */
537 void inc(Counter val) { set(current + val); }
538
539 /**
540 * Deccrement the current count by the provided value, calls set.
541 * @param val The amount to decrement.
542 */
543 void dec(Counter val) { set(current - val); }
544
545 /**
546 * Return the current count.
547 * @return The current count.
548 */
549 Counter value() const { return current; }
550
551 /**
552 * Return the current average.
553 * @return The current average.
554 */
555 Result
556 result() const
557 {
558 assert(last == curTick);
559 return (Result)(total + current) / (Result)(curTick - lastReset + 1);
560 }
561
562 /**
563 * @return true if zero value
564 */
565 bool zero() const { return total == 0.0; }
566
567 /**
568 * Prepare stat data for dumping or serialization
569 */
570 void
571 prepare(Info *info)
572 {
573 total += current * (curTick - last);
574 last = curTick;
575 }
576
577 /**
578 * Reset stat value to default
579 */
580 void
581 reset(Info *info)
582 {
583 total = 0.0;
584 last = curTick;
585 lastReset = curTick;
586 }
587
588};
589
590/**
591 * Implementation of a scalar stat. The type of stat is determined by the
592 * Storage template.
593 */
594template <class Derived, class Stor>
595class ScalarBase : public DataWrap<Derived, ScalarInfoProxy>
596{
597 public:
598 typedef Stor Storage;
599 typedef typename Stor::Params Params;
600
601 protected:
602 /** The storage of this stat. */
603 char storage[sizeof(Storage)] __attribute__ ((aligned (8)));
604
605 protected:
606 /**
607 * Retrieve the storage.
608 * @param index The vector index to access.
609 * @return The storage object at the given index.
610 */
611 Storage *
612 data()
613 {
614 return reinterpret_cast<Storage *>(storage);
615 }
616
617 /**
618 * Retrieve a const pointer to the storage.
619 * for the given index.
620 * @param index The vector index to access.
621 * @return A const pointer to the storage object at the given index.
622 */
623 const Storage *
624 data() const
625 {
626 return reinterpret_cast<const Storage *>(storage);
627 }
628
629 void
630 doInit()
631 {
632 new (storage) Storage(this->info());
633 this->setInit();
634 }
635
636 public:
637 /**
638 * Return the current value of this stat as its base type.
639 * @return The current value.
640 */
641 Counter value() const { return data()->value(); }
642
643 public:
644 ScalarBase()
645 {
646 this->doInit();
647 }
648
649 public:
650 // Common operators for stats
651 /**
652 * Increment the stat by 1. This calls the associated storage object inc
653 * function.
654 */
655 void operator++() { data()->inc(1); }
656 /**
657 * Decrement the stat by 1. This calls the associated storage object dec
658 * function.
659 */
660 void operator--() { data()->dec(1); }
661
662 /** Increment the stat by 1. */
663 void operator++(int) { ++*this; }
664 /** Decrement the stat by 1. */
665 void operator--(int) { --*this; }
666
667 /**
668 * Set the data value to the given value. This calls the associated storage
669 * object set function.
670 * @param v The new value.
671 */
672 template <typename U>
673 void operator=(const U &v) { data()->set(v); }
674
675 /**
676 * Increment the stat by the given value. This calls the associated
677 * storage object inc function.
678 * @param v The value to add.
679 */
680 template <typename U>
681 void operator+=(const U &v) { data()->inc(v); }
682
683 /**
684 * Decrement the stat by the given value. This calls the associated
685 * storage object dec function.
686 * @param v The value to substract.
687 */
688 template <typename U>
689 void operator-=(const U &v) { data()->dec(v); }
690
691 /**
692 * Return the number of elements, always 1 for a scalar.
693 * @return 1.
694 */
695 size_type size() const { return 1; }
696
697 Counter value() { return data()->value(); }
698
699 Result result() { return data()->result(); }
700
701 Result total() { return result(); }
702
703 bool zero() { return result() == 0.0; }
704
705 void reset() { data()->reset(this->info()); }
706 void prepare() { data()->prepare(this->info()); }
707};
708
709class ProxyInfo : public ScalarInfo
710{
711 public:
712 std::string str() const { return to_string(value()); }
713 size_type size() const { return 1; }
714 bool check() const { return true; }
715 void prepare() { }
716 void reset() { }
717 bool zero() const { return value() == 0; }
718
719 void visit(Visit &visitor) { visitor.visit(*this); }
720};
721
722template <class T>
723class ValueProxy : public ProxyInfo
724{
725 private:
726 T *scalar;
727
728 public:
729 ValueProxy(T &val) : scalar(&val) {}
730 Counter value() const { return *scalar; }
731 Result result() const { return *scalar; }
732 Result total() const { return *scalar; }
733};
734
735template <class T>
736class FunctorProxy : public ProxyInfo
737{
738 private:
739 T *functor;
740
741 public:
742 FunctorProxy(T &func) : functor(&func) {}
743 Counter value() const { return (*functor)(); }
744 Result result() const { return (*functor)(); }
745 Result total() const { return (*functor)(); }
746};
747
748template <class Derived>
749class ValueBase : public DataWrap<Derived, ScalarInfoProxy>
750{
751 private:
752 ProxyInfo *proxy;
753
754 public:
755 ValueBase() : proxy(NULL) { }
756 ~ValueBase() { if (proxy) delete proxy; }
757
758 template <class T>
759 Derived &
760 scalar(T &value)
761 {
762 proxy = new ValueProxy<T>(value);
763 this->setInit();
764 return this->self();
765 }
766
767 template <class T>
768 Derived &
769 functor(T &func)
770 {
771 proxy = new FunctorProxy<T>(func);
772 this->setInit();
773 return this->self();
774 }
775
776 Counter value() { return proxy->value(); }
777 Result result() const { return proxy->result(); }
778 Result total() const { return proxy->total(); };
779 size_type size() const { return proxy->size(); }
780
781 std::string str() const { return proxy->str(); }
782 bool zero() const { return proxy->zero(); }
783 bool check() const { return proxy != NULL; }
784 void prepare() { }
785 void reset() { }
786};
787
788//////////////////////////////////////////////////////////////////////
789//
790// Vector Statistics
791//
792//////////////////////////////////////////////////////////////////////
793
794/**
795 * A proxy class to access the stat at a given index in a VectorBase stat.
796 * Behaves like a ScalarBase.
797 */
798template <class Stat>
799class ScalarProxy
800{
801 private:
802 /** Pointer to the parent Vector. */
803 Stat &stat;
804
805 /** The index to access in the parent VectorBase. */
806 off_type index;
807
808 public:
809 /**
810 * Return the current value of this stat as its base type.
811 * @return The current value.
812 */
813 Counter value() const { return stat.data(index)->value(); }
814
815 /**
816 * Return the current value of this statas a result type.
817 * @return The current value.
818 */
819 Result result() const { return stat.data(index)->result(); }
820
821 public:
822 /**
823 * Create and initialize this proxy, do not register it with the database.
824 * @param i The index to access.
825 */
826 ScalarProxy(Stat &s, off_type i)
827 : stat(s), index(i)
828 {
829 }
830
831 /**
832 * Create a copy of the provided ScalarProxy.
833 * @param sp The proxy to copy.
834 */
835 ScalarProxy(const ScalarProxy &sp)
836 : stat(sp.stat), index(sp.index)
837 {}
838
839 /**
840 * Set this proxy equal to the provided one.
841 * @param sp The proxy to copy.
842 * @return A reference to this proxy.
843 */
844 const ScalarProxy &
845 operator=(const ScalarProxy &sp)
846 {
847 stat = sp.stat;
848 index = sp.index;
849 return *this;
850 }
851
852 public:
853 // Common operators for stats
854 /**
855 * Increment the stat by 1. This calls the associated storage object inc
856 * function.
857 */
858 void operator++() { stat.data(index)->inc(1); }
859 /**
860 * Decrement the stat by 1. This calls the associated storage object dec
861 * function.
862 */
863 void operator--() { stat.data(index)->dec(1); }
864
865 /** Increment the stat by 1. */
866 void operator++(int) { ++*this; }
867 /** Decrement the stat by 1. */
868 void operator--(int) { --*this; }
869
870 /**
871 * Set the data value to the given value. This calls the associated storage
872 * object set function.
873 * @param v The new value.
874 */
875 template <typename U>
876 void
877 operator=(const U &v)
878 {
879 stat.data(index)->set(v);
880 }
881
882 /**
883 * Increment the stat by the given value. This calls the associated
884 * storage object inc function.
885 * @param v The value to add.
886 */
887 template <typename U>
888 void
889 operator+=(const U &v)
890 {
891 stat.data(index)->inc(v);
892 }
893
894 /**
895 * Decrement the stat by the given value. This calls the associated
896 * storage object dec function.
897 * @param v The value to substract.
898 */
899 template <typename U>
900 void
901 operator-=(const U &v)
902 {
903 stat.data(index)->dec(v);
904 }
905
906 /**
907 * Return the number of elements, always 1 for a scalar.
908 * @return 1.
909 */
910 size_type size() const { return 1; }
911
912 public:
913 std::string
914 str() const
915 {
916 return csprintf("%s[%d]", stat.info()->name, index);
917 }
918};
919
920/**
921 * Implementation of a vector of stats. The type of stat is determined by the
922 * Storage class. @sa ScalarBase
923 */
924template <class Derived, class Stor>
925class VectorBase : public DataWrapVec<Derived, VectorInfoProxy>
926{
927 public:
928 typedef Stor Storage;
929 typedef typename Stor::Params Params;
930
931 /** Proxy type */
932 typedef ScalarProxy<Derived> Proxy;
933 friend class ScalarProxy<Derived>;
934 friend class DataWrapVec<Derived, VectorInfoProxy>;
935
936 protected:
937 /** The storage of this stat. */
938 Storage *storage;
939 size_type _size;
940
941 protected:
942 /**
943 * Retrieve the storage.
944 * @param index The vector index to access.
945 * @return The storage object at the given index.
946 */
947 Storage *data(off_type index) { return &storage[index]; }
948
949 /**
950 * Retrieve a const pointer to the storage.
951 * @param index The vector index to access.
952 * @return A const pointer to the storage object at the given index.
953 */
954 const Storage *data(off_type index) const { return &storage[index]; }
955
956 void
957 doInit(size_type s)
958 {
959 assert(s > 0 && "size must be positive!");
960 assert(!storage && "already initialized");
961 _size = s;
962
963 char *ptr = new char[_size * sizeof(Storage)];
964 storage = reinterpret_cast<Storage *>(ptr);
965
966 for (off_type i = 0; i < _size; ++i)
967 new (&storage[i]) Storage(this->info());
968
969 this->setInit();
970 }
971
972 public:
973 void
974 value(VCounter &vec) const
975 {
976 vec.resize(size());
977 for (off_type i = 0; i < size(); ++i)
978 vec[i] = data(i)->value();
979 }
980
981 /**
982 * Copy the values to a local vector and return a reference to it.
983 * @return A reference to a vector of the stat values.
984 */
985 void
986 result(VResult &vec) const
987 {
988 vec.resize(size());
989 for (off_type i = 0; i < size(); ++i)
990 vec[i] = data(i)->result();
991 }
992
993 /**
994 * Return a total of all entries in this vector.
995 * @return The total of all vector entries.
996 */
997 Result
998 total() const
999 {
1000 Result total = 0.0;
1001 for (off_type i = 0; i < size(); ++i)
1002 total += data(i)->result();
1003 return total;
1004 }
1005
1006 /**
1007 * @return the number of elements in this vector.
1008 */
1009 size_type size() const { return _size; }
1010
1011 bool
1012 zero() const
1013 {
1014 for (off_type i = 0; i < size(); ++i)
1015 if (data(i)->zero())
1016 return false;
1017 return true;
1018 }
1019
1020 bool
1021 check() const
1022 {
1023 return storage != NULL;
1024 }
1025
1026 public:
1027 VectorBase()
1028 : storage(NULL)
1029 {}
1030
1031 ~VectorBase()
1032 {
1033 if (!storage)
1034 return;
1035
1036 for (off_type i = 0; i < _size; ++i)
1037 data(i)->~Storage();
1038 delete [] reinterpret_cast<char *>(storage);
1039 }
1040
1041 /**
1042 * Set this vector to have the given size.
1043 * @param size The new size.
1044 * @return A reference to this stat.
1045 */
1046 Derived &
1047 init(size_type size)
1048 {
1049 Derived &self = this->self();
1050 self.doInit(size);
1051 return self;
1052 }
1053
1054 /**
1055 * Return a reference (ScalarProxy) to the stat at the given index.
1056 * @param index The vector index to access.
1057 * @return A reference of the stat.
1058 */
1059 Proxy
1060 operator[](off_type index)
1061 {
1062 assert (index >= 0 && index < size());
1063 return Proxy(this->self(), index);
1064 }
1065};
1066
1067template <class Stat>
1068class VectorProxy
1069{
1070 private:
1071 Stat &stat;
1072 off_type offset;
1073 size_type len;
1074
1075 private:
1076 mutable VResult vec;
1077
1078 typename Stat::Storage *
1079 data(off_type index)
1080 {
1081 assert(index < len);
1082 return stat.data(offset + index);
1083 }
1084
1085 const typename Stat::Storage *
1086 data(off_type index) const
1087 {
1088 assert(index < len);
1089 return stat.data(offset + index);
1090 }
1091
1092 public:
1093 const VResult &
1094 result() const
1095 {
1096 vec.resize(size());
1097
1098 for (off_type i = 0; i < size(); ++i)
1099 vec[i] = data(i)->result();
1100
1101 return vec;
1102 }
1103
1104 Result
1105 total() const
1106 {
1107 Result total = 0.0;
1108 for (off_type i = 0; i < size(); ++i)
1109 total += data(i)->result();
1110 return total;
1111 }
1112
1113 public:
1114 VectorProxy(Stat &s, off_type o, size_type l)
1115 : stat(s), offset(o), len(l)
1116 {
1117 }
1118
1119 VectorProxy(const VectorProxy &sp)
1120 : stat(sp.stat), offset(sp.offset), len(sp.len)
1121 {
1122 }
1123
1124 const VectorProxy &
1125 operator=(const VectorProxy &sp)
1126 {
1127 stat = sp.stat;
1128 offset = sp.offset;
1129 len = sp.len;
1130 return *this;
1131 }
1132
1133 ScalarProxy<Stat>
1134 operator[](off_type index)
1135 {
1136 assert (index >= 0 && index < size());
1137 return ScalarProxy<Stat>(stat, offset + index);
1138 }
1139
1140 size_type size() const { return len; }
1141};
1142
1143template <class Derived, class Stor>
1144class Vector2dBase : public DataWrapVec2d<Derived, Vector2dInfoProxy>
1145{
1146 public:
1147 typedef Vector2dInfoProxy<Derived> Info;
1148 typedef Stor Storage;
1149 typedef typename Stor::Params Params;
1150 typedef VectorProxy<Derived> Proxy;
1151 friend class ScalarProxy<Derived>;
1152 friend class VectorProxy<Derived>;
1153 friend class DataWrapVec<Derived, Vector2dInfoProxy>;
1154 friend class DataWrapVec2d<Derived, Vector2dInfoProxy>;
1155
1156 protected:
1157 size_type x;
1158 size_type y;
1159 size_type _size;
1160 Storage *storage;
1161
1162 protected:
1163 Storage *data(off_type index) { return &storage[index]; }
1164 const Storage *data(off_type index) const { return &storage[index]; }
1165
1166 public:
1167 Vector2dBase()
1168 : storage(NULL)
1169 {}
1170
1171 ~Vector2dBase()
1172 {
1173 if (!storage)
1174 return;
1175
1176 for (off_type i = 0; i < _size; ++i)
1177 data(i)->~Storage();
1178 delete [] reinterpret_cast<char *>(storage);
1179 }
1180
1181 Derived &
1182 init(size_type _x, size_type _y)
1183 {
1184 assert(_x > 0 && _y > 0 && "sizes must be positive!");
1185 assert(!storage && "already initialized");
1186
1187 Derived &self = this->self();
1188 Info *info = this->info();
1189
1190 x = _x;
1191 y = _y;
1192 info->x = _x;
1193 info->y = _y;
1194 _size = x * y;
1195
1196 char *ptr = new char[_size * sizeof(Storage)];
1197 storage = reinterpret_cast<Storage *>(ptr);
1198
1199 for (off_type i = 0; i < _size; ++i)
1200 new (&storage[i]) Storage(info);
1201
1202 this->setInit();
1203
1204 return self;
1205 }
1206
1200 std::string ysubname(off_type i) const { return (*this->y_subnames)[i]; }
1201
1202 Proxy
1203 operator[](off_type index)
1204 {
1205 off_type offset = index * y;
1206 assert (index >= 0 && offset + index < size());
1207 return Proxy(this->self(), offset, y);
1208 }
1209
1210
1211 size_type
1212 size() const
1213 {
1214 return _size;
1215 }
1216
1217 bool
1218 zero() const
1219 {
1220 return data(0)->zero();
1221#if 0
1222 for (off_type i = 0; i < size(); ++i)
1223 if (!data(i)->zero())
1224 return false;
1225 return true;
1226#endif
1227 }
1228
1229 void
1230 prepare()
1231 {
1232 Info *info = this->info();
1233 size_type size = this->size();
1234
1235 for (off_type i = 0; i < size; ++i)
1236 data(i)->prepare(info);
1237
1238 info->cvec.resize(size);
1239 for (off_type i = 0; i < size; ++i)
1240 info->cvec[i] = data(i)->value();
1241 }
1242
1243 /**
1244 * Reset stat value to default
1245 */
1246 void
1247 reset()
1248 {
1249 Info *info = this->info();
1250 size_type size = this->size();
1251 for (off_type i = 0; i < size; ++i)
1252 data(i)->reset(info);
1253 }
1254
1255 bool
1256 check() const
1257 {
1258 return storage != NULL;
1259 }
1260};
1261
1262//////////////////////////////////////////////////////////////////////
1263//
1264// Non formula statistics
1265//
1266//////////////////////////////////////////////////////////////////////
1267
1268/**
1269 * Templatized storage and interface for a distrbution stat.
1270 */
1271class DistStor
1272{
1273 public:
1274 /** The parameters for a distribution stat. */
1275 struct Params : public DistParams
1276 {
1277 Params() : DistParams(Dist) {}
1278 };
1279
1280 private:
1281 /** The minimum value to track. */
1282 Counter min_track;
1283 /** The maximum value to track. */
1284 Counter max_track;
1285 /** The number of entries in each bucket. */
1286 Counter bucket_size;
1287 /** The number of buckets. Equal to (max-min)/bucket_size. */
1288 size_type buckets;
1289
1290 /** The smallest value sampled. */
1291 Counter min_val;
1292 /** The largest value sampled. */
1293 Counter max_val;
1294 /** The number of values sampled less than min. */
1295 Counter underflow;
1296 /** The number of values sampled more than max. */
1297 Counter overflow;
1298 /** The current sum. */
1299 Counter sum;
1300 /** The sum of squares. */
1301 Counter squares;
1302 /** The number of samples. */
1303 Counter samples;
1304 /** Counter for each bucket. */
1305 VCounter cvec;
1306
1307 public:
1308 DistStor(Info *info)
1309 : cvec(safe_cast<const Params *>(info->storageParams)->buckets)
1310 {
1311 reset(info);
1312 }
1313
1314 /**
1315 * Add a value to the distribution for the given number of times.
1316 * @param val The value to add.
1317 * @param number The number of times to add the value.
1318 */
1319 void
1320 sample(Counter val, int number)
1321 {
1322 if (val < min_track)
1323 underflow += number;
1324 else if (val > max_track)
1325 overflow += number;
1326 else {
1327 size_type index =
1328 (size_type)std::floor((val - min_track) / bucket_size);
1329 assert(index < size());
1330 cvec[index] += number;
1331 }
1332
1333 if (val < min_val)
1334 min_val = val;
1335
1336 if (val > max_val)
1337 max_val = val;
1338
1339 Counter sample = val * number;
1340 sum += sample;
1341 squares += sample * sample;
1342 samples += number;
1343 }
1344
1345 /**
1346 * Return the number of buckets in this distribution.
1347 * @return the number of buckets.
1348 */
1349 size_type size() const { return cvec.size(); }
1350
1351 /**
1352 * Returns true if any calls to sample have been made.
1353 * @return True if any values have been sampled.
1354 */
1355 bool
1356 zero() const
1357 {
1358 return samples == Counter();
1359 }
1360
1361 void
1362 prepare(Info *info, DistData &data)
1363 {
1364 const Params *params = safe_cast<const Params *>(info->storageParams);
1365
1366 data.min_val = (min_val == CounterLimits::max()) ? 0 : min_val;
1367 data.max_val = (max_val == CounterLimits::min()) ? 0 : max_val;
1368 data.underflow = underflow;
1369 data.overflow = overflow;
1370
1371 size_type buckets = params->buckets;
1372 data.cvec.resize(buckets);
1373 for (off_type i = 0; i < buckets; ++i)
1374 data.cvec[i] = cvec[i];
1375
1376 data.sum = sum;
1377 data.squares = squares;
1378 data.samples = samples;
1379 }
1380
1381 /**
1382 * Reset stat value to default
1383 */
1384 void
1385 reset(Info *info)
1386 {
1387 const Params *params = safe_cast<const Params *>(info->storageParams);
1388 min_track = params->min;
1389 max_track = params->max;
1390 bucket_size = params->bucket_size;
1391
1392 min_val = CounterLimits::max();
1393 max_val = CounterLimits::min();
1394 underflow = Counter();
1395 overflow = Counter();
1396
1397 size_type size = cvec.size();
1398 for (off_type i = 0; i < size; ++i)
1399 cvec[i] = Counter();
1400
1401 sum = Counter();
1402 squares = Counter();
1403 samples = Counter();
1404 }
1405};
1406
1407/**
1408 * Templatized storage and interface for a distribution that calculates mean
1409 * and variance.
1410 */
1411class SampleStor
1412{
1413 public:
1414 struct Params : public DistParams
1415 {
1416 Params() : DistParams(Deviation) {}
1417 };
1418
1419 private:
1420 /** The current sum. */
1421 Counter sum;
1422 /** The sum of squares. */
1423 Counter squares;
1424 /** The number of samples. */
1425 Counter samples;
1426
1427 public:
1428 /**
1429 * Create and initialize this storage.
1430 */
1431 SampleStor(Info *info)
1432 : sum(Counter()), squares(Counter()), samples(Counter())
1433 { }
1434
1435 /**
1436 * Add a value the given number of times to this running average.
1437 * Update the running sum and sum of squares, increment the number of
1438 * values seen by the given number.
1439 * @param val The value to add.
1440 * @param number The number of times to add the value.
1441 */
1442 void
1443 sample(Counter val, int number)
1444 {
1445 Counter value = val * number;
1446 sum += value;
1447 squares += value * value;
1448 samples += number;
1449 }
1450
1451 /**
1452 * Return the number of entries in this stat, 1
1453 * @return 1.
1454 */
1455 size_type size() const { return 1; }
1456
1457 /**
1458 * Return true if no samples have been added.
1459 * @return True if no samples have been added.
1460 */
1461 bool zero() const { return samples == Counter(); }
1462
1463 void
1464 prepare(Info *info, DistData &data)
1465 {
1466 data.sum = sum;
1467 data.squares = squares;
1468 data.samples = samples;
1469 }
1470
1471 /**
1472 * Reset stat value to default
1473 */
1474 void
1475 reset(Info *info)
1476 {
1477 sum = Counter();
1478 squares = Counter();
1479 samples = Counter();
1480 }
1481};
1482
1483/**
1484 * Templatized storage for distribution that calculates per tick mean and
1485 * variance.
1486 */
1487class AvgSampleStor
1488{
1489 public:
1490 struct Params : public DistParams
1491 {
1492 Params() : DistParams(Deviation) {}
1493 };
1494
1495 private:
1496 /** Current total. */
1497 Counter sum;
1498 /** Current sum of squares. */
1499 Counter squares;
1500
1501 public:
1502 /**
1503 * Create and initialize this storage.
1504 */
1505 AvgSampleStor(Info *info)
1506 : sum(Counter()), squares(Counter())
1507 {}
1508
1509 /**
1510 * Add a value to the distribution for the given number of times.
1511 * Update the running sum and sum of squares.
1512 * @param val The value to add.
1513 * @param number The number of times to add the value.
1514 */
1515 void
1516 sample(Counter val, int number)
1517 {
1518 Counter value = val * number;
1519 sum += value;
1520 squares += value * value;
1521 }
1522
1523 /**
1524 * Return the number of entries, in this case 1.
1525 * @return 1.
1526 */
1527 size_type size() const { return 1; }
1528
1529 /**
1530 * Return true if no samples have been added.
1531 * @return True if the sum is zero.
1532 */
1533 bool zero() const { return sum == Counter(); }
1534
1535 void
1536 prepare(Info *info, DistData &data)
1537 {
1538 data.sum = sum;
1539 data.squares = squares;
1540 data.samples = curTick;
1541 }
1542
1543 /**
1544 * Reset stat value to default
1545 */
1546 void
1547 reset(Info *info)
1548 {
1549 sum = Counter();
1550 squares = Counter();
1551 }
1552};
1553
1554/**
1555 * Implementation of a distribution stat. The type of distribution is
1556 * determined by the Storage template. @sa ScalarBase
1557 */
1558template <class Derived, class Stor>
1559class DistBase : public DataWrap<Derived, DistInfoProxy>
1560{
1561 public:
1562 typedef DistInfoProxy<Derived> Info;
1563 typedef Stor Storage;
1564 typedef typename Stor::Params Params;
1565
1566 protected:
1567 /** The storage for this stat. */
1568 char storage[sizeof(Storage)] __attribute__ ((aligned (8)));
1569
1570 protected:
1571 /**
1572 * Retrieve the storage.
1573 * @return The storage object for this stat.
1574 */
1575 Storage *
1576 data()
1577 {
1578 return reinterpret_cast<Storage *>(storage);
1579 }
1580
1581 /**
1582 * Retrieve a const pointer to the storage.
1583 * @return A const pointer to the storage object for this stat.
1584 */
1585 const Storage *
1586 data() const
1587 {
1588 return reinterpret_cast<const Storage *>(storage);
1589 }
1590
1591 void
1592 doInit()
1593 {
1594 new (storage) Storage(this->info());
1595 this->setInit();
1596 }
1597
1598 public:
1599 DistBase() { }
1600
1601 /**
1602 * Add a value to the distribtion n times. Calls sample on the storage
1603 * class.
1604 * @param v The value to add.
1605 * @param n The number of times to add it, defaults to 1.
1606 */
1607 template <typename U>
1608 void sample(const U &v, int n = 1) { data()->sample(v, n); }
1609
1610 /**
1611 * Return the number of entries in this stat.
1612 * @return The number of entries.
1613 */
1614 size_type size() const { return data()->size(); }
1615 /**
1616 * Return true if no samples have been added.
1617 * @return True if there haven't been any samples.
1618 */
1619 bool zero() const { return data()->zero(); }
1620
1621 void
1622 prepare()
1623 {
1624 Info *info = this->info();
1625 data()->prepare(info, info->data);
1626 }
1627
1628 /**
1629 * Reset stat value to default
1630 */
1631 void
1632 reset()
1633 {
1634 data()->reset(this->info());
1635 }
1636};
1637
1638template <class Stat>
1639class DistProxy;
1640
1641template <class Derived, class Stor>
1642class VectorDistBase : public DataWrapVec<Derived, VectorDistInfoProxy>
1643{
1644 public:
1645 typedef VectorDistInfoProxy<Derived> Info;
1646 typedef Stor Storage;
1647 typedef typename Stor::Params Params;
1648 typedef DistProxy<Derived> Proxy;
1649 friend class DistProxy<Derived>;
1650 friend class DataWrapVec<Derived, VectorDistInfoProxy>;
1651
1652 protected:
1653 Storage *storage;
1654 size_type _size;
1655
1656 protected:
1657 Storage *
1658 data(off_type index)
1659 {
1660 return &storage[index];
1661 }
1662
1663 const Storage *
1664 data(off_type index) const
1665 {
1666 return &storage[index];
1667 }
1668
1669 void
1670 doInit(size_type s)
1671 {
1672 assert(s > 0 && "size must be positive!");
1673 assert(!storage && "already initialized");
1674 _size = s;
1675
1676 char *ptr = new char[_size * sizeof(Storage)];
1677 storage = reinterpret_cast<Storage *>(ptr);
1678
1679 Info *info = this->info();
1680 for (off_type i = 0; i < _size; ++i)
1681 new (&storage[i]) Storage(info);
1682
1683 this->setInit();
1684 }
1685
1686 public:
1687 VectorDistBase()
1688 : storage(NULL)
1689 {}
1690
1691 ~VectorDistBase()
1692 {
1693 if (!storage)
1694 return ;
1695
1696 for (off_type i = 0; i < _size; ++i)
1697 data(i)->~Storage();
1698 delete [] reinterpret_cast<char *>(storage);
1699 }
1700
1701 Proxy operator[](off_type index)
1702 {
1703 assert(index >= 0 && index < size());
1704 return Proxy(this->self(), index);
1705 }
1706
1707 size_type
1708 size() const
1709 {
1710 return _size;
1711 }
1712
1713 bool
1714 zero() const
1715 {
1207 Proxy
1208 operator[](off_type index)
1209 {
1210 off_type offset = index * y;
1211 assert (index >= 0 && offset + index < size());
1212 return Proxy(this->self(), offset, y);
1213 }
1214
1215
1216 size_type
1217 size() const
1218 {
1219 return _size;
1220 }
1221
1222 bool
1223 zero() const
1224 {
1225 return data(0)->zero();
1226#if 0
1227 for (off_type i = 0; i < size(); ++i)
1228 if (!data(i)->zero())
1229 return false;
1230 return true;
1231#endif
1232 }
1233
1234 void
1235 prepare()
1236 {
1237 Info *info = this->info();
1238 size_type size = this->size();
1239
1240 for (off_type i = 0; i < size; ++i)
1241 data(i)->prepare(info);
1242
1243 info->cvec.resize(size);
1244 for (off_type i = 0; i < size; ++i)
1245 info->cvec[i] = data(i)->value();
1246 }
1247
1248 /**
1249 * Reset stat value to default
1250 */
1251 void
1252 reset()
1253 {
1254 Info *info = this->info();
1255 size_type size = this->size();
1256 for (off_type i = 0; i < size; ++i)
1257 data(i)->reset(info);
1258 }
1259
1260 bool
1261 check() const
1262 {
1263 return storage != NULL;
1264 }
1265};
1266
1267//////////////////////////////////////////////////////////////////////
1268//
1269// Non formula statistics
1270//
1271//////////////////////////////////////////////////////////////////////
1272
1273/**
1274 * Templatized storage and interface for a distrbution stat.
1275 */
1276class DistStor
1277{
1278 public:
1279 /** The parameters for a distribution stat. */
1280 struct Params : public DistParams
1281 {
1282 Params() : DistParams(Dist) {}
1283 };
1284
1285 private:
1286 /** The minimum value to track. */
1287 Counter min_track;
1288 /** The maximum value to track. */
1289 Counter max_track;
1290 /** The number of entries in each bucket. */
1291 Counter bucket_size;
1292 /** The number of buckets. Equal to (max-min)/bucket_size. */
1293 size_type buckets;
1294
1295 /** The smallest value sampled. */
1296 Counter min_val;
1297 /** The largest value sampled. */
1298 Counter max_val;
1299 /** The number of values sampled less than min. */
1300 Counter underflow;
1301 /** The number of values sampled more than max. */
1302 Counter overflow;
1303 /** The current sum. */
1304 Counter sum;
1305 /** The sum of squares. */
1306 Counter squares;
1307 /** The number of samples. */
1308 Counter samples;
1309 /** Counter for each bucket. */
1310 VCounter cvec;
1311
1312 public:
1313 DistStor(Info *info)
1314 : cvec(safe_cast<const Params *>(info->storageParams)->buckets)
1315 {
1316 reset(info);
1317 }
1318
1319 /**
1320 * Add a value to the distribution for the given number of times.
1321 * @param val The value to add.
1322 * @param number The number of times to add the value.
1323 */
1324 void
1325 sample(Counter val, int number)
1326 {
1327 if (val < min_track)
1328 underflow += number;
1329 else if (val > max_track)
1330 overflow += number;
1331 else {
1332 size_type index =
1333 (size_type)std::floor((val - min_track) / bucket_size);
1334 assert(index < size());
1335 cvec[index] += number;
1336 }
1337
1338 if (val < min_val)
1339 min_val = val;
1340
1341 if (val > max_val)
1342 max_val = val;
1343
1344 Counter sample = val * number;
1345 sum += sample;
1346 squares += sample * sample;
1347 samples += number;
1348 }
1349
1350 /**
1351 * Return the number of buckets in this distribution.
1352 * @return the number of buckets.
1353 */
1354 size_type size() const { return cvec.size(); }
1355
1356 /**
1357 * Returns true if any calls to sample have been made.
1358 * @return True if any values have been sampled.
1359 */
1360 bool
1361 zero() const
1362 {
1363 return samples == Counter();
1364 }
1365
1366 void
1367 prepare(Info *info, DistData &data)
1368 {
1369 const Params *params = safe_cast<const Params *>(info->storageParams);
1370
1371 data.min_val = (min_val == CounterLimits::max()) ? 0 : min_val;
1372 data.max_val = (max_val == CounterLimits::min()) ? 0 : max_val;
1373 data.underflow = underflow;
1374 data.overflow = overflow;
1375
1376 size_type buckets = params->buckets;
1377 data.cvec.resize(buckets);
1378 for (off_type i = 0; i < buckets; ++i)
1379 data.cvec[i] = cvec[i];
1380
1381 data.sum = sum;
1382 data.squares = squares;
1383 data.samples = samples;
1384 }
1385
1386 /**
1387 * Reset stat value to default
1388 */
1389 void
1390 reset(Info *info)
1391 {
1392 const Params *params = safe_cast<const Params *>(info->storageParams);
1393 min_track = params->min;
1394 max_track = params->max;
1395 bucket_size = params->bucket_size;
1396
1397 min_val = CounterLimits::max();
1398 max_val = CounterLimits::min();
1399 underflow = Counter();
1400 overflow = Counter();
1401
1402 size_type size = cvec.size();
1403 for (off_type i = 0; i < size; ++i)
1404 cvec[i] = Counter();
1405
1406 sum = Counter();
1407 squares = Counter();
1408 samples = Counter();
1409 }
1410};
1411
1412/**
1413 * Templatized storage and interface for a distribution that calculates mean
1414 * and variance.
1415 */
1416class SampleStor
1417{
1418 public:
1419 struct Params : public DistParams
1420 {
1421 Params() : DistParams(Deviation) {}
1422 };
1423
1424 private:
1425 /** The current sum. */
1426 Counter sum;
1427 /** The sum of squares. */
1428 Counter squares;
1429 /** The number of samples. */
1430 Counter samples;
1431
1432 public:
1433 /**
1434 * Create and initialize this storage.
1435 */
1436 SampleStor(Info *info)
1437 : sum(Counter()), squares(Counter()), samples(Counter())
1438 { }
1439
1440 /**
1441 * Add a value the given number of times to this running average.
1442 * Update the running sum and sum of squares, increment the number of
1443 * values seen by the given number.
1444 * @param val The value to add.
1445 * @param number The number of times to add the value.
1446 */
1447 void
1448 sample(Counter val, int number)
1449 {
1450 Counter value = val * number;
1451 sum += value;
1452 squares += value * value;
1453 samples += number;
1454 }
1455
1456 /**
1457 * Return the number of entries in this stat, 1
1458 * @return 1.
1459 */
1460 size_type size() const { return 1; }
1461
1462 /**
1463 * Return true if no samples have been added.
1464 * @return True if no samples have been added.
1465 */
1466 bool zero() const { return samples == Counter(); }
1467
1468 void
1469 prepare(Info *info, DistData &data)
1470 {
1471 data.sum = sum;
1472 data.squares = squares;
1473 data.samples = samples;
1474 }
1475
1476 /**
1477 * Reset stat value to default
1478 */
1479 void
1480 reset(Info *info)
1481 {
1482 sum = Counter();
1483 squares = Counter();
1484 samples = Counter();
1485 }
1486};
1487
1488/**
1489 * Templatized storage for distribution that calculates per tick mean and
1490 * variance.
1491 */
1492class AvgSampleStor
1493{
1494 public:
1495 struct Params : public DistParams
1496 {
1497 Params() : DistParams(Deviation) {}
1498 };
1499
1500 private:
1501 /** Current total. */
1502 Counter sum;
1503 /** Current sum of squares. */
1504 Counter squares;
1505
1506 public:
1507 /**
1508 * Create and initialize this storage.
1509 */
1510 AvgSampleStor(Info *info)
1511 : sum(Counter()), squares(Counter())
1512 {}
1513
1514 /**
1515 * Add a value to the distribution for the given number of times.
1516 * Update the running sum and sum of squares.
1517 * @param val The value to add.
1518 * @param number The number of times to add the value.
1519 */
1520 void
1521 sample(Counter val, int number)
1522 {
1523 Counter value = val * number;
1524 sum += value;
1525 squares += value * value;
1526 }
1527
1528 /**
1529 * Return the number of entries, in this case 1.
1530 * @return 1.
1531 */
1532 size_type size() const { return 1; }
1533
1534 /**
1535 * Return true if no samples have been added.
1536 * @return True if the sum is zero.
1537 */
1538 bool zero() const { return sum == Counter(); }
1539
1540 void
1541 prepare(Info *info, DistData &data)
1542 {
1543 data.sum = sum;
1544 data.squares = squares;
1545 data.samples = curTick;
1546 }
1547
1548 /**
1549 * Reset stat value to default
1550 */
1551 void
1552 reset(Info *info)
1553 {
1554 sum = Counter();
1555 squares = Counter();
1556 }
1557};
1558
1559/**
1560 * Implementation of a distribution stat. The type of distribution is
1561 * determined by the Storage template. @sa ScalarBase
1562 */
1563template <class Derived, class Stor>
1564class DistBase : public DataWrap<Derived, DistInfoProxy>
1565{
1566 public:
1567 typedef DistInfoProxy<Derived> Info;
1568 typedef Stor Storage;
1569 typedef typename Stor::Params Params;
1570
1571 protected:
1572 /** The storage for this stat. */
1573 char storage[sizeof(Storage)] __attribute__ ((aligned (8)));
1574
1575 protected:
1576 /**
1577 * Retrieve the storage.
1578 * @return The storage object for this stat.
1579 */
1580 Storage *
1581 data()
1582 {
1583 return reinterpret_cast<Storage *>(storage);
1584 }
1585
1586 /**
1587 * Retrieve a const pointer to the storage.
1588 * @return A const pointer to the storage object for this stat.
1589 */
1590 const Storage *
1591 data() const
1592 {
1593 return reinterpret_cast<const Storage *>(storage);
1594 }
1595
1596 void
1597 doInit()
1598 {
1599 new (storage) Storage(this->info());
1600 this->setInit();
1601 }
1602
1603 public:
1604 DistBase() { }
1605
1606 /**
1607 * Add a value to the distribtion n times. Calls sample on the storage
1608 * class.
1609 * @param v The value to add.
1610 * @param n The number of times to add it, defaults to 1.
1611 */
1612 template <typename U>
1613 void sample(const U &v, int n = 1) { data()->sample(v, n); }
1614
1615 /**
1616 * Return the number of entries in this stat.
1617 * @return The number of entries.
1618 */
1619 size_type size() const { return data()->size(); }
1620 /**
1621 * Return true if no samples have been added.
1622 * @return True if there haven't been any samples.
1623 */
1624 bool zero() const { return data()->zero(); }
1625
1626 void
1627 prepare()
1628 {
1629 Info *info = this->info();
1630 data()->prepare(info, info->data);
1631 }
1632
1633 /**
1634 * Reset stat value to default
1635 */
1636 void
1637 reset()
1638 {
1639 data()->reset(this->info());
1640 }
1641};
1642
1643template <class Stat>
1644class DistProxy;
1645
1646template <class Derived, class Stor>
1647class VectorDistBase : public DataWrapVec<Derived, VectorDistInfoProxy>
1648{
1649 public:
1650 typedef VectorDistInfoProxy<Derived> Info;
1651 typedef Stor Storage;
1652 typedef typename Stor::Params Params;
1653 typedef DistProxy<Derived> Proxy;
1654 friend class DistProxy<Derived>;
1655 friend class DataWrapVec<Derived, VectorDistInfoProxy>;
1656
1657 protected:
1658 Storage *storage;
1659 size_type _size;
1660
1661 protected:
1662 Storage *
1663 data(off_type index)
1664 {
1665 return &storage[index];
1666 }
1667
1668 const Storage *
1669 data(off_type index) const
1670 {
1671 return &storage[index];
1672 }
1673
1674 void
1675 doInit(size_type s)
1676 {
1677 assert(s > 0 && "size must be positive!");
1678 assert(!storage && "already initialized");
1679 _size = s;
1680
1681 char *ptr = new char[_size * sizeof(Storage)];
1682 storage = reinterpret_cast<Storage *>(ptr);
1683
1684 Info *info = this->info();
1685 for (off_type i = 0; i < _size; ++i)
1686 new (&storage[i]) Storage(info);
1687
1688 this->setInit();
1689 }
1690
1691 public:
1692 VectorDistBase()
1693 : storage(NULL)
1694 {}
1695
1696 ~VectorDistBase()
1697 {
1698 if (!storage)
1699 return ;
1700
1701 for (off_type i = 0; i < _size; ++i)
1702 data(i)->~Storage();
1703 delete [] reinterpret_cast<char *>(storage);
1704 }
1705
1706 Proxy operator[](off_type index)
1707 {
1708 assert(index >= 0 && index < size());
1709 return Proxy(this->self(), index);
1710 }
1711
1712 size_type
1713 size() const
1714 {
1715 return _size;
1716 }
1717
1718 bool
1719 zero() const
1720 {
1716 return false;
1717#if 0
1718 for (off_type i = 0; i < size(); ++i)
1719 if (!data(i)->zero())
1720 return false;
1721 return true;
1721 for (off_type i = 0; i < size(); ++i)
1722 if (!data(i)->zero())
1723 return false;
1724 return true;
1722#endif
1723 }
1724
1725 void
1726 prepare()
1727 {
1728 Info *info = this->info();
1729 size_type size = this->size();
1730 info->data.resize(size);
1731 for (off_type i = 0; i < size; ++i)
1732 data(i)->prepare(info, info->data[i]);
1733 }
1734
1735 bool
1736 check() const
1737 {
1738 return storage != NULL;
1739 }
1740};
1741
1742template <class Stat>
1743class DistProxy
1744{
1745 private:
1746 Stat &stat;
1747 off_type index;
1748
1749 protected:
1750 typename Stat::Storage *data() { return stat.data(index); }
1751 const typename Stat::Storage *data() const { return stat.data(index); }
1752
1753 public:
1754 DistProxy(Stat &s, off_type i)
1755 : stat(s), index(i)
1756 {}
1757
1758 DistProxy(const DistProxy &sp)
1759 : stat(sp.stat), index(sp.index)
1760 {}
1761
1762 const DistProxy &
1763 operator=(const DistProxy &sp)
1764 {
1765 stat = sp.stat;
1766 index = sp.index;
1767 return *this;
1768 }
1769
1770 public:
1771 template <typename U>
1772 void
1773 sample(const U &v, int n = 1)
1774 {
1775 data()->sample(v, n);
1776 }
1777
1778 size_type
1779 size() const
1780 {
1781 return 1;
1782 }
1783
1784 bool
1785 zero() const
1786 {
1787 return data()->zero();
1788 }
1789
1790 /**
1791 * Proxy has no state. Nothing to reset.
1792 */
1793 void reset() { }
1794};
1725 }
1726
1727 void
1728 prepare()
1729 {
1730 Info *info = this->info();
1731 size_type size = this->size();
1732 info->data.resize(size);
1733 for (off_type i = 0; i < size; ++i)
1734 data(i)->prepare(info, info->data[i]);
1735 }
1736
1737 bool
1738 check() const
1739 {
1740 return storage != NULL;
1741 }
1742};
1743
1744template <class Stat>
1745class DistProxy
1746{
1747 private:
1748 Stat &stat;
1749 off_type index;
1750
1751 protected:
1752 typename Stat::Storage *data() { return stat.data(index); }
1753 const typename Stat::Storage *data() const { return stat.data(index); }
1754
1755 public:
1756 DistProxy(Stat &s, off_type i)
1757 : stat(s), index(i)
1758 {}
1759
1760 DistProxy(const DistProxy &sp)
1761 : stat(sp.stat), index(sp.index)
1762 {}
1763
1764 const DistProxy &
1765 operator=(const DistProxy &sp)
1766 {
1767 stat = sp.stat;
1768 index = sp.index;
1769 return *this;
1770 }
1771
1772 public:
1773 template <typename U>
1774 void
1775 sample(const U &v, int n = 1)
1776 {
1777 data()->sample(v, n);
1778 }
1779
1780 size_type
1781 size() const
1782 {
1783 return 1;
1784 }
1785
1786 bool
1787 zero() const
1788 {
1789 return data()->zero();
1790 }
1791
1792 /**
1793 * Proxy has no state. Nothing to reset.
1794 */
1795 void reset() { }
1796};
1795/*
1796template <class Derived, class Stor>
1797inline typename VectorDistBase<Derived, Stor>::Proxy
1798VectorDistBase<Derived, Stor>::operator[](off_type index)
1799{
1800 assert (index >= 0 && index < size());
1801 typedef typename VectorDistBase<Derived, Stor>::Proxy Proxy;
1802 return Proxy(this->self(), index);
1803}
1804*/
1805
1797
1806#if 0
1807template <class Storage>
1808Result
1809VectorDistBase<Storage>::total(off_type index) const
1810{
1811 Result total = 0.0;
1812 for (off_type i = 0; i < x_size(); ++i)
1813 total += data(i)->result();
1814}
1815#endif
1816
1817//////////////////////////////////////////////////////////////////////
1818//
1819// Formula Details
1820//
1821//////////////////////////////////////////////////////////////////////
1822
1823/**
1824 * Base class for formula statistic node. These nodes are used to build a tree
1825 * that represents the formula.
1826 */
1827class Node : public RefCounted
1828{
1829 public:
1830 /**
1831 * Return the number of nodes in the subtree starting at this node.
1832 * @return the number of nodes in this subtree.
1833 */
1834 virtual size_type size() const = 0;
1835 /**
1836 * Return the result vector of this subtree.
1837 * @return The result vector of this subtree.
1838 */
1839 virtual const VResult &result() const = 0;
1840 /**
1841 * Return the total of the result vector.
1842 * @return The total of the result vector.
1843 */
1844 virtual Result total() const = 0;
1845
1846 /**
1847 *
1848 */
1849 virtual std::string str() const = 0;
1850};
1851
1852/** Reference counting pointer to a function Node. */
1853typedef RefCountingPtr<Node> NodePtr;
1854
1855class ScalarStatNode : public Node
1856{
1857 private:
1858 const ScalarInfo *data;
1859 mutable VResult vresult;
1860
1861 public:
1862 ScalarStatNode(const ScalarInfo *d) : data(d), vresult(1) {}
1863
1864 const VResult &
1865 result() const
1866 {
1867 vresult[0] = data->result();
1868 return vresult;
1869 }
1870
1871 Result total() const { return data->result(); };
1872
1873 size_type size() const { return 1; }
1874
1875 /**
1876 *
1877 */
1878 std::string str() const { return data->name; }
1879};
1880
1881template <class Stat>
1882class ScalarProxyNode : public Node
1883{
1884 private:
1885 const ScalarProxy<Stat> proxy;
1886 mutable VResult vresult;
1887
1888 public:
1889 ScalarProxyNode(const ScalarProxy<Stat> &p)
1890 : proxy(p), vresult(1)
1891 { }
1892
1893 const VResult &
1894 result() const
1895 {
1896 vresult[0] = proxy.result();
1897 return vresult;
1898 }
1899
1900 Result
1901 total() const
1902 {
1903 return proxy.result();
1904 }
1905
1906 size_type
1907 size() const
1908 {
1909 return 1;
1910 }
1911
1912 /**
1913 *
1914 */
1915 std::string
1916 str() const
1917 {
1918 return proxy.str();
1919 }
1920};
1921
1922class VectorStatNode : public Node
1923{
1924 private:
1925 const VectorInfo *data;
1926
1927 public:
1928 VectorStatNode(const VectorInfo *d) : data(d) { }
1929 const VResult &result() const { return data->result(); }
1930 Result total() const { return data->total(); };
1931
1932 size_type size() const { return data->size(); }
1933
1934 std::string str() const { return data->name; }
1935};
1936
1937template <class T>
1938class ConstNode : public Node
1939{
1940 private:
1941 VResult vresult;
1942
1943 public:
1944 ConstNode(T s) : vresult(1, (Result)s) {}
1945 const VResult &result() const { return vresult; }
1946 Result total() const { return vresult[0]; };
1947 size_type size() const { return 1; }
1948 std::string str() const { return to_string(vresult[0]); }
1949};
1950
1951template <class T>
1952class ConstVectorNode : public Node
1953{
1954 private:
1955 VResult vresult;
1956
1957 public:
1958 ConstVectorNode(const T &s) : vresult(s.begin(), s.end()) {}
1959 const VResult &result() const { return vresult; }
1960
1961 Result
1962 total() const
1963 {
1964 size_type size = this->size();
1965 Result tmp = 0;
1966 for (off_type i = 0; i < size; i++)
1967 tmp += vresult[i];
1968 return tmp;
1969 }
1970
1971 size_type size() const { return vresult.size(); }
1972 std::string
1973 str() const
1974 {
1975 size_type size = this->size();
1976 std::string tmp = "(";
1977 for (off_type i = 0; i < size; i++)
1978 tmp += csprintf("%s ",to_string(vresult[i]));
1979 tmp += ")";
1980 return tmp;
1981 }
1982};
1983
1984template <class Op>
1985struct OpString;
1986
1987template<>
1988struct OpString<std::plus<Result> >
1989{
1990 static std::string str() { return "+"; }
1991};
1992
1993template<>
1994struct OpString<std::minus<Result> >
1995{
1996 static std::string str() { return "-"; }
1997};
1998
1999template<>
2000struct OpString<std::multiplies<Result> >
2001{
2002 static std::string str() { return "*"; }
2003};
2004
2005template<>
2006struct OpString<std::divides<Result> >
2007{
2008 static std::string str() { return "/"; }
2009};
2010
2011template<>
2012struct OpString<std::modulus<Result> >
2013{
2014 static std::string str() { return "%"; }
2015};
2016
2017template<>
2018struct OpString<std::negate<Result> >
2019{
2020 static std::string str() { return "-"; }
2021};
2022
2023template <class Op>
2024class UnaryNode : public Node
2025{
2026 public:
2027 NodePtr l;
2028 mutable VResult vresult;
2029
2030 public:
2031 UnaryNode(NodePtr &p) : l(p) {}
2032
2033 const VResult &
2034 result() const
2035 {
2036 const VResult &lvec = l->result();
2037 size_type size = lvec.size();
2038
2039 assert(size > 0);
2040
2041 vresult.resize(size);
2042 Op op;
2043 for (off_type i = 0; i < size; ++i)
2044 vresult[i] = op(lvec[i]);
2045
2046 return vresult;
2047 }
2048
2049 Result
2050 total() const
2051 {
2052 const VResult &vec = this->result();
2053 Result total = 0.0;
2054 for (off_type i = 0; i < size(); i++)
2055 total += vec[i];
2056 return total;
2057 }
2058
2059 size_type size() const { return l->size(); }
2060
2061 std::string
2062 str() const
2063 {
2064 return OpString<Op>::str() + l->str();
2065 }
2066};
2067
2068template <class Op>
2069class BinaryNode : public Node
2070{
2071 public:
2072 NodePtr l;
2073 NodePtr r;
2074 mutable VResult vresult;
2075
2076 public:
2077 BinaryNode(NodePtr &a, NodePtr &b) : l(a), r(b) {}
2078
2079 const VResult &
2080 result() const
2081 {
2082 Op op;
2083 const VResult &lvec = l->result();
2084 const VResult &rvec = r->result();
2085
2086 assert(lvec.size() > 0 && rvec.size() > 0);
2087
2088 if (lvec.size() == 1 && rvec.size() == 1) {
2089 vresult.resize(1);
2090 vresult[0] = op(lvec[0], rvec[0]);
2091 } else if (lvec.size() == 1) {
2092 size_type size = rvec.size();
2093 vresult.resize(size);
2094 for (off_type i = 0; i < size; ++i)
2095 vresult[i] = op(lvec[0], rvec[i]);
2096 } else if (rvec.size() == 1) {
2097 size_type size = lvec.size();
2098 vresult.resize(size);
2099 for (off_type i = 0; i < size; ++i)
2100 vresult[i] = op(lvec[i], rvec[0]);
2101 } else if (rvec.size() == lvec.size()) {
2102 size_type size = rvec.size();
2103 vresult.resize(size);
2104 for (off_type i = 0; i < size; ++i)
2105 vresult[i] = op(lvec[i], rvec[i]);
2106 }
2107
2108 return vresult;
2109 }
2110
2111 Result
2112 total() const
2113 {
2114 const VResult &vec = this->result();
2115 Result total = 0.0;
2116 for (off_type i = 0; i < size(); i++)
2117 total += vec[i];
2118 return total;
2119 }
2120
2121 size_type
2122 size() const
2123 {
2124 size_type ls = l->size();
2125 size_type rs = r->size();
2126 if (ls == 1) {
2127 return rs;
2128 } else if (rs == 1) {
2129 return ls;
2130 } else {
2131 assert(ls == rs && "Node vector sizes are not equal");
2132 return ls;
2133 }
2134 }
2135
2136 std::string
2137 str() const
2138 {
2139 return csprintf("(%s %s %s)", l->str(), OpString<Op>::str(), r->str());
2140 }
2141};
2142
2143template <class Op>
2144class SumNode : public Node
2145{
2146 public:
2147 NodePtr l;
2148 mutable VResult vresult;
2149
2150 public:
2151 SumNode(NodePtr &p) : l(p), vresult(1) {}
2152
2153 const VResult &
2154 result() const
2155 {
2156 const VResult &lvec = l->result();
2157 size_type size = lvec.size();
2158 assert(size > 0);
2159
2160 vresult[0] = 0.0;
2161
2162 Op op;
2163 for (off_type i = 0; i < size; ++i)
2164 vresult[0] = op(vresult[0], lvec[i]);
2165
2166 return vresult;
2167 }
2168
2169 Result
2170 total() const
2171 {
2172 const VResult &lvec = l->result();
2173 size_type size = lvec.size();
2174 assert(size > 0);
2175
2176 Result vresult = 0.0;
2177
2178 Op op;
2179 for (off_type i = 0; i < size; ++i)
2180 vresult = op(vresult, lvec[i]);
2181
2182 return vresult;
2183 }
2184
2185 size_type size() const { return 1; }
2186
2187 std::string
2188 str() const
2189 {
2190 return csprintf("total(%s)", l->str());
2191 }
2192};
2193
2194
2195//////////////////////////////////////////////////////////////////////
2196//
2197// Visible Statistics Types
2198//
2199//////////////////////////////////////////////////////////////////////
2200/**
2201 * @defgroup VisibleStats "Statistic Types"
2202 * These are the statistics that are used in the simulator.
2203 * @{
2204 */
2205
2206/**
2207 * This is a simple scalar statistic, like a counter.
2208 * @sa Stat, ScalarBase, StatStor
2209 */
2210class Scalar : public ScalarBase<Scalar, StatStor>
2211{
2212 public:
2213 using ScalarBase<Scalar, StatStor>::operator=;
2214};
2215
2216/**
2217 * A stat that calculates the per tick average of a value.
2218 * @sa Stat, ScalarBase, AvgStor
2219 */
2220class Average : public ScalarBase<Average, AvgStor>
2221{
2222 public:
2223 using ScalarBase<Average, AvgStor>::operator=;
2224};
2225
2226class Value : public ValueBase<Value>
2227{
2228};
2229
2230/**
2231 * A vector of scalar stats.
2232 * @sa Stat, VectorBase, StatStor
2233 */
2234class Vector : public VectorBase<Vector, StatStor>
2235{
2236};
2237
2238/**
2239 * A vector of Average stats.
2240 * @sa Stat, VectorBase, AvgStor
2241 */
2242class AverageVector : public VectorBase<AverageVector, AvgStor>
2243{
2244};
2245
2246/**
2247 * A 2-Dimensional vecto of scalar stats.
2248 * @sa Stat, Vector2dBase, StatStor
2249 */
2250class Vector2d : public Vector2dBase<Vector2d, StatStor>
2251{
2252};
2253
2254/**
2255 * A simple distribution stat.
2256 * @sa Stat, DistBase, DistStor
2257 */
2258class Distribution : public DistBase<Distribution, DistStor>
2259{
2260 public:
2261 /**
2262 * Set the parameters of this distribution. @sa DistStor::Params
2263 * @param min The minimum value of the distribution.
2264 * @param max The maximum value of the distribution.
2265 * @param bkt The number of values in each bucket.
2266 * @return A reference to this distribution.
2267 */
2268 Distribution &
2269 init(Counter min, Counter max, Counter bkt)
2270 {
2271 DistStor::Params *params = new DistStor::Params;
2272 params->min = min;
2273 params->max = max;
2274 params->bucket_size = bkt;
2275 params->buckets = (size_type)rint((max - min + 1.0) / bkt );
2276 this->setParams(params);
2277 this->doInit();
2278 return this->self();
2279 }
2280};
2281
2282/**
2283 * Calculates the mean and variance of all the samples.
2284 * @sa DistBase, SampleStor
2285 */
2286class StandardDeviation : public DistBase<StandardDeviation, SampleStor>
2287{
2288 public:
2289 /**
2290 * Construct and initialize this distribution.
2291 */
2292 StandardDeviation()
2293 {
1798//////////////////////////////////////////////////////////////////////
1799//
1800// Formula Details
1801//
1802//////////////////////////////////////////////////////////////////////
1803
1804/**
1805 * Base class for formula statistic node. These nodes are used to build a tree
1806 * that represents the formula.
1807 */
1808class Node : public RefCounted
1809{
1810 public:
1811 /**
1812 * Return the number of nodes in the subtree starting at this node.
1813 * @return the number of nodes in this subtree.
1814 */
1815 virtual size_type size() const = 0;
1816 /**
1817 * Return the result vector of this subtree.
1818 * @return The result vector of this subtree.
1819 */
1820 virtual const VResult &result() const = 0;
1821 /**
1822 * Return the total of the result vector.
1823 * @return The total of the result vector.
1824 */
1825 virtual Result total() const = 0;
1826
1827 /**
1828 *
1829 */
1830 virtual std::string str() const = 0;
1831};
1832
1833/** Reference counting pointer to a function Node. */
1834typedef RefCountingPtr<Node> NodePtr;
1835
1836class ScalarStatNode : public Node
1837{
1838 private:
1839 const ScalarInfo *data;
1840 mutable VResult vresult;
1841
1842 public:
1843 ScalarStatNode(const ScalarInfo *d) : data(d), vresult(1) {}
1844
1845 const VResult &
1846 result() const
1847 {
1848 vresult[0] = data->result();
1849 return vresult;
1850 }
1851
1852 Result total() const { return data->result(); };
1853
1854 size_type size() const { return 1; }
1855
1856 /**
1857 *
1858 */
1859 std::string str() const { return data->name; }
1860};
1861
1862template <class Stat>
1863class ScalarProxyNode : public Node
1864{
1865 private:
1866 const ScalarProxy<Stat> proxy;
1867 mutable VResult vresult;
1868
1869 public:
1870 ScalarProxyNode(const ScalarProxy<Stat> &p)
1871 : proxy(p), vresult(1)
1872 { }
1873
1874 const VResult &
1875 result() const
1876 {
1877 vresult[0] = proxy.result();
1878 return vresult;
1879 }
1880
1881 Result
1882 total() const
1883 {
1884 return proxy.result();
1885 }
1886
1887 size_type
1888 size() const
1889 {
1890 return 1;
1891 }
1892
1893 /**
1894 *
1895 */
1896 std::string
1897 str() const
1898 {
1899 return proxy.str();
1900 }
1901};
1902
1903class VectorStatNode : public Node
1904{
1905 private:
1906 const VectorInfo *data;
1907
1908 public:
1909 VectorStatNode(const VectorInfo *d) : data(d) { }
1910 const VResult &result() const { return data->result(); }
1911 Result total() const { return data->total(); };
1912
1913 size_type size() const { return data->size(); }
1914
1915 std::string str() const { return data->name; }
1916};
1917
1918template <class T>
1919class ConstNode : public Node
1920{
1921 private:
1922 VResult vresult;
1923
1924 public:
1925 ConstNode(T s) : vresult(1, (Result)s) {}
1926 const VResult &result() const { return vresult; }
1927 Result total() const { return vresult[0]; };
1928 size_type size() const { return 1; }
1929 std::string str() const { return to_string(vresult[0]); }
1930};
1931
1932template <class T>
1933class ConstVectorNode : public Node
1934{
1935 private:
1936 VResult vresult;
1937
1938 public:
1939 ConstVectorNode(const T &s) : vresult(s.begin(), s.end()) {}
1940 const VResult &result() const { return vresult; }
1941
1942 Result
1943 total() const
1944 {
1945 size_type size = this->size();
1946 Result tmp = 0;
1947 for (off_type i = 0; i < size; i++)
1948 tmp += vresult[i];
1949 return tmp;
1950 }
1951
1952 size_type size() const { return vresult.size(); }
1953 std::string
1954 str() const
1955 {
1956 size_type size = this->size();
1957 std::string tmp = "(";
1958 for (off_type i = 0; i < size; i++)
1959 tmp += csprintf("%s ",to_string(vresult[i]));
1960 tmp += ")";
1961 return tmp;
1962 }
1963};
1964
1965template <class Op>
1966struct OpString;
1967
1968template<>
1969struct OpString<std::plus<Result> >
1970{
1971 static std::string str() { return "+"; }
1972};
1973
1974template<>
1975struct OpString<std::minus<Result> >
1976{
1977 static std::string str() { return "-"; }
1978};
1979
1980template<>
1981struct OpString<std::multiplies<Result> >
1982{
1983 static std::string str() { return "*"; }
1984};
1985
1986template<>
1987struct OpString<std::divides<Result> >
1988{
1989 static std::string str() { return "/"; }
1990};
1991
1992template<>
1993struct OpString<std::modulus<Result> >
1994{
1995 static std::string str() { return "%"; }
1996};
1997
1998template<>
1999struct OpString<std::negate<Result> >
2000{
2001 static std::string str() { return "-"; }
2002};
2003
2004template <class Op>
2005class UnaryNode : public Node
2006{
2007 public:
2008 NodePtr l;
2009 mutable VResult vresult;
2010
2011 public:
2012 UnaryNode(NodePtr &p) : l(p) {}
2013
2014 const VResult &
2015 result() const
2016 {
2017 const VResult &lvec = l->result();
2018 size_type size = lvec.size();
2019
2020 assert(size > 0);
2021
2022 vresult.resize(size);
2023 Op op;
2024 for (off_type i = 0; i < size; ++i)
2025 vresult[i] = op(lvec[i]);
2026
2027 return vresult;
2028 }
2029
2030 Result
2031 total() const
2032 {
2033 const VResult &vec = this->result();
2034 Result total = 0.0;
2035 for (off_type i = 0; i < size(); i++)
2036 total += vec[i];
2037 return total;
2038 }
2039
2040 size_type size() const { return l->size(); }
2041
2042 std::string
2043 str() const
2044 {
2045 return OpString<Op>::str() + l->str();
2046 }
2047};
2048
2049template <class Op>
2050class BinaryNode : public Node
2051{
2052 public:
2053 NodePtr l;
2054 NodePtr r;
2055 mutable VResult vresult;
2056
2057 public:
2058 BinaryNode(NodePtr &a, NodePtr &b) : l(a), r(b) {}
2059
2060 const VResult &
2061 result() const
2062 {
2063 Op op;
2064 const VResult &lvec = l->result();
2065 const VResult &rvec = r->result();
2066
2067 assert(lvec.size() > 0 && rvec.size() > 0);
2068
2069 if (lvec.size() == 1 && rvec.size() == 1) {
2070 vresult.resize(1);
2071 vresult[0] = op(lvec[0], rvec[0]);
2072 } else if (lvec.size() == 1) {
2073 size_type size = rvec.size();
2074 vresult.resize(size);
2075 for (off_type i = 0; i < size; ++i)
2076 vresult[i] = op(lvec[0], rvec[i]);
2077 } else if (rvec.size() == 1) {
2078 size_type size = lvec.size();
2079 vresult.resize(size);
2080 for (off_type i = 0; i < size; ++i)
2081 vresult[i] = op(lvec[i], rvec[0]);
2082 } else if (rvec.size() == lvec.size()) {
2083 size_type size = rvec.size();
2084 vresult.resize(size);
2085 for (off_type i = 0; i < size; ++i)
2086 vresult[i] = op(lvec[i], rvec[i]);
2087 }
2088
2089 return vresult;
2090 }
2091
2092 Result
2093 total() const
2094 {
2095 const VResult &vec = this->result();
2096 Result total = 0.0;
2097 for (off_type i = 0; i < size(); i++)
2098 total += vec[i];
2099 return total;
2100 }
2101
2102 size_type
2103 size() const
2104 {
2105 size_type ls = l->size();
2106 size_type rs = r->size();
2107 if (ls == 1) {
2108 return rs;
2109 } else if (rs == 1) {
2110 return ls;
2111 } else {
2112 assert(ls == rs && "Node vector sizes are not equal");
2113 return ls;
2114 }
2115 }
2116
2117 std::string
2118 str() const
2119 {
2120 return csprintf("(%s %s %s)", l->str(), OpString<Op>::str(), r->str());
2121 }
2122};
2123
2124template <class Op>
2125class SumNode : public Node
2126{
2127 public:
2128 NodePtr l;
2129 mutable VResult vresult;
2130
2131 public:
2132 SumNode(NodePtr &p) : l(p), vresult(1) {}
2133
2134 const VResult &
2135 result() const
2136 {
2137 const VResult &lvec = l->result();
2138 size_type size = lvec.size();
2139 assert(size > 0);
2140
2141 vresult[0] = 0.0;
2142
2143 Op op;
2144 for (off_type i = 0; i < size; ++i)
2145 vresult[0] = op(vresult[0], lvec[i]);
2146
2147 return vresult;
2148 }
2149
2150 Result
2151 total() const
2152 {
2153 const VResult &lvec = l->result();
2154 size_type size = lvec.size();
2155 assert(size > 0);
2156
2157 Result vresult = 0.0;
2158
2159 Op op;
2160 for (off_type i = 0; i < size; ++i)
2161 vresult = op(vresult, lvec[i]);
2162
2163 return vresult;
2164 }
2165
2166 size_type size() const { return 1; }
2167
2168 std::string
2169 str() const
2170 {
2171 return csprintf("total(%s)", l->str());
2172 }
2173};
2174
2175
2176//////////////////////////////////////////////////////////////////////
2177//
2178// Visible Statistics Types
2179//
2180//////////////////////////////////////////////////////////////////////
2181/**
2182 * @defgroup VisibleStats "Statistic Types"
2183 * These are the statistics that are used in the simulator.
2184 * @{
2185 */
2186
2187/**
2188 * This is a simple scalar statistic, like a counter.
2189 * @sa Stat, ScalarBase, StatStor
2190 */
2191class Scalar : public ScalarBase<Scalar, StatStor>
2192{
2193 public:
2194 using ScalarBase<Scalar, StatStor>::operator=;
2195};
2196
2197/**
2198 * A stat that calculates the per tick average of a value.
2199 * @sa Stat, ScalarBase, AvgStor
2200 */
2201class Average : public ScalarBase<Average, AvgStor>
2202{
2203 public:
2204 using ScalarBase<Average, AvgStor>::operator=;
2205};
2206
2207class Value : public ValueBase<Value>
2208{
2209};
2210
2211/**
2212 * A vector of scalar stats.
2213 * @sa Stat, VectorBase, StatStor
2214 */
2215class Vector : public VectorBase<Vector, StatStor>
2216{
2217};
2218
2219/**
2220 * A vector of Average stats.
2221 * @sa Stat, VectorBase, AvgStor
2222 */
2223class AverageVector : public VectorBase<AverageVector, AvgStor>
2224{
2225};
2226
2227/**
2228 * A 2-Dimensional vecto of scalar stats.
2229 * @sa Stat, Vector2dBase, StatStor
2230 */
2231class Vector2d : public Vector2dBase<Vector2d, StatStor>
2232{
2233};
2234
2235/**
2236 * A simple distribution stat.
2237 * @sa Stat, DistBase, DistStor
2238 */
2239class Distribution : public DistBase<Distribution, DistStor>
2240{
2241 public:
2242 /**
2243 * Set the parameters of this distribution. @sa DistStor::Params
2244 * @param min The minimum value of the distribution.
2245 * @param max The maximum value of the distribution.
2246 * @param bkt The number of values in each bucket.
2247 * @return A reference to this distribution.
2248 */
2249 Distribution &
2250 init(Counter min, Counter max, Counter bkt)
2251 {
2252 DistStor::Params *params = new DistStor::Params;
2253 params->min = min;
2254 params->max = max;
2255 params->bucket_size = bkt;
2256 params->buckets = (size_type)rint((max - min + 1.0) / bkt );
2257 this->setParams(params);
2258 this->doInit();
2259 return this->self();
2260 }
2261};
2262
2263/**
2264 * Calculates the mean and variance of all the samples.
2265 * @sa DistBase, SampleStor
2266 */
2267class StandardDeviation : public DistBase<StandardDeviation, SampleStor>
2268{
2269 public:
2270 /**
2271 * Construct and initialize this distribution.
2272 */
2273 StandardDeviation()
2274 {
2275 SampleStor::Params *params = new SampleStor::Params;
2294 this->doInit();
2276 this->doInit();
2277 this->setParams(params);
2295 }
2296};
2297
2298/**
2299 * Calculates the per tick mean and variance of the samples.
2300 * @sa DistBase, AvgSampleStor
2301 */
2302class AverageDeviation : public DistBase<AverageDeviation, AvgSampleStor>
2303{
2304 public:
2305 /**
2306 * Construct and initialize this distribution.
2307 */
2308 AverageDeviation()
2309 {
2278 }
2279};
2280
2281/**
2282 * Calculates the per tick mean and variance of the samples.
2283 * @sa DistBase, AvgSampleStor
2284 */
2285class AverageDeviation : public DistBase<AverageDeviation, AvgSampleStor>
2286{
2287 public:
2288 /**
2289 * Construct and initialize this distribution.
2290 */
2291 AverageDeviation()
2292 {
2293 AvgSampleStor::Params *params = new AvgSampleStor::Params;
2310 this->doInit();
2294 this->doInit();
2295 this->setParams(params);
2311 }
2312};
2313
2314/**
2315 * A vector of distributions.
2316 * @sa VectorDistBase, DistStor
2317 */
2318class VectorDistribution : public VectorDistBase<VectorDistribution, DistStor>
2319{
2320 public:
2321 /**
2322 * Initialize storage and parameters for this distribution.
2323 * @param size The size of the vector (the number of distributions).
2324 * @param min The minimum value of the distribution.
2325 * @param max The maximum value of the distribution.
2326 * @param bkt The number of values in each bucket.
2327 * @return A reference to this distribution.
2328 */
2329 VectorDistribution &
2330 init(size_type size, Counter min, Counter max, Counter bkt)
2331 {
2332 DistStor::Params *params = new DistStor::Params;
2333 params->min = min;
2334 params->max = max;
2335 params->bucket_size = bkt;
2336 params->buckets = (size_type)rint((max - min + 1.0) / bkt);
2337 this->setParams(params);
2338 this->doInit(size);
2339 return this->self();
2340 }
2341};
2342
2343/**
2344 * This is a vector of StandardDeviation stats.
2345 * @sa VectorDistBase, SampleStor
2346 */
2347class VectorStandardDeviation
2348 : public VectorDistBase<VectorStandardDeviation, SampleStor>
2349{
2350 public:
2351 /**
2352 * Initialize storage for this distribution.
2353 * @param size The size of the vector.
2354 * @return A reference to this distribution.
2355 */
2356 VectorStandardDeviation &
2357 init(size_type size)
2358 {
2296 }
2297};
2298
2299/**
2300 * A vector of distributions.
2301 * @sa VectorDistBase, DistStor
2302 */
2303class VectorDistribution : public VectorDistBase<VectorDistribution, DistStor>
2304{
2305 public:
2306 /**
2307 * Initialize storage and parameters for this distribution.
2308 * @param size The size of the vector (the number of distributions).
2309 * @param min The minimum value of the distribution.
2310 * @param max The maximum value of the distribution.
2311 * @param bkt The number of values in each bucket.
2312 * @return A reference to this distribution.
2313 */
2314 VectorDistribution &
2315 init(size_type size, Counter min, Counter max, Counter bkt)
2316 {
2317 DistStor::Params *params = new DistStor::Params;
2318 params->min = min;
2319 params->max = max;
2320 params->bucket_size = bkt;
2321 params->buckets = (size_type)rint((max - min + 1.0) / bkt);
2322 this->setParams(params);
2323 this->doInit(size);
2324 return this->self();
2325 }
2326};
2327
2328/**
2329 * This is a vector of StandardDeviation stats.
2330 * @sa VectorDistBase, SampleStor
2331 */
2332class VectorStandardDeviation
2333 : public VectorDistBase<VectorStandardDeviation, SampleStor>
2334{
2335 public:
2336 /**
2337 * Initialize storage for this distribution.
2338 * @param size The size of the vector.
2339 * @return A reference to this distribution.
2340 */
2341 VectorStandardDeviation &
2342 init(size_type size)
2343 {
2344 SampleStor::Params *params = new SampleStor::Params;
2359 this->doInit(size);
2345 this->doInit(size);
2346 this->setParams(params);
2360 return this->self();
2361 }
2362};
2363
2364/**
2365 * This is a vector of AverageDeviation stats.
2366 * @sa VectorDistBase, AvgSampleStor
2367 */
2368class VectorAverageDeviation
2369 : public VectorDistBase<VectorAverageDeviation, AvgSampleStor>
2370{
2371 public:
2372 /**
2373 * Initialize storage for this distribution.
2374 * @param size The size of the vector.
2375 * @return A reference to this distribution.
2376 */
2377 VectorAverageDeviation &
2378 init(size_type size)
2379 {
2347 return this->self();
2348 }
2349};
2350
2351/**
2352 * This is a vector of AverageDeviation stats.
2353 * @sa VectorDistBase, AvgSampleStor
2354 */
2355class VectorAverageDeviation
2356 : public VectorDistBase<VectorAverageDeviation, AvgSampleStor>
2357{
2358 public:
2359 /**
2360 * Initialize storage for this distribution.
2361 * @param size The size of the vector.
2362 * @return A reference to this distribution.
2363 */
2364 VectorAverageDeviation &
2365 init(size_type size)
2366 {
2367 AvgSampleStor::Params *params = new AvgSampleStor::Params;
2380 this->doInit(size);
2368 this->doInit(size);
2369 this->setParams(params);
2381 return this->self();
2382 }
2383};
2384
2385template <class Stat>
2386class FormulaInfoProxy : public InfoProxy<Stat, FormulaInfo>
2387{
2388 protected:
2389 mutable VResult vec;
2390 mutable VCounter cvec;
2391
2392 public:
2393 FormulaInfoProxy(Stat &stat) : InfoProxy<Stat, FormulaInfo>(stat) {}
2394
2395 size_type size() const { return this->s.size(); }
2396
2397 const VResult &
2398 result() const
2399 {
2400 this->s.result(vec);
2401 return vec;
2402 }
2403 Result total() const { return this->s.total(); }
2404 VCounter &value() const { return cvec; }
2405
2406 std::string str() const { return this->s.str(); }
2407};
2408
2409class Temp;
2410/**
2411 * A formula for statistics that is calculated when printed. A formula is
2412 * stored as a tree of Nodes that represent the equation to calculate.
2413 * @sa Stat, ScalarStat, VectorStat, Node, Temp
2414 */
2415class Formula : public DataWrapVec<Formula, FormulaInfoProxy>
2416{
2417 protected:
2418 /** The root of the tree which represents the Formula */
2419 NodePtr root;
2420 friend class Temp;
2421
2422 public:
2423 /**
2424 * Create and initialize thie formula, and register it with the database.
2425 */
2426 Formula();
2427
2428 /**
2429 * Create a formula with the given root node, register it with the
2430 * database.
2431 * @param r The root of the expression tree.
2432 */
2433 Formula(Temp r);
2434
2435 /**
2436 * Set an unitialized Formula to the given root.
2437 * @param r The root of the expression tree.
2438 * @return a reference to this formula.
2439 */
2440 const Formula &operator=(Temp r);
2441
2442 /**
2443 * Add the given tree to the existing one.
2444 * @param r The root of the expression tree.
2445 * @return a reference to this formula.
2446 */
2447 const Formula &operator+=(Temp r);
2448 /**
2449 * Return the result of the Fomula in a vector. If there were no Vector
2450 * components to the Formula, then the vector is size 1. If there were,
2451 * like x/y with x being a vector of size 3, then the result returned will
2452 * be x[0]/y, x[1]/y, x[2]/y, respectively.
2453 * @return The result vector.
2454 */
2455 void result(VResult &vec) const;
2456
2457 /**
2458 * Return the total Formula result. If there is a Vector
2459 * component to this Formula, then this is the result of the
2460 * Formula if the formula is applied after summing all the
2461 * components of the Vector. For example, if Formula is x/y where
2462 * x is size 3, then total() will return (x[1]+x[2]+x[3])/y. If
2463 * there is no Vector component, total() returns the same value as
2464 * the first entry in the VResult val() returns.
2465 * @return The total of the result vector.
2466 */
2467 Result total() const;
2468
2469 /**
2470 * Return the number of elements in the tree.
2471 */
2472 size_type size() const;
2473
2474 void prepare() { }
2475
2476 /**
2477 * Formulas don't need to be reset
2478 */
2479 void reset();
2480
2481 /**
2482 *
2483 */
2484 bool zero() const;
2485
2486 std::string str() const;
2487};
2488
2489class FormulaNode : public Node
2490{
2491 private:
2492 const Formula &formula;
2493 mutable VResult vec;
2494
2495 public:
2496 FormulaNode(const Formula &f) : formula(f) {}
2497
2498 size_type size() const { return formula.size(); }
2499 const VResult &result() const { formula.result(vec); return vec; }
2500 Result total() const { return formula.total(); }
2501
2502 std::string str() const { return formula.str(); }
2503};
2504
2505/**
2506 * Helper class to construct formula node trees.
2507 */
2508class Temp
2509{
2510 protected:
2511 /**
2512 * Pointer to a Node object.
2513 */
2514 NodePtr node;
2515
2516 public:
2517 /**
2518 * Copy the given pointer to this class.
2519 * @param n A pointer to a Node object to copy.
2520 */
2521 Temp(NodePtr n) : node(n) { }
2522
2523 /**
2524 * Return the node pointer.
2525 * @return the node pointer.
2526 */
2527 operator NodePtr&() { return node; }
2528
2529 public:
2530 /**
2531 * Create a new ScalarStatNode.
2532 * @param s The ScalarStat to place in a node.
2533 */
2534 Temp(const Scalar &s)
2535 : node(new ScalarStatNode(s.info()))
2536 { }
2537
2538 /**
2539 * Create a new ScalarStatNode.
2540 * @param s The ScalarStat to place in a node.
2541 */
2542 Temp(const Value &s)
2543 : node(new ScalarStatNode(s.info()))
2544 { }
2545
2546 /**
2547 * Create a new ScalarStatNode.
2548 * @param s The ScalarStat to place in a node.
2549 */
2550 Temp(const Average &s)
2551 : node(new ScalarStatNode(s.info()))
2552 { }
2553
2554 /**
2555 * Create a new VectorStatNode.
2556 * @param s The VectorStat to place in a node.
2557 */
2558 Temp(const Vector &s)
2559 : node(new VectorStatNode(s.info()))
2560 { }
2561
2562 Temp(const AverageVector &s)
2563 : node(new VectorStatNode(s.info()))
2564 { }
2565
2566 /**
2567 *
2568 */
2569 Temp(const Formula &f)
2570 : node(new FormulaNode(f))
2571 { }
2572
2573 /**
2574 * Create a new ScalarProxyNode.
2575 * @param p The ScalarProxy to place in a node.
2576 */
2577 template <class Stat>
2578 Temp(const ScalarProxy<Stat> &p)
2579 : node(new ScalarProxyNode<Stat>(p))
2580 { }
2581
2582 /**
2583 * Create a ConstNode
2584 * @param value The value of the const node.
2585 */
2586 Temp(signed char value)
2587 : node(new ConstNode<signed char>(value))
2588 { }
2589
2590 /**
2591 * Create a ConstNode
2592 * @param value The value of the const node.
2593 */
2594 Temp(unsigned char value)
2595 : node(new ConstNode<unsigned char>(value))
2596 { }
2597
2598 /**
2599 * Create a ConstNode
2600 * @param value The value of the const node.
2601 */
2602 Temp(signed short value)
2603 : node(new ConstNode<signed short>(value))
2604 { }
2605
2606 /**
2607 * Create a ConstNode
2608 * @param value The value of the const node.
2609 */
2610 Temp(unsigned short value)
2611 : node(new ConstNode<unsigned short>(value))
2612 { }
2613
2614 /**
2615 * Create a ConstNode
2616 * @param value The value of the const node.
2617 */
2618 Temp(signed int value)
2619 : node(new ConstNode<signed int>(value))
2620 { }
2621
2622 /**
2623 * Create a ConstNode
2624 * @param value The value of the const node.
2625 */
2626 Temp(unsigned int value)
2627 : node(new ConstNode<unsigned int>(value))
2628 { }
2629
2630 /**
2631 * Create a ConstNode
2632 * @param value The value of the const node.
2633 */
2634 Temp(signed long value)
2635 : node(new ConstNode<signed long>(value))
2636 { }
2637
2638 /**
2639 * Create a ConstNode
2640 * @param value The value of the const node.
2641 */
2642 Temp(unsigned long value)
2643 : node(new ConstNode<unsigned long>(value))
2644 { }
2645
2646 /**
2647 * Create a ConstNode
2648 * @param value The value of the const node.
2649 */
2650 Temp(signed long long value)
2651 : node(new ConstNode<signed long long>(value))
2652 { }
2653
2654 /**
2655 * Create a ConstNode
2656 * @param value The value of the const node.
2657 */
2658 Temp(unsigned long long value)
2659 : node(new ConstNode<unsigned long long>(value))
2660 { }
2661
2662 /**
2663 * Create a ConstNode
2664 * @param value The value of the const node.
2665 */
2666 Temp(float value)
2667 : node(new ConstNode<float>(value))
2668 { }
2669
2670 /**
2671 * Create a ConstNode
2672 * @param value The value of the const node.
2673 */
2674 Temp(double value)
2675 : node(new ConstNode<double>(value))
2676 { }
2677};
2678
2679
2680/**
2681 * @}
2682 */
2683
2684inline Temp
2685operator+(Temp l, Temp r)
2686{
2687 return NodePtr(new BinaryNode<std::plus<Result> >(l, r));
2688}
2689
2690inline Temp
2691operator-(Temp l, Temp r)
2692{
2693 return NodePtr(new BinaryNode<std::minus<Result> >(l, r));
2694}
2695
2696inline Temp
2697operator*(Temp l, Temp r)
2698{
2699 return NodePtr(new BinaryNode<std::multiplies<Result> >(l, r));
2700}
2701
2702inline Temp
2703operator/(Temp l, Temp r)
2704{
2705 return NodePtr(new BinaryNode<std::divides<Result> >(l, r));
2706}
2707
2708inline Temp
2709operator-(Temp l)
2710{
2711 return NodePtr(new UnaryNode<std::negate<Result> >(l));
2712}
2713
2714template <typename T>
2715inline Temp
2716constant(T val)
2717{
2718 return NodePtr(new ConstNode<T>(val));
2719}
2720
2721template <typename T>
2722inline Temp
2723constantVector(T val)
2724{
2725 return NodePtr(new ConstVectorNode<T>(val));
2726}
2727
2728inline Temp
2729sum(Temp val)
2730{
2731 return NodePtr(new SumNode<std::plus<Result> >(val));
2732}
2733
2734/**
2735 * Enable the statistics package. Before the statistics package is
2736 * enabled, all statistics must be created and initialized and once
2737 * the package is enabled, no more statistics can be created.
2738 */
2739void enable();
2740
2741/**
2742 * Prepare all stats for data access. This must be done before
2743 * dumping and serialization.
2744 */
2745void prepare();
2746
2747/**
2748 * Dump all statistics data to the registered outputs
2749 */
2750void dump();
2751
2752/**
2753 * Reset all statistics to the base state
2754 */
2755void reset();
2756/**
2757 * Register a callback that should be called whenever statistics are
2758 * reset
2759 */
2760void registerResetCallback(Callback *cb);
2761
2762std::list<Info *> &statsList();
2763
2764/* namespace Stats */ }
2765
2766#endif // __BASE_STATISTICS_HH__
2370 return this->self();
2371 }
2372};
2373
2374template <class Stat>
2375class FormulaInfoProxy : public InfoProxy<Stat, FormulaInfo>
2376{
2377 protected:
2378 mutable VResult vec;
2379 mutable VCounter cvec;
2380
2381 public:
2382 FormulaInfoProxy(Stat &stat) : InfoProxy<Stat, FormulaInfo>(stat) {}
2383
2384 size_type size() const { return this->s.size(); }
2385
2386 const VResult &
2387 result() const
2388 {
2389 this->s.result(vec);
2390 return vec;
2391 }
2392 Result total() const { return this->s.total(); }
2393 VCounter &value() const { return cvec; }
2394
2395 std::string str() const { return this->s.str(); }
2396};
2397
2398class Temp;
2399/**
2400 * A formula for statistics that is calculated when printed. A formula is
2401 * stored as a tree of Nodes that represent the equation to calculate.
2402 * @sa Stat, ScalarStat, VectorStat, Node, Temp
2403 */
2404class Formula : public DataWrapVec<Formula, FormulaInfoProxy>
2405{
2406 protected:
2407 /** The root of the tree which represents the Formula */
2408 NodePtr root;
2409 friend class Temp;
2410
2411 public:
2412 /**
2413 * Create and initialize thie formula, and register it with the database.
2414 */
2415 Formula();
2416
2417 /**
2418 * Create a formula with the given root node, register it with the
2419 * database.
2420 * @param r The root of the expression tree.
2421 */
2422 Formula(Temp r);
2423
2424 /**
2425 * Set an unitialized Formula to the given root.
2426 * @param r The root of the expression tree.
2427 * @return a reference to this formula.
2428 */
2429 const Formula &operator=(Temp r);
2430
2431 /**
2432 * Add the given tree to the existing one.
2433 * @param r The root of the expression tree.
2434 * @return a reference to this formula.
2435 */
2436 const Formula &operator+=(Temp r);
2437 /**
2438 * Return the result of the Fomula in a vector. If there were no Vector
2439 * components to the Formula, then the vector is size 1. If there were,
2440 * like x/y with x being a vector of size 3, then the result returned will
2441 * be x[0]/y, x[1]/y, x[2]/y, respectively.
2442 * @return The result vector.
2443 */
2444 void result(VResult &vec) const;
2445
2446 /**
2447 * Return the total Formula result. If there is a Vector
2448 * component to this Formula, then this is the result of the
2449 * Formula if the formula is applied after summing all the
2450 * components of the Vector. For example, if Formula is x/y where
2451 * x is size 3, then total() will return (x[1]+x[2]+x[3])/y. If
2452 * there is no Vector component, total() returns the same value as
2453 * the first entry in the VResult val() returns.
2454 * @return The total of the result vector.
2455 */
2456 Result total() const;
2457
2458 /**
2459 * Return the number of elements in the tree.
2460 */
2461 size_type size() const;
2462
2463 void prepare() { }
2464
2465 /**
2466 * Formulas don't need to be reset
2467 */
2468 void reset();
2469
2470 /**
2471 *
2472 */
2473 bool zero() const;
2474
2475 std::string str() const;
2476};
2477
2478class FormulaNode : public Node
2479{
2480 private:
2481 const Formula &formula;
2482 mutable VResult vec;
2483
2484 public:
2485 FormulaNode(const Formula &f) : formula(f) {}
2486
2487 size_type size() const { return formula.size(); }
2488 const VResult &result() const { formula.result(vec); return vec; }
2489 Result total() const { return formula.total(); }
2490
2491 std::string str() const { return formula.str(); }
2492};
2493
2494/**
2495 * Helper class to construct formula node trees.
2496 */
2497class Temp
2498{
2499 protected:
2500 /**
2501 * Pointer to a Node object.
2502 */
2503 NodePtr node;
2504
2505 public:
2506 /**
2507 * Copy the given pointer to this class.
2508 * @param n A pointer to a Node object to copy.
2509 */
2510 Temp(NodePtr n) : node(n) { }
2511
2512 /**
2513 * Return the node pointer.
2514 * @return the node pointer.
2515 */
2516 operator NodePtr&() { return node; }
2517
2518 public:
2519 /**
2520 * Create a new ScalarStatNode.
2521 * @param s The ScalarStat to place in a node.
2522 */
2523 Temp(const Scalar &s)
2524 : node(new ScalarStatNode(s.info()))
2525 { }
2526
2527 /**
2528 * Create a new ScalarStatNode.
2529 * @param s The ScalarStat to place in a node.
2530 */
2531 Temp(const Value &s)
2532 : node(new ScalarStatNode(s.info()))
2533 { }
2534
2535 /**
2536 * Create a new ScalarStatNode.
2537 * @param s The ScalarStat to place in a node.
2538 */
2539 Temp(const Average &s)
2540 : node(new ScalarStatNode(s.info()))
2541 { }
2542
2543 /**
2544 * Create a new VectorStatNode.
2545 * @param s The VectorStat to place in a node.
2546 */
2547 Temp(const Vector &s)
2548 : node(new VectorStatNode(s.info()))
2549 { }
2550
2551 Temp(const AverageVector &s)
2552 : node(new VectorStatNode(s.info()))
2553 { }
2554
2555 /**
2556 *
2557 */
2558 Temp(const Formula &f)
2559 : node(new FormulaNode(f))
2560 { }
2561
2562 /**
2563 * Create a new ScalarProxyNode.
2564 * @param p The ScalarProxy to place in a node.
2565 */
2566 template <class Stat>
2567 Temp(const ScalarProxy<Stat> &p)
2568 : node(new ScalarProxyNode<Stat>(p))
2569 { }
2570
2571 /**
2572 * Create a ConstNode
2573 * @param value The value of the const node.
2574 */
2575 Temp(signed char value)
2576 : node(new ConstNode<signed char>(value))
2577 { }
2578
2579 /**
2580 * Create a ConstNode
2581 * @param value The value of the const node.
2582 */
2583 Temp(unsigned char value)
2584 : node(new ConstNode<unsigned char>(value))
2585 { }
2586
2587 /**
2588 * Create a ConstNode
2589 * @param value The value of the const node.
2590 */
2591 Temp(signed short value)
2592 : node(new ConstNode<signed short>(value))
2593 { }
2594
2595 /**
2596 * Create a ConstNode
2597 * @param value The value of the const node.
2598 */
2599 Temp(unsigned short value)
2600 : node(new ConstNode<unsigned short>(value))
2601 { }
2602
2603 /**
2604 * Create a ConstNode
2605 * @param value The value of the const node.
2606 */
2607 Temp(signed int value)
2608 : node(new ConstNode<signed int>(value))
2609 { }
2610
2611 /**
2612 * Create a ConstNode
2613 * @param value The value of the const node.
2614 */
2615 Temp(unsigned int value)
2616 : node(new ConstNode<unsigned int>(value))
2617 { }
2618
2619 /**
2620 * Create a ConstNode
2621 * @param value The value of the const node.
2622 */
2623 Temp(signed long value)
2624 : node(new ConstNode<signed long>(value))
2625 { }
2626
2627 /**
2628 * Create a ConstNode
2629 * @param value The value of the const node.
2630 */
2631 Temp(unsigned long value)
2632 : node(new ConstNode<unsigned long>(value))
2633 { }
2634
2635 /**
2636 * Create a ConstNode
2637 * @param value The value of the const node.
2638 */
2639 Temp(signed long long value)
2640 : node(new ConstNode<signed long long>(value))
2641 { }
2642
2643 /**
2644 * Create a ConstNode
2645 * @param value The value of the const node.
2646 */
2647 Temp(unsigned long long value)
2648 : node(new ConstNode<unsigned long long>(value))
2649 { }
2650
2651 /**
2652 * Create a ConstNode
2653 * @param value The value of the const node.
2654 */
2655 Temp(float value)
2656 : node(new ConstNode<float>(value))
2657 { }
2658
2659 /**
2660 * Create a ConstNode
2661 * @param value The value of the const node.
2662 */
2663 Temp(double value)
2664 : node(new ConstNode<double>(value))
2665 { }
2666};
2667
2668
2669/**
2670 * @}
2671 */
2672
2673inline Temp
2674operator+(Temp l, Temp r)
2675{
2676 return NodePtr(new BinaryNode<std::plus<Result> >(l, r));
2677}
2678
2679inline Temp
2680operator-(Temp l, Temp r)
2681{
2682 return NodePtr(new BinaryNode<std::minus<Result> >(l, r));
2683}
2684
2685inline Temp
2686operator*(Temp l, Temp r)
2687{
2688 return NodePtr(new BinaryNode<std::multiplies<Result> >(l, r));
2689}
2690
2691inline Temp
2692operator/(Temp l, Temp r)
2693{
2694 return NodePtr(new BinaryNode<std::divides<Result> >(l, r));
2695}
2696
2697inline Temp
2698operator-(Temp l)
2699{
2700 return NodePtr(new UnaryNode<std::negate<Result> >(l));
2701}
2702
2703template <typename T>
2704inline Temp
2705constant(T val)
2706{
2707 return NodePtr(new ConstNode<T>(val));
2708}
2709
2710template <typename T>
2711inline Temp
2712constantVector(T val)
2713{
2714 return NodePtr(new ConstVectorNode<T>(val));
2715}
2716
2717inline Temp
2718sum(Temp val)
2719{
2720 return NodePtr(new SumNode<std::plus<Result> >(val));
2721}
2722
2723/**
2724 * Enable the statistics package. Before the statistics package is
2725 * enabled, all statistics must be created and initialized and once
2726 * the package is enabled, no more statistics can be created.
2727 */
2728void enable();
2729
2730/**
2731 * Prepare all stats for data access. This must be done before
2732 * dumping and serialization.
2733 */
2734void prepare();
2735
2736/**
2737 * Dump all statistics data to the registered outputs
2738 */
2739void dump();
2740
2741/**
2742 * Reset all statistics to the base state
2743 */
2744void reset();
2745/**
2746 * Register a callback that should be called whenever statistics are
2747 * reset
2748 */
2749void registerResetCallback(Callback *cb);
2750
2751std::list<Info *> &statsList();
2752
2753/* namespace Stats */ }
2754
2755#endif // __BASE_STATISTICS_HH__