statistics.hh (6129:05405c5b8c16) statistics.hh (6130:0fb959250892)
1/*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Nathan Binkert
29 */
30
31/** @file
32 * Declaration of Statistics objects.
33 */
34
35/**
36* @todo
37*
38* Generalized N-dimensinal vector
39* documentation
40* key stats
41* interval stats
42* -- these both can use the same function that prints out a
43* specific set of stats
44* VectorStandardDeviation totals
45* Document Namespaces
46*/
47#ifndef __BASE_STATISTICS_HH__
48#define __BASE_STATISTICS_HH__
49
50#include <algorithm>
51#include <cassert>
52#ifdef __SUNPRO_CC
53#include <math.h>
54#endif
55#include <cmath>
56#include <functional>
57#include <iosfwd>
58#include <list>
59#include <string>
60#include <vector>
61
62#include "base/cast.hh"
63#include "base/cprintf.hh"
64#include "base/intmath.hh"
65#include "base/refcnt.hh"
66#include "base/str.hh"
1/*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Nathan Binkert
29 */
30
31/** @file
32 * Declaration of Statistics objects.
33 */
34
35/**
36* @todo
37*
38* Generalized N-dimensinal vector
39* documentation
40* key stats
41* interval stats
42* -- these both can use the same function that prints out a
43* specific set of stats
44* VectorStandardDeviation totals
45* Document Namespaces
46*/
47#ifndef __BASE_STATISTICS_HH__
48#define __BASE_STATISTICS_HH__
49
50#include <algorithm>
51#include <cassert>
52#ifdef __SUNPRO_CC
53#include <math.h>
54#endif
55#include <cmath>
56#include <functional>
57#include <iosfwd>
58#include <list>
59#include <string>
60#include <vector>
61
62#include "base/cast.hh"
63#include "base/cprintf.hh"
64#include "base/intmath.hh"
65#include "base/refcnt.hh"
66#include "base/str.hh"
67#include "base/stats/flags.hh"
68#include "base/stats/info.hh"
69#include "base/stats/types.hh"
70#include "base/stats/visit.hh"
71#include "sim/host.hh"
72
73class Callback;
74
75/** The current simulated tick. */
76extern Tick curTick;
77
78/* A namespace for all of the Statistics */
79namespace Stats {
80
81template <class Stat, class Base>
82class InfoProxy : public Base
83{
84 protected:
85 Stat &s;
86
87 public:
88 InfoProxy(Stat &stat) : s(stat) {}
89
90 bool check() const { return s.check(); }
91 void prepare() { s.prepare(); }
92 void reset() { s.reset(); }
93 void
94 visit(Visit &visitor)
95 {
96 visitor.visit(*static_cast<Base *>(this));
97 }
98 bool zero() const { return s.zero(); }
99};
100
101template <class Stat>
102class ScalarInfoProxy : public InfoProxy<Stat, ScalarInfo>
103{
104 public:
105 ScalarInfoProxy(Stat &stat) : InfoProxy<Stat, ScalarInfo>(stat) {}
106
107 Counter value() const { return this->s.value(); }
108 Result result() const { return this->s.result(); }
109 Result total() const { return this->s.total(); }
110};
111
112template <class Stat>
113class VectorInfoProxy : public InfoProxy<Stat, VectorInfo>
114{
115 protected:
116 mutable VCounter cvec;
117 mutable VResult rvec;
118
119 public:
120 VectorInfoProxy(Stat &stat) : InfoProxy<Stat, VectorInfo>(stat) {}
121
122 size_type size() const { return this->s.size(); }
123
124 VCounter &
125 value() const
126 {
127 this->s.value(cvec);
128 return cvec;
129 }
130
131 const VResult &
132 result() const
133 {
134 this->s.result(rvec);
135 return rvec;
136 }
137
138 Result total() const { return this->s.total(); }
139};
140
141template <class Stat>
142class DistInfoProxy : public InfoProxy<Stat, DistInfo>
143{
144 public:
145 DistInfoProxy(Stat &stat) : InfoProxy<Stat, DistInfo>(stat) {}
146};
147
148template <class Stat>
149class VectorDistInfoProxy : public InfoProxy<Stat, VectorDistInfo>
150{
151 public:
152 VectorDistInfoProxy(Stat &stat) : InfoProxy<Stat, VectorDistInfo>(stat) {}
153
154 size_type size() const { return this->s.size(); }
155};
156
157template <class Stat>
158class Vector2dInfoProxy : public InfoProxy<Stat, Vector2dInfo>
159{
160 public:
161 Vector2dInfoProxy(Stat &stat) : InfoProxy<Stat, Vector2dInfo>(stat) {}
162};
163
164class InfoAccess
165{
166 protected:
167 /** Set up an info class for this statistic */
168 void setInfo(Info *info);
169 /** Save Storage class parameters if any */
170 void setParams(const StorageParams *params);
171 /** Save Storage class parameters if any */
172 void setInit();
173
174 /** Grab the information class for this statistic */
175 Info *info();
176 /** Grab the information class for this statistic */
177 const Info *info() const;
178
179 public:
180 /**
181 * Reset the stat to the default state.
182 */
183 void reset() { }
184
185 /**
186 * @return true if this stat has a value and satisfies its
187 * requirement as a prereq
188 */
189 bool zero() const { return true; }
190
191 /**
192 * Check that this stat has been set up properly and is ready for
193 * use
194 * @return true for success
195 */
196 bool check() const { return true; }
197};
198
199template <class Derived, template <class> class InfoProxyType>
200class DataWrap : public InfoAccess
201{
202 public:
203 typedef InfoProxyType<Derived> Info;
204
205 protected:
206 Derived &self() { return *static_cast<Derived *>(this); }
207
208 protected:
209 Info *
210 info()
211 {
212 return safe_cast<Info *>(InfoAccess::info());
213 }
214
215 public:
216 const Info *
217 info() const
218 {
219 return safe_cast<const Info *>(InfoAccess::info());
220 }
221
222 protected:
223 /**
224 * Copy constructor, copies are not allowed.
225 */
226 DataWrap(const DataWrap &stat);
227
228 /**
229 * Can't copy stats.
230 */
231 void operator=(const DataWrap &);
232
233 public:
234 DataWrap()
235 {
236 this->setInfo(new Info(self()));
237 }
238
239 /**
240 * Set the name and marks this stat to print at the end of simulation.
241 * @param name The new name.
242 * @return A reference to this stat.
243 */
244 Derived &
245 name(const std::string &name)
246 {
247 Info *info = this->info();
248 info->setName(name);
67#include "base/stats/info.hh"
68#include "base/stats/types.hh"
69#include "base/stats/visit.hh"
70#include "sim/host.hh"
71
72class Callback;
73
74/** The current simulated tick. */
75extern Tick curTick;
76
77/* A namespace for all of the Statistics */
78namespace Stats {
79
80template <class Stat, class Base>
81class InfoProxy : public Base
82{
83 protected:
84 Stat &s;
85
86 public:
87 InfoProxy(Stat &stat) : s(stat) {}
88
89 bool check() const { return s.check(); }
90 void prepare() { s.prepare(); }
91 void reset() { s.reset(); }
92 void
93 visit(Visit &visitor)
94 {
95 visitor.visit(*static_cast<Base *>(this));
96 }
97 bool zero() const { return s.zero(); }
98};
99
100template <class Stat>
101class ScalarInfoProxy : public InfoProxy<Stat, ScalarInfo>
102{
103 public:
104 ScalarInfoProxy(Stat &stat) : InfoProxy<Stat, ScalarInfo>(stat) {}
105
106 Counter value() const { return this->s.value(); }
107 Result result() const { return this->s.result(); }
108 Result total() const { return this->s.total(); }
109};
110
111template <class Stat>
112class VectorInfoProxy : public InfoProxy<Stat, VectorInfo>
113{
114 protected:
115 mutable VCounter cvec;
116 mutable VResult rvec;
117
118 public:
119 VectorInfoProxy(Stat &stat) : InfoProxy<Stat, VectorInfo>(stat) {}
120
121 size_type size() const { return this->s.size(); }
122
123 VCounter &
124 value() const
125 {
126 this->s.value(cvec);
127 return cvec;
128 }
129
130 const VResult &
131 result() const
132 {
133 this->s.result(rvec);
134 return rvec;
135 }
136
137 Result total() const { return this->s.total(); }
138};
139
140template <class Stat>
141class DistInfoProxy : public InfoProxy<Stat, DistInfo>
142{
143 public:
144 DistInfoProxy(Stat &stat) : InfoProxy<Stat, DistInfo>(stat) {}
145};
146
147template <class Stat>
148class VectorDistInfoProxy : public InfoProxy<Stat, VectorDistInfo>
149{
150 public:
151 VectorDistInfoProxy(Stat &stat) : InfoProxy<Stat, VectorDistInfo>(stat) {}
152
153 size_type size() const { return this->s.size(); }
154};
155
156template <class Stat>
157class Vector2dInfoProxy : public InfoProxy<Stat, Vector2dInfo>
158{
159 public:
160 Vector2dInfoProxy(Stat &stat) : InfoProxy<Stat, Vector2dInfo>(stat) {}
161};
162
163class InfoAccess
164{
165 protected:
166 /** Set up an info class for this statistic */
167 void setInfo(Info *info);
168 /** Save Storage class parameters if any */
169 void setParams(const StorageParams *params);
170 /** Save Storage class parameters if any */
171 void setInit();
172
173 /** Grab the information class for this statistic */
174 Info *info();
175 /** Grab the information class for this statistic */
176 const Info *info() const;
177
178 public:
179 /**
180 * Reset the stat to the default state.
181 */
182 void reset() { }
183
184 /**
185 * @return true if this stat has a value and satisfies its
186 * requirement as a prereq
187 */
188 bool zero() const { return true; }
189
190 /**
191 * Check that this stat has been set up properly and is ready for
192 * use
193 * @return true for success
194 */
195 bool check() const { return true; }
196};
197
198template <class Derived, template <class> class InfoProxyType>
199class DataWrap : public InfoAccess
200{
201 public:
202 typedef InfoProxyType<Derived> Info;
203
204 protected:
205 Derived &self() { return *static_cast<Derived *>(this); }
206
207 protected:
208 Info *
209 info()
210 {
211 return safe_cast<Info *>(InfoAccess::info());
212 }
213
214 public:
215 const Info *
216 info() const
217 {
218 return safe_cast<const Info *>(InfoAccess::info());
219 }
220
221 protected:
222 /**
223 * Copy constructor, copies are not allowed.
224 */
225 DataWrap(const DataWrap &stat);
226
227 /**
228 * Can't copy stats.
229 */
230 void operator=(const DataWrap &);
231
232 public:
233 DataWrap()
234 {
235 this->setInfo(new Info(self()));
236 }
237
238 /**
239 * Set the name and marks this stat to print at the end of simulation.
240 * @param name The new name.
241 * @return A reference to this stat.
242 */
243 Derived &
244 name(const std::string &name)
245 {
246 Info *info = this->info();
247 info->setName(name);
249 info->flags |= print;
248 info->flags.set(print);
250 return this->self();
251 }
252 const std::string &name() const { return this->info()->name; }
253
254 /**
255 * Set the description and marks this stat to print at the end of
256 * simulation.
257 * @param desc The new description.
258 * @return A reference to this stat.
259 */
260 Derived &
261 desc(const std::string &_desc)
262 {
263 this->info()->desc = _desc;
264 return this->self();
265 }
266
267 /**
268 * Set the precision and marks this stat to print at the end of simulation.
269 * @param _precision The new precision
270 * @return A reference to this stat.
271 */
272 Derived &
273 precision(int _precision)
274 {
275 this->info()->precision = _precision;
276 return this->self();
277 }
278
279 /**
280 * Set the flags and marks this stat to print at the end of simulation.
281 * @param f The new flags.
282 * @return A reference to this stat.
283 */
284 Derived &
249 return this->self();
250 }
251 const std::string &name() const { return this->info()->name; }
252
253 /**
254 * Set the description and marks this stat to print at the end of
255 * simulation.
256 * @param desc The new description.
257 * @return A reference to this stat.
258 */
259 Derived &
260 desc(const std::string &_desc)
261 {
262 this->info()->desc = _desc;
263 return this->self();
264 }
265
266 /**
267 * Set the precision and marks this stat to print at the end of simulation.
268 * @param _precision The new precision
269 * @return A reference to this stat.
270 */
271 Derived &
272 precision(int _precision)
273 {
274 this->info()->precision = _precision;
275 return this->self();
276 }
277
278 /**
279 * Set the flags and marks this stat to print at the end of simulation.
280 * @param f The new flags.
281 * @return A reference to this stat.
282 */
283 Derived &
285 flags(StatFlags _flags)
284 flags(Flags _flags)
286 {
285 {
287 this->info()->flags |= _flags;
286 this->info()->flags.set(_flags);
288 return this->self();
289 }
290
291 /**
292 * Set the prerequisite stat and marks this stat to print at the end of
293 * simulation.
294 * @param prereq The prerequisite stat.
295 * @return A reference to this stat.
296 */
297 template <class Stat>
298 Derived &
299 prereq(const Stat &prereq)
300 {
301 this->info()->prereq = prereq.info();
302 return this->self();
303 }
304};
305
306template <class Derived, template <class> class InfoProxyType>
307class DataWrapVec : public DataWrap<Derived, InfoProxyType>
308{
309 public:
310 typedef InfoProxyType<Derived> Info;
311
312 // The following functions are specific to vectors. If you use them
313 // in a non vector context, you will get a nice compiler error!
314
315 /**
316 * Set the subfield name for the given index, and marks this stat to print
317 * at the end of simulation.
318 * @param index The subfield index.
319 * @param name The new name of the subfield.
320 * @return A reference to this stat.
321 */
322 Derived &
323 subname(off_type index, const std::string &name)
324 {
325 Derived &self = this->self();
326 Info *info = self.info();
327
328 std::vector<std::string> &subn = info->subnames;
329 if (subn.size() <= index)
330 subn.resize(index + 1);
331 subn[index] = name;
332 return self;
333 }
334
335 // The following functions are specific to 2d vectors. If you use
336 // them in a non vector context, you will get a nice compiler
337 // error because info doesn't have the right variables.
338
339 /**
340 * Set the subfield description for the given index and marks this stat to
341 * print at the end of simulation.
342 * @param index The subfield index.
343 * @param desc The new description of the subfield
344 * @return A reference to this stat.
345 */
346 Derived &
347 subdesc(off_type index, const std::string &desc)
348 {
349 Info *info = this->info();
350
351 std::vector<std::string> &subd = info->subdescs;
352 if (subd.size() <= index)
353 subd.resize(index + 1);
354 subd[index] = desc;
355
356 return this->self();
357 }
358
359 void
360 prepare()
361 {
362 Derived &self = this->self();
363 Info *info = this->info();
364
365 size_t size = self.size();
366 for (off_type i = 0; i < size; ++i)
367 self.data(i)->prepare(info);
368 }
369
370 void
371 reset()
372 {
373 Derived &self = this->self();
374 Info *info = this->info();
375
376 size_t size = self.size();
377 for (off_type i = 0; i < size; ++i)
378 self.data(i)->reset(info);
379 }
380};
381
382template <class Derived, template <class> class InfoProxyType>
383class DataWrapVec2d : public DataWrapVec<Derived, InfoProxyType>
384{
385 public:
386 typedef InfoProxyType<Derived> Info;
387
388 /**
389 * @warning This makes the assumption that if you're gonna subnames a 2d
390 * vector, you're subnaming across all y
391 */
392 Derived &
393 ysubnames(const char **names)
394 {
395 Derived &self = this->self();
396 Info *info = this->info();
397
398 info->y_subnames.resize(self.y);
399 for (off_type i = 0; i < self.y; ++i)
400 info->y_subnames[i] = names[i];
401 return self;
402 }
403
404 Derived &
405 ysubname(off_type index, const std::string subname)
406 {
407 Derived &self = this->self();
408 Info *info = this->info();
409
410 assert(index < self.y);
411 info->y_subnames.resize(self.y);
412 info->y_subnames[index] = subname.c_str();
413 return self;
414 }
415};
416
417//////////////////////////////////////////////////////////////////////
418//
419// Simple Statistics
420//
421//////////////////////////////////////////////////////////////////////
422
423/**
424 * Templatized storage and interface for a simple scalar stat.
425 */
426class StatStor
427{
428 private:
429 /** The statistic value. */
430 Counter data;
431
432 public:
433 struct Params : public StorageParams {};
434
435 public:
436 /**
437 * Builds this storage element and calls the base constructor of the
438 * datatype.
439 */
440 StatStor(Info *info)
441 : data(Counter())
442 { }
443
444 /**
445 * The the stat to the given value.
446 * @param val The new value.
447 */
448 void set(Counter val) { data = val; }
449 /**
450 * Increment the stat by the given value.
451 * @param val The new value.
452 */
453 void inc(Counter val) { data += val; }
454 /**
455 * Decrement the stat by the given value.
456 * @param val The new value.
457 */
458 void dec(Counter val) { data -= val; }
459 /**
460 * Return the value of this stat as its base type.
461 * @return The value of this stat.
462 */
463 Counter value() const { return data; }
464 /**
465 * Return the value of this stat as a result type.
466 * @return The value of this stat.
467 */
468 Result result() const { return (Result)data; }
469 /**
470 * Prepare stat data for dumping or serialization
471 */
472 void prepare(Info *info) { }
473 /**
474 * Reset stat value to default
475 */
476 void reset(Info *info) { data = Counter(); }
477
478 /**
479 * @return true if zero value
480 */
481 bool zero() const { return data == Counter(); }
482};
483
484/**
485 * Templatized storage and interface to a per-tick average stat. This keeps
486 * a current count and updates a total (count * ticks) when this count
487 * changes. This allows the quick calculation of a per tick count of the item
488 * being watched. This is good for keeping track of residencies in structures
489 * among other things.
490 */
491class AvgStor
492{
493 private:
494 /** The current count. */
495 Counter current;
496 /** The total count for all tick. */
497 mutable Result total;
498 /** The tick that current last changed. */
499 mutable Tick last;
500
501 public:
502 struct Params : public StorageParams {};
503
504 public:
505 /**
506 * Build and initializes this stat storage.
507 */
508 AvgStor(Info *info)
509 : current(0), total(0), last(0)
510 { }
511
512 /**
513 * Set the current count to the one provided, update the total and last
514 * set values.
515 * @param val The new count.
516 */
517 void
518 set(Counter val)
519 {
520 total += current * (curTick - last);
521 last = curTick;
522 current = val;
523 }
524
525 /**
526 * Increment the current count by the provided value, calls set.
527 * @param val The amount to increment.
528 */
529 void inc(Counter val) { set(current + val); }
530
531 /**
532 * Deccrement the current count by the provided value, calls set.
533 * @param val The amount to decrement.
534 */
535 void dec(Counter val) { set(current - val); }
536
537 /**
538 * Return the current count.
539 * @return The current count.
540 */
541 Counter value() const { return current; }
542
543 /**
544 * Return the current average.
545 * @return The current average.
546 */
547 Result
548 result() const
549 {
550 assert(last == curTick);
551 return (Result)(total + current) / (Result)(curTick + 1);
552 }
553
554 /**
555 * @return true if zero value
556 */
557 bool zero() const { return total == 0.0; }
558
559 /**
560 * Prepare stat data for dumping or serialization
561 */
562 void
563 prepare(Info *info)
564 {
565 total += current * (curTick - last);
566 last = curTick;
567 }
568
569 /**
570 * Reset stat value to default
571 */
572 void
573 reset(Info *info)
574 {
575 total = 0.0;
576 last = curTick;
577 }
578
579};
580
581/**
582 * Implementation of a scalar stat. The type of stat is determined by the
583 * Storage template.
584 */
585template <class Derived, class Stor>
586class ScalarBase : public DataWrap<Derived, ScalarInfoProxy>
587{
588 public:
589 typedef Stor Storage;
590 typedef typename Stor::Params Params;
591
592 protected:
593 /** The storage of this stat. */
594 char storage[sizeof(Storage)] __attribute__ ((aligned (8)));
595
596 protected:
597 /**
598 * Retrieve the storage.
599 * @param index The vector index to access.
600 * @return The storage object at the given index.
601 */
602 Storage *
603 data()
604 {
605 return reinterpret_cast<Storage *>(storage);
606 }
607
608 /**
609 * Retrieve a const pointer to the storage.
610 * for the given index.
611 * @param index The vector index to access.
612 * @return A const pointer to the storage object at the given index.
613 */
614 const Storage *
615 data() const
616 {
617 return reinterpret_cast<const Storage *>(storage);
618 }
619
620 void
621 doInit()
622 {
623 new (storage) Storage(this->info());
624 this->setInit();
625 }
626
627 public:
628 /**
629 * Return the current value of this stat as its base type.
630 * @return The current value.
631 */
632 Counter value() const { return data()->value(); }
633
634 public:
635 ScalarBase()
636 {
637 this->doInit();
638 }
639
640 public:
641 // Common operators for stats
642 /**
643 * Increment the stat by 1. This calls the associated storage object inc
644 * function.
645 */
646 void operator++() { data()->inc(1); }
647 /**
648 * Decrement the stat by 1. This calls the associated storage object dec
649 * function.
650 */
651 void operator--() { data()->dec(1); }
652
653 /** Increment the stat by 1. */
654 void operator++(int) { ++*this; }
655 /** Decrement the stat by 1. */
656 void operator--(int) { --*this; }
657
658 /**
659 * Set the data value to the given value. This calls the associated storage
660 * object set function.
661 * @param v The new value.
662 */
663 template <typename U>
664 void operator=(const U &v) { data()->set(v); }
665
666 /**
667 * Increment the stat by the given value. This calls the associated
668 * storage object inc function.
669 * @param v The value to add.
670 */
671 template <typename U>
672 void operator+=(const U &v) { data()->inc(v); }
673
674 /**
675 * Decrement the stat by the given value. This calls the associated
676 * storage object dec function.
677 * @param v The value to substract.
678 */
679 template <typename U>
680 void operator-=(const U &v) { data()->dec(v); }
681
682 /**
683 * Return the number of elements, always 1 for a scalar.
684 * @return 1.
685 */
686 size_type size() const { return 1; }
687
688 Counter value() { return data()->value(); }
689
690 Result result() { return data()->result(); }
691
692 Result total() { return result(); }
693
694 bool zero() { return result() == 0.0; }
695
696 void reset() { data()->reset(this->info()); }
697 void prepare() { data()->prepare(this->info()); }
698};
699
700class ProxyInfo : public ScalarInfo
701{
702 public:
703 std::string str() const { return to_string(value()); }
704 size_type size() const { return 1; }
705 bool check() const { return true; }
706 void prepare() { }
707 void reset() { }
708 bool zero() const { return value() == 0; }
709
710 void visit(Visit &visitor) { visitor.visit(*this); }
711};
712
713template <class T>
714class ValueProxy : public ProxyInfo
715{
716 private:
717 T *scalar;
718
719 public:
720 ValueProxy(T &val) : scalar(&val) {}
721 Counter value() const { return *scalar; }
722 Result result() const { return *scalar; }
723 Result total() const { return *scalar; }
724};
725
726template <class T>
727class FunctorProxy : public ProxyInfo
728{
729 private:
730 T *functor;
731
732 public:
733 FunctorProxy(T &func) : functor(&func) {}
734 Counter value() const { return (*functor)(); }
735 Result result() const { return (*functor)(); }
736 Result total() const { return (*functor)(); }
737};
738
739template <class Derived>
740class ValueBase : public DataWrap<Derived, ScalarInfoProxy>
741{
742 private:
743 ProxyInfo *proxy;
744
745 public:
746 ValueBase() : proxy(NULL) { }
747 ~ValueBase() { if (proxy) delete proxy; }
748
749 template <class T>
750 Derived &
751 scalar(T &value)
752 {
753 proxy = new ValueProxy<T>(value);
754 this->setInit();
755 return this->self();
756 }
757
758 template <class T>
759 Derived &
760 functor(T &func)
761 {
762 proxy = new FunctorProxy<T>(func);
763 this->setInit();
764 return this->self();
765 }
766
767 Counter value() { return proxy->value(); }
768 Result result() const { return proxy->result(); }
769 Result total() const { return proxy->total(); };
770 size_type size() const { return proxy->size(); }
771
772 std::string str() const { return proxy->str(); }
773 bool zero() const { return proxy->zero(); }
774 bool check() const { return proxy != NULL; }
775 void prepare() { }
776 void reset() { }
777};
778
779//////////////////////////////////////////////////////////////////////
780//
781// Vector Statistics
782//
783//////////////////////////////////////////////////////////////////////
784
785/**
786 * A proxy class to access the stat at a given index in a VectorBase stat.
787 * Behaves like a ScalarBase.
788 */
789template <class Stat>
790class ScalarProxy
791{
792 private:
793 /** Pointer to the parent Vector. */
794 Stat &stat;
795
796 /** The index to access in the parent VectorBase. */
797 off_type index;
798
799 public:
800 /**
801 * Return the current value of this stat as its base type.
802 * @return The current value.
803 */
804 Counter value() const { return stat.data(index)->value(); }
805
806 /**
807 * Return the current value of this statas a result type.
808 * @return The current value.
809 */
810 Result result() const { return stat.data(index)->result(); }
811
812 public:
813 /**
814 * Create and initialize this proxy, do not register it with the database.
815 * @param i The index to access.
816 */
817 ScalarProxy(Stat &s, off_type i)
818 : stat(s), index(i)
819 {
820 }
821
822 /**
823 * Create a copy of the provided ScalarProxy.
824 * @param sp The proxy to copy.
825 */
826 ScalarProxy(const ScalarProxy &sp)
827 : stat(sp.stat), index(sp.index)
828 {}
829
830 /**
831 * Set this proxy equal to the provided one.
832 * @param sp The proxy to copy.
833 * @return A reference to this proxy.
834 */
835 const ScalarProxy &
836 operator=(const ScalarProxy &sp)
837 {
838 stat = sp.stat;
839 index = sp.index;
840 return *this;
841 }
842
843 public:
844 // Common operators for stats
845 /**
846 * Increment the stat by 1. This calls the associated storage object inc
847 * function.
848 */
849 void operator++() { stat.data(index)->inc(1); }
850 /**
851 * Decrement the stat by 1. This calls the associated storage object dec
852 * function.
853 */
854 void operator--() { stat.data(index)->dec(1); }
855
856 /** Increment the stat by 1. */
857 void operator++(int) { ++*this; }
858 /** Decrement the stat by 1. */
859 void operator--(int) { --*this; }
860
861 /**
862 * Set the data value to the given value. This calls the associated storage
863 * object set function.
864 * @param v The new value.
865 */
866 template <typename U>
867 void
868 operator=(const U &v)
869 {
870 stat.data(index)->set(v);
871 }
872
873 /**
874 * Increment the stat by the given value. This calls the associated
875 * storage object inc function.
876 * @param v The value to add.
877 */
878 template <typename U>
879 void
880 operator+=(const U &v)
881 {
882 stat.data(index)->inc(v);
883 }
884
885 /**
886 * Decrement the stat by the given value. This calls the associated
887 * storage object dec function.
888 * @param v The value to substract.
889 */
890 template <typename U>
891 void
892 operator-=(const U &v)
893 {
894 stat.data(index)->dec(v);
895 }
896
897 /**
898 * Return the number of elements, always 1 for a scalar.
899 * @return 1.
900 */
901 size_type size() const { return 1; }
902
903 public:
904 std::string
905 str() const
906 {
907 return csprintf("%s[%d]", stat.info()->name, index);
908 }
909};
910
911/**
912 * Implementation of a vector of stats. The type of stat is determined by the
913 * Storage class. @sa ScalarBase
914 */
915template <class Derived, class Stor>
916class VectorBase : public DataWrapVec<Derived, VectorInfoProxy>
917{
918 public:
919 typedef Stor Storage;
920 typedef typename Stor::Params Params;
921
922 /** Proxy type */
923 typedef ScalarProxy<Derived> Proxy;
924 friend class ScalarProxy<Derived>;
925 friend class DataWrapVec<Derived, VectorInfoProxy>;
926
927 protected:
928 /** The storage of this stat. */
929 Storage *storage;
930 size_type _size;
931
932 protected:
933 /**
934 * Retrieve the storage.
935 * @param index The vector index to access.
936 * @return The storage object at the given index.
937 */
938 Storage *data(off_type index) { return &storage[index]; }
939
940 /**
941 * Retrieve a const pointer to the storage.
942 * @param index The vector index to access.
943 * @return A const pointer to the storage object at the given index.
944 */
945 const Storage *data(off_type index) const { return &storage[index]; }
946
947 void
948 doInit(size_type s)
949 {
950 assert(s > 0 && "size must be positive!");
951 assert(!storage && "already initialized");
952 _size = s;
953
954 char *ptr = new char[_size * sizeof(Storage)];
955 storage = reinterpret_cast<Storage *>(ptr);
956
957 for (off_type i = 0; i < _size; ++i)
958 new (&storage[i]) Storage(this->info());
959
960 this->setInit();
961 }
962
963 public:
964 void
965 value(VCounter &vec) const
966 {
967 vec.resize(size());
968 for (off_type i = 0; i < size(); ++i)
969 vec[i] = data(i)->value();
970 }
971
972 /**
973 * Copy the values to a local vector and return a reference to it.
974 * @return A reference to a vector of the stat values.
975 */
976 void
977 result(VResult &vec) const
978 {
979 vec.resize(size());
980 for (off_type i = 0; i < size(); ++i)
981 vec[i] = data(i)->result();
982 }
983
984 /**
985 * Return a total of all entries in this vector.
986 * @return The total of all vector entries.
987 */
988 Result
989 total() const
990 {
991 Result total = 0.0;
992 for (off_type i = 0; i < size(); ++i)
993 total += data(i)->result();
994 return total;
995 }
996
997 /**
998 * @return the number of elements in this vector.
999 */
1000 size_type size() const { return _size; }
1001
1002 bool
1003 zero() const
1004 {
1005 for (off_type i = 0; i < size(); ++i)
1006 if (data(i)->zero())
1007 return false;
1008 return true;
1009 }
1010
1011 bool
1012 check() const
1013 {
1014 return storage != NULL;
1015 }
1016
1017 public:
1018 VectorBase()
1019 : storage(NULL)
1020 {}
1021
1022 ~VectorBase()
1023 {
1024 if (!storage)
1025 return;
1026
1027 for (off_type i = 0; i < _size; ++i)
1028 data(i)->~Storage();
1029 delete [] reinterpret_cast<char *>(storage);
1030 }
1031
1032 /**
1033 * Set this vector to have the given size.
1034 * @param size The new size.
1035 * @return A reference to this stat.
1036 */
1037 Derived &
1038 init(size_type size)
1039 {
1040 Derived &self = this->self();
1041 self.doInit(size);
1042 return self;
1043 }
1044
1045 /**
1046 * Return a reference (ScalarProxy) to the stat at the given index.
1047 * @param index The vector index to access.
1048 * @return A reference of the stat.
1049 */
1050 Proxy
1051 operator[](off_type index)
1052 {
1053 assert (index >= 0 && index < size());
1054 return Proxy(this->self(), index);
1055 }
1056};
1057
1058template <class Stat>
1059class VectorProxy
1060{
1061 private:
1062 Stat &stat;
1063 off_type offset;
1064 size_type len;
1065
1066 private:
1067 mutable VResult vec;
1068
1069 typename Stat::Storage *
1070 data(off_type index)
1071 {
1072 assert(index < len);
1073 return stat.data(offset + index);
1074 }
1075
1076 const typename Stat::Storage *
1077 data(off_type index) const
1078 {
1079 assert(index < len);
1080 return stat.data(offset + index);
1081 }
1082
1083 public:
1084 const VResult &
1085 result() const
1086 {
1087 vec.resize(size());
1088
1089 for (off_type i = 0; i < size(); ++i)
1090 vec[i] = data(i)->result();
1091
1092 return vec;
1093 }
1094
1095 Result
1096 total() const
1097 {
1098 Result total = 0.0;
1099 for (off_type i = 0; i < size(); ++i)
1100 total += data(i)->result();
1101 return total;
1102 }
1103
1104 public:
1105 VectorProxy(Stat &s, off_type o, size_type l)
1106 : stat(s), offset(o), len(l)
1107 {
1108 }
1109
1110 VectorProxy(const VectorProxy &sp)
1111 : stat(sp.stat), offset(sp.offset), len(sp.len)
1112 {
1113 }
1114
1115 const VectorProxy &
1116 operator=(const VectorProxy &sp)
1117 {
1118 stat = sp.stat;
1119 offset = sp.offset;
1120 len = sp.len;
1121 return *this;
1122 }
1123
1124 ScalarProxy<Stat>
1125 operator[](off_type index)
1126 {
1127 assert (index >= 0 && index < size());
1128 return ScalarProxy<Stat>(stat, offset + index);
1129 }
1130
1131 size_type size() const { return len; }
1132};
1133
1134template <class Derived, class Stor>
1135class Vector2dBase : public DataWrapVec2d<Derived, Vector2dInfoProxy>
1136{
1137 public:
1138 typedef Vector2dInfoProxy<Derived> Info;
1139 typedef Stor Storage;
1140 typedef typename Stor::Params Params;
1141 typedef VectorProxy<Derived> Proxy;
1142 friend class ScalarProxy<Derived>;
1143 friend class VectorProxy<Derived>;
1144 friend class DataWrapVec<Derived, Vector2dInfoProxy>;
1145 friend class DataWrapVec2d<Derived, Vector2dInfoProxy>;
1146
1147 protected:
1148 size_type x;
1149 size_type y;
1150 size_type _size;
1151 Storage *storage;
1152
1153 protected:
1154 Storage *data(off_type index) { return &storage[index]; }
1155 const Storage *data(off_type index) const { return &storage[index]; }
1156
1157 public:
1158 Vector2dBase()
1159 : storage(NULL)
1160 {}
1161
1162 ~Vector2dBase()
1163 {
1164 if (!storage)
1165 return;
1166
1167 for (off_type i = 0; i < _size; ++i)
1168 data(i)->~Storage();
1169 delete [] reinterpret_cast<char *>(storage);
1170 }
1171
1172 Derived &
1173 init(size_type _x, size_type _y)
1174 {
1175 assert(_x > 0 && _y > 0 && "sizes must be positive!");
1176 assert(!storage && "already initialized");
1177
1178 Derived &self = this->self();
1179 Info *info = this->info();
1180
1181 x = _x;
1182 y = _y;
1183 info->x = _x;
1184 info->y = _y;
1185 _size = x * y;
1186
1187 char *ptr = new char[_size * sizeof(Storage)];
1188 storage = reinterpret_cast<Storage *>(ptr);
1189
1190 for (off_type i = 0; i < _size; ++i)
1191 new (&storage[i]) Storage(info);
1192
1193 this->setInit();
1194
1195 return self;
1196 }
1197
1198 std::string ysubname(off_type i) const { return (*this->y_subnames)[i]; }
1199
1200 Proxy
1201 operator[](off_type index)
1202 {
1203 off_type offset = index * y;
1204 assert (index >= 0 && offset + index < size());
1205 return Proxy(this->self(), offset, y);
1206 }
1207
1208
1209 size_type
1210 size() const
1211 {
1212 return _size;
1213 }
1214
1215 bool
1216 zero() const
1217 {
1218 return data(0)->zero();
1219#if 0
1220 for (off_type i = 0; i < size(); ++i)
1221 if (!data(i)->zero())
1222 return false;
1223 return true;
1224#endif
1225 }
1226
1227 void
1228 prepare()
1229 {
1230 Info *info = this->info();
1231 size_type size = this->size();
1232
1233 for (off_type i = 0; i < size; ++i)
1234 data(i)->prepare(info);
1235
1236 info->cvec.resize(size);
1237 for (off_type i = 0; i < size; ++i)
1238 info->cvec[i] = data(i)->value();
1239 }
1240
1241 /**
1242 * Reset stat value to default
1243 */
1244 void
1245 reset()
1246 {
1247 Info *info = this->info();
1248 size_type size = this->size();
1249 for (off_type i = 0; i < size; ++i)
1250 data(i)->reset(info);
1251 }
1252
1253 bool
1254 check() const
1255 {
1256 return storage != NULL;
1257 }
1258};
1259
1260//////////////////////////////////////////////////////////////////////
1261//
1262// Non formula statistics
1263//
1264//////////////////////////////////////////////////////////////////////
1265
1266/**
1267 * Templatized storage and interface for a distrbution stat.
1268 */
1269class DistStor
1270{
1271 public:
1272 /** The parameters for a distribution stat. */
1273 struct Params : public DistParams
1274 {
1275 Params() : DistParams(false) {}
1276 };
1277
1278 private:
1279 /** The minimum value to track. */
1280 Counter min_track;
1281 /** The maximum value to track. */
1282 Counter max_track;
1283 /** The number of entries in each bucket. */
1284 Counter bucket_size;
1285 /** The number of buckets. Equal to (max-min)/bucket_size. */
1286 size_type buckets;
1287
1288 /** The smallest value sampled. */
1289 Counter min_val;
1290 /** The largest value sampled. */
1291 Counter max_val;
1292 /** The number of values sampled less than min. */
1293 Counter underflow;
1294 /** The number of values sampled more than max. */
1295 Counter overflow;
1296 /** The current sum. */
1297 Counter sum;
1298 /** The sum of squares. */
1299 Counter squares;
1300 /** The number of samples. */
1301 Counter samples;
1302 /** Counter for each bucket. */
1303 VCounter cvec;
1304
1305 public:
1306 DistStor(Info *info)
1307 : cvec(safe_cast<const Params *>(info->storageParams)->buckets)
1308 {
1309 reset(info);
1310 }
1311
1312 /**
1313 * Add a value to the distribution for the given number of times.
1314 * @param val The value to add.
1315 * @param number The number of times to add the value.
1316 */
1317 void
1318 sample(Counter val, int number)
1319 {
1320 if (val < min_track)
1321 underflow += number;
1322 else if (val > max_track)
1323 overflow += number;
1324 else {
1325 size_type index =
1326 (size_type)std::floor((val - min_track) / bucket_size);
1327 assert(index < size());
1328 cvec[index] += number;
1329 }
1330
1331 if (val < min_val)
1332 min_val = val;
1333
1334 if (val > max_val)
1335 max_val = val;
1336
1337 Counter sample = val * number;
1338 sum += sample;
1339 squares += sample * sample;
1340 samples += number;
1341 }
1342
1343 /**
1344 * Return the number of buckets in this distribution.
1345 * @return the number of buckets.
1346 */
1347 size_type size() const { return cvec.size(); }
1348
1349 /**
1350 * Returns true if any calls to sample have been made.
1351 * @return True if any values have been sampled.
1352 */
1353 bool
1354 zero() const
1355 {
1356 return samples == Counter();
1357 }
1358
1359 void
1360 prepare(Info *info, DistData &data)
1361 {
1362 const Params *params = safe_cast<const Params *>(info->storageParams);
1363
1364 data.min_val = (min_val == CounterLimits::max()) ? 0 : min_val;
1365 data.max_val = (max_val == CounterLimits::min()) ? 0 : max_val;
1366 data.underflow = underflow;
1367 data.overflow = overflow;
1368
1369 int buckets = params->buckets;
1370 data.cvec.resize(buckets);
1371 for (off_type i = 0; i < buckets; ++i)
1372 data.cvec[i] = cvec[i];
1373
1374 data.sum = sum;
1375 data.squares = squares;
1376 data.samples = samples;
1377 }
1378
1379 /**
1380 * Reset stat value to default
1381 */
1382 void
1383 reset(Info *info)
1384 {
1385 const Params *params = safe_cast<const Params *>(info->storageParams);
1386 min_track = params->min;
1387 max_track = params->max;
1388 bucket_size = params->bucket_size;
1389
1390 min_val = CounterLimits::max();
1391 max_val = CounterLimits::min();
1392 underflow = 0;
1393 overflow = 0;
1394
1395 size_type size = cvec.size();
1396 for (off_type i = 0; i < size; ++i)
1397 cvec[i] = Counter();
1398
1399 sum = Counter();
1400 squares = Counter();
1401 samples = Counter();
1402 }
1403};
1404
1405/**
1406 * Templatized storage and interface for a distribution that calculates mean
1407 * and variance.
1408 */
1409class FancyStor
1410{
1411 public:
1412 struct Params : public DistParams
1413 {
1414 Params() : DistParams(true) {}
1415 };
1416
1417 private:
1418 /** The current sum. */
1419 Counter sum;
1420 /** The sum of squares. */
1421 Counter squares;
1422 /** The number of samples. */
1423 Counter samples;
1424
1425 public:
1426 /**
1427 * Create and initialize this storage.
1428 */
1429 FancyStor(Info *info)
1430 : sum(Counter()), squares(Counter()), samples(Counter())
1431 { }
1432
1433 /**
1434 * Add a value the given number of times to this running average.
1435 * Update the running sum and sum of squares, increment the number of
1436 * values seen by the given number.
1437 * @param val The value to add.
1438 * @param number The number of times to add the value.
1439 */
1440 void
1441 sample(Counter val, int number)
1442 {
1443 Counter value = val * number;
1444 sum += value;
1445 squares += value * value;
1446 samples += number;
1447 }
1448
1449 /**
1450 * Return the number of entries in this stat, 1
1451 * @return 1.
1452 */
1453 size_type size() const { return 1; }
1454
1455 /**
1456 * Return true if no samples have been added.
1457 * @return True if no samples have been added.
1458 */
1459 bool zero() const { return samples == Counter(); }
1460
1461 void
1462 prepare(Info *info, DistData &data)
1463 {
1464 data.sum = sum;
1465 data.squares = squares;
1466 data.samples = samples;
1467 }
1468
1469 /**
1470 * Reset stat value to default
1471 */
1472 void
1473 reset(Info *info)
1474 {
1475 sum = Counter();
1476 squares = Counter();
1477 samples = Counter();
1478 }
1479};
1480
1481/**
1482 * Templatized storage for distribution that calculates per tick mean and
1483 * variance.
1484 */
1485class AvgFancy
1486{
1487 public:
1488 struct Params : public DistParams
1489 {
1490 Params() : DistParams(true) {}
1491 };
1492
1493 private:
1494 /** Current total. */
1495 Counter sum;
1496 /** Current sum of squares. */
1497 Counter squares;
1498
1499 public:
1500 /**
1501 * Create and initialize this storage.
1502 */
1503 AvgFancy(Info *info)
1504 : sum(Counter()), squares(Counter())
1505 {}
1506
1507 /**
1508 * Add a value to the distribution for the given number of times.
1509 * Update the running sum and sum of squares.
1510 * @param val The value to add.
1511 * @param number The number of times to add the value.
1512 */
1513 void
1514 sample(Counter val, int number)
1515 {
1516 Counter value = val * number;
1517 sum += value;
1518 squares += value * value;
1519 }
1520
1521 /**
1522 * Return the number of entries, in this case 1.
1523 * @return 1.
1524 */
1525 size_type size() const { return 1; }
1526
1527 /**
1528 * Return true if no samples have been added.
1529 * @return True if the sum is zero.
1530 */
1531 bool zero() const { return sum == Counter(); }
1532
1533 void
1534 prepare(Info *info, DistData &data)
1535 {
1536 data.sum = sum;
1537 data.squares = squares;
1538 data.samples = curTick;
1539 }
1540
1541 /**
1542 * Reset stat value to default
1543 */
1544 void
1545 reset(Info *info)
1546 {
1547 sum = Counter();
1548 squares = Counter();
1549 }
1550};
1551
1552/**
1553 * Implementation of a distribution stat. The type of distribution is
1554 * determined by the Storage template. @sa ScalarBase
1555 */
1556template <class Derived, class Stor>
1557class DistBase : public DataWrap<Derived, DistInfoProxy>
1558{
1559 public:
1560 typedef DistInfoProxy<Derived> Info;
1561 typedef Stor Storage;
1562 typedef typename Stor::Params Params;
1563
1564 protected:
1565 /** The storage for this stat. */
1566 char storage[sizeof(Storage)] __attribute__ ((aligned (8)));
1567
1568 protected:
1569 /**
1570 * Retrieve the storage.
1571 * @return The storage object for this stat.
1572 */
1573 Storage *
1574 data()
1575 {
1576 return reinterpret_cast<Storage *>(storage);
1577 }
1578
1579 /**
1580 * Retrieve a const pointer to the storage.
1581 * @return A const pointer to the storage object for this stat.
1582 */
1583 const Storage *
1584 data() const
1585 {
1586 return reinterpret_cast<const Storage *>(storage);
1587 }
1588
1589 void
1590 doInit()
1591 {
1592 new (storage) Storage(this->info());
1593 this->setInit();
1594 }
1595
1596 public:
1597 DistBase() { }
1598
1599 /**
1600 * Add a value to the distribtion n times. Calls sample on the storage
1601 * class.
1602 * @param v The value to add.
1603 * @param n The number of times to add it, defaults to 1.
1604 */
1605 template <typename U>
1606 void sample(const U &v, int n = 1) { data()->sample(v, n); }
1607
1608 /**
1609 * Return the number of entries in this stat.
1610 * @return The number of entries.
1611 */
1612 size_type size() const { return data()->size(); }
1613 /**
1614 * Return true if no samples have been added.
1615 * @return True if there haven't been any samples.
1616 */
1617 bool zero() const { return data()->zero(); }
1618
1619 void
1620 prepare()
1621 {
1622 Info *info = this->info();
1623 data()->prepare(info, info->data);
1624 }
1625
1626 /**
1627 * Reset stat value to default
1628 */
1629 void
1630 reset()
1631 {
1632 data()->reset(this->info());
1633 }
1634};
1635
1636template <class Stat>
1637class DistProxy;
1638
1639template <class Derived, class Stor>
1640class VectorDistBase : public DataWrapVec<Derived, VectorDistInfoProxy>
1641{
1642 public:
1643 typedef VectorDistInfoProxy<Derived> Info;
1644 typedef Stor Storage;
1645 typedef typename Stor::Params Params;
1646 typedef DistProxy<Derived> Proxy;
1647 friend class DistProxy<Derived>;
1648 friend class DataWrapVec<Derived, VectorDistInfoProxy>;
1649
1650 protected:
1651 Storage *storage;
1652 size_type _size;
1653
1654 protected:
1655 Storage *
1656 data(off_type index)
1657 {
1658 return &storage[index];
1659 }
1660
1661 const Storage *
1662 data(off_type index) const
1663 {
1664 return &storage[index];
1665 }
1666
1667 void
1668 doInit(size_type s)
1669 {
1670 assert(s > 0 && "size must be positive!");
1671 assert(!storage && "already initialized");
1672 _size = s;
1673
1674 char *ptr = new char[_size * sizeof(Storage)];
1675 storage = reinterpret_cast<Storage *>(ptr);
1676
1677 Info *info = this->info();
1678 for (off_type i = 0; i < _size; ++i)
1679 new (&storage[i]) Storage(info);
1680
1681 this->setInit();
1682 }
1683
1684 public:
1685 VectorDistBase()
1686 : storage(NULL)
1687 {}
1688
1689 ~VectorDistBase()
1690 {
1691 if (!storage)
1692 return ;
1693
1694 for (off_type i = 0; i < _size; ++i)
1695 data(i)->~Storage();
1696 delete [] reinterpret_cast<char *>(storage);
1697 }
1698
1699 Proxy operator[](off_type index);
1700
1701 size_type
1702 size() const
1703 {
1704 return _size;
1705 }
1706
1707 bool
1708 zero() const
1709 {
1710 return false;
1711#if 0
1712 for (off_type i = 0; i < size(); ++i)
1713 if (!data(i)->zero())
1714 return false;
1715 return true;
1716#endif
1717 }
1718
1719 void
1720 prepare()
1721 {
1722 Info *info = this->info();
1723 size_type size = this->size();
1724 info->data.resize(size);
1725 for (off_type i = 0; i < size; ++i)
1726 data(i)->prepare(info, info->data[i]);
1727 }
1728
1729 bool
1730 check() const
1731 {
1732 return storage != NULL;
1733 }
1734};
1735
1736template <class Stat>
1737class DistProxy
1738{
1739 private:
1740 Stat *stat;
1741 off_type index;
1742
1743 protected:
1744 typename Stat::Storage *data() { return stat->data(index); }
1745 const typename Stat::Storage *data() const { return stat->data(index); }
1746
1747 public:
1748 DistProxy(Stat *s, off_type i)
1749 : stat(s), index(i)
1750 {}
1751
1752 DistProxy(const DistProxy &sp)
1753 : stat(sp.stat), index(sp.index)
1754 {}
1755
1756 const DistProxy &
1757 operator=(const DistProxy &sp)
1758 {
1759 stat = sp.stat;
1760 index = sp.index;
1761 return *this;
1762 }
1763
1764 public:
1765 template <typename U>
1766 void
1767 sample(const U &v, int n = 1)
1768 {
1769 data()->sample(v, n);
1770 }
1771
1772 size_type
1773 size() const
1774 {
1775 return 1;
1776 }
1777
1778 bool
1779 zero() const
1780 {
1781 return data()->zero();
1782 }
1783
1784 /**
1785 * Proxy has no state. Nothing to reset.
1786 */
1787 void reset() { }
1788};
1789
1790template <class Derived, class Stor>
1791inline typename VectorDistBase<Derived, Stor>::Proxy
1792VectorDistBase<Derived, Stor>::operator[](off_type index)
1793{
1794 assert (index >= 0 && index < size());
1795 typedef typename VectorDistBase<Derived, Stor>::Proxy Proxy;
1796 return Proxy(this, index);
1797}
1798
1799#if 0
1800template <class Storage>
1801Result
1802VectorDistBase<Storage>::total(off_type index) const
1803{
1804 Result total = 0.0;
1805 for (off_type i = 0; i < x_size(); ++i)
1806 total += data(i)->result();
1807}
1808#endif
1809
1810//////////////////////////////////////////////////////////////////////
1811//
1812// Formula Details
1813//
1814//////////////////////////////////////////////////////////////////////
1815
1816/**
1817 * Base class for formula statistic node. These nodes are used to build a tree
1818 * that represents the formula.
1819 */
1820class Node : public RefCounted
1821{
1822 public:
1823 /**
1824 * Return the number of nodes in the subtree starting at this node.
1825 * @return the number of nodes in this subtree.
1826 */
1827 virtual size_type size() const = 0;
1828 /**
1829 * Return the result vector of this subtree.
1830 * @return The result vector of this subtree.
1831 */
1832 virtual const VResult &result() const = 0;
1833 /**
1834 * Return the total of the result vector.
1835 * @return The total of the result vector.
1836 */
1837 virtual Result total() const = 0;
1838
1839 /**
1840 *
1841 */
1842 virtual std::string str() const = 0;
1843};
1844
1845/** Reference counting pointer to a function Node. */
1846typedef RefCountingPtr<Node> NodePtr;
1847
1848class ScalarStatNode : public Node
1849{
1850 private:
1851 const ScalarInfo *data;
1852 mutable VResult vresult;
1853
1854 public:
1855 ScalarStatNode(const ScalarInfo *d) : data(d), vresult(1) {}
1856
1857 const VResult &
1858 result() const
1859 {
1860 vresult[0] = data->result();
1861 return vresult;
1862 }
1863
1864 Result total() const { return data->result(); };
1865
1866 size_type size() const { return 1; }
1867
1868 /**
1869 *
1870 */
1871 std::string str() const { return data->name; }
1872};
1873
1874template <class Stat>
1875class ScalarProxyNode : public Node
1876{
1877 private:
1878 const ScalarProxy<Stat> proxy;
1879 mutable VResult vresult;
1880
1881 public:
1882 ScalarProxyNode(const ScalarProxy<Stat> &p)
1883 : proxy(p), vresult(1)
1884 { }
1885
1886 const VResult &
1887 result() const
1888 {
1889 vresult[0] = proxy.result();
1890 return vresult;
1891 }
1892
1893 Result
1894 total() const
1895 {
1896 return proxy.result();
1897 }
1898
1899 size_type
1900 size() const
1901 {
1902 return 1;
1903 }
1904
1905 /**
1906 *
1907 */
1908 std::string
1909 str() const
1910 {
1911 return proxy.str();
1912 }
1913};
1914
1915class VectorStatNode : public Node
1916{
1917 private:
1918 const VectorInfo *data;
1919
1920 public:
1921 VectorStatNode(const VectorInfo *d) : data(d) { }
1922 const VResult &result() const { return data->result(); }
1923 Result total() const { return data->total(); };
1924
1925 size_type size() const { return data->size(); }
1926
1927 std::string str() const { return data->name; }
1928};
1929
1930template <class T>
1931class ConstNode : public Node
1932{
1933 private:
1934 VResult vresult;
1935
1936 public:
1937 ConstNode(T s) : vresult(1, (Result)s) {}
1938 const VResult &result() const { return vresult; }
1939 Result total() const { return vresult[0]; };
1940 size_type size() const { return 1; }
1941 std::string str() const { return to_string(vresult[0]); }
1942};
1943
1944template <class T>
1945class ConstVectorNode : public Node
1946{
1947 private:
1948 VResult vresult;
1949
1950 public:
1951 ConstVectorNode(const T &s) : vresult(s.begin(), s.end()) {}
1952 const VResult &result() const { return vresult; }
1953
1954 Result
1955 total() const
1956 {
1957 size_type size = this->size();
1958 Result tmp = 0;
1959 for (off_type i = 0; i < size; i++)
1960 tmp += vresult[i];
1961 return tmp;
1962 }
1963
1964 size_type size() const { return vresult.size(); }
1965 std::string
1966 str() const
1967 {
1968 size_type size = this->size();
1969 std::string tmp = "(";
1970 for (off_type i = 0; i < size; i++)
1971 tmp += csprintf("%s ",to_string(vresult[i]));
1972 tmp += ")";
1973 return tmp;
1974 }
1975};
1976
1977template <class Op>
1978struct OpString;
1979
1980template<>
1981struct OpString<std::plus<Result> >
1982{
1983 static std::string str() { return "+"; }
1984};
1985
1986template<>
1987struct OpString<std::minus<Result> >
1988{
1989 static std::string str() { return "-"; }
1990};
1991
1992template<>
1993struct OpString<std::multiplies<Result> >
1994{
1995 static std::string str() { return "*"; }
1996};
1997
1998template<>
1999struct OpString<std::divides<Result> >
2000{
2001 static std::string str() { return "/"; }
2002};
2003
2004template<>
2005struct OpString<std::modulus<Result> >
2006{
2007 static std::string str() { return "%"; }
2008};
2009
2010template<>
2011struct OpString<std::negate<Result> >
2012{
2013 static std::string str() { return "-"; }
2014};
2015
2016template <class Op>
2017class UnaryNode : public Node
2018{
2019 public:
2020 NodePtr l;
2021 mutable VResult vresult;
2022
2023 public:
2024 UnaryNode(NodePtr &p) : l(p) {}
2025
2026 const VResult &
2027 result() const
2028 {
2029 const VResult &lvec = l->result();
2030 size_type size = lvec.size();
2031
2032 assert(size > 0);
2033
2034 vresult.resize(size);
2035 Op op;
2036 for (off_type i = 0; i < size; ++i)
2037 vresult[i] = op(lvec[i]);
2038
2039 return vresult;
2040 }
2041
2042 Result
2043 total() const
2044 {
2045 const VResult &vec = this->result();
2046 Result total = 0.0;
2047 for (off_type i = 0; i < size(); i++)
2048 total += vec[i];
2049 return total;
2050 }
2051
2052 size_type size() const { return l->size(); }
2053
2054 std::string
2055 str() const
2056 {
2057 return OpString<Op>::str() + l->str();
2058 }
2059};
2060
2061template <class Op>
2062class BinaryNode : public Node
2063{
2064 public:
2065 NodePtr l;
2066 NodePtr r;
2067 mutable VResult vresult;
2068
2069 public:
2070 BinaryNode(NodePtr &a, NodePtr &b) : l(a), r(b) {}
2071
2072 const VResult &
2073 result() const
2074 {
2075 Op op;
2076 const VResult &lvec = l->result();
2077 const VResult &rvec = r->result();
2078
2079 assert(lvec.size() > 0 && rvec.size() > 0);
2080
2081 if (lvec.size() == 1 && rvec.size() == 1) {
2082 vresult.resize(1);
2083 vresult[0] = op(lvec[0], rvec[0]);
2084 } else if (lvec.size() == 1) {
2085 size_type size = rvec.size();
2086 vresult.resize(size);
2087 for (off_type i = 0; i < size; ++i)
2088 vresult[i] = op(lvec[0], rvec[i]);
2089 } else if (rvec.size() == 1) {
2090 size_type size = lvec.size();
2091 vresult.resize(size);
2092 for (off_type i = 0; i < size; ++i)
2093 vresult[i] = op(lvec[i], rvec[0]);
2094 } else if (rvec.size() == lvec.size()) {
2095 size_type size = rvec.size();
2096 vresult.resize(size);
2097 for (off_type i = 0; i < size; ++i)
2098 vresult[i] = op(lvec[i], rvec[i]);
2099 }
2100
2101 return vresult;
2102 }
2103
2104 Result
2105 total() const
2106 {
2107 const VResult &vec = this->result();
2108 Result total = 0.0;
2109 for (off_type i = 0; i < size(); i++)
2110 total += vec[i];
2111 return total;
2112 }
2113
2114 size_type
2115 size() const
2116 {
2117 size_type ls = l->size();
2118 size_type rs = r->size();
2119 if (ls == 1) {
2120 return rs;
2121 } else if (rs == 1) {
2122 return ls;
2123 } else {
2124 assert(ls == rs && "Node vector sizes are not equal");
2125 return ls;
2126 }
2127 }
2128
2129 std::string
2130 str() const
2131 {
2132 return csprintf("(%s %s %s)", l->str(), OpString<Op>::str(), r->str());
2133 }
2134};
2135
2136template <class Op>
2137class SumNode : public Node
2138{
2139 public:
2140 NodePtr l;
2141 mutable VResult vresult;
2142
2143 public:
2144 SumNode(NodePtr &p) : l(p), vresult(1) {}
2145
2146 const VResult &
2147 result() const
2148 {
2149 const VResult &lvec = l->result();
2150 size_type size = lvec.size();
2151 assert(size > 0);
2152
2153 vresult[0] = 0.0;
2154
2155 Op op;
2156 for (off_type i = 0; i < size; ++i)
2157 vresult[0] = op(vresult[0], lvec[i]);
2158
2159 return vresult;
2160 }
2161
2162 Result
2163 total() const
2164 {
2165 const VResult &lvec = l->result();
2166 size_type size = lvec.size();
2167 assert(size > 0);
2168
2169 Result vresult = 0.0;
2170
2171 Op op;
2172 for (off_type i = 0; i < size; ++i)
2173 vresult = op(vresult, lvec[i]);
2174
2175 return vresult;
2176 }
2177
2178 size_type size() const { return 1; }
2179
2180 std::string
2181 str() const
2182 {
2183 return csprintf("total(%s)", l->str());
2184 }
2185};
2186
2187
2188//////////////////////////////////////////////////////////////////////
2189//
2190// Visible Statistics Types
2191//
2192//////////////////////////////////////////////////////////////////////
2193/**
2194 * @defgroup VisibleStats "Statistic Types"
2195 * These are the statistics that are used in the simulator.
2196 * @{
2197 */
2198
2199/**
2200 * This is a simple scalar statistic, like a counter.
2201 * @sa Stat, ScalarBase, StatStor
2202 */
2203class Scalar : public ScalarBase<Scalar, StatStor>
2204{
2205 public:
2206 using ScalarBase<Scalar, StatStor>::operator=;
2207};
2208
2209/**
2210 * A stat that calculates the per tick average of a value.
2211 * @sa Stat, ScalarBase, AvgStor
2212 */
2213class Average : public ScalarBase<Average, AvgStor>
2214{
2215 public:
2216 using ScalarBase<Average, AvgStor>::operator=;
2217};
2218
2219class Value : public ValueBase<Value>
2220{
2221};
2222
2223/**
2224 * A vector of scalar stats.
2225 * @sa Stat, VectorBase, StatStor
2226 */
2227class Vector : public VectorBase<Vector, StatStor>
2228{
2229};
2230
2231/**
2232 * A vector of Average stats.
2233 * @sa Stat, VectorBase, AvgStor
2234 */
2235class AverageVector : public VectorBase<AverageVector, AvgStor>
2236{
2237};
2238
2239/**
2240 * A 2-Dimensional vecto of scalar stats.
2241 * @sa Stat, Vector2dBase, StatStor
2242 */
2243class Vector2d : public Vector2dBase<Vector2d, StatStor>
2244{
2245};
2246
2247/**
2248 * A simple distribution stat.
2249 * @sa Stat, DistBase, DistStor
2250 */
2251class Distribution : public DistBase<Distribution, DistStor>
2252{
2253 public:
2254 /**
2255 * Set the parameters of this distribution. @sa DistStor::Params
2256 * @param min The minimum value of the distribution.
2257 * @param max The maximum value of the distribution.
2258 * @param bkt The number of values in each bucket.
2259 * @return A reference to this distribution.
2260 */
2261 Distribution &
2262 init(Counter min, Counter max, Counter bkt)
2263 {
2264 DistStor::Params *params = new DistStor::Params;
2265 params->min = min;
2266 params->max = max;
2267 params->bucket_size = bkt;
2268 params->buckets = (size_type)rint((max - min) / bkt + 1.0);
2269 this->setParams(params);
2270 this->doInit();
2271 return this->self();
2272 }
2273};
2274
2275/**
2276 * Calculates the mean and variance of all the samples.
2277 * @sa Stat, DistBase, FancyStor
2278 */
2279class StandardDeviation : public DistBase<StandardDeviation, FancyStor>
2280{
2281 public:
2282 /**
2283 * Construct and initialize this distribution.
2284 */
2285 StandardDeviation()
2286 {
2287 this->doInit();
2288 }
2289};
2290
2291/**
2292 * Calculates the per tick mean and variance of the samples.
2293 * @sa Stat, DistBase, AvgFancy
2294 */
2295class AverageDeviation : public DistBase<AverageDeviation, AvgFancy>
2296{
2297 public:
2298 /**
2299 * Construct and initialize this distribution.
2300 */
2301 AverageDeviation()
2302 {
2303 this->doInit();
2304 }
2305};
2306
2307/**
2308 * A vector of distributions.
2309 * @sa Stat, VectorDistBase, DistStor
2310 */
2311class VectorDistribution : public VectorDistBase<VectorDistribution, DistStor>
2312{
2313 public:
2314 /**
2315 * Initialize storage and parameters for this distribution.
2316 * @param size The size of the vector (the number of distributions).
2317 * @param min The minimum value of the distribution.
2318 * @param max The maximum value of the distribution.
2319 * @param bkt The number of values in each bucket.
2320 * @return A reference to this distribution.
2321 */
2322 VectorDistribution &
2323 init(size_type size, Counter min, Counter max, Counter bkt)
2324 {
2325 DistStor::Params *params = new DistStor::Params;
2326 params->min = min;
2327 params->max = max;
2328 params->bucket_size = bkt;
2329 params->buckets = (size_type)rint((max - min) / bkt + 1.0);
2330 this->setParams(params);
2331 this->doInit(size);
2332 return this->self();
2333 }
2334};
2335
2336/**
2337 * This is a vector of StandardDeviation stats.
2338 * @sa Stat, VectorDistBase, FancyStor
2339 */
2340class VectorStandardDeviation
2341 : public VectorDistBase<VectorStandardDeviation, FancyStor>
2342{
2343 public:
2344 /**
2345 * Initialize storage for this distribution.
2346 * @param size The size of the vector.
2347 * @return A reference to this distribution.
2348 */
2349 VectorStandardDeviation &
2350 init(size_type size)
2351 {
2352 this->doInit(size);
2353 return this->self();
2354 }
2355};
2356
2357/**
2358 * This is a vector of AverageDeviation stats.
2359 * @sa Stat, VectorDistBase, AvgFancy
2360 */
2361class VectorAverageDeviation
2362 : public VectorDistBase<VectorAverageDeviation, AvgFancy>
2363{
2364 public:
2365 /**
2366 * Initialize storage for this distribution.
2367 * @param size The size of the vector.
2368 * @return A reference to this distribution.
2369 */
2370 VectorAverageDeviation &
2371 init(size_type size)
2372 {
2373 this->doInit(size);
2374 return this->self();
2375 }
2376};
2377
2378template <class Stat>
2379class FormulaInfoProxy : public InfoProxy<Stat, FormulaInfo>
2380{
2381 protected:
2382 mutable VResult vec;
2383 mutable VCounter cvec;
2384
2385 public:
2386 FormulaInfoProxy(Stat &stat) : InfoProxy<Stat, FormulaInfo>(stat) {}
2387
2388 size_type size() const { return this->s.size(); }
2389
2390 const VResult &
2391 result() const
2392 {
2393 this->s.result(vec);
2394 return vec;
2395 }
2396 Result total() const { return this->s.total(); }
2397 VCounter &value() const { return cvec; }
2398
2399 std::string str() const { return this->s.str(); }
2400};
2401
2402class Temp;
2403/**
2404 * A formula for statistics that is calculated when printed. A formula is
2405 * stored as a tree of Nodes that represent the equation to calculate.
2406 * @sa Stat, ScalarStat, VectorStat, Node, Temp
2407 */
2408class Formula : public DataWrapVec<Formula, FormulaInfoProxy>
2409{
2410 protected:
2411 /** The root of the tree which represents the Formula */
2412 NodePtr root;
2413 friend class Temp;
2414
2415 public:
2416 /**
2417 * Create and initialize thie formula, and register it with the database.
2418 */
2419 Formula();
2420
2421 /**
2422 * Create a formula with the given root node, register it with the
2423 * database.
2424 * @param r The root of the expression tree.
2425 */
2426 Formula(Temp r);
2427
2428 /**
2429 * Set an unitialized Formula to the given root.
2430 * @param r The root of the expression tree.
2431 * @return a reference to this formula.
2432 */
2433 const Formula &operator=(Temp r);
2434
2435 /**
2436 * Add the given tree to the existing one.
2437 * @param r The root of the expression tree.
2438 * @return a reference to this formula.
2439 */
2440 const Formula &operator+=(Temp r);
2441 /**
2442 * Return the result of the Fomula in a vector. If there were no Vector
2443 * components to the Formula, then the vector is size 1. If there were,
2444 * like x/y with x being a vector of size 3, then the result returned will
2445 * be x[0]/y, x[1]/y, x[2]/y, respectively.
2446 * @return The result vector.
2447 */
2448 void result(VResult &vec) const;
2449
2450 /**
2451 * Return the total Formula result. If there is a Vector
2452 * component to this Formula, then this is the result of the
2453 * Formula if the formula is applied after summing all the
2454 * components of the Vector. For example, if Formula is x/y where
2455 * x is size 3, then total() will return (x[1]+x[2]+x[3])/y. If
2456 * there is no Vector component, total() returns the same value as
2457 * the first entry in the VResult val() returns.
2458 * @return The total of the result vector.
2459 */
2460 Result total() const;
2461
2462 /**
2463 * Return the number of elements in the tree.
2464 */
2465 size_type size() const;
2466
2467 void prepare() { }
2468
2469 /**
2470 * Formulas don't need to be reset
2471 */
2472 void reset();
2473
2474 /**
2475 *
2476 */
2477 bool zero() const;
2478
2479 std::string str() const;
2480};
2481
2482class FormulaNode : public Node
2483{
2484 private:
2485 const Formula &formula;
2486 mutable VResult vec;
2487
2488 public:
2489 FormulaNode(const Formula &f) : formula(f) {}
2490
2491 size_type size() const { return formula.size(); }
2492 const VResult &result() const { formula.result(vec); return vec; }
2493 Result total() const { return formula.total(); }
2494
2495 std::string str() const { return formula.str(); }
2496};
2497
2498/**
2499 * Helper class to construct formula node trees.
2500 */
2501class Temp
2502{
2503 protected:
2504 /**
2505 * Pointer to a Node object.
2506 */
2507 NodePtr node;
2508
2509 public:
2510 /**
2511 * Copy the given pointer to this class.
2512 * @param n A pointer to a Node object to copy.
2513 */
2514 Temp(NodePtr n) : node(n) { }
2515
2516 /**
2517 * Return the node pointer.
2518 * @return the node pointer.
2519 */
2520 operator NodePtr&() { return node; }
2521
2522 public:
2523 /**
2524 * Create a new ScalarStatNode.
2525 * @param s The ScalarStat to place in a node.
2526 */
2527 Temp(const Scalar &s)
2528 : node(new ScalarStatNode(s.info()))
2529 { }
2530
2531 /**
2532 * Create a new ScalarStatNode.
2533 * @param s The ScalarStat to place in a node.
2534 */
2535 Temp(const Value &s)
2536 : node(new ScalarStatNode(s.info()))
2537 { }
2538
2539 /**
2540 * Create a new ScalarStatNode.
2541 * @param s The ScalarStat to place in a node.
2542 */
2543 Temp(const Average &s)
2544 : node(new ScalarStatNode(s.info()))
2545 { }
2546
2547 /**
2548 * Create a new VectorStatNode.
2549 * @param s The VectorStat to place in a node.
2550 */
2551 Temp(const Vector &s)
2552 : node(new VectorStatNode(s.info()))
2553 { }
2554
2555 /**
2556 *
2557 */
2558 Temp(const Formula &f)
2559 : node(new FormulaNode(f))
2560 { }
2561
2562 /**
2563 * Create a new ScalarProxyNode.
2564 * @param p The ScalarProxy to place in a node.
2565 */
2566 template <class Stat>
2567 Temp(const ScalarProxy<Stat> &p)
2568 : node(new ScalarProxyNode<Stat>(p))
2569 { }
2570
2571 /**
2572 * Create a ConstNode
2573 * @param value The value of the const node.
2574 */
2575 Temp(signed char value)
2576 : node(new ConstNode<signed char>(value))
2577 { }
2578
2579 /**
2580 * Create a ConstNode
2581 * @param value The value of the const node.
2582 */
2583 Temp(unsigned char value)
2584 : node(new ConstNode<unsigned char>(value))
2585 { }
2586
2587 /**
2588 * Create a ConstNode
2589 * @param value The value of the const node.
2590 */
2591 Temp(signed short value)
2592 : node(new ConstNode<signed short>(value))
2593 { }
2594
2595 /**
2596 * Create a ConstNode
2597 * @param value The value of the const node.
2598 */
2599 Temp(unsigned short value)
2600 : node(new ConstNode<unsigned short>(value))
2601 { }
2602
2603 /**
2604 * Create a ConstNode
2605 * @param value The value of the const node.
2606 */
2607 Temp(signed int value)
2608 : node(new ConstNode<signed int>(value))
2609 { }
2610
2611 /**
2612 * Create a ConstNode
2613 * @param value The value of the const node.
2614 */
2615 Temp(unsigned int value)
2616 : node(new ConstNode<unsigned int>(value))
2617 { }
2618
2619 /**
2620 * Create a ConstNode
2621 * @param value The value of the const node.
2622 */
2623 Temp(signed long value)
2624 : node(new ConstNode<signed long>(value))
2625 { }
2626
2627 /**
2628 * Create a ConstNode
2629 * @param value The value of the const node.
2630 */
2631 Temp(unsigned long value)
2632 : node(new ConstNode<unsigned long>(value))
2633 { }
2634
2635 /**
2636 * Create a ConstNode
2637 * @param value The value of the const node.
2638 */
2639 Temp(signed long long value)
2640 : node(new ConstNode<signed long long>(value))
2641 { }
2642
2643 /**
2644 * Create a ConstNode
2645 * @param value The value of the const node.
2646 */
2647 Temp(unsigned long long value)
2648 : node(new ConstNode<unsigned long long>(value))
2649 { }
2650
2651 /**
2652 * Create a ConstNode
2653 * @param value The value of the const node.
2654 */
2655 Temp(float value)
2656 : node(new ConstNode<float>(value))
2657 { }
2658
2659 /**
2660 * Create a ConstNode
2661 * @param value The value of the const node.
2662 */
2663 Temp(double value)
2664 : node(new ConstNode<double>(value))
2665 { }
2666};
2667
2668
2669/**
2670 * @}
2671 */
2672
2673inline Temp
2674operator+(Temp l, Temp r)
2675{
2676 return NodePtr(new BinaryNode<std::plus<Result> >(l, r));
2677}
2678
2679inline Temp
2680operator-(Temp l, Temp r)
2681{
2682 return NodePtr(new BinaryNode<std::minus<Result> >(l, r));
2683}
2684
2685inline Temp
2686operator*(Temp l, Temp r)
2687{
2688 return NodePtr(new BinaryNode<std::multiplies<Result> >(l, r));
2689}
2690
2691inline Temp
2692operator/(Temp l, Temp r)
2693{
2694 return NodePtr(new BinaryNode<std::divides<Result> >(l, r));
2695}
2696
2697inline Temp
2698operator-(Temp l)
2699{
2700 return NodePtr(new UnaryNode<std::negate<Result> >(l));
2701}
2702
2703template <typename T>
2704inline Temp
2705constant(T val)
2706{
2707 return NodePtr(new ConstNode<T>(val));
2708}
2709
2710template <typename T>
2711inline Temp
2712constantVector(T val)
2713{
2714 return NodePtr(new ConstVectorNode<T>(val));
2715}
2716
2717inline Temp
2718sum(Temp val)
2719{
2720 return NodePtr(new SumNode<std::plus<Result> >(val));
2721}
2722
2723/**
2724 * Enable the statistics package. Before the statistics package is
2725 * enabled, all statistics must be created and initialized and once
2726 * the package is enabled, no more statistics can be created.
2727 */
2728void enable();
2729
2730/**
2731 * Prepare all stats for data access. This must be done before
2732 * dumping and serialization.
2733 */
2734void prepare();
2735
2736/**
2737 * Dump all statistics data to the registered outputs
2738 */
2739void dump();
2740
2741/**
2742 * Reset all statistics to the base state
2743 */
2744void reset();
2745/**
2746 * Register a callback that should be called whenever statistics are
2747 * reset
2748 */
2749void registerResetCallback(Callback *cb);
2750
2751std::list<Info *> &statsList();
2752
2753/* namespace Stats */ }
2754
2755#endif // __BASE_STATISTICS_HH__
287 return this->self();
288 }
289
290 /**
291 * Set the prerequisite stat and marks this stat to print at the end of
292 * simulation.
293 * @param prereq The prerequisite stat.
294 * @return A reference to this stat.
295 */
296 template <class Stat>
297 Derived &
298 prereq(const Stat &prereq)
299 {
300 this->info()->prereq = prereq.info();
301 return this->self();
302 }
303};
304
305template <class Derived, template <class> class InfoProxyType>
306class DataWrapVec : public DataWrap<Derived, InfoProxyType>
307{
308 public:
309 typedef InfoProxyType<Derived> Info;
310
311 // The following functions are specific to vectors. If you use them
312 // in a non vector context, you will get a nice compiler error!
313
314 /**
315 * Set the subfield name for the given index, and marks this stat to print
316 * at the end of simulation.
317 * @param index The subfield index.
318 * @param name The new name of the subfield.
319 * @return A reference to this stat.
320 */
321 Derived &
322 subname(off_type index, const std::string &name)
323 {
324 Derived &self = this->self();
325 Info *info = self.info();
326
327 std::vector<std::string> &subn = info->subnames;
328 if (subn.size() <= index)
329 subn.resize(index + 1);
330 subn[index] = name;
331 return self;
332 }
333
334 // The following functions are specific to 2d vectors. If you use
335 // them in a non vector context, you will get a nice compiler
336 // error because info doesn't have the right variables.
337
338 /**
339 * Set the subfield description for the given index and marks this stat to
340 * print at the end of simulation.
341 * @param index The subfield index.
342 * @param desc The new description of the subfield
343 * @return A reference to this stat.
344 */
345 Derived &
346 subdesc(off_type index, const std::string &desc)
347 {
348 Info *info = this->info();
349
350 std::vector<std::string> &subd = info->subdescs;
351 if (subd.size() <= index)
352 subd.resize(index + 1);
353 subd[index] = desc;
354
355 return this->self();
356 }
357
358 void
359 prepare()
360 {
361 Derived &self = this->self();
362 Info *info = this->info();
363
364 size_t size = self.size();
365 for (off_type i = 0; i < size; ++i)
366 self.data(i)->prepare(info);
367 }
368
369 void
370 reset()
371 {
372 Derived &self = this->self();
373 Info *info = this->info();
374
375 size_t size = self.size();
376 for (off_type i = 0; i < size; ++i)
377 self.data(i)->reset(info);
378 }
379};
380
381template <class Derived, template <class> class InfoProxyType>
382class DataWrapVec2d : public DataWrapVec<Derived, InfoProxyType>
383{
384 public:
385 typedef InfoProxyType<Derived> Info;
386
387 /**
388 * @warning This makes the assumption that if you're gonna subnames a 2d
389 * vector, you're subnaming across all y
390 */
391 Derived &
392 ysubnames(const char **names)
393 {
394 Derived &self = this->self();
395 Info *info = this->info();
396
397 info->y_subnames.resize(self.y);
398 for (off_type i = 0; i < self.y; ++i)
399 info->y_subnames[i] = names[i];
400 return self;
401 }
402
403 Derived &
404 ysubname(off_type index, const std::string subname)
405 {
406 Derived &self = this->self();
407 Info *info = this->info();
408
409 assert(index < self.y);
410 info->y_subnames.resize(self.y);
411 info->y_subnames[index] = subname.c_str();
412 return self;
413 }
414};
415
416//////////////////////////////////////////////////////////////////////
417//
418// Simple Statistics
419//
420//////////////////////////////////////////////////////////////////////
421
422/**
423 * Templatized storage and interface for a simple scalar stat.
424 */
425class StatStor
426{
427 private:
428 /** The statistic value. */
429 Counter data;
430
431 public:
432 struct Params : public StorageParams {};
433
434 public:
435 /**
436 * Builds this storage element and calls the base constructor of the
437 * datatype.
438 */
439 StatStor(Info *info)
440 : data(Counter())
441 { }
442
443 /**
444 * The the stat to the given value.
445 * @param val The new value.
446 */
447 void set(Counter val) { data = val; }
448 /**
449 * Increment the stat by the given value.
450 * @param val The new value.
451 */
452 void inc(Counter val) { data += val; }
453 /**
454 * Decrement the stat by the given value.
455 * @param val The new value.
456 */
457 void dec(Counter val) { data -= val; }
458 /**
459 * Return the value of this stat as its base type.
460 * @return The value of this stat.
461 */
462 Counter value() const { return data; }
463 /**
464 * Return the value of this stat as a result type.
465 * @return The value of this stat.
466 */
467 Result result() const { return (Result)data; }
468 /**
469 * Prepare stat data for dumping or serialization
470 */
471 void prepare(Info *info) { }
472 /**
473 * Reset stat value to default
474 */
475 void reset(Info *info) { data = Counter(); }
476
477 /**
478 * @return true if zero value
479 */
480 bool zero() const { return data == Counter(); }
481};
482
483/**
484 * Templatized storage and interface to a per-tick average stat. This keeps
485 * a current count and updates a total (count * ticks) when this count
486 * changes. This allows the quick calculation of a per tick count of the item
487 * being watched. This is good for keeping track of residencies in structures
488 * among other things.
489 */
490class AvgStor
491{
492 private:
493 /** The current count. */
494 Counter current;
495 /** The total count for all tick. */
496 mutable Result total;
497 /** The tick that current last changed. */
498 mutable Tick last;
499
500 public:
501 struct Params : public StorageParams {};
502
503 public:
504 /**
505 * Build and initializes this stat storage.
506 */
507 AvgStor(Info *info)
508 : current(0), total(0), last(0)
509 { }
510
511 /**
512 * Set the current count to the one provided, update the total and last
513 * set values.
514 * @param val The new count.
515 */
516 void
517 set(Counter val)
518 {
519 total += current * (curTick - last);
520 last = curTick;
521 current = val;
522 }
523
524 /**
525 * Increment the current count by the provided value, calls set.
526 * @param val The amount to increment.
527 */
528 void inc(Counter val) { set(current + val); }
529
530 /**
531 * Deccrement the current count by the provided value, calls set.
532 * @param val The amount to decrement.
533 */
534 void dec(Counter val) { set(current - val); }
535
536 /**
537 * Return the current count.
538 * @return The current count.
539 */
540 Counter value() const { return current; }
541
542 /**
543 * Return the current average.
544 * @return The current average.
545 */
546 Result
547 result() const
548 {
549 assert(last == curTick);
550 return (Result)(total + current) / (Result)(curTick + 1);
551 }
552
553 /**
554 * @return true if zero value
555 */
556 bool zero() const { return total == 0.0; }
557
558 /**
559 * Prepare stat data for dumping or serialization
560 */
561 void
562 prepare(Info *info)
563 {
564 total += current * (curTick - last);
565 last = curTick;
566 }
567
568 /**
569 * Reset stat value to default
570 */
571 void
572 reset(Info *info)
573 {
574 total = 0.0;
575 last = curTick;
576 }
577
578};
579
580/**
581 * Implementation of a scalar stat. The type of stat is determined by the
582 * Storage template.
583 */
584template <class Derived, class Stor>
585class ScalarBase : public DataWrap<Derived, ScalarInfoProxy>
586{
587 public:
588 typedef Stor Storage;
589 typedef typename Stor::Params Params;
590
591 protected:
592 /** The storage of this stat. */
593 char storage[sizeof(Storage)] __attribute__ ((aligned (8)));
594
595 protected:
596 /**
597 * Retrieve the storage.
598 * @param index The vector index to access.
599 * @return The storage object at the given index.
600 */
601 Storage *
602 data()
603 {
604 return reinterpret_cast<Storage *>(storage);
605 }
606
607 /**
608 * Retrieve a const pointer to the storage.
609 * for the given index.
610 * @param index The vector index to access.
611 * @return A const pointer to the storage object at the given index.
612 */
613 const Storage *
614 data() const
615 {
616 return reinterpret_cast<const Storage *>(storage);
617 }
618
619 void
620 doInit()
621 {
622 new (storage) Storage(this->info());
623 this->setInit();
624 }
625
626 public:
627 /**
628 * Return the current value of this stat as its base type.
629 * @return The current value.
630 */
631 Counter value() const { return data()->value(); }
632
633 public:
634 ScalarBase()
635 {
636 this->doInit();
637 }
638
639 public:
640 // Common operators for stats
641 /**
642 * Increment the stat by 1. This calls the associated storage object inc
643 * function.
644 */
645 void operator++() { data()->inc(1); }
646 /**
647 * Decrement the stat by 1. This calls the associated storage object dec
648 * function.
649 */
650 void operator--() { data()->dec(1); }
651
652 /** Increment the stat by 1. */
653 void operator++(int) { ++*this; }
654 /** Decrement the stat by 1. */
655 void operator--(int) { --*this; }
656
657 /**
658 * Set the data value to the given value. This calls the associated storage
659 * object set function.
660 * @param v The new value.
661 */
662 template <typename U>
663 void operator=(const U &v) { data()->set(v); }
664
665 /**
666 * Increment the stat by the given value. This calls the associated
667 * storage object inc function.
668 * @param v The value to add.
669 */
670 template <typename U>
671 void operator+=(const U &v) { data()->inc(v); }
672
673 /**
674 * Decrement the stat by the given value. This calls the associated
675 * storage object dec function.
676 * @param v The value to substract.
677 */
678 template <typename U>
679 void operator-=(const U &v) { data()->dec(v); }
680
681 /**
682 * Return the number of elements, always 1 for a scalar.
683 * @return 1.
684 */
685 size_type size() const { return 1; }
686
687 Counter value() { return data()->value(); }
688
689 Result result() { return data()->result(); }
690
691 Result total() { return result(); }
692
693 bool zero() { return result() == 0.0; }
694
695 void reset() { data()->reset(this->info()); }
696 void prepare() { data()->prepare(this->info()); }
697};
698
699class ProxyInfo : public ScalarInfo
700{
701 public:
702 std::string str() const { return to_string(value()); }
703 size_type size() const { return 1; }
704 bool check() const { return true; }
705 void prepare() { }
706 void reset() { }
707 bool zero() const { return value() == 0; }
708
709 void visit(Visit &visitor) { visitor.visit(*this); }
710};
711
712template <class T>
713class ValueProxy : public ProxyInfo
714{
715 private:
716 T *scalar;
717
718 public:
719 ValueProxy(T &val) : scalar(&val) {}
720 Counter value() const { return *scalar; }
721 Result result() const { return *scalar; }
722 Result total() const { return *scalar; }
723};
724
725template <class T>
726class FunctorProxy : public ProxyInfo
727{
728 private:
729 T *functor;
730
731 public:
732 FunctorProxy(T &func) : functor(&func) {}
733 Counter value() const { return (*functor)(); }
734 Result result() const { return (*functor)(); }
735 Result total() const { return (*functor)(); }
736};
737
738template <class Derived>
739class ValueBase : public DataWrap<Derived, ScalarInfoProxy>
740{
741 private:
742 ProxyInfo *proxy;
743
744 public:
745 ValueBase() : proxy(NULL) { }
746 ~ValueBase() { if (proxy) delete proxy; }
747
748 template <class T>
749 Derived &
750 scalar(T &value)
751 {
752 proxy = new ValueProxy<T>(value);
753 this->setInit();
754 return this->self();
755 }
756
757 template <class T>
758 Derived &
759 functor(T &func)
760 {
761 proxy = new FunctorProxy<T>(func);
762 this->setInit();
763 return this->self();
764 }
765
766 Counter value() { return proxy->value(); }
767 Result result() const { return proxy->result(); }
768 Result total() const { return proxy->total(); };
769 size_type size() const { return proxy->size(); }
770
771 std::string str() const { return proxy->str(); }
772 bool zero() const { return proxy->zero(); }
773 bool check() const { return proxy != NULL; }
774 void prepare() { }
775 void reset() { }
776};
777
778//////////////////////////////////////////////////////////////////////
779//
780// Vector Statistics
781//
782//////////////////////////////////////////////////////////////////////
783
784/**
785 * A proxy class to access the stat at a given index in a VectorBase stat.
786 * Behaves like a ScalarBase.
787 */
788template <class Stat>
789class ScalarProxy
790{
791 private:
792 /** Pointer to the parent Vector. */
793 Stat &stat;
794
795 /** The index to access in the parent VectorBase. */
796 off_type index;
797
798 public:
799 /**
800 * Return the current value of this stat as its base type.
801 * @return The current value.
802 */
803 Counter value() const { return stat.data(index)->value(); }
804
805 /**
806 * Return the current value of this statas a result type.
807 * @return The current value.
808 */
809 Result result() const { return stat.data(index)->result(); }
810
811 public:
812 /**
813 * Create and initialize this proxy, do not register it with the database.
814 * @param i The index to access.
815 */
816 ScalarProxy(Stat &s, off_type i)
817 : stat(s), index(i)
818 {
819 }
820
821 /**
822 * Create a copy of the provided ScalarProxy.
823 * @param sp The proxy to copy.
824 */
825 ScalarProxy(const ScalarProxy &sp)
826 : stat(sp.stat), index(sp.index)
827 {}
828
829 /**
830 * Set this proxy equal to the provided one.
831 * @param sp The proxy to copy.
832 * @return A reference to this proxy.
833 */
834 const ScalarProxy &
835 operator=(const ScalarProxy &sp)
836 {
837 stat = sp.stat;
838 index = sp.index;
839 return *this;
840 }
841
842 public:
843 // Common operators for stats
844 /**
845 * Increment the stat by 1. This calls the associated storage object inc
846 * function.
847 */
848 void operator++() { stat.data(index)->inc(1); }
849 /**
850 * Decrement the stat by 1. This calls the associated storage object dec
851 * function.
852 */
853 void operator--() { stat.data(index)->dec(1); }
854
855 /** Increment the stat by 1. */
856 void operator++(int) { ++*this; }
857 /** Decrement the stat by 1. */
858 void operator--(int) { --*this; }
859
860 /**
861 * Set the data value to the given value. This calls the associated storage
862 * object set function.
863 * @param v The new value.
864 */
865 template <typename U>
866 void
867 operator=(const U &v)
868 {
869 stat.data(index)->set(v);
870 }
871
872 /**
873 * Increment the stat by the given value. This calls the associated
874 * storage object inc function.
875 * @param v The value to add.
876 */
877 template <typename U>
878 void
879 operator+=(const U &v)
880 {
881 stat.data(index)->inc(v);
882 }
883
884 /**
885 * Decrement the stat by the given value. This calls the associated
886 * storage object dec function.
887 * @param v The value to substract.
888 */
889 template <typename U>
890 void
891 operator-=(const U &v)
892 {
893 stat.data(index)->dec(v);
894 }
895
896 /**
897 * Return the number of elements, always 1 for a scalar.
898 * @return 1.
899 */
900 size_type size() const { return 1; }
901
902 public:
903 std::string
904 str() const
905 {
906 return csprintf("%s[%d]", stat.info()->name, index);
907 }
908};
909
910/**
911 * Implementation of a vector of stats. The type of stat is determined by the
912 * Storage class. @sa ScalarBase
913 */
914template <class Derived, class Stor>
915class VectorBase : public DataWrapVec<Derived, VectorInfoProxy>
916{
917 public:
918 typedef Stor Storage;
919 typedef typename Stor::Params Params;
920
921 /** Proxy type */
922 typedef ScalarProxy<Derived> Proxy;
923 friend class ScalarProxy<Derived>;
924 friend class DataWrapVec<Derived, VectorInfoProxy>;
925
926 protected:
927 /** The storage of this stat. */
928 Storage *storage;
929 size_type _size;
930
931 protected:
932 /**
933 * Retrieve the storage.
934 * @param index The vector index to access.
935 * @return The storage object at the given index.
936 */
937 Storage *data(off_type index) { return &storage[index]; }
938
939 /**
940 * Retrieve a const pointer to the storage.
941 * @param index The vector index to access.
942 * @return A const pointer to the storage object at the given index.
943 */
944 const Storage *data(off_type index) const { return &storage[index]; }
945
946 void
947 doInit(size_type s)
948 {
949 assert(s > 0 && "size must be positive!");
950 assert(!storage && "already initialized");
951 _size = s;
952
953 char *ptr = new char[_size * sizeof(Storage)];
954 storage = reinterpret_cast<Storage *>(ptr);
955
956 for (off_type i = 0; i < _size; ++i)
957 new (&storage[i]) Storage(this->info());
958
959 this->setInit();
960 }
961
962 public:
963 void
964 value(VCounter &vec) const
965 {
966 vec.resize(size());
967 for (off_type i = 0; i < size(); ++i)
968 vec[i] = data(i)->value();
969 }
970
971 /**
972 * Copy the values to a local vector and return a reference to it.
973 * @return A reference to a vector of the stat values.
974 */
975 void
976 result(VResult &vec) const
977 {
978 vec.resize(size());
979 for (off_type i = 0; i < size(); ++i)
980 vec[i] = data(i)->result();
981 }
982
983 /**
984 * Return a total of all entries in this vector.
985 * @return The total of all vector entries.
986 */
987 Result
988 total() const
989 {
990 Result total = 0.0;
991 for (off_type i = 0; i < size(); ++i)
992 total += data(i)->result();
993 return total;
994 }
995
996 /**
997 * @return the number of elements in this vector.
998 */
999 size_type size() const { return _size; }
1000
1001 bool
1002 zero() const
1003 {
1004 for (off_type i = 0; i < size(); ++i)
1005 if (data(i)->zero())
1006 return false;
1007 return true;
1008 }
1009
1010 bool
1011 check() const
1012 {
1013 return storage != NULL;
1014 }
1015
1016 public:
1017 VectorBase()
1018 : storage(NULL)
1019 {}
1020
1021 ~VectorBase()
1022 {
1023 if (!storage)
1024 return;
1025
1026 for (off_type i = 0; i < _size; ++i)
1027 data(i)->~Storage();
1028 delete [] reinterpret_cast<char *>(storage);
1029 }
1030
1031 /**
1032 * Set this vector to have the given size.
1033 * @param size The new size.
1034 * @return A reference to this stat.
1035 */
1036 Derived &
1037 init(size_type size)
1038 {
1039 Derived &self = this->self();
1040 self.doInit(size);
1041 return self;
1042 }
1043
1044 /**
1045 * Return a reference (ScalarProxy) to the stat at the given index.
1046 * @param index The vector index to access.
1047 * @return A reference of the stat.
1048 */
1049 Proxy
1050 operator[](off_type index)
1051 {
1052 assert (index >= 0 && index < size());
1053 return Proxy(this->self(), index);
1054 }
1055};
1056
1057template <class Stat>
1058class VectorProxy
1059{
1060 private:
1061 Stat &stat;
1062 off_type offset;
1063 size_type len;
1064
1065 private:
1066 mutable VResult vec;
1067
1068 typename Stat::Storage *
1069 data(off_type index)
1070 {
1071 assert(index < len);
1072 return stat.data(offset + index);
1073 }
1074
1075 const typename Stat::Storage *
1076 data(off_type index) const
1077 {
1078 assert(index < len);
1079 return stat.data(offset + index);
1080 }
1081
1082 public:
1083 const VResult &
1084 result() const
1085 {
1086 vec.resize(size());
1087
1088 for (off_type i = 0; i < size(); ++i)
1089 vec[i] = data(i)->result();
1090
1091 return vec;
1092 }
1093
1094 Result
1095 total() const
1096 {
1097 Result total = 0.0;
1098 for (off_type i = 0; i < size(); ++i)
1099 total += data(i)->result();
1100 return total;
1101 }
1102
1103 public:
1104 VectorProxy(Stat &s, off_type o, size_type l)
1105 : stat(s), offset(o), len(l)
1106 {
1107 }
1108
1109 VectorProxy(const VectorProxy &sp)
1110 : stat(sp.stat), offset(sp.offset), len(sp.len)
1111 {
1112 }
1113
1114 const VectorProxy &
1115 operator=(const VectorProxy &sp)
1116 {
1117 stat = sp.stat;
1118 offset = sp.offset;
1119 len = sp.len;
1120 return *this;
1121 }
1122
1123 ScalarProxy<Stat>
1124 operator[](off_type index)
1125 {
1126 assert (index >= 0 && index < size());
1127 return ScalarProxy<Stat>(stat, offset + index);
1128 }
1129
1130 size_type size() const { return len; }
1131};
1132
1133template <class Derived, class Stor>
1134class Vector2dBase : public DataWrapVec2d<Derived, Vector2dInfoProxy>
1135{
1136 public:
1137 typedef Vector2dInfoProxy<Derived> Info;
1138 typedef Stor Storage;
1139 typedef typename Stor::Params Params;
1140 typedef VectorProxy<Derived> Proxy;
1141 friend class ScalarProxy<Derived>;
1142 friend class VectorProxy<Derived>;
1143 friend class DataWrapVec<Derived, Vector2dInfoProxy>;
1144 friend class DataWrapVec2d<Derived, Vector2dInfoProxy>;
1145
1146 protected:
1147 size_type x;
1148 size_type y;
1149 size_type _size;
1150 Storage *storage;
1151
1152 protected:
1153 Storage *data(off_type index) { return &storage[index]; }
1154 const Storage *data(off_type index) const { return &storage[index]; }
1155
1156 public:
1157 Vector2dBase()
1158 : storage(NULL)
1159 {}
1160
1161 ~Vector2dBase()
1162 {
1163 if (!storage)
1164 return;
1165
1166 for (off_type i = 0; i < _size; ++i)
1167 data(i)->~Storage();
1168 delete [] reinterpret_cast<char *>(storage);
1169 }
1170
1171 Derived &
1172 init(size_type _x, size_type _y)
1173 {
1174 assert(_x > 0 && _y > 0 && "sizes must be positive!");
1175 assert(!storage && "already initialized");
1176
1177 Derived &self = this->self();
1178 Info *info = this->info();
1179
1180 x = _x;
1181 y = _y;
1182 info->x = _x;
1183 info->y = _y;
1184 _size = x * y;
1185
1186 char *ptr = new char[_size * sizeof(Storage)];
1187 storage = reinterpret_cast<Storage *>(ptr);
1188
1189 for (off_type i = 0; i < _size; ++i)
1190 new (&storage[i]) Storage(info);
1191
1192 this->setInit();
1193
1194 return self;
1195 }
1196
1197 std::string ysubname(off_type i) const { return (*this->y_subnames)[i]; }
1198
1199 Proxy
1200 operator[](off_type index)
1201 {
1202 off_type offset = index * y;
1203 assert (index >= 0 && offset + index < size());
1204 return Proxy(this->self(), offset, y);
1205 }
1206
1207
1208 size_type
1209 size() const
1210 {
1211 return _size;
1212 }
1213
1214 bool
1215 zero() const
1216 {
1217 return data(0)->zero();
1218#if 0
1219 for (off_type i = 0; i < size(); ++i)
1220 if (!data(i)->zero())
1221 return false;
1222 return true;
1223#endif
1224 }
1225
1226 void
1227 prepare()
1228 {
1229 Info *info = this->info();
1230 size_type size = this->size();
1231
1232 for (off_type i = 0; i < size; ++i)
1233 data(i)->prepare(info);
1234
1235 info->cvec.resize(size);
1236 for (off_type i = 0; i < size; ++i)
1237 info->cvec[i] = data(i)->value();
1238 }
1239
1240 /**
1241 * Reset stat value to default
1242 */
1243 void
1244 reset()
1245 {
1246 Info *info = this->info();
1247 size_type size = this->size();
1248 for (off_type i = 0; i < size; ++i)
1249 data(i)->reset(info);
1250 }
1251
1252 bool
1253 check() const
1254 {
1255 return storage != NULL;
1256 }
1257};
1258
1259//////////////////////////////////////////////////////////////////////
1260//
1261// Non formula statistics
1262//
1263//////////////////////////////////////////////////////////////////////
1264
1265/**
1266 * Templatized storage and interface for a distrbution stat.
1267 */
1268class DistStor
1269{
1270 public:
1271 /** The parameters for a distribution stat. */
1272 struct Params : public DistParams
1273 {
1274 Params() : DistParams(false) {}
1275 };
1276
1277 private:
1278 /** The minimum value to track. */
1279 Counter min_track;
1280 /** The maximum value to track. */
1281 Counter max_track;
1282 /** The number of entries in each bucket. */
1283 Counter bucket_size;
1284 /** The number of buckets. Equal to (max-min)/bucket_size. */
1285 size_type buckets;
1286
1287 /** The smallest value sampled. */
1288 Counter min_val;
1289 /** The largest value sampled. */
1290 Counter max_val;
1291 /** The number of values sampled less than min. */
1292 Counter underflow;
1293 /** The number of values sampled more than max. */
1294 Counter overflow;
1295 /** The current sum. */
1296 Counter sum;
1297 /** The sum of squares. */
1298 Counter squares;
1299 /** The number of samples. */
1300 Counter samples;
1301 /** Counter for each bucket. */
1302 VCounter cvec;
1303
1304 public:
1305 DistStor(Info *info)
1306 : cvec(safe_cast<const Params *>(info->storageParams)->buckets)
1307 {
1308 reset(info);
1309 }
1310
1311 /**
1312 * Add a value to the distribution for the given number of times.
1313 * @param val The value to add.
1314 * @param number The number of times to add the value.
1315 */
1316 void
1317 sample(Counter val, int number)
1318 {
1319 if (val < min_track)
1320 underflow += number;
1321 else if (val > max_track)
1322 overflow += number;
1323 else {
1324 size_type index =
1325 (size_type)std::floor((val - min_track) / bucket_size);
1326 assert(index < size());
1327 cvec[index] += number;
1328 }
1329
1330 if (val < min_val)
1331 min_val = val;
1332
1333 if (val > max_val)
1334 max_val = val;
1335
1336 Counter sample = val * number;
1337 sum += sample;
1338 squares += sample * sample;
1339 samples += number;
1340 }
1341
1342 /**
1343 * Return the number of buckets in this distribution.
1344 * @return the number of buckets.
1345 */
1346 size_type size() const { return cvec.size(); }
1347
1348 /**
1349 * Returns true if any calls to sample have been made.
1350 * @return True if any values have been sampled.
1351 */
1352 bool
1353 zero() const
1354 {
1355 return samples == Counter();
1356 }
1357
1358 void
1359 prepare(Info *info, DistData &data)
1360 {
1361 const Params *params = safe_cast<const Params *>(info->storageParams);
1362
1363 data.min_val = (min_val == CounterLimits::max()) ? 0 : min_val;
1364 data.max_val = (max_val == CounterLimits::min()) ? 0 : max_val;
1365 data.underflow = underflow;
1366 data.overflow = overflow;
1367
1368 int buckets = params->buckets;
1369 data.cvec.resize(buckets);
1370 for (off_type i = 0; i < buckets; ++i)
1371 data.cvec[i] = cvec[i];
1372
1373 data.sum = sum;
1374 data.squares = squares;
1375 data.samples = samples;
1376 }
1377
1378 /**
1379 * Reset stat value to default
1380 */
1381 void
1382 reset(Info *info)
1383 {
1384 const Params *params = safe_cast<const Params *>(info->storageParams);
1385 min_track = params->min;
1386 max_track = params->max;
1387 bucket_size = params->bucket_size;
1388
1389 min_val = CounterLimits::max();
1390 max_val = CounterLimits::min();
1391 underflow = 0;
1392 overflow = 0;
1393
1394 size_type size = cvec.size();
1395 for (off_type i = 0; i < size; ++i)
1396 cvec[i] = Counter();
1397
1398 sum = Counter();
1399 squares = Counter();
1400 samples = Counter();
1401 }
1402};
1403
1404/**
1405 * Templatized storage and interface for a distribution that calculates mean
1406 * and variance.
1407 */
1408class FancyStor
1409{
1410 public:
1411 struct Params : public DistParams
1412 {
1413 Params() : DistParams(true) {}
1414 };
1415
1416 private:
1417 /** The current sum. */
1418 Counter sum;
1419 /** The sum of squares. */
1420 Counter squares;
1421 /** The number of samples. */
1422 Counter samples;
1423
1424 public:
1425 /**
1426 * Create and initialize this storage.
1427 */
1428 FancyStor(Info *info)
1429 : sum(Counter()), squares(Counter()), samples(Counter())
1430 { }
1431
1432 /**
1433 * Add a value the given number of times to this running average.
1434 * Update the running sum and sum of squares, increment the number of
1435 * values seen by the given number.
1436 * @param val The value to add.
1437 * @param number The number of times to add the value.
1438 */
1439 void
1440 sample(Counter val, int number)
1441 {
1442 Counter value = val * number;
1443 sum += value;
1444 squares += value * value;
1445 samples += number;
1446 }
1447
1448 /**
1449 * Return the number of entries in this stat, 1
1450 * @return 1.
1451 */
1452 size_type size() const { return 1; }
1453
1454 /**
1455 * Return true if no samples have been added.
1456 * @return True if no samples have been added.
1457 */
1458 bool zero() const { return samples == Counter(); }
1459
1460 void
1461 prepare(Info *info, DistData &data)
1462 {
1463 data.sum = sum;
1464 data.squares = squares;
1465 data.samples = samples;
1466 }
1467
1468 /**
1469 * Reset stat value to default
1470 */
1471 void
1472 reset(Info *info)
1473 {
1474 sum = Counter();
1475 squares = Counter();
1476 samples = Counter();
1477 }
1478};
1479
1480/**
1481 * Templatized storage for distribution that calculates per tick mean and
1482 * variance.
1483 */
1484class AvgFancy
1485{
1486 public:
1487 struct Params : public DistParams
1488 {
1489 Params() : DistParams(true) {}
1490 };
1491
1492 private:
1493 /** Current total. */
1494 Counter sum;
1495 /** Current sum of squares. */
1496 Counter squares;
1497
1498 public:
1499 /**
1500 * Create and initialize this storage.
1501 */
1502 AvgFancy(Info *info)
1503 : sum(Counter()), squares(Counter())
1504 {}
1505
1506 /**
1507 * Add a value to the distribution for the given number of times.
1508 * Update the running sum and sum of squares.
1509 * @param val The value to add.
1510 * @param number The number of times to add the value.
1511 */
1512 void
1513 sample(Counter val, int number)
1514 {
1515 Counter value = val * number;
1516 sum += value;
1517 squares += value * value;
1518 }
1519
1520 /**
1521 * Return the number of entries, in this case 1.
1522 * @return 1.
1523 */
1524 size_type size() const { return 1; }
1525
1526 /**
1527 * Return true if no samples have been added.
1528 * @return True if the sum is zero.
1529 */
1530 bool zero() const { return sum == Counter(); }
1531
1532 void
1533 prepare(Info *info, DistData &data)
1534 {
1535 data.sum = sum;
1536 data.squares = squares;
1537 data.samples = curTick;
1538 }
1539
1540 /**
1541 * Reset stat value to default
1542 */
1543 void
1544 reset(Info *info)
1545 {
1546 sum = Counter();
1547 squares = Counter();
1548 }
1549};
1550
1551/**
1552 * Implementation of a distribution stat. The type of distribution is
1553 * determined by the Storage template. @sa ScalarBase
1554 */
1555template <class Derived, class Stor>
1556class DistBase : public DataWrap<Derived, DistInfoProxy>
1557{
1558 public:
1559 typedef DistInfoProxy<Derived> Info;
1560 typedef Stor Storage;
1561 typedef typename Stor::Params Params;
1562
1563 protected:
1564 /** The storage for this stat. */
1565 char storage[sizeof(Storage)] __attribute__ ((aligned (8)));
1566
1567 protected:
1568 /**
1569 * Retrieve the storage.
1570 * @return The storage object for this stat.
1571 */
1572 Storage *
1573 data()
1574 {
1575 return reinterpret_cast<Storage *>(storage);
1576 }
1577
1578 /**
1579 * Retrieve a const pointer to the storage.
1580 * @return A const pointer to the storage object for this stat.
1581 */
1582 const Storage *
1583 data() const
1584 {
1585 return reinterpret_cast<const Storage *>(storage);
1586 }
1587
1588 void
1589 doInit()
1590 {
1591 new (storage) Storage(this->info());
1592 this->setInit();
1593 }
1594
1595 public:
1596 DistBase() { }
1597
1598 /**
1599 * Add a value to the distribtion n times. Calls sample on the storage
1600 * class.
1601 * @param v The value to add.
1602 * @param n The number of times to add it, defaults to 1.
1603 */
1604 template <typename U>
1605 void sample(const U &v, int n = 1) { data()->sample(v, n); }
1606
1607 /**
1608 * Return the number of entries in this stat.
1609 * @return The number of entries.
1610 */
1611 size_type size() const { return data()->size(); }
1612 /**
1613 * Return true if no samples have been added.
1614 * @return True if there haven't been any samples.
1615 */
1616 bool zero() const { return data()->zero(); }
1617
1618 void
1619 prepare()
1620 {
1621 Info *info = this->info();
1622 data()->prepare(info, info->data);
1623 }
1624
1625 /**
1626 * Reset stat value to default
1627 */
1628 void
1629 reset()
1630 {
1631 data()->reset(this->info());
1632 }
1633};
1634
1635template <class Stat>
1636class DistProxy;
1637
1638template <class Derived, class Stor>
1639class VectorDistBase : public DataWrapVec<Derived, VectorDistInfoProxy>
1640{
1641 public:
1642 typedef VectorDistInfoProxy<Derived> Info;
1643 typedef Stor Storage;
1644 typedef typename Stor::Params Params;
1645 typedef DistProxy<Derived> Proxy;
1646 friend class DistProxy<Derived>;
1647 friend class DataWrapVec<Derived, VectorDistInfoProxy>;
1648
1649 protected:
1650 Storage *storage;
1651 size_type _size;
1652
1653 protected:
1654 Storage *
1655 data(off_type index)
1656 {
1657 return &storage[index];
1658 }
1659
1660 const Storage *
1661 data(off_type index) const
1662 {
1663 return &storage[index];
1664 }
1665
1666 void
1667 doInit(size_type s)
1668 {
1669 assert(s > 0 && "size must be positive!");
1670 assert(!storage && "already initialized");
1671 _size = s;
1672
1673 char *ptr = new char[_size * sizeof(Storage)];
1674 storage = reinterpret_cast<Storage *>(ptr);
1675
1676 Info *info = this->info();
1677 for (off_type i = 0; i < _size; ++i)
1678 new (&storage[i]) Storage(info);
1679
1680 this->setInit();
1681 }
1682
1683 public:
1684 VectorDistBase()
1685 : storage(NULL)
1686 {}
1687
1688 ~VectorDistBase()
1689 {
1690 if (!storage)
1691 return ;
1692
1693 for (off_type i = 0; i < _size; ++i)
1694 data(i)->~Storage();
1695 delete [] reinterpret_cast<char *>(storage);
1696 }
1697
1698 Proxy operator[](off_type index);
1699
1700 size_type
1701 size() const
1702 {
1703 return _size;
1704 }
1705
1706 bool
1707 zero() const
1708 {
1709 return false;
1710#if 0
1711 for (off_type i = 0; i < size(); ++i)
1712 if (!data(i)->zero())
1713 return false;
1714 return true;
1715#endif
1716 }
1717
1718 void
1719 prepare()
1720 {
1721 Info *info = this->info();
1722 size_type size = this->size();
1723 info->data.resize(size);
1724 for (off_type i = 0; i < size; ++i)
1725 data(i)->prepare(info, info->data[i]);
1726 }
1727
1728 bool
1729 check() const
1730 {
1731 return storage != NULL;
1732 }
1733};
1734
1735template <class Stat>
1736class DistProxy
1737{
1738 private:
1739 Stat *stat;
1740 off_type index;
1741
1742 protected:
1743 typename Stat::Storage *data() { return stat->data(index); }
1744 const typename Stat::Storage *data() const { return stat->data(index); }
1745
1746 public:
1747 DistProxy(Stat *s, off_type i)
1748 : stat(s), index(i)
1749 {}
1750
1751 DistProxy(const DistProxy &sp)
1752 : stat(sp.stat), index(sp.index)
1753 {}
1754
1755 const DistProxy &
1756 operator=(const DistProxy &sp)
1757 {
1758 stat = sp.stat;
1759 index = sp.index;
1760 return *this;
1761 }
1762
1763 public:
1764 template <typename U>
1765 void
1766 sample(const U &v, int n = 1)
1767 {
1768 data()->sample(v, n);
1769 }
1770
1771 size_type
1772 size() const
1773 {
1774 return 1;
1775 }
1776
1777 bool
1778 zero() const
1779 {
1780 return data()->zero();
1781 }
1782
1783 /**
1784 * Proxy has no state. Nothing to reset.
1785 */
1786 void reset() { }
1787};
1788
1789template <class Derived, class Stor>
1790inline typename VectorDistBase<Derived, Stor>::Proxy
1791VectorDistBase<Derived, Stor>::operator[](off_type index)
1792{
1793 assert (index >= 0 && index < size());
1794 typedef typename VectorDistBase<Derived, Stor>::Proxy Proxy;
1795 return Proxy(this, index);
1796}
1797
1798#if 0
1799template <class Storage>
1800Result
1801VectorDistBase<Storage>::total(off_type index) const
1802{
1803 Result total = 0.0;
1804 for (off_type i = 0; i < x_size(); ++i)
1805 total += data(i)->result();
1806}
1807#endif
1808
1809//////////////////////////////////////////////////////////////////////
1810//
1811// Formula Details
1812//
1813//////////////////////////////////////////////////////////////////////
1814
1815/**
1816 * Base class for formula statistic node. These nodes are used to build a tree
1817 * that represents the formula.
1818 */
1819class Node : public RefCounted
1820{
1821 public:
1822 /**
1823 * Return the number of nodes in the subtree starting at this node.
1824 * @return the number of nodes in this subtree.
1825 */
1826 virtual size_type size() const = 0;
1827 /**
1828 * Return the result vector of this subtree.
1829 * @return The result vector of this subtree.
1830 */
1831 virtual const VResult &result() const = 0;
1832 /**
1833 * Return the total of the result vector.
1834 * @return The total of the result vector.
1835 */
1836 virtual Result total() const = 0;
1837
1838 /**
1839 *
1840 */
1841 virtual std::string str() const = 0;
1842};
1843
1844/** Reference counting pointer to a function Node. */
1845typedef RefCountingPtr<Node> NodePtr;
1846
1847class ScalarStatNode : public Node
1848{
1849 private:
1850 const ScalarInfo *data;
1851 mutable VResult vresult;
1852
1853 public:
1854 ScalarStatNode(const ScalarInfo *d) : data(d), vresult(1) {}
1855
1856 const VResult &
1857 result() const
1858 {
1859 vresult[0] = data->result();
1860 return vresult;
1861 }
1862
1863 Result total() const { return data->result(); };
1864
1865 size_type size() const { return 1; }
1866
1867 /**
1868 *
1869 */
1870 std::string str() const { return data->name; }
1871};
1872
1873template <class Stat>
1874class ScalarProxyNode : public Node
1875{
1876 private:
1877 const ScalarProxy<Stat> proxy;
1878 mutable VResult vresult;
1879
1880 public:
1881 ScalarProxyNode(const ScalarProxy<Stat> &p)
1882 : proxy(p), vresult(1)
1883 { }
1884
1885 const VResult &
1886 result() const
1887 {
1888 vresult[0] = proxy.result();
1889 return vresult;
1890 }
1891
1892 Result
1893 total() const
1894 {
1895 return proxy.result();
1896 }
1897
1898 size_type
1899 size() const
1900 {
1901 return 1;
1902 }
1903
1904 /**
1905 *
1906 */
1907 std::string
1908 str() const
1909 {
1910 return proxy.str();
1911 }
1912};
1913
1914class VectorStatNode : public Node
1915{
1916 private:
1917 const VectorInfo *data;
1918
1919 public:
1920 VectorStatNode(const VectorInfo *d) : data(d) { }
1921 const VResult &result() const { return data->result(); }
1922 Result total() const { return data->total(); };
1923
1924 size_type size() const { return data->size(); }
1925
1926 std::string str() const { return data->name; }
1927};
1928
1929template <class T>
1930class ConstNode : public Node
1931{
1932 private:
1933 VResult vresult;
1934
1935 public:
1936 ConstNode(T s) : vresult(1, (Result)s) {}
1937 const VResult &result() const { return vresult; }
1938 Result total() const { return vresult[0]; };
1939 size_type size() const { return 1; }
1940 std::string str() const { return to_string(vresult[0]); }
1941};
1942
1943template <class T>
1944class ConstVectorNode : public Node
1945{
1946 private:
1947 VResult vresult;
1948
1949 public:
1950 ConstVectorNode(const T &s) : vresult(s.begin(), s.end()) {}
1951 const VResult &result() const { return vresult; }
1952
1953 Result
1954 total() const
1955 {
1956 size_type size = this->size();
1957 Result tmp = 0;
1958 for (off_type i = 0; i < size; i++)
1959 tmp += vresult[i];
1960 return tmp;
1961 }
1962
1963 size_type size() const { return vresult.size(); }
1964 std::string
1965 str() const
1966 {
1967 size_type size = this->size();
1968 std::string tmp = "(";
1969 for (off_type i = 0; i < size; i++)
1970 tmp += csprintf("%s ",to_string(vresult[i]));
1971 tmp += ")";
1972 return tmp;
1973 }
1974};
1975
1976template <class Op>
1977struct OpString;
1978
1979template<>
1980struct OpString<std::plus<Result> >
1981{
1982 static std::string str() { return "+"; }
1983};
1984
1985template<>
1986struct OpString<std::minus<Result> >
1987{
1988 static std::string str() { return "-"; }
1989};
1990
1991template<>
1992struct OpString<std::multiplies<Result> >
1993{
1994 static std::string str() { return "*"; }
1995};
1996
1997template<>
1998struct OpString<std::divides<Result> >
1999{
2000 static std::string str() { return "/"; }
2001};
2002
2003template<>
2004struct OpString<std::modulus<Result> >
2005{
2006 static std::string str() { return "%"; }
2007};
2008
2009template<>
2010struct OpString<std::negate<Result> >
2011{
2012 static std::string str() { return "-"; }
2013};
2014
2015template <class Op>
2016class UnaryNode : public Node
2017{
2018 public:
2019 NodePtr l;
2020 mutable VResult vresult;
2021
2022 public:
2023 UnaryNode(NodePtr &p) : l(p) {}
2024
2025 const VResult &
2026 result() const
2027 {
2028 const VResult &lvec = l->result();
2029 size_type size = lvec.size();
2030
2031 assert(size > 0);
2032
2033 vresult.resize(size);
2034 Op op;
2035 for (off_type i = 0; i < size; ++i)
2036 vresult[i] = op(lvec[i]);
2037
2038 return vresult;
2039 }
2040
2041 Result
2042 total() const
2043 {
2044 const VResult &vec = this->result();
2045 Result total = 0.0;
2046 for (off_type i = 0; i < size(); i++)
2047 total += vec[i];
2048 return total;
2049 }
2050
2051 size_type size() const { return l->size(); }
2052
2053 std::string
2054 str() const
2055 {
2056 return OpString<Op>::str() + l->str();
2057 }
2058};
2059
2060template <class Op>
2061class BinaryNode : public Node
2062{
2063 public:
2064 NodePtr l;
2065 NodePtr r;
2066 mutable VResult vresult;
2067
2068 public:
2069 BinaryNode(NodePtr &a, NodePtr &b) : l(a), r(b) {}
2070
2071 const VResult &
2072 result() const
2073 {
2074 Op op;
2075 const VResult &lvec = l->result();
2076 const VResult &rvec = r->result();
2077
2078 assert(lvec.size() > 0 && rvec.size() > 0);
2079
2080 if (lvec.size() == 1 && rvec.size() == 1) {
2081 vresult.resize(1);
2082 vresult[0] = op(lvec[0], rvec[0]);
2083 } else if (lvec.size() == 1) {
2084 size_type size = rvec.size();
2085 vresult.resize(size);
2086 for (off_type i = 0; i < size; ++i)
2087 vresult[i] = op(lvec[0], rvec[i]);
2088 } else if (rvec.size() == 1) {
2089 size_type size = lvec.size();
2090 vresult.resize(size);
2091 for (off_type i = 0; i < size; ++i)
2092 vresult[i] = op(lvec[i], rvec[0]);
2093 } else if (rvec.size() == lvec.size()) {
2094 size_type size = rvec.size();
2095 vresult.resize(size);
2096 for (off_type i = 0; i < size; ++i)
2097 vresult[i] = op(lvec[i], rvec[i]);
2098 }
2099
2100 return vresult;
2101 }
2102
2103 Result
2104 total() const
2105 {
2106 const VResult &vec = this->result();
2107 Result total = 0.0;
2108 for (off_type i = 0; i < size(); i++)
2109 total += vec[i];
2110 return total;
2111 }
2112
2113 size_type
2114 size() const
2115 {
2116 size_type ls = l->size();
2117 size_type rs = r->size();
2118 if (ls == 1) {
2119 return rs;
2120 } else if (rs == 1) {
2121 return ls;
2122 } else {
2123 assert(ls == rs && "Node vector sizes are not equal");
2124 return ls;
2125 }
2126 }
2127
2128 std::string
2129 str() const
2130 {
2131 return csprintf("(%s %s %s)", l->str(), OpString<Op>::str(), r->str());
2132 }
2133};
2134
2135template <class Op>
2136class SumNode : public Node
2137{
2138 public:
2139 NodePtr l;
2140 mutable VResult vresult;
2141
2142 public:
2143 SumNode(NodePtr &p) : l(p), vresult(1) {}
2144
2145 const VResult &
2146 result() const
2147 {
2148 const VResult &lvec = l->result();
2149 size_type size = lvec.size();
2150 assert(size > 0);
2151
2152 vresult[0] = 0.0;
2153
2154 Op op;
2155 for (off_type i = 0; i < size; ++i)
2156 vresult[0] = op(vresult[0], lvec[i]);
2157
2158 return vresult;
2159 }
2160
2161 Result
2162 total() const
2163 {
2164 const VResult &lvec = l->result();
2165 size_type size = lvec.size();
2166 assert(size > 0);
2167
2168 Result vresult = 0.0;
2169
2170 Op op;
2171 for (off_type i = 0; i < size; ++i)
2172 vresult = op(vresult, lvec[i]);
2173
2174 return vresult;
2175 }
2176
2177 size_type size() const { return 1; }
2178
2179 std::string
2180 str() const
2181 {
2182 return csprintf("total(%s)", l->str());
2183 }
2184};
2185
2186
2187//////////////////////////////////////////////////////////////////////
2188//
2189// Visible Statistics Types
2190//
2191//////////////////////////////////////////////////////////////////////
2192/**
2193 * @defgroup VisibleStats "Statistic Types"
2194 * These are the statistics that are used in the simulator.
2195 * @{
2196 */
2197
2198/**
2199 * This is a simple scalar statistic, like a counter.
2200 * @sa Stat, ScalarBase, StatStor
2201 */
2202class Scalar : public ScalarBase<Scalar, StatStor>
2203{
2204 public:
2205 using ScalarBase<Scalar, StatStor>::operator=;
2206};
2207
2208/**
2209 * A stat that calculates the per tick average of a value.
2210 * @sa Stat, ScalarBase, AvgStor
2211 */
2212class Average : public ScalarBase<Average, AvgStor>
2213{
2214 public:
2215 using ScalarBase<Average, AvgStor>::operator=;
2216};
2217
2218class Value : public ValueBase<Value>
2219{
2220};
2221
2222/**
2223 * A vector of scalar stats.
2224 * @sa Stat, VectorBase, StatStor
2225 */
2226class Vector : public VectorBase<Vector, StatStor>
2227{
2228};
2229
2230/**
2231 * A vector of Average stats.
2232 * @sa Stat, VectorBase, AvgStor
2233 */
2234class AverageVector : public VectorBase<AverageVector, AvgStor>
2235{
2236};
2237
2238/**
2239 * A 2-Dimensional vecto of scalar stats.
2240 * @sa Stat, Vector2dBase, StatStor
2241 */
2242class Vector2d : public Vector2dBase<Vector2d, StatStor>
2243{
2244};
2245
2246/**
2247 * A simple distribution stat.
2248 * @sa Stat, DistBase, DistStor
2249 */
2250class Distribution : public DistBase<Distribution, DistStor>
2251{
2252 public:
2253 /**
2254 * Set the parameters of this distribution. @sa DistStor::Params
2255 * @param min The minimum value of the distribution.
2256 * @param max The maximum value of the distribution.
2257 * @param bkt The number of values in each bucket.
2258 * @return A reference to this distribution.
2259 */
2260 Distribution &
2261 init(Counter min, Counter max, Counter bkt)
2262 {
2263 DistStor::Params *params = new DistStor::Params;
2264 params->min = min;
2265 params->max = max;
2266 params->bucket_size = bkt;
2267 params->buckets = (size_type)rint((max - min) / bkt + 1.0);
2268 this->setParams(params);
2269 this->doInit();
2270 return this->self();
2271 }
2272};
2273
2274/**
2275 * Calculates the mean and variance of all the samples.
2276 * @sa Stat, DistBase, FancyStor
2277 */
2278class StandardDeviation : public DistBase<StandardDeviation, FancyStor>
2279{
2280 public:
2281 /**
2282 * Construct and initialize this distribution.
2283 */
2284 StandardDeviation()
2285 {
2286 this->doInit();
2287 }
2288};
2289
2290/**
2291 * Calculates the per tick mean and variance of the samples.
2292 * @sa Stat, DistBase, AvgFancy
2293 */
2294class AverageDeviation : public DistBase<AverageDeviation, AvgFancy>
2295{
2296 public:
2297 /**
2298 * Construct and initialize this distribution.
2299 */
2300 AverageDeviation()
2301 {
2302 this->doInit();
2303 }
2304};
2305
2306/**
2307 * A vector of distributions.
2308 * @sa Stat, VectorDistBase, DistStor
2309 */
2310class VectorDistribution : public VectorDistBase<VectorDistribution, DistStor>
2311{
2312 public:
2313 /**
2314 * Initialize storage and parameters for this distribution.
2315 * @param size The size of the vector (the number of distributions).
2316 * @param min The minimum value of the distribution.
2317 * @param max The maximum value of the distribution.
2318 * @param bkt The number of values in each bucket.
2319 * @return A reference to this distribution.
2320 */
2321 VectorDistribution &
2322 init(size_type size, Counter min, Counter max, Counter bkt)
2323 {
2324 DistStor::Params *params = new DistStor::Params;
2325 params->min = min;
2326 params->max = max;
2327 params->bucket_size = bkt;
2328 params->buckets = (size_type)rint((max - min) / bkt + 1.0);
2329 this->setParams(params);
2330 this->doInit(size);
2331 return this->self();
2332 }
2333};
2334
2335/**
2336 * This is a vector of StandardDeviation stats.
2337 * @sa Stat, VectorDistBase, FancyStor
2338 */
2339class VectorStandardDeviation
2340 : public VectorDistBase<VectorStandardDeviation, FancyStor>
2341{
2342 public:
2343 /**
2344 * Initialize storage for this distribution.
2345 * @param size The size of the vector.
2346 * @return A reference to this distribution.
2347 */
2348 VectorStandardDeviation &
2349 init(size_type size)
2350 {
2351 this->doInit(size);
2352 return this->self();
2353 }
2354};
2355
2356/**
2357 * This is a vector of AverageDeviation stats.
2358 * @sa Stat, VectorDistBase, AvgFancy
2359 */
2360class VectorAverageDeviation
2361 : public VectorDistBase<VectorAverageDeviation, AvgFancy>
2362{
2363 public:
2364 /**
2365 * Initialize storage for this distribution.
2366 * @param size The size of the vector.
2367 * @return A reference to this distribution.
2368 */
2369 VectorAverageDeviation &
2370 init(size_type size)
2371 {
2372 this->doInit(size);
2373 return this->self();
2374 }
2375};
2376
2377template <class Stat>
2378class FormulaInfoProxy : public InfoProxy<Stat, FormulaInfo>
2379{
2380 protected:
2381 mutable VResult vec;
2382 mutable VCounter cvec;
2383
2384 public:
2385 FormulaInfoProxy(Stat &stat) : InfoProxy<Stat, FormulaInfo>(stat) {}
2386
2387 size_type size() const { return this->s.size(); }
2388
2389 const VResult &
2390 result() const
2391 {
2392 this->s.result(vec);
2393 return vec;
2394 }
2395 Result total() const { return this->s.total(); }
2396 VCounter &value() const { return cvec; }
2397
2398 std::string str() const { return this->s.str(); }
2399};
2400
2401class Temp;
2402/**
2403 * A formula for statistics that is calculated when printed. A formula is
2404 * stored as a tree of Nodes that represent the equation to calculate.
2405 * @sa Stat, ScalarStat, VectorStat, Node, Temp
2406 */
2407class Formula : public DataWrapVec<Formula, FormulaInfoProxy>
2408{
2409 protected:
2410 /** The root of the tree which represents the Formula */
2411 NodePtr root;
2412 friend class Temp;
2413
2414 public:
2415 /**
2416 * Create and initialize thie formula, and register it with the database.
2417 */
2418 Formula();
2419
2420 /**
2421 * Create a formula with the given root node, register it with the
2422 * database.
2423 * @param r The root of the expression tree.
2424 */
2425 Formula(Temp r);
2426
2427 /**
2428 * Set an unitialized Formula to the given root.
2429 * @param r The root of the expression tree.
2430 * @return a reference to this formula.
2431 */
2432 const Formula &operator=(Temp r);
2433
2434 /**
2435 * Add the given tree to the existing one.
2436 * @param r The root of the expression tree.
2437 * @return a reference to this formula.
2438 */
2439 const Formula &operator+=(Temp r);
2440 /**
2441 * Return the result of the Fomula in a vector. If there were no Vector
2442 * components to the Formula, then the vector is size 1. If there were,
2443 * like x/y with x being a vector of size 3, then the result returned will
2444 * be x[0]/y, x[1]/y, x[2]/y, respectively.
2445 * @return The result vector.
2446 */
2447 void result(VResult &vec) const;
2448
2449 /**
2450 * Return the total Formula result. If there is a Vector
2451 * component to this Formula, then this is the result of the
2452 * Formula if the formula is applied after summing all the
2453 * components of the Vector. For example, if Formula is x/y where
2454 * x is size 3, then total() will return (x[1]+x[2]+x[3])/y. If
2455 * there is no Vector component, total() returns the same value as
2456 * the first entry in the VResult val() returns.
2457 * @return The total of the result vector.
2458 */
2459 Result total() const;
2460
2461 /**
2462 * Return the number of elements in the tree.
2463 */
2464 size_type size() const;
2465
2466 void prepare() { }
2467
2468 /**
2469 * Formulas don't need to be reset
2470 */
2471 void reset();
2472
2473 /**
2474 *
2475 */
2476 bool zero() const;
2477
2478 std::string str() const;
2479};
2480
2481class FormulaNode : public Node
2482{
2483 private:
2484 const Formula &formula;
2485 mutable VResult vec;
2486
2487 public:
2488 FormulaNode(const Formula &f) : formula(f) {}
2489
2490 size_type size() const { return formula.size(); }
2491 const VResult &result() const { formula.result(vec); return vec; }
2492 Result total() const { return formula.total(); }
2493
2494 std::string str() const { return formula.str(); }
2495};
2496
2497/**
2498 * Helper class to construct formula node trees.
2499 */
2500class Temp
2501{
2502 protected:
2503 /**
2504 * Pointer to a Node object.
2505 */
2506 NodePtr node;
2507
2508 public:
2509 /**
2510 * Copy the given pointer to this class.
2511 * @param n A pointer to a Node object to copy.
2512 */
2513 Temp(NodePtr n) : node(n) { }
2514
2515 /**
2516 * Return the node pointer.
2517 * @return the node pointer.
2518 */
2519 operator NodePtr&() { return node; }
2520
2521 public:
2522 /**
2523 * Create a new ScalarStatNode.
2524 * @param s The ScalarStat to place in a node.
2525 */
2526 Temp(const Scalar &s)
2527 : node(new ScalarStatNode(s.info()))
2528 { }
2529
2530 /**
2531 * Create a new ScalarStatNode.
2532 * @param s The ScalarStat to place in a node.
2533 */
2534 Temp(const Value &s)
2535 : node(new ScalarStatNode(s.info()))
2536 { }
2537
2538 /**
2539 * Create a new ScalarStatNode.
2540 * @param s The ScalarStat to place in a node.
2541 */
2542 Temp(const Average &s)
2543 : node(new ScalarStatNode(s.info()))
2544 { }
2545
2546 /**
2547 * Create a new VectorStatNode.
2548 * @param s The VectorStat to place in a node.
2549 */
2550 Temp(const Vector &s)
2551 : node(new VectorStatNode(s.info()))
2552 { }
2553
2554 /**
2555 *
2556 */
2557 Temp(const Formula &f)
2558 : node(new FormulaNode(f))
2559 { }
2560
2561 /**
2562 * Create a new ScalarProxyNode.
2563 * @param p The ScalarProxy to place in a node.
2564 */
2565 template <class Stat>
2566 Temp(const ScalarProxy<Stat> &p)
2567 : node(new ScalarProxyNode<Stat>(p))
2568 { }
2569
2570 /**
2571 * Create a ConstNode
2572 * @param value The value of the const node.
2573 */
2574 Temp(signed char value)
2575 : node(new ConstNode<signed char>(value))
2576 { }
2577
2578 /**
2579 * Create a ConstNode
2580 * @param value The value of the const node.
2581 */
2582 Temp(unsigned char value)
2583 : node(new ConstNode<unsigned char>(value))
2584 { }
2585
2586 /**
2587 * Create a ConstNode
2588 * @param value The value of the const node.
2589 */
2590 Temp(signed short value)
2591 : node(new ConstNode<signed short>(value))
2592 { }
2593
2594 /**
2595 * Create a ConstNode
2596 * @param value The value of the const node.
2597 */
2598 Temp(unsigned short value)
2599 : node(new ConstNode<unsigned short>(value))
2600 { }
2601
2602 /**
2603 * Create a ConstNode
2604 * @param value The value of the const node.
2605 */
2606 Temp(signed int value)
2607 : node(new ConstNode<signed int>(value))
2608 { }
2609
2610 /**
2611 * Create a ConstNode
2612 * @param value The value of the const node.
2613 */
2614 Temp(unsigned int value)
2615 : node(new ConstNode<unsigned int>(value))
2616 { }
2617
2618 /**
2619 * Create a ConstNode
2620 * @param value The value of the const node.
2621 */
2622 Temp(signed long value)
2623 : node(new ConstNode<signed long>(value))
2624 { }
2625
2626 /**
2627 * Create a ConstNode
2628 * @param value The value of the const node.
2629 */
2630 Temp(unsigned long value)
2631 : node(new ConstNode<unsigned long>(value))
2632 { }
2633
2634 /**
2635 * Create a ConstNode
2636 * @param value The value of the const node.
2637 */
2638 Temp(signed long long value)
2639 : node(new ConstNode<signed long long>(value))
2640 { }
2641
2642 /**
2643 * Create a ConstNode
2644 * @param value The value of the const node.
2645 */
2646 Temp(unsigned long long value)
2647 : node(new ConstNode<unsigned long long>(value))
2648 { }
2649
2650 /**
2651 * Create a ConstNode
2652 * @param value The value of the const node.
2653 */
2654 Temp(float value)
2655 : node(new ConstNode<float>(value))
2656 { }
2657
2658 /**
2659 * Create a ConstNode
2660 * @param value The value of the const node.
2661 */
2662 Temp(double value)
2663 : node(new ConstNode<double>(value))
2664 { }
2665};
2666
2667
2668/**
2669 * @}
2670 */
2671
2672inline Temp
2673operator+(Temp l, Temp r)
2674{
2675 return NodePtr(new BinaryNode<std::plus<Result> >(l, r));
2676}
2677
2678inline Temp
2679operator-(Temp l, Temp r)
2680{
2681 return NodePtr(new BinaryNode<std::minus<Result> >(l, r));
2682}
2683
2684inline Temp
2685operator*(Temp l, Temp r)
2686{
2687 return NodePtr(new BinaryNode<std::multiplies<Result> >(l, r));
2688}
2689
2690inline Temp
2691operator/(Temp l, Temp r)
2692{
2693 return NodePtr(new BinaryNode<std::divides<Result> >(l, r));
2694}
2695
2696inline Temp
2697operator-(Temp l)
2698{
2699 return NodePtr(new UnaryNode<std::negate<Result> >(l));
2700}
2701
2702template <typename T>
2703inline Temp
2704constant(T val)
2705{
2706 return NodePtr(new ConstNode<T>(val));
2707}
2708
2709template <typename T>
2710inline Temp
2711constantVector(T val)
2712{
2713 return NodePtr(new ConstVectorNode<T>(val));
2714}
2715
2716inline Temp
2717sum(Temp val)
2718{
2719 return NodePtr(new SumNode<std::plus<Result> >(val));
2720}
2721
2722/**
2723 * Enable the statistics package. Before the statistics package is
2724 * enabled, all statistics must be created and initialized and once
2725 * the package is enabled, no more statistics can be created.
2726 */
2727void enable();
2728
2729/**
2730 * Prepare all stats for data access. This must be done before
2731 * dumping and serialization.
2732 */
2733void prepare();
2734
2735/**
2736 * Dump all statistics data to the registered outputs
2737 */
2738void dump();
2739
2740/**
2741 * Reset all statistics to the base state
2742 */
2743void reset();
2744/**
2745 * Register a callback that should be called whenever statistics are
2746 * reset
2747 */
2748void registerResetCallback(Callback *cb);
2749
2750std::list<Info *> &statsList();
2751
2752/* namespace Stats */ }
2753
2754#endif // __BASE_STATISTICS_HH__