statistics.hh (6128:fdfbd4c6e449) statistics.hh (6129:05405c5b8c16)
1/*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Nathan Binkert
29 */
30
31/** @file
32 * Declaration of Statistics objects.
33 */
34
35/**
36* @todo
37*
38* Generalized N-dimensinal vector
39* documentation
40* key stats
41* interval stats
42* -- these both can use the same function that prints out a
43* specific set of stats
44* VectorStandardDeviation totals
45* Document Namespaces
46*/
47#ifndef __BASE_STATISTICS_HH__
48#define __BASE_STATISTICS_HH__
49
50#include <algorithm>
51#include <cassert>
52#ifdef __SUNPRO_CC
53#include <math.h>
54#endif
55#include <cmath>
56#include <functional>
57#include <iosfwd>
58#include <list>
59#include <string>
60#include <vector>
61
62#include "base/cast.hh"
63#include "base/cprintf.hh"
64#include "base/intmath.hh"
65#include "base/refcnt.hh"
66#include "base/str.hh"
67#include "base/stats/flags.hh"
1/*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Nathan Binkert
29 */
30
31/** @file
32 * Declaration of Statistics objects.
33 */
34
35/**
36* @todo
37*
38* Generalized N-dimensinal vector
39* documentation
40* key stats
41* interval stats
42* -- these both can use the same function that prints out a
43* specific set of stats
44* VectorStandardDeviation totals
45* Document Namespaces
46*/
47#ifndef __BASE_STATISTICS_HH__
48#define __BASE_STATISTICS_HH__
49
50#include <algorithm>
51#include <cassert>
52#ifdef __SUNPRO_CC
53#include <math.h>
54#endif
55#include <cmath>
56#include <functional>
57#include <iosfwd>
58#include <list>
59#include <string>
60#include <vector>
61
62#include "base/cast.hh"
63#include "base/cprintf.hh"
64#include "base/intmath.hh"
65#include "base/refcnt.hh"
66#include "base/str.hh"
67#include "base/stats/flags.hh"
68#include "base/stats/visit.hh"
68#include "base/stats/info.hh"
69#include "base/stats/types.hh"
69#include "base/stats/types.hh"
70#include "base/stats/visit.hh"
70#include "sim/host.hh"
71
72class Callback;
73
74/** The current simulated tick. */
75extern Tick curTick;
76
77/* A namespace for all of the Statistics */
78namespace Stats {
79
71#include "sim/host.hh"
72
73class Callback;
74
75/** The current simulated tick. */
76extern Tick curTick;
77
78/* A namespace for all of the Statistics */
79namespace Stats {
80
80struct StorageParams
81{
82 virtual ~StorageParams();
83};
84
85//////////////////////////////////////////////////////////////////////
86//
87// Statistics Framework Base classes
88//
89//////////////////////////////////////////////////////////////////////
90class Info
91{
92 public:
93 /** The name of the stat. */
94 std::string name;
95 /** The description of the stat. */
96 std::string desc;
97 /** The formatting flags. */
98 StatFlags flags;
99 /** The display precision. */
100 int precision;
101 /** A pointer to a prerequisite Stat. */
102 const Info *prereq;
103 /**
104 * A unique stat ID for each stat in the simulator.
105 * Can be used externally for lookups as well as for debugging.
106 */
107 static int id_count;
108 int id;
109
110 public:
111 const StorageParams *storageParams;
112
113 public:
114 Info();
115 virtual ~Info();
116
117 /** Set the name of this statistic */
118 void setName(const std::string &name);
119
120 /**
121 * Check that this stat has been set up properly and is ready for
122 * use
123 * @return true for success
124 */
125 virtual bool check() const = 0;
126 bool baseCheck() const;
127
128 /**
129 * Enable the stat for use
130 */
131 virtual void enable();
132
133 /**
134 * Prepare the stat for dumping.
135 */
136 virtual void prepare() = 0;
137
138 /**
139 * Reset the stat to the default state.
140 */
141 virtual void reset() = 0;
142
143 /**
144 * @return true if this stat has a value and satisfies its
145 * requirement as a prereq
146 */
147 virtual bool zero() const = 0;
148
149 /**
150 * Visitor entry for outputing statistics data
151 */
152 virtual void visit(Visit &visitor) = 0;
153
154 /**
155 * Checks if the first stat's name is alphabetically less than the second.
156 * This function breaks names up at periods and considers each subname
157 * separately.
158 * @param stat1 The first stat.
159 * @param stat2 The second stat.
160 * @return stat1's name is alphabetically before stat2's
161 */
162 static bool less(Info *stat1, Info *stat2);
163};
164struct StorageParams;
165
166template <class Stat, class Base>
167class InfoProxy : public Base
168{
169 protected:
170 Stat &s;
171
172 public:
173 InfoProxy(Stat &stat) : s(stat) {}
174
175 bool check() const { return s.check(); }
176 void prepare() { s.prepare(); }
177 void reset() { s.reset(); }
178 void
179 visit(Visit &visitor)
180 {
181 visitor.visit(*static_cast<Base *>(this));
182 }
183 bool zero() const { return s.zero(); }
184};
185
81template <class Stat, class Base>
82class InfoProxy : public Base
83{
84 protected:
85 Stat &s;
86
87 public:
88 InfoProxy(Stat &stat) : s(stat) {}
89
90 bool check() const { return s.check(); }
91 void prepare() { s.prepare(); }
92 void reset() { s.reset(); }
93 void
94 visit(Visit &visitor)
95 {
96 visitor.visit(*static_cast<Base *>(this));
97 }
98 bool zero() const { return s.zero(); }
99};
100
186class ScalarInfo : public Info
187{
188 public:
189 virtual Counter value() const = 0;
190 virtual Result result() const = 0;
191 virtual Result total() const = 0;
192};
193
194template <class Stat>
195class ScalarInfoProxy : public InfoProxy<Stat, ScalarInfo>
196{
197 public:
198 ScalarInfoProxy(Stat &stat) : InfoProxy<Stat, ScalarInfo>(stat) {}
199
200 Counter value() const { return this->s.value(); }
201 Result result() const { return this->s.result(); }
202 Result total() const { return this->s.total(); }
203};
204
101template <class Stat>
102class ScalarInfoProxy : public InfoProxy<Stat, ScalarInfo>
103{
104 public:
105 ScalarInfoProxy(Stat &stat) : InfoProxy<Stat, ScalarInfo>(stat) {}
106
107 Counter value() const { return this->s.value(); }
108 Result result() const { return this->s.result(); }
109 Result total() const { return this->s.total(); }
110};
111
205class VectorInfo : public Info
206{
207 public:
208 /** Names and descriptions of subfields. */
209 std::vector<std::string> subnames;
210 std::vector<std::string> subdescs;
211
212 public:
213 void enable();
214
215 public:
216 virtual size_type size() const = 0;
217 virtual const VCounter &value() const = 0;
218 virtual const VResult &result() const = 0;
219 virtual Result total() const = 0;
220};
221
222template <class Stat>
223class VectorInfoProxy : public InfoProxy<Stat, VectorInfo>
224{
225 protected:
226 mutable VCounter cvec;
227 mutable VResult rvec;
228
229 public:
230 VectorInfoProxy(Stat &stat) : InfoProxy<Stat, VectorInfo>(stat) {}
231
232 size_type size() const { return this->s.size(); }
233
234 VCounter &
235 value() const
236 {
237 this->s.value(cvec);
238 return cvec;
239 }
240
241 const VResult &
242 result() const
243 {
244 this->s.result(rvec);
245 return rvec;
246 }
247
248 Result total() const { return this->s.total(); }
249};
250
112template <class Stat>
113class VectorInfoProxy : public InfoProxy<Stat, VectorInfo>
114{
115 protected:
116 mutable VCounter cvec;
117 mutable VResult rvec;
118
119 public:
120 VectorInfoProxy(Stat &stat) : InfoProxy<Stat, VectorInfo>(stat) {}
121
122 size_type size() const { return this->s.size(); }
123
124 VCounter &
125 value() const
126 {
127 this->s.value(cvec);
128 return cvec;
129 }
130
131 const VResult &
132 result() const
133 {
134 this->s.result(rvec);
135 return rvec;
136 }
137
138 Result total() const { return this->s.total(); }
139};
140
251struct DistData
252{
253 Counter min_val;
254 Counter max_val;
255 Counter underflow;
256 Counter overflow;
257 VCounter cvec;
258 Counter sum;
259 Counter squares;
260 Counter samples;
261};
262
263class DistInfo : public Info
264{
265 public:
266 /** Local storage for the entry values, used for printing. */
267 DistData data;
268};
269
270template <class Stat>
271class DistInfoProxy : public InfoProxy<Stat, DistInfo>
272{
273 public:
274 DistInfoProxy(Stat &stat) : InfoProxy<Stat, DistInfo>(stat) {}
275};
276
141template <class Stat>
142class DistInfoProxy : public InfoProxy<Stat, DistInfo>
143{
144 public:
145 DistInfoProxy(Stat &stat) : InfoProxy<Stat, DistInfo>(stat) {}
146};
147
277class VectorDistInfo : public Info
278{
279 public:
280 std::vector<DistData> data;
281
282 /** Names and descriptions of subfields. */
283 std::vector<std::string> subnames;
284 std::vector<std::string> subdescs;
285 void enable();
286
287 protected:
288 /** Local storage for the entry values, used for printing. */
289 mutable VResult rvec;
290
291 public:
292 virtual size_type size() const = 0;
293};
294
295template <class Stat>
296class VectorDistInfoProxy : public InfoProxy<Stat, VectorDistInfo>
297{
298 public:
299 VectorDistInfoProxy(Stat &stat) : InfoProxy<Stat, VectorDistInfo>(stat) {}
300
301 size_type size() const { return this->s.size(); }
302};
303
148template <class Stat>
149class VectorDistInfoProxy : public InfoProxy<Stat, VectorDistInfo>
150{
151 public:
152 VectorDistInfoProxy(Stat &stat) : InfoProxy<Stat, VectorDistInfo>(stat) {}
153
154 size_type size() const { return this->s.size(); }
155};
156
304class Vector2dInfo : public Info
305{
306 public:
307 /** Names and descriptions of subfields. */
308 std::vector<std::string> subnames;
309 std::vector<std::string> subdescs;
310 std::vector<std::string> y_subnames;
311
312 size_type x;
313 size_type y;
314
315 /** Local storage for the entry values, used for printing. */
316 mutable VCounter cvec;
317
318 void enable();
319};
320
321template <class Stat>
322class Vector2dInfoProxy : public InfoProxy<Stat, Vector2dInfo>
323{
324 public:
325 Vector2dInfoProxy(Stat &stat) : InfoProxy<Stat, Vector2dInfo>(stat) {}
326};
327
328class InfoAccess
329{
330 protected:
331 /** Set up an info class for this statistic */
332 void setInfo(Info *info);
333 /** Save Storage class parameters if any */
334 void setParams(const StorageParams *params);
335 /** Save Storage class parameters if any */
336 void setInit();
337
338 /** Grab the information class for this statistic */
339 Info *info();
340 /** Grab the information class for this statistic */
341 const Info *info() const;
342
343 public:
344 /**
345 * Reset the stat to the default state.
346 */
347 void reset() { }
348
349 /**
350 * @return true if this stat has a value and satisfies its
351 * requirement as a prereq
352 */
353 bool zero() const { return true; }
354
355 /**
356 * Check that this stat has been set up properly and is ready for
357 * use
358 * @return true for success
359 */
360 bool check() const { return true; }
361};
362
363template <class Derived, template <class> class InfoProxyType>
364class DataWrap : public InfoAccess
365{
366 public:
367 typedef InfoProxyType<Derived> Info;
368
369 protected:
370 Derived &self() { return *static_cast<Derived *>(this); }
371
372 protected:
373 Info *
374 info()
375 {
376 return safe_cast<Info *>(InfoAccess::info());
377 }
378
379 public:
380 const Info *
381 info() const
382 {
383 return safe_cast<const Info *>(InfoAccess::info());
384 }
385
386 protected:
387 /**
388 * Copy constructor, copies are not allowed.
389 */
390 DataWrap(const DataWrap &stat);
391
392 /**
393 * Can't copy stats.
394 */
395 void operator=(const DataWrap &);
396
397 public:
398 DataWrap()
399 {
400 this->setInfo(new Info(self()));
401 }
402
403 /**
404 * Set the name and marks this stat to print at the end of simulation.
405 * @param name The new name.
406 * @return A reference to this stat.
407 */
408 Derived &
409 name(const std::string &name)
410 {
411 Info *info = this->info();
412 info->setName(name);
413 info->flags |= print;
414 return this->self();
415 }
416 const std::string &name() const { return this->info()->name; }
417
418 /**
419 * Set the description and marks this stat to print at the end of
420 * simulation.
421 * @param desc The new description.
422 * @return A reference to this stat.
423 */
424 Derived &
425 desc(const std::string &_desc)
426 {
427 this->info()->desc = _desc;
428 return this->self();
429 }
430
431 /**
432 * Set the precision and marks this stat to print at the end of simulation.
433 * @param _precision The new precision
434 * @return A reference to this stat.
435 */
436 Derived &
437 precision(int _precision)
438 {
439 this->info()->precision = _precision;
440 return this->self();
441 }
442
443 /**
444 * Set the flags and marks this stat to print at the end of simulation.
445 * @param f The new flags.
446 * @return A reference to this stat.
447 */
448 Derived &
449 flags(StatFlags _flags)
450 {
451 this->info()->flags |= _flags;
452 return this->self();
453 }
454
455 /**
456 * Set the prerequisite stat and marks this stat to print at the end of
457 * simulation.
458 * @param prereq The prerequisite stat.
459 * @return A reference to this stat.
460 */
461 template <class Stat>
462 Derived &
463 prereq(const Stat &prereq)
464 {
465 this->info()->prereq = prereq.info();
466 return this->self();
467 }
468};
469
470template <class Derived, template <class> class InfoProxyType>
471class DataWrapVec : public DataWrap<Derived, InfoProxyType>
472{
473 public:
474 typedef InfoProxyType<Derived> Info;
475
476 // The following functions are specific to vectors. If you use them
477 // in a non vector context, you will get a nice compiler error!
478
479 /**
480 * Set the subfield name for the given index, and marks this stat to print
481 * at the end of simulation.
482 * @param index The subfield index.
483 * @param name The new name of the subfield.
484 * @return A reference to this stat.
485 */
486 Derived &
487 subname(off_type index, const std::string &name)
488 {
489 Derived &self = this->self();
490 Info *info = self.info();
491
492 std::vector<std::string> &subn = info->subnames;
493 if (subn.size() <= index)
494 subn.resize(index + 1);
495 subn[index] = name;
496 return self;
497 }
498
499 // The following functions are specific to 2d vectors. If you use
500 // them in a non vector context, you will get a nice compiler
501 // error because info doesn't have the right variables.
502
503 /**
504 * Set the subfield description for the given index and marks this stat to
505 * print at the end of simulation.
506 * @param index The subfield index.
507 * @param desc The new description of the subfield
508 * @return A reference to this stat.
509 */
510 Derived &
511 subdesc(off_type index, const std::string &desc)
512 {
513 Info *info = this->info();
514
515 std::vector<std::string> &subd = info->subdescs;
516 if (subd.size() <= index)
517 subd.resize(index + 1);
518 subd[index] = desc;
519
520 return this->self();
521 }
522
523 void
524 prepare()
525 {
526 Derived &self = this->self();
527 Info *info = this->info();
528
529 size_t size = self.size();
530 for (off_type i = 0; i < size; ++i)
531 self.data(i)->prepare(info);
532 }
533
534 void
535 reset()
536 {
537 Derived &self = this->self();
538 Info *info = this->info();
539
540 size_t size = self.size();
541 for (off_type i = 0; i < size; ++i)
542 self.data(i)->reset(info);
543 }
544};
545
546template <class Derived, template <class> class InfoProxyType>
547class DataWrapVec2d : public DataWrapVec<Derived, InfoProxyType>
548{
549 public:
550 typedef InfoProxyType<Derived> Info;
551
552 /**
553 * @warning This makes the assumption that if you're gonna subnames a 2d
554 * vector, you're subnaming across all y
555 */
556 Derived &
557 ysubnames(const char **names)
558 {
559 Derived &self = this->self();
560 Info *info = this->info();
561
562 info->y_subnames.resize(self.y);
563 for (off_type i = 0; i < self.y; ++i)
564 info->y_subnames[i] = names[i];
565 return self;
566 }
567
568 Derived &
569 ysubname(off_type index, const std::string subname)
570 {
571 Derived &self = this->self();
572 Info *info = this->info();
573
574 assert(index < self.y);
575 info->y_subnames.resize(self.y);
576 info->y_subnames[index] = subname.c_str();
577 return self;
578 }
579};
580
581//////////////////////////////////////////////////////////////////////
582//
583// Simple Statistics
584//
585//////////////////////////////////////////////////////////////////////
586
587/**
588 * Templatized storage and interface for a simple scalar stat.
589 */
590class StatStor
591{
592 private:
593 /** The statistic value. */
594 Counter data;
595
596 public:
597 struct Params : public StorageParams {};
598
599 public:
600 /**
601 * Builds this storage element and calls the base constructor of the
602 * datatype.
603 */
604 StatStor(Info *info)
605 : data(Counter())
606 { }
607
608 /**
609 * The the stat to the given value.
610 * @param val The new value.
611 */
612 void set(Counter val) { data = val; }
613 /**
614 * Increment the stat by the given value.
615 * @param val The new value.
616 */
617 void inc(Counter val) { data += val; }
618 /**
619 * Decrement the stat by the given value.
620 * @param val The new value.
621 */
622 void dec(Counter val) { data -= val; }
623 /**
624 * Return the value of this stat as its base type.
625 * @return The value of this stat.
626 */
627 Counter value() const { return data; }
628 /**
629 * Return the value of this stat as a result type.
630 * @return The value of this stat.
631 */
632 Result result() const { return (Result)data; }
633 /**
634 * Prepare stat data for dumping or serialization
635 */
636 void prepare(Info *info) { }
637 /**
638 * Reset stat value to default
639 */
640 void reset(Info *info) { data = Counter(); }
641
642 /**
643 * @return true if zero value
644 */
645 bool zero() const { return data == Counter(); }
646};
647
648/**
649 * Templatized storage and interface to a per-tick average stat. This keeps
650 * a current count and updates a total (count * ticks) when this count
651 * changes. This allows the quick calculation of a per tick count of the item
652 * being watched. This is good for keeping track of residencies in structures
653 * among other things.
654 */
655class AvgStor
656{
657 private:
658 /** The current count. */
659 Counter current;
660 /** The total count for all tick. */
661 mutable Result total;
662 /** The tick that current last changed. */
663 mutable Tick last;
664
665 public:
666 struct Params : public StorageParams {};
667
668 public:
669 /**
670 * Build and initializes this stat storage.
671 */
672 AvgStor(Info *info)
673 : current(0), total(0), last(0)
674 { }
675
676 /**
677 * Set the current count to the one provided, update the total and last
678 * set values.
679 * @param val The new count.
680 */
681 void
682 set(Counter val)
683 {
684 total += current * (curTick - last);
685 last = curTick;
686 current = val;
687 }
688
689 /**
690 * Increment the current count by the provided value, calls set.
691 * @param val The amount to increment.
692 */
693 void inc(Counter val) { set(current + val); }
694
695 /**
696 * Deccrement the current count by the provided value, calls set.
697 * @param val The amount to decrement.
698 */
699 void dec(Counter val) { set(current - val); }
700
701 /**
702 * Return the current count.
703 * @return The current count.
704 */
705 Counter value() const { return current; }
706
707 /**
708 * Return the current average.
709 * @return The current average.
710 */
711 Result
712 result() const
713 {
714 assert(last == curTick);
715 return (Result)(total + current) / (Result)(curTick + 1);
716 }
717
718 /**
719 * @return true if zero value
720 */
721 bool zero() const { return total == 0.0; }
722
723 /**
724 * Prepare stat data for dumping or serialization
725 */
726 void
727 prepare(Info *info)
728 {
729 total += current * (curTick - last);
730 last = curTick;
731 }
732
733 /**
734 * Reset stat value to default
735 */
736 void
737 reset(Info *info)
738 {
739 total = 0.0;
740 last = curTick;
741 }
742
743};
744
745/**
746 * Implementation of a scalar stat. The type of stat is determined by the
747 * Storage template.
748 */
749template <class Derived, class Stor>
750class ScalarBase : public DataWrap<Derived, ScalarInfoProxy>
751{
752 public:
753 typedef Stor Storage;
754 typedef typename Stor::Params Params;
755
756 protected:
757 /** The storage of this stat. */
758 char storage[sizeof(Storage)] __attribute__ ((aligned (8)));
759
760 protected:
761 /**
762 * Retrieve the storage.
763 * @param index The vector index to access.
764 * @return The storage object at the given index.
765 */
766 Storage *
767 data()
768 {
769 return reinterpret_cast<Storage *>(storage);
770 }
771
772 /**
773 * Retrieve a const pointer to the storage.
774 * for the given index.
775 * @param index The vector index to access.
776 * @return A const pointer to the storage object at the given index.
777 */
778 const Storage *
779 data() const
780 {
781 return reinterpret_cast<const Storage *>(storage);
782 }
783
784 void
785 doInit()
786 {
787 new (storage) Storage(this->info());
788 this->setInit();
789 }
790
791 public:
792 /**
793 * Return the current value of this stat as its base type.
794 * @return The current value.
795 */
796 Counter value() const { return data()->value(); }
797
798 public:
799 ScalarBase()
800 {
801 this->doInit();
802 }
803
804 public:
805 // Common operators for stats
806 /**
807 * Increment the stat by 1. This calls the associated storage object inc
808 * function.
809 */
810 void operator++() { data()->inc(1); }
811 /**
812 * Decrement the stat by 1. This calls the associated storage object dec
813 * function.
814 */
815 void operator--() { data()->dec(1); }
816
817 /** Increment the stat by 1. */
818 void operator++(int) { ++*this; }
819 /** Decrement the stat by 1. */
820 void operator--(int) { --*this; }
821
822 /**
823 * Set the data value to the given value. This calls the associated storage
824 * object set function.
825 * @param v The new value.
826 */
827 template <typename U>
828 void operator=(const U &v) { data()->set(v); }
829
830 /**
831 * Increment the stat by the given value. This calls the associated
832 * storage object inc function.
833 * @param v The value to add.
834 */
835 template <typename U>
836 void operator+=(const U &v) { data()->inc(v); }
837
838 /**
839 * Decrement the stat by the given value. This calls the associated
840 * storage object dec function.
841 * @param v The value to substract.
842 */
843 template <typename U>
844 void operator-=(const U &v) { data()->dec(v); }
845
846 /**
847 * Return the number of elements, always 1 for a scalar.
848 * @return 1.
849 */
850 size_type size() const { return 1; }
851
852 Counter value() { return data()->value(); }
853
854 Result result() { return data()->result(); }
855
856 Result total() { return result(); }
857
858 bool zero() { return result() == 0.0; }
859
860 void reset() { data()->reset(this->info()); }
861 void prepare() { data()->prepare(this->info()); }
862};
863
864class ProxyInfo : public ScalarInfo
865{
866 public:
867 std::string str() const { return to_string(value()); }
868 size_type size() const { return 1; }
869 bool check() const { return true; }
870 void prepare() { }
871 void reset() { }
872 bool zero() const { return value() == 0; }
873
874 void visit(Visit &visitor) { visitor.visit(*this); }
875};
876
877template <class T>
878class ValueProxy : public ProxyInfo
879{
880 private:
881 T *scalar;
882
883 public:
884 ValueProxy(T &val) : scalar(&val) {}
885 Counter value() const { return *scalar; }
886 Result result() const { return *scalar; }
887 Result total() const { return *scalar; }
888};
889
890template <class T>
891class FunctorProxy : public ProxyInfo
892{
893 private:
894 T *functor;
895
896 public:
897 FunctorProxy(T &func) : functor(&func) {}
898 Counter value() const { return (*functor)(); }
899 Result result() const { return (*functor)(); }
900 Result total() const { return (*functor)(); }
901};
902
903template <class Derived>
904class ValueBase : public DataWrap<Derived, ScalarInfoProxy>
905{
906 private:
907 ProxyInfo *proxy;
908
909 public:
910 ValueBase() : proxy(NULL) { }
911 ~ValueBase() { if (proxy) delete proxy; }
912
913 template <class T>
914 Derived &
915 scalar(T &value)
916 {
917 proxy = new ValueProxy<T>(value);
918 this->setInit();
919 return this->self();
920 }
921
922 template <class T>
923 Derived &
924 functor(T &func)
925 {
926 proxy = new FunctorProxy<T>(func);
927 this->setInit();
928 return this->self();
929 }
930
931 Counter value() { return proxy->value(); }
932 Result result() const { return proxy->result(); }
933 Result total() const { return proxy->total(); };
934 size_type size() const { return proxy->size(); }
935
936 std::string str() const { return proxy->str(); }
937 bool zero() const { return proxy->zero(); }
938 bool check() const { return proxy != NULL; }
939 void prepare() { }
940 void reset() { }
941};
942
943//////////////////////////////////////////////////////////////////////
944//
945// Vector Statistics
946//
947//////////////////////////////////////////////////////////////////////
948
949/**
950 * A proxy class to access the stat at a given index in a VectorBase stat.
951 * Behaves like a ScalarBase.
952 */
953template <class Stat>
954class ScalarProxy
955{
956 private:
957 /** Pointer to the parent Vector. */
958 Stat &stat;
959
960 /** The index to access in the parent VectorBase. */
961 off_type index;
962
963 public:
964 /**
965 * Return the current value of this stat as its base type.
966 * @return The current value.
967 */
968 Counter value() const { return stat.data(index)->value(); }
969
970 /**
971 * Return the current value of this statas a result type.
972 * @return The current value.
973 */
974 Result result() const { return stat.data(index)->result(); }
975
976 public:
977 /**
978 * Create and initialize this proxy, do not register it with the database.
979 * @param i The index to access.
980 */
981 ScalarProxy(Stat &s, off_type i)
982 : stat(s), index(i)
983 {
984 }
985
986 /**
987 * Create a copy of the provided ScalarProxy.
988 * @param sp The proxy to copy.
989 */
990 ScalarProxy(const ScalarProxy &sp)
991 : stat(sp.stat), index(sp.index)
992 {}
993
994 /**
995 * Set this proxy equal to the provided one.
996 * @param sp The proxy to copy.
997 * @return A reference to this proxy.
998 */
999 const ScalarProxy &
1000 operator=(const ScalarProxy &sp)
1001 {
1002 stat = sp.stat;
1003 index = sp.index;
1004 return *this;
1005 }
1006
1007 public:
1008 // Common operators for stats
1009 /**
1010 * Increment the stat by 1. This calls the associated storage object inc
1011 * function.
1012 */
1013 void operator++() { stat.data(index)->inc(1); }
1014 /**
1015 * Decrement the stat by 1. This calls the associated storage object dec
1016 * function.
1017 */
1018 void operator--() { stat.data(index)->dec(1); }
1019
1020 /** Increment the stat by 1. */
1021 void operator++(int) { ++*this; }
1022 /** Decrement the stat by 1. */
1023 void operator--(int) { --*this; }
1024
1025 /**
1026 * Set the data value to the given value. This calls the associated storage
1027 * object set function.
1028 * @param v The new value.
1029 */
1030 template <typename U>
1031 void
1032 operator=(const U &v)
1033 {
1034 stat.data(index)->set(v);
1035 }
1036
1037 /**
1038 * Increment the stat by the given value. This calls the associated
1039 * storage object inc function.
1040 * @param v The value to add.
1041 */
1042 template <typename U>
1043 void
1044 operator+=(const U &v)
1045 {
1046 stat.data(index)->inc(v);
1047 }
1048
1049 /**
1050 * Decrement the stat by the given value. This calls the associated
1051 * storage object dec function.
1052 * @param v The value to substract.
1053 */
1054 template <typename U>
1055 void
1056 operator-=(const U &v)
1057 {
1058 stat.data(index)->dec(v);
1059 }
1060
1061 /**
1062 * Return the number of elements, always 1 for a scalar.
1063 * @return 1.
1064 */
1065 size_type size() const { return 1; }
1066
1067 public:
1068 std::string
1069 str() const
1070 {
1071 return csprintf("%s[%d]", stat.info()->name, index);
1072 }
1073};
1074
1075/**
1076 * Implementation of a vector of stats. The type of stat is determined by the
1077 * Storage class. @sa ScalarBase
1078 */
1079template <class Derived, class Stor>
1080class VectorBase : public DataWrapVec<Derived, VectorInfoProxy>
1081{
1082 public:
1083 typedef Stor Storage;
1084 typedef typename Stor::Params Params;
1085
1086 /** Proxy type */
1087 typedef ScalarProxy<Derived> Proxy;
1088 friend class ScalarProxy<Derived>;
1089 friend class DataWrapVec<Derived, VectorInfoProxy>;
1090
1091 protected:
1092 /** The storage of this stat. */
1093 Storage *storage;
1094 size_type _size;
1095
1096 protected:
1097 /**
1098 * Retrieve the storage.
1099 * @param index The vector index to access.
1100 * @return The storage object at the given index.
1101 */
1102 Storage *data(off_type index) { return &storage[index]; }
1103
1104 /**
1105 * Retrieve a const pointer to the storage.
1106 * @param index The vector index to access.
1107 * @return A const pointer to the storage object at the given index.
1108 */
1109 const Storage *data(off_type index) const { return &storage[index]; }
1110
1111 void
1112 doInit(size_type s)
1113 {
1114 assert(s > 0 && "size must be positive!");
1115 assert(!storage && "already initialized");
1116 _size = s;
1117
1118 char *ptr = new char[_size * sizeof(Storage)];
1119 storage = reinterpret_cast<Storage *>(ptr);
1120
1121 for (off_type i = 0; i < _size; ++i)
1122 new (&storage[i]) Storage(this->info());
1123
1124 this->setInit();
1125 }
1126
1127 public:
1128 void
1129 value(VCounter &vec) const
1130 {
1131 vec.resize(size());
1132 for (off_type i = 0; i < size(); ++i)
1133 vec[i] = data(i)->value();
1134 }
1135
1136 /**
1137 * Copy the values to a local vector and return a reference to it.
1138 * @return A reference to a vector of the stat values.
1139 */
1140 void
1141 result(VResult &vec) const
1142 {
1143 vec.resize(size());
1144 for (off_type i = 0; i < size(); ++i)
1145 vec[i] = data(i)->result();
1146 }
1147
1148 /**
1149 * Return a total of all entries in this vector.
1150 * @return The total of all vector entries.
1151 */
1152 Result
1153 total() const
1154 {
1155 Result total = 0.0;
1156 for (off_type i = 0; i < size(); ++i)
1157 total += data(i)->result();
1158 return total;
1159 }
1160
1161 /**
1162 * @return the number of elements in this vector.
1163 */
1164 size_type size() const { return _size; }
1165
1166 bool
1167 zero() const
1168 {
1169 for (off_type i = 0; i < size(); ++i)
1170 if (data(i)->zero())
1171 return false;
1172 return true;
1173 }
1174
1175 bool
1176 check() const
1177 {
1178 return storage != NULL;
1179 }
1180
1181 public:
1182 VectorBase()
1183 : storage(NULL)
1184 {}
1185
1186 ~VectorBase()
1187 {
1188 if (!storage)
1189 return;
1190
1191 for (off_type i = 0; i < _size; ++i)
1192 data(i)->~Storage();
1193 delete [] reinterpret_cast<char *>(storage);
1194 }
1195
1196 /**
1197 * Set this vector to have the given size.
1198 * @param size The new size.
1199 * @return A reference to this stat.
1200 */
1201 Derived &
1202 init(size_type size)
1203 {
1204 Derived &self = this->self();
1205 self.doInit(size);
1206 return self;
1207 }
1208
1209 /**
1210 * Return a reference (ScalarProxy) to the stat at the given index.
1211 * @param index The vector index to access.
1212 * @return A reference of the stat.
1213 */
1214 Proxy
1215 operator[](off_type index)
1216 {
1217 assert (index >= 0 && index < size());
1218 return Proxy(this->self(), index);
1219 }
1220};
1221
1222template <class Stat>
1223class VectorProxy
1224{
1225 private:
1226 Stat &stat;
1227 off_type offset;
1228 size_type len;
1229
1230 private:
1231 mutable VResult vec;
1232
1233 typename Stat::Storage *
1234 data(off_type index)
1235 {
1236 assert(index < len);
1237 return stat.data(offset + index);
1238 }
1239
1240 const typename Stat::Storage *
1241 data(off_type index) const
1242 {
1243 assert(index < len);
1244 return stat.data(offset + index);
1245 }
1246
1247 public:
1248 const VResult &
1249 result() const
1250 {
1251 vec.resize(size());
1252
1253 for (off_type i = 0; i < size(); ++i)
1254 vec[i] = data(i)->result();
1255
1256 return vec;
1257 }
1258
1259 Result
1260 total() const
1261 {
1262 Result total = 0.0;
1263 for (off_type i = 0; i < size(); ++i)
1264 total += data(i)->result();
1265 return total;
1266 }
1267
1268 public:
1269 VectorProxy(Stat &s, off_type o, size_type l)
1270 : stat(s), offset(o), len(l)
1271 {
1272 }
1273
1274 VectorProxy(const VectorProxy &sp)
1275 : stat(sp.stat), offset(sp.offset), len(sp.len)
1276 {
1277 }
1278
1279 const VectorProxy &
1280 operator=(const VectorProxy &sp)
1281 {
1282 stat = sp.stat;
1283 offset = sp.offset;
1284 len = sp.len;
1285 return *this;
1286 }
1287
1288 ScalarProxy<Stat>
1289 operator[](off_type index)
1290 {
1291 assert (index >= 0 && index < size());
1292 return ScalarProxy<Stat>(stat, offset + index);
1293 }
1294
1295 size_type size() const { return len; }
1296};
1297
1298template <class Derived, class Stor>
1299class Vector2dBase : public DataWrapVec2d<Derived, Vector2dInfoProxy>
1300{
1301 public:
1302 typedef Vector2dInfoProxy<Derived> Info;
1303 typedef Stor Storage;
1304 typedef typename Stor::Params Params;
1305 typedef VectorProxy<Derived> Proxy;
1306 friend class ScalarProxy<Derived>;
1307 friend class VectorProxy<Derived>;
1308 friend class DataWrapVec<Derived, Vector2dInfoProxy>;
1309 friend class DataWrapVec2d<Derived, Vector2dInfoProxy>;
1310
1311 protected:
1312 size_type x;
1313 size_type y;
1314 size_type _size;
1315 Storage *storage;
1316
1317 protected:
1318 Storage *data(off_type index) { return &storage[index]; }
1319 const Storage *data(off_type index) const { return &storage[index]; }
1320
1321 public:
1322 Vector2dBase()
1323 : storage(NULL)
1324 {}
1325
1326 ~Vector2dBase()
1327 {
1328 if (!storage)
1329 return;
1330
1331 for (off_type i = 0; i < _size; ++i)
1332 data(i)->~Storage();
1333 delete [] reinterpret_cast<char *>(storage);
1334 }
1335
1336 Derived &
1337 init(size_type _x, size_type _y)
1338 {
1339 assert(_x > 0 && _y > 0 && "sizes must be positive!");
1340 assert(!storage && "already initialized");
1341
1342 Derived &self = this->self();
1343 Info *info = this->info();
1344
1345 x = _x;
1346 y = _y;
1347 info->x = _x;
1348 info->y = _y;
1349 _size = x * y;
1350
1351 char *ptr = new char[_size * sizeof(Storage)];
1352 storage = reinterpret_cast<Storage *>(ptr);
1353
1354 for (off_type i = 0; i < _size; ++i)
1355 new (&storage[i]) Storage(info);
1356
1357 this->setInit();
1358
1359 return self;
1360 }
1361
1362 std::string ysubname(off_type i) const { return (*this->y_subnames)[i]; }
1363
1364 Proxy
1365 operator[](off_type index)
1366 {
1367 off_type offset = index * y;
1368 assert (index >= 0 && offset + index < size());
1369 return Proxy(this->self(), offset, y);
1370 }
1371
1372
1373 size_type
1374 size() const
1375 {
1376 return _size;
1377 }
1378
1379 bool
1380 zero() const
1381 {
1382 return data(0)->zero();
1383#if 0
1384 for (off_type i = 0; i < size(); ++i)
1385 if (!data(i)->zero())
1386 return false;
1387 return true;
1388#endif
1389 }
1390
1391 void
1392 prepare()
1393 {
1394 Info *info = this->info();
1395 size_type size = this->size();
1396
1397 for (off_type i = 0; i < size; ++i)
1398 data(i)->prepare(info);
1399
1400 info->cvec.resize(size);
1401 for (off_type i = 0; i < size; ++i)
1402 info->cvec[i] = data(i)->value();
1403 }
1404
1405 /**
1406 * Reset stat value to default
1407 */
1408 void
1409 reset()
1410 {
1411 Info *info = this->info();
1412 size_type size = this->size();
1413 for (off_type i = 0; i < size; ++i)
1414 data(i)->reset(info);
1415 }
1416
1417 bool
1418 check() const
1419 {
1420 return storage != NULL;
1421 }
1422};
1423
1424//////////////////////////////////////////////////////////////////////
1425//
1426// Non formula statistics
1427//
1428//////////////////////////////////////////////////////////////////////
1429
157template <class Stat>
158class Vector2dInfoProxy : public InfoProxy<Stat, Vector2dInfo>
159{
160 public:
161 Vector2dInfoProxy(Stat &stat) : InfoProxy<Stat, Vector2dInfo>(stat) {}
162};
163
164class InfoAccess
165{
166 protected:
167 /** Set up an info class for this statistic */
168 void setInfo(Info *info);
169 /** Save Storage class parameters if any */
170 void setParams(const StorageParams *params);
171 /** Save Storage class parameters if any */
172 void setInit();
173
174 /** Grab the information class for this statistic */
175 Info *info();
176 /** Grab the information class for this statistic */
177 const Info *info() const;
178
179 public:
180 /**
181 * Reset the stat to the default state.
182 */
183 void reset() { }
184
185 /**
186 * @return true if this stat has a value and satisfies its
187 * requirement as a prereq
188 */
189 bool zero() const { return true; }
190
191 /**
192 * Check that this stat has been set up properly and is ready for
193 * use
194 * @return true for success
195 */
196 bool check() const { return true; }
197};
198
199template <class Derived, template <class> class InfoProxyType>
200class DataWrap : public InfoAccess
201{
202 public:
203 typedef InfoProxyType<Derived> Info;
204
205 protected:
206 Derived &self() { return *static_cast<Derived *>(this); }
207
208 protected:
209 Info *
210 info()
211 {
212 return safe_cast<Info *>(InfoAccess::info());
213 }
214
215 public:
216 const Info *
217 info() const
218 {
219 return safe_cast<const Info *>(InfoAccess::info());
220 }
221
222 protected:
223 /**
224 * Copy constructor, copies are not allowed.
225 */
226 DataWrap(const DataWrap &stat);
227
228 /**
229 * Can't copy stats.
230 */
231 void operator=(const DataWrap &);
232
233 public:
234 DataWrap()
235 {
236 this->setInfo(new Info(self()));
237 }
238
239 /**
240 * Set the name and marks this stat to print at the end of simulation.
241 * @param name The new name.
242 * @return A reference to this stat.
243 */
244 Derived &
245 name(const std::string &name)
246 {
247 Info *info = this->info();
248 info->setName(name);
249 info->flags |= print;
250 return this->self();
251 }
252 const std::string &name() const { return this->info()->name; }
253
254 /**
255 * Set the description and marks this stat to print at the end of
256 * simulation.
257 * @param desc The new description.
258 * @return A reference to this stat.
259 */
260 Derived &
261 desc(const std::string &_desc)
262 {
263 this->info()->desc = _desc;
264 return this->self();
265 }
266
267 /**
268 * Set the precision and marks this stat to print at the end of simulation.
269 * @param _precision The new precision
270 * @return A reference to this stat.
271 */
272 Derived &
273 precision(int _precision)
274 {
275 this->info()->precision = _precision;
276 return this->self();
277 }
278
279 /**
280 * Set the flags and marks this stat to print at the end of simulation.
281 * @param f The new flags.
282 * @return A reference to this stat.
283 */
284 Derived &
285 flags(StatFlags _flags)
286 {
287 this->info()->flags |= _flags;
288 return this->self();
289 }
290
291 /**
292 * Set the prerequisite stat and marks this stat to print at the end of
293 * simulation.
294 * @param prereq The prerequisite stat.
295 * @return A reference to this stat.
296 */
297 template <class Stat>
298 Derived &
299 prereq(const Stat &prereq)
300 {
301 this->info()->prereq = prereq.info();
302 return this->self();
303 }
304};
305
306template <class Derived, template <class> class InfoProxyType>
307class DataWrapVec : public DataWrap<Derived, InfoProxyType>
308{
309 public:
310 typedef InfoProxyType<Derived> Info;
311
312 // The following functions are specific to vectors. If you use them
313 // in a non vector context, you will get a nice compiler error!
314
315 /**
316 * Set the subfield name for the given index, and marks this stat to print
317 * at the end of simulation.
318 * @param index The subfield index.
319 * @param name The new name of the subfield.
320 * @return A reference to this stat.
321 */
322 Derived &
323 subname(off_type index, const std::string &name)
324 {
325 Derived &self = this->self();
326 Info *info = self.info();
327
328 std::vector<std::string> &subn = info->subnames;
329 if (subn.size() <= index)
330 subn.resize(index + 1);
331 subn[index] = name;
332 return self;
333 }
334
335 // The following functions are specific to 2d vectors. If you use
336 // them in a non vector context, you will get a nice compiler
337 // error because info doesn't have the right variables.
338
339 /**
340 * Set the subfield description for the given index and marks this stat to
341 * print at the end of simulation.
342 * @param index The subfield index.
343 * @param desc The new description of the subfield
344 * @return A reference to this stat.
345 */
346 Derived &
347 subdesc(off_type index, const std::string &desc)
348 {
349 Info *info = this->info();
350
351 std::vector<std::string> &subd = info->subdescs;
352 if (subd.size() <= index)
353 subd.resize(index + 1);
354 subd[index] = desc;
355
356 return this->self();
357 }
358
359 void
360 prepare()
361 {
362 Derived &self = this->self();
363 Info *info = this->info();
364
365 size_t size = self.size();
366 for (off_type i = 0; i < size; ++i)
367 self.data(i)->prepare(info);
368 }
369
370 void
371 reset()
372 {
373 Derived &self = this->self();
374 Info *info = this->info();
375
376 size_t size = self.size();
377 for (off_type i = 0; i < size; ++i)
378 self.data(i)->reset(info);
379 }
380};
381
382template <class Derived, template <class> class InfoProxyType>
383class DataWrapVec2d : public DataWrapVec<Derived, InfoProxyType>
384{
385 public:
386 typedef InfoProxyType<Derived> Info;
387
388 /**
389 * @warning This makes the assumption that if you're gonna subnames a 2d
390 * vector, you're subnaming across all y
391 */
392 Derived &
393 ysubnames(const char **names)
394 {
395 Derived &self = this->self();
396 Info *info = this->info();
397
398 info->y_subnames.resize(self.y);
399 for (off_type i = 0; i < self.y; ++i)
400 info->y_subnames[i] = names[i];
401 return self;
402 }
403
404 Derived &
405 ysubname(off_type index, const std::string subname)
406 {
407 Derived &self = this->self();
408 Info *info = this->info();
409
410 assert(index < self.y);
411 info->y_subnames.resize(self.y);
412 info->y_subnames[index] = subname.c_str();
413 return self;
414 }
415};
416
417//////////////////////////////////////////////////////////////////////
418//
419// Simple Statistics
420//
421//////////////////////////////////////////////////////////////////////
422
423/**
424 * Templatized storage and interface for a simple scalar stat.
425 */
426class StatStor
427{
428 private:
429 /** The statistic value. */
430 Counter data;
431
432 public:
433 struct Params : public StorageParams {};
434
435 public:
436 /**
437 * Builds this storage element and calls the base constructor of the
438 * datatype.
439 */
440 StatStor(Info *info)
441 : data(Counter())
442 { }
443
444 /**
445 * The the stat to the given value.
446 * @param val The new value.
447 */
448 void set(Counter val) { data = val; }
449 /**
450 * Increment the stat by the given value.
451 * @param val The new value.
452 */
453 void inc(Counter val) { data += val; }
454 /**
455 * Decrement the stat by the given value.
456 * @param val The new value.
457 */
458 void dec(Counter val) { data -= val; }
459 /**
460 * Return the value of this stat as its base type.
461 * @return The value of this stat.
462 */
463 Counter value() const { return data; }
464 /**
465 * Return the value of this stat as a result type.
466 * @return The value of this stat.
467 */
468 Result result() const { return (Result)data; }
469 /**
470 * Prepare stat data for dumping or serialization
471 */
472 void prepare(Info *info) { }
473 /**
474 * Reset stat value to default
475 */
476 void reset(Info *info) { data = Counter(); }
477
478 /**
479 * @return true if zero value
480 */
481 bool zero() const { return data == Counter(); }
482};
483
484/**
485 * Templatized storage and interface to a per-tick average stat. This keeps
486 * a current count and updates a total (count * ticks) when this count
487 * changes. This allows the quick calculation of a per tick count of the item
488 * being watched. This is good for keeping track of residencies in structures
489 * among other things.
490 */
491class AvgStor
492{
493 private:
494 /** The current count. */
495 Counter current;
496 /** The total count for all tick. */
497 mutable Result total;
498 /** The tick that current last changed. */
499 mutable Tick last;
500
501 public:
502 struct Params : public StorageParams {};
503
504 public:
505 /**
506 * Build and initializes this stat storage.
507 */
508 AvgStor(Info *info)
509 : current(0), total(0), last(0)
510 { }
511
512 /**
513 * Set the current count to the one provided, update the total and last
514 * set values.
515 * @param val The new count.
516 */
517 void
518 set(Counter val)
519 {
520 total += current * (curTick - last);
521 last = curTick;
522 current = val;
523 }
524
525 /**
526 * Increment the current count by the provided value, calls set.
527 * @param val The amount to increment.
528 */
529 void inc(Counter val) { set(current + val); }
530
531 /**
532 * Deccrement the current count by the provided value, calls set.
533 * @param val The amount to decrement.
534 */
535 void dec(Counter val) { set(current - val); }
536
537 /**
538 * Return the current count.
539 * @return The current count.
540 */
541 Counter value() const { return current; }
542
543 /**
544 * Return the current average.
545 * @return The current average.
546 */
547 Result
548 result() const
549 {
550 assert(last == curTick);
551 return (Result)(total + current) / (Result)(curTick + 1);
552 }
553
554 /**
555 * @return true if zero value
556 */
557 bool zero() const { return total == 0.0; }
558
559 /**
560 * Prepare stat data for dumping or serialization
561 */
562 void
563 prepare(Info *info)
564 {
565 total += current * (curTick - last);
566 last = curTick;
567 }
568
569 /**
570 * Reset stat value to default
571 */
572 void
573 reset(Info *info)
574 {
575 total = 0.0;
576 last = curTick;
577 }
578
579};
580
581/**
582 * Implementation of a scalar stat. The type of stat is determined by the
583 * Storage template.
584 */
585template <class Derived, class Stor>
586class ScalarBase : public DataWrap<Derived, ScalarInfoProxy>
587{
588 public:
589 typedef Stor Storage;
590 typedef typename Stor::Params Params;
591
592 protected:
593 /** The storage of this stat. */
594 char storage[sizeof(Storage)] __attribute__ ((aligned (8)));
595
596 protected:
597 /**
598 * Retrieve the storage.
599 * @param index The vector index to access.
600 * @return The storage object at the given index.
601 */
602 Storage *
603 data()
604 {
605 return reinterpret_cast<Storage *>(storage);
606 }
607
608 /**
609 * Retrieve a const pointer to the storage.
610 * for the given index.
611 * @param index The vector index to access.
612 * @return A const pointer to the storage object at the given index.
613 */
614 const Storage *
615 data() const
616 {
617 return reinterpret_cast<const Storage *>(storage);
618 }
619
620 void
621 doInit()
622 {
623 new (storage) Storage(this->info());
624 this->setInit();
625 }
626
627 public:
628 /**
629 * Return the current value of this stat as its base type.
630 * @return The current value.
631 */
632 Counter value() const { return data()->value(); }
633
634 public:
635 ScalarBase()
636 {
637 this->doInit();
638 }
639
640 public:
641 // Common operators for stats
642 /**
643 * Increment the stat by 1. This calls the associated storage object inc
644 * function.
645 */
646 void operator++() { data()->inc(1); }
647 /**
648 * Decrement the stat by 1. This calls the associated storage object dec
649 * function.
650 */
651 void operator--() { data()->dec(1); }
652
653 /** Increment the stat by 1. */
654 void operator++(int) { ++*this; }
655 /** Decrement the stat by 1. */
656 void operator--(int) { --*this; }
657
658 /**
659 * Set the data value to the given value. This calls the associated storage
660 * object set function.
661 * @param v The new value.
662 */
663 template <typename U>
664 void operator=(const U &v) { data()->set(v); }
665
666 /**
667 * Increment the stat by the given value. This calls the associated
668 * storage object inc function.
669 * @param v The value to add.
670 */
671 template <typename U>
672 void operator+=(const U &v) { data()->inc(v); }
673
674 /**
675 * Decrement the stat by the given value. This calls the associated
676 * storage object dec function.
677 * @param v The value to substract.
678 */
679 template <typename U>
680 void operator-=(const U &v) { data()->dec(v); }
681
682 /**
683 * Return the number of elements, always 1 for a scalar.
684 * @return 1.
685 */
686 size_type size() const { return 1; }
687
688 Counter value() { return data()->value(); }
689
690 Result result() { return data()->result(); }
691
692 Result total() { return result(); }
693
694 bool zero() { return result() == 0.0; }
695
696 void reset() { data()->reset(this->info()); }
697 void prepare() { data()->prepare(this->info()); }
698};
699
700class ProxyInfo : public ScalarInfo
701{
702 public:
703 std::string str() const { return to_string(value()); }
704 size_type size() const { return 1; }
705 bool check() const { return true; }
706 void prepare() { }
707 void reset() { }
708 bool zero() const { return value() == 0; }
709
710 void visit(Visit &visitor) { visitor.visit(*this); }
711};
712
713template <class T>
714class ValueProxy : public ProxyInfo
715{
716 private:
717 T *scalar;
718
719 public:
720 ValueProxy(T &val) : scalar(&val) {}
721 Counter value() const { return *scalar; }
722 Result result() const { return *scalar; }
723 Result total() const { return *scalar; }
724};
725
726template <class T>
727class FunctorProxy : public ProxyInfo
728{
729 private:
730 T *functor;
731
732 public:
733 FunctorProxy(T &func) : functor(&func) {}
734 Counter value() const { return (*functor)(); }
735 Result result() const { return (*functor)(); }
736 Result total() const { return (*functor)(); }
737};
738
739template <class Derived>
740class ValueBase : public DataWrap<Derived, ScalarInfoProxy>
741{
742 private:
743 ProxyInfo *proxy;
744
745 public:
746 ValueBase() : proxy(NULL) { }
747 ~ValueBase() { if (proxy) delete proxy; }
748
749 template <class T>
750 Derived &
751 scalar(T &value)
752 {
753 proxy = new ValueProxy<T>(value);
754 this->setInit();
755 return this->self();
756 }
757
758 template <class T>
759 Derived &
760 functor(T &func)
761 {
762 proxy = new FunctorProxy<T>(func);
763 this->setInit();
764 return this->self();
765 }
766
767 Counter value() { return proxy->value(); }
768 Result result() const { return proxy->result(); }
769 Result total() const { return proxy->total(); };
770 size_type size() const { return proxy->size(); }
771
772 std::string str() const { return proxy->str(); }
773 bool zero() const { return proxy->zero(); }
774 bool check() const { return proxy != NULL; }
775 void prepare() { }
776 void reset() { }
777};
778
779//////////////////////////////////////////////////////////////////////
780//
781// Vector Statistics
782//
783//////////////////////////////////////////////////////////////////////
784
785/**
786 * A proxy class to access the stat at a given index in a VectorBase stat.
787 * Behaves like a ScalarBase.
788 */
789template <class Stat>
790class ScalarProxy
791{
792 private:
793 /** Pointer to the parent Vector. */
794 Stat &stat;
795
796 /** The index to access in the parent VectorBase. */
797 off_type index;
798
799 public:
800 /**
801 * Return the current value of this stat as its base type.
802 * @return The current value.
803 */
804 Counter value() const { return stat.data(index)->value(); }
805
806 /**
807 * Return the current value of this statas a result type.
808 * @return The current value.
809 */
810 Result result() const { return stat.data(index)->result(); }
811
812 public:
813 /**
814 * Create and initialize this proxy, do not register it with the database.
815 * @param i The index to access.
816 */
817 ScalarProxy(Stat &s, off_type i)
818 : stat(s), index(i)
819 {
820 }
821
822 /**
823 * Create a copy of the provided ScalarProxy.
824 * @param sp The proxy to copy.
825 */
826 ScalarProxy(const ScalarProxy &sp)
827 : stat(sp.stat), index(sp.index)
828 {}
829
830 /**
831 * Set this proxy equal to the provided one.
832 * @param sp The proxy to copy.
833 * @return A reference to this proxy.
834 */
835 const ScalarProxy &
836 operator=(const ScalarProxy &sp)
837 {
838 stat = sp.stat;
839 index = sp.index;
840 return *this;
841 }
842
843 public:
844 // Common operators for stats
845 /**
846 * Increment the stat by 1. This calls the associated storage object inc
847 * function.
848 */
849 void operator++() { stat.data(index)->inc(1); }
850 /**
851 * Decrement the stat by 1. This calls the associated storage object dec
852 * function.
853 */
854 void operator--() { stat.data(index)->dec(1); }
855
856 /** Increment the stat by 1. */
857 void operator++(int) { ++*this; }
858 /** Decrement the stat by 1. */
859 void operator--(int) { --*this; }
860
861 /**
862 * Set the data value to the given value. This calls the associated storage
863 * object set function.
864 * @param v The new value.
865 */
866 template <typename U>
867 void
868 operator=(const U &v)
869 {
870 stat.data(index)->set(v);
871 }
872
873 /**
874 * Increment the stat by the given value. This calls the associated
875 * storage object inc function.
876 * @param v The value to add.
877 */
878 template <typename U>
879 void
880 operator+=(const U &v)
881 {
882 stat.data(index)->inc(v);
883 }
884
885 /**
886 * Decrement the stat by the given value. This calls the associated
887 * storage object dec function.
888 * @param v The value to substract.
889 */
890 template <typename U>
891 void
892 operator-=(const U &v)
893 {
894 stat.data(index)->dec(v);
895 }
896
897 /**
898 * Return the number of elements, always 1 for a scalar.
899 * @return 1.
900 */
901 size_type size() const { return 1; }
902
903 public:
904 std::string
905 str() const
906 {
907 return csprintf("%s[%d]", stat.info()->name, index);
908 }
909};
910
911/**
912 * Implementation of a vector of stats. The type of stat is determined by the
913 * Storage class. @sa ScalarBase
914 */
915template <class Derived, class Stor>
916class VectorBase : public DataWrapVec<Derived, VectorInfoProxy>
917{
918 public:
919 typedef Stor Storage;
920 typedef typename Stor::Params Params;
921
922 /** Proxy type */
923 typedef ScalarProxy<Derived> Proxy;
924 friend class ScalarProxy<Derived>;
925 friend class DataWrapVec<Derived, VectorInfoProxy>;
926
927 protected:
928 /** The storage of this stat. */
929 Storage *storage;
930 size_type _size;
931
932 protected:
933 /**
934 * Retrieve the storage.
935 * @param index The vector index to access.
936 * @return The storage object at the given index.
937 */
938 Storage *data(off_type index) { return &storage[index]; }
939
940 /**
941 * Retrieve a const pointer to the storage.
942 * @param index The vector index to access.
943 * @return A const pointer to the storage object at the given index.
944 */
945 const Storage *data(off_type index) const { return &storage[index]; }
946
947 void
948 doInit(size_type s)
949 {
950 assert(s > 0 && "size must be positive!");
951 assert(!storage && "already initialized");
952 _size = s;
953
954 char *ptr = new char[_size * sizeof(Storage)];
955 storage = reinterpret_cast<Storage *>(ptr);
956
957 for (off_type i = 0; i < _size; ++i)
958 new (&storage[i]) Storage(this->info());
959
960 this->setInit();
961 }
962
963 public:
964 void
965 value(VCounter &vec) const
966 {
967 vec.resize(size());
968 for (off_type i = 0; i < size(); ++i)
969 vec[i] = data(i)->value();
970 }
971
972 /**
973 * Copy the values to a local vector and return a reference to it.
974 * @return A reference to a vector of the stat values.
975 */
976 void
977 result(VResult &vec) const
978 {
979 vec.resize(size());
980 for (off_type i = 0; i < size(); ++i)
981 vec[i] = data(i)->result();
982 }
983
984 /**
985 * Return a total of all entries in this vector.
986 * @return The total of all vector entries.
987 */
988 Result
989 total() const
990 {
991 Result total = 0.0;
992 for (off_type i = 0; i < size(); ++i)
993 total += data(i)->result();
994 return total;
995 }
996
997 /**
998 * @return the number of elements in this vector.
999 */
1000 size_type size() const { return _size; }
1001
1002 bool
1003 zero() const
1004 {
1005 for (off_type i = 0; i < size(); ++i)
1006 if (data(i)->zero())
1007 return false;
1008 return true;
1009 }
1010
1011 bool
1012 check() const
1013 {
1014 return storage != NULL;
1015 }
1016
1017 public:
1018 VectorBase()
1019 : storage(NULL)
1020 {}
1021
1022 ~VectorBase()
1023 {
1024 if (!storage)
1025 return;
1026
1027 for (off_type i = 0; i < _size; ++i)
1028 data(i)->~Storage();
1029 delete [] reinterpret_cast<char *>(storage);
1030 }
1031
1032 /**
1033 * Set this vector to have the given size.
1034 * @param size The new size.
1035 * @return A reference to this stat.
1036 */
1037 Derived &
1038 init(size_type size)
1039 {
1040 Derived &self = this->self();
1041 self.doInit(size);
1042 return self;
1043 }
1044
1045 /**
1046 * Return a reference (ScalarProxy) to the stat at the given index.
1047 * @param index The vector index to access.
1048 * @return A reference of the stat.
1049 */
1050 Proxy
1051 operator[](off_type index)
1052 {
1053 assert (index >= 0 && index < size());
1054 return Proxy(this->self(), index);
1055 }
1056};
1057
1058template <class Stat>
1059class VectorProxy
1060{
1061 private:
1062 Stat &stat;
1063 off_type offset;
1064 size_type len;
1065
1066 private:
1067 mutable VResult vec;
1068
1069 typename Stat::Storage *
1070 data(off_type index)
1071 {
1072 assert(index < len);
1073 return stat.data(offset + index);
1074 }
1075
1076 const typename Stat::Storage *
1077 data(off_type index) const
1078 {
1079 assert(index < len);
1080 return stat.data(offset + index);
1081 }
1082
1083 public:
1084 const VResult &
1085 result() const
1086 {
1087 vec.resize(size());
1088
1089 for (off_type i = 0; i < size(); ++i)
1090 vec[i] = data(i)->result();
1091
1092 return vec;
1093 }
1094
1095 Result
1096 total() const
1097 {
1098 Result total = 0.0;
1099 for (off_type i = 0; i < size(); ++i)
1100 total += data(i)->result();
1101 return total;
1102 }
1103
1104 public:
1105 VectorProxy(Stat &s, off_type o, size_type l)
1106 : stat(s), offset(o), len(l)
1107 {
1108 }
1109
1110 VectorProxy(const VectorProxy &sp)
1111 : stat(sp.stat), offset(sp.offset), len(sp.len)
1112 {
1113 }
1114
1115 const VectorProxy &
1116 operator=(const VectorProxy &sp)
1117 {
1118 stat = sp.stat;
1119 offset = sp.offset;
1120 len = sp.len;
1121 return *this;
1122 }
1123
1124 ScalarProxy<Stat>
1125 operator[](off_type index)
1126 {
1127 assert (index >= 0 && index < size());
1128 return ScalarProxy<Stat>(stat, offset + index);
1129 }
1130
1131 size_type size() const { return len; }
1132};
1133
1134template <class Derived, class Stor>
1135class Vector2dBase : public DataWrapVec2d<Derived, Vector2dInfoProxy>
1136{
1137 public:
1138 typedef Vector2dInfoProxy<Derived> Info;
1139 typedef Stor Storage;
1140 typedef typename Stor::Params Params;
1141 typedef VectorProxy<Derived> Proxy;
1142 friend class ScalarProxy<Derived>;
1143 friend class VectorProxy<Derived>;
1144 friend class DataWrapVec<Derived, Vector2dInfoProxy>;
1145 friend class DataWrapVec2d<Derived, Vector2dInfoProxy>;
1146
1147 protected:
1148 size_type x;
1149 size_type y;
1150 size_type _size;
1151 Storage *storage;
1152
1153 protected:
1154 Storage *data(off_type index) { return &storage[index]; }
1155 const Storage *data(off_type index) const { return &storage[index]; }
1156
1157 public:
1158 Vector2dBase()
1159 : storage(NULL)
1160 {}
1161
1162 ~Vector2dBase()
1163 {
1164 if (!storage)
1165 return;
1166
1167 for (off_type i = 0; i < _size; ++i)
1168 data(i)->~Storage();
1169 delete [] reinterpret_cast<char *>(storage);
1170 }
1171
1172 Derived &
1173 init(size_type _x, size_type _y)
1174 {
1175 assert(_x > 0 && _y > 0 && "sizes must be positive!");
1176 assert(!storage && "already initialized");
1177
1178 Derived &self = this->self();
1179 Info *info = this->info();
1180
1181 x = _x;
1182 y = _y;
1183 info->x = _x;
1184 info->y = _y;
1185 _size = x * y;
1186
1187 char *ptr = new char[_size * sizeof(Storage)];
1188 storage = reinterpret_cast<Storage *>(ptr);
1189
1190 for (off_type i = 0; i < _size; ++i)
1191 new (&storage[i]) Storage(info);
1192
1193 this->setInit();
1194
1195 return self;
1196 }
1197
1198 std::string ysubname(off_type i) const { return (*this->y_subnames)[i]; }
1199
1200 Proxy
1201 operator[](off_type index)
1202 {
1203 off_type offset = index * y;
1204 assert (index >= 0 && offset + index < size());
1205 return Proxy(this->self(), offset, y);
1206 }
1207
1208
1209 size_type
1210 size() const
1211 {
1212 return _size;
1213 }
1214
1215 bool
1216 zero() const
1217 {
1218 return data(0)->zero();
1219#if 0
1220 for (off_type i = 0; i < size(); ++i)
1221 if (!data(i)->zero())
1222 return false;
1223 return true;
1224#endif
1225 }
1226
1227 void
1228 prepare()
1229 {
1230 Info *info = this->info();
1231 size_type size = this->size();
1232
1233 for (off_type i = 0; i < size; ++i)
1234 data(i)->prepare(info);
1235
1236 info->cvec.resize(size);
1237 for (off_type i = 0; i < size; ++i)
1238 info->cvec[i] = data(i)->value();
1239 }
1240
1241 /**
1242 * Reset stat value to default
1243 */
1244 void
1245 reset()
1246 {
1247 Info *info = this->info();
1248 size_type size = this->size();
1249 for (off_type i = 0; i < size; ++i)
1250 data(i)->reset(info);
1251 }
1252
1253 bool
1254 check() const
1255 {
1256 return storage != NULL;
1257 }
1258};
1259
1260//////////////////////////////////////////////////////////////////////
1261//
1262// Non formula statistics
1263//
1264//////////////////////////////////////////////////////////////////////
1265
1430struct DistParams : public StorageParams
1431{
1432 const bool fancy;
1433
1434 /** The minimum value to track. */
1435 Counter min;
1436 /** The maximum value to track. */
1437 Counter max;
1438 /** The number of entries in each bucket. */
1439 Counter bucket_size;
1440 /** The number of buckets. Equal to (max-min)/bucket_size. */
1441 size_type buckets;
1442
1443 explicit DistParams(bool f) : fancy(f) {}
1444};
1445
1446/**
1447 * Templatized storage and interface for a distrbution stat.
1448 */
1449class DistStor
1450{
1451 public:
1452 /** The parameters for a distribution stat. */
1453 struct Params : public DistParams
1454 {
1455 Params() : DistParams(false) {}
1456 };
1457
1458 private:
1459 /** The minimum value to track. */
1460 Counter min_track;
1461 /** The maximum value to track. */
1462 Counter max_track;
1463 /** The number of entries in each bucket. */
1464 Counter bucket_size;
1465 /** The number of buckets. Equal to (max-min)/bucket_size. */
1466 size_type buckets;
1467
1468 /** The smallest value sampled. */
1469 Counter min_val;
1470 /** The largest value sampled. */
1471 Counter max_val;
1472 /** The number of values sampled less than min. */
1473 Counter underflow;
1474 /** The number of values sampled more than max. */
1475 Counter overflow;
1476 /** The current sum. */
1477 Counter sum;
1478 /** The sum of squares. */
1479 Counter squares;
1480 /** The number of samples. */
1481 Counter samples;
1482 /** Counter for each bucket. */
1483 VCounter cvec;
1484
1485 public:
1486 DistStor(Info *info)
1487 : cvec(safe_cast<const Params *>(info->storageParams)->buckets)
1488 {
1489 reset(info);
1490 }
1491
1492 /**
1493 * Add a value to the distribution for the given number of times.
1494 * @param val The value to add.
1495 * @param number The number of times to add the value.
1496 */
1497 void
1498 sample(Counter val, int number)
1499 {
1500 if (val < min_track)
1501 underflow += number;
1502 else if (val > max_track)
1503 overflow += number;
1504 else {
1505 size_type index =
1506 (size_type)std::floor((val - min_track) / bucket_size);
1507 assert(index < size());
1508 cvec[index] += number;
1509 }
1510
1511 if (val < min_val)
1512 min_val = val;
1513
1514 if (val > max_val)
1515 max_val = val;
1516
1517 Counter sample = val * number;
1518 sum += sample;
1519 squares += sample * sample;
1520 samples += number;
1521 }
1522
1523 /**
1524 * Return the number of buckets in this distribution.
1525 * @return the number of buckets.
1526 */
1527 size_type size() const { return cvec.size(); }
1528
1529 /**
1530 * Returns true if any calls to sample have been made.
1531 * @return True if any values have been sampled.
1532 */
1533 bool
1534 zero() const
1535 {
1536 return samples == Counter();
1537 }
1538
1539 void
1540 prepare(Info *info, DistData &data)
1541 {
1542 const Params *params = safe_cast<const Params *>(info->storageParams);
1543
1544 data.min_val = (min_val == CounterLimits::max()) ? 0 : min_val;
1545 data.max_val = (max_val == CounterLimits::min()) ? 0 : max_val;
1546 data.underflow = underflow;
1547 data.overflow = overflow;
1548
1549 int buckets = params->buckets;
1550 data.cvec.resize(buckets);
1551 for (off_type i = 0; i < buckets; ++i)
1552 data.cvec[i] = cvec[i];
1553
1554 data.sum = sum;
1555 data.squares = squares;
1556 data.samples = samples;
1557 }
1558
1559 /**
1560 * Reset stat value to default
1561 */
1562 void
1563 reset(Info *info)
1564 {
1565 const Params *params = safe_cast<const Params *>(info->storageParams);
1566 min_track = params->min;
1567 max_track = params->max;
1568 bucket_size = params->bucket_size;
1569
1570 min_val = CounterLimits::max();
1571 max_val = CounterLimits::min();
1572 underflow = 0;
1573 overflow = 0;
1574
1575 size_type size = cvec.size();
1576 for (off_type i = 0; i < size; ++i)
1577 cvec[i] = Counter();
1578
1579 sum = Counter();
1580 squares = Counter();
1581 samples = Counter();
1582 }
1583};
1584
1585/**
1586 * Templatized storage and interface for a distribution that calculates mean
1587 * and variance.
1588 */
1589class FancyStor
1590{
1591 public:
1592 struct Params : public DistParams
1593 {
1594 Params() : DistParams(true) {}
1595 };
1596
1597 private:
1598 /** The current sum. */
1599 Counter sum;
1600 /** The sum of squares. */
1601 Counter squares;
1602 /** The number of samples. */
1603 Counter samples;
1604
1605 public:
1606 /**
1607 * Create and initialize this storage.
1608 */
1609 FancyStor(Info *info)
1610 : sum(Counter()), squares(Counter()), samples(Counter())
1611 { }
1612
1613 /**
1614 * Add a value the given number of times to this running average.
1615 * Update the running sum and sum of squares, increment the number of
1616 * values seen by the given number.
1617 * @param val The value to add.
1618 * @param number The number of times to add the value.
1619 */
1620 void
1621 sample(Counter val, int number)
1622 {
1623 Counter value = val * number;
1624 sum += value;
1625 squares += value * value;
1626 samples += number;
1627 }
1628
1629 /**
1630 * Return the number of entries in this stat, 1
1631 * @return 1.
1632 */
1633 size_type size() const { return 1; }
1634
1635 /**
1636 * Return true if no samples have been added.
1637 * @return True if no samples have been added.
1638 */
1639 bool zero() const { return samples == Counter(); }
1640
1641 void
1642 prepare(Info *info, DistData &data)
1643 {
1644 data.sum = sum;
1645 data.squares = squares;
1646 data.samples = samples;
1647 }
1648
1649 /**
1650 * Reset stat value to default
1651 */
1652 void
1653 reset(Info *info)
1654 {
1655 sum = Counter();
1656 squares = Counter();
1657 samples = Counter();
1658 }
1659};
1660
1661/**
1662 * Templatized storage for distribution that calculates per tick mean and
1663 * variance.
1664 */
1665class AvgFancy
1666{
1667 public:
1668 struct Params : public DistParams
1669 {
1670 Params() : DistParams(true) {}
1671 };
1672
1673 private:
1674 /** Current total. */
1675 Counter sum;
1676 /** Current sum of squares. */
1677 Counter squares;
1678
1679 public:
1680 /**
1681 * Create and initialize this storage.
1682 */
1683 AvgFancy(Info *info)
1684 : sum(Counter()), squares(Counter())
1685 {}
1686
1687 /**
1688 * Add a value to the distribution for the given number of times.
1689 * Update the running sum and sum of squares.
1690 * @param val The value to add.
1691 * @param number The number of times to add the value.
1692 */
1693 void
1694 sample(Counter val, int number)
1695 {
1696 Counter value = val * number;
1697 sum += value;
1698 squares += value * value;
1699 }
1700
1701 /**
1702 * Return the number of entries, in this case 1.
1703 * @return 1.
1704 */
1705 size_type size() const { return 1; }
1706
1707 /**
1708 * Return true if no samples have been added.
1709 * @return True if the sum is zero.
1710 */
1711 bool zero() const { return sum == Counter(); }
1712
1713 void
1714 prepare(Info *info, DistData &data)
1715 {
1716 data.sum = sum;
1717 data.squares = squares;
1718 data.samples = curTick;
1719 }
1720
1721 /**
1722 * Reset stat value to default
1723 */
1724 void
1725 reset(Info *info)
1726 {
1727 sum = Counter();
1728 squares = Counter();
1729 }
1730};
1731
1732/**
1733 * Implementation of a distribution stat. The type of distribution is
1734 * determined by the Storage template. @sa ScalarBase
1735 */
1736template <class Derived, class Stor>
1737class DistBase : public DataWrap<Derived, DistInfoProxy>
1738{
1739 public:
1740 typedef DistInfoProxy<Derived> Info;
1741 typedef Stor Storage;
1742 typedef typename Stor::Params Params;
1743
1744 protected:
1745 /** The storage for this stat. */
1746 char storage[sizeof(Storage)] __attribute__ ((aligned (8)));
1747
1748 protected:
1749 /**
1750 * Retrieve the storage.
1751 * @return The storage object for this stat.
1752 */
1753 Storage *
1754 data()
1755 {
1756 return reinterpret_cast<Storage *>(storage);
1757 }
1758
1759 /**
1760 * Retrieve a const pointer to the storage.
1761 * @return A const pointer to the storage object for this stat.
1762 */
1763 const Storage *
1764 data() const
1765 {
1766 return reinterpret_cast<const Storage *>(storage);
1767 }
1768
1769 void
1770 doInit()
1771 {
1772 new (storage) Storage(this->info());
1773 this->setInit();
1774 }
1775
1776 public:
1777 DistBase() { }
1778
1779 /**
1780 * Add a value to the distribtion n times. Calls sample on the storage
1781 * class.
1782 * @param v The value to add.
1783 * @param n The number of times to add it, defaults to 1.
1784 */
1785 template <typename U>
1786 void sample(const U &v, int n = 1) { data()->sample(v, n); }
1787
1788 /**
1789 * Return the number of entries in this stat.
1790 * @return The number of entries.
1791 */
1792 size_type size() const { return data()->size(); }
1793 /**
1794 * Return true if no samples have been added.
1795 * @return True if there haven't been any samples.
1796 */
1797 bool zero() const { return data()->zero(); }
1798
1799 void
1800 prepare()
1801 {
1802 Info *info = this->info();
1803 data()->prepare(info, info->data);
1804 }
1805
1806 /**
1807 * Reset stat value to default
1808 */
1809 void
1810 reset()
1811 {
1812 data()->reset(this->info());
1813 }
1814};
1815
1816template <class Stat>
1817class DistProxy;
1818
1819template <class Derived, class Stor>
1820class VectorDistBase : public DataWrapVec<Derived, VectorDistInfoProxy>
1821{
1822 public:
1823 typedef VectorDistInfoProxy<Derived> Info;
1824 typedef Stor Storage;
1825 typedef typename Stor::Params Params;
1826 typedef DistProxy<Derived> Proxy;
1827 friend class DistProxy<Derived>;
1828 friend class DataWrapVec<Derived, VectorDistInfoProxy>;
1829
1830 protected:
1831 Storage *storage;
1832 size_type _size;
1833
1834 protected:
1835 Storage *
1836 data(off_type index)
1837 {
1838 return &storage[index];
1839 }
1840
1841 const Storage *
1842 data(off_type index) const
1843 {
1844 return &storage[index];
1845 }
1846
1847 void
1848 doInit(size_type s)
1849 {
1850 assert(s > 0 && "size must be positive!");
1851 assert(!storage && "already initialized");
1852 _size = s;
1853
1854 char *ptr = new char[_size * sizeof(Storage)];
1855 storage = reinterpret_cast<Storage *>(ptr);
1856
1857 Info *info = this->info();
1858 for (off_type i = 0; i < _size; ++i)
1859 new (&storage[i]) Storage(info);
1860
1861 this->setInit();
1862 }
1863
1864 public:
1865 VectorDistBase()
1866 : storage(NULL)
1867 {}
1868
1869 ~VectorDistBase()
1870 {
1871 if (!storage)
1872 return ;
1873
1874 for (off_type i = 0; i < _size; ++i)
1875 data(i)->~Storage();
1876 delete [] reinterpret_cast<char *>(storage);
1877 }
1878
1879 Proxy operator[](off_type index);
1880
1881 size_type
1882 size() const
1883 {
1884 return _size;
1885 }
1886
1887 bool
1888 zero() const
1889 {
1890 return false;
1891#if 0
1892 for (off_type i = 0; i < size(); ++i)
1893 if (!data(i)->zero())
1894 return false;
1895 return true;
1896#endif
1897 }
1898
1899 void
1900 prepare()
1901 {
1902 Info *info = this->info();
1903 size_type size = this->size();
1904 info->data.resize(size);
1905 for (off_type i = 0; i < size; ++i)
1906 data(i)->prepare(info, info->data[i]);
1907 }
1908
1909 bool
1910 check() const
1911 {
1912 return storage != NULL;
1913 }
1914};
1915
1916template <class Stat>
1917class DistProxy
1918{
1919 private:
1920 Stat *stat;
1921 off_type index;
1922
1923 protected:
1924 typename Stat::Storage *data() { return stat->data(index); }
1925 const typename Stat::Storage *data() const { return stat->data(index); }
1926
1927 public:
1928 DistProxy(Stat *s, off_type i)
1929 : stat(s), index(i)
1930 {}
1931
1932 DistProxy(const DistProxy &sp)
1933 : stat(sp.stat), index(sp.index)
1934 {}
1935
1936 const DistProxy &
1937 operator=(const DistProxy &sp)
1938 {
1939 stat = sp.stat;
1940 index = sp.index;
1941 return *this;
1942 }
1943
1944 public:
1945 template <typename U>
1946 void
1947 sample(const U &v, int n = 1)
1948 {
1949 data()->sample(v, n);
1950 }
1951
1952 size_type
1953 size() const
1954 {
1955 return 1;
1956 }
1957
1958 bool
1959 zero() const
1960 {
1961 return data()->zero();
1962 }
1963
1964 /**
1965 * Proxy has no state. Nothing to reset.
1966 */
1967 void reset() { }
1968};
1969
1970template <class Derived, class Stor>
1971inline typename VectorDistBase<Derived, Stor>::Proxy
1972VectorDistBase<Derived, Stor>::operator[](off_type index)
1973{
1974 assert (index >= 0 && index < size());
1975 typedef typename VectorDistBase<Derived, Stor>::Proxy Proxy;
1976 return Proxy(this, index);
1977}
1978
1979#if 0
1980template <class Storage>
1981Result
1982VectorDistBase<Storage>::total(off_type index) const
1983{
1984 Result total = 0.0;
1985 for (off_type i = 0; i < x_size(); ++i)
1986 total += data(i)->result();
1987}
1988#endif
1989
1990//////////////////////////////////////////////////////////////////////
1991//
1992// Formula Details
1993//
1994//////////////////////////////////////////////////////////////////////
1995
1996/**
1997 * Base class for formula statistic node. These nodes are used to build a tree
1998 * that represents the formula.
1999 */
2000class Node : public RefCounted
2001{
2002 public:
2003 /**
2004 * Return the number of nodes in the subtree starting at this node.
2005 * @return the number of nodes in this subtree.
2006 */
2007 virtual size_type size() const = 0;
2008 /**
2009 * Return the result vector of this subtree.
2010 * @return The result vector of this subtree.
2011 */
2012 virtual const VResult &result() const = 0;
2013 /**
2014 * Return the total of the result vector.
2015 * @return The total of the result vector.
2016 */
2017 virtual Result total() const = 0;
2018
2019 /**
2020 *
2021 */
2022 virtual std::string str() const = 0;
2023};
2024
2025/** Reference counting pointer to a function Node. */
2026typedef RefCountingPtr<Node> NodePtr;
2027
2028class ScalarStatNode : public Node
2029{
2030 private:
2031 const ScalarInfo *data;
2032 mutable VResult vresult;
2033
2034 public:
2035 ScalarStatNode(const ScalarInfo *d) : data(d), vresult(1) {}
2036
2037 const VResult &
2038 result() const
2039 {
2040 vresult[0] = data->result();
2041 return vresult;
2042 }
2043
2044 Result total() const { return data->result(); };
2045
2046 size_type size() const { return 1; }
2047
2048 /**
2049 *
2050 */
2051 std::string str() const { return data->name; }
2052};
2053
2054template <class Stat>
2055class ScalarProxyNode : public Node
2056{
2057 private:
2058 const ScalarProxy<Stat> proxy;
2059 mutable VResult vresult;
2060
2061 public:
2062 ScalarProxyNode(const ScalarProxy<Stat> &p)
2063 : proxy(p), vresult(1)
2064 { }
2065
2066 const VResult &
2067 result() const
2068 {
2069 vresult[0] = proxy.result();
2070 return vresult;
2071 }
2072
2073 Result
2074 total() const
2075 {
2076 return proxy.result();
2077 }
2078
2079 size_type
2080 size() const
2081 {
2082 return 1;
2083 }
2084
2085 /**
2086 *
2087 */
2088 std::string
2089 str() const
2090 {
2091 return proxy.str();
2092 }
2093};
2094
2095class VectorStatNode : public Node
2096{
2097 private:
2098 const VectorInfo *data;
2099
2100 public:
2101 VectorStatNode(const VectorInfo *d) : data(d) { }
2102 const VResult &result() const { return data->result(); }
2103 Result total() const { return data->total(); };
2104
2105 size_type size() const { return data->size(); }
2106
2107 std::string str() const { return data->name; }
2108};
2109
2110template <class T>
2111class ConstNode : public Node
2112{
2113 private:
2114 VResult vresult;
2115
2116 public:
2117 ConstNode(T s) : vresult(1, (Result)s) {}
2118 const VResult &result() const { return vresult; }
2119 Result total() const { return vresult[0]; };
2120 size_type size() const { return 1; }
2121 std::string str() const { return to_string(vresult[0]); }
2122};
2123
2124template <class T>
2125class ConstVectorNode : public Node
2126{
2127 private:
2128 VResult vresult;
2129
2130 public:
2131 ConstVectorNode(const T &s) : vresult(s.begin(), s.end()) {}
2132 const VResult &result() const { return vresult; }
2133
2134 Result
2135 total() const
2136 {
2137 size_type size = this->size();
2138 Result tmp = 0;
2139 for (off_type i = 0; i < size; i++)
2140 tmp += vresult[i];
2141 return tmp;
2142 }
2143
2144 size_type size() const { return vresult.size(); }
2145 std::string
2146 str() const
2147 {
2148 size_type size = this->size();
2149 std::string tmp = "(";
2150 for (off_type i = 0; i < size; i++)
2151 tmp += csprintf("%s ",to_string(vresult[i]));
2152 tmp += ")";
2153 return tmp;
2154 }
2155};
2156
2157template <class Op>
2158struct OpString;
2159
2160template<>
2161struct OpString<std::plus<Result> >
2162{
2163 static std::string str() { return "+"; }
2164};
2165
2166template<>
2167struct OpString<std::minus<Result> >
2168{
2169 static std::string str() { return "-"; }
2170};
2171
2172template<>
2173struct OpString<std::multiplies<Result> >
2174{
2175 static std::string str() { return "*"; }
2176};
2177
2178template<>
2179struct OpString<std::divides<Result> >
2180{
2181 static std::string str() { return "/"; }
2182};
2183
2184template<>
2185struct OpString<std::modulus<Result> >
2186{
2187 static std::string str() { return "%"; }
2188};
2189
2190template<>
2191struct OpString<std::negate<Result> >
2192{
2193 static std::string str() { return "-"; }
2194};
2195
2196template <class Op>
2197class UnaryNode : public Node
2198{
2199 public:
2200 NodePtr l;
2201 mutable VResult vresult;
2202
2203 public:
2204 UnaryNode(NodePtr &p) : l(p) {}
2205
2206 const VResult &
2207 result() const
2208 {
2209 const VResult &lvec = l->result();
2210 size_type size = lvec.size();
2211
2212 assert(size > 0);
2213
2214 vresult.resize(size);
2215 Op op;
2216 for (off_type i = 0; i < size; ++i)
2217 vresult[i] = op(lvec[i]);
2218
2219 return vresult;
2220 }
2221
2222 Result
2223 total() const
2224 {
2225 const VResult &vec = this->result();
2226 Result total = 0.0;
2227 for (off_type i = 0; i < size(); i++)
2228 total += vec[i];
2229 return total;
2230 }
2231
2232 size_type size() const { return l->size(); }
2233
2234 std::string
2235 str() const
2236 {
2237 return OpString<Op>::str() + l->str();
2238 }
2239};
2240
2241template <class Op>
2242class BinaryNode : public Node
2243{
2244 public:
2245 NodePtr l;
2246 NodePtr r;
2247 mutable VResult vresult;
2248
2249 public:
2250 BinaryNode(NodePtr &a, NodePtr &b) : l(a), r(b) {}
2251
2252 const VResult &
2253 result() const
2254 {
2255 Op op;
2256 const VResult &lvec = l->result();
2257 const VResult &rvec = r->result();
2258
2259 assert(lvec.size() > 0 && rvec.size() > 0);
2260
2261 if (lvec.size() == 1 && rvec.size() == 1) {
2262 vresult.resize(1);
2263 vresult[0] = op(lvec[0], rvec[0]);
2264 } else if (lvec.size() == 1) {
2265 size_type size = rvec.size();
2266 vresult.resize(size);
2267 for (off_type i = 0; i < size; ++i)
2268 vresult[i] = op(lvec[0], rvec[i]);
2269 } else if (rvec.size() == 1) {
2270 size_type size = lvec.size();
2271 vresult.resize(size);
2272 for (off_type i = 0; i < size; ++i)
2273 vresult[i] = op(lvec[i], rvec[0]);
2274 } else if (rvec.size() == lvec.size()) {
2275 size_type size = rvec.size();
2276 vresult.resize(size);
2277 for (off_type i = 0; i < size; ++i)
2278 vresult[i] = op(lvec[i], rvec[i]);
2279 }
2280
2281 return vresult;
2282 }
2283
2284 Result
2285 total() const
2286 {
2287 const VResult &vec = this->result();
2288 Result total = 0.0;
2289 for (off_type i = 0; i < size(); i++)
2290 total += vec[i];
2291 return total;
2292 }
2293
2294 size_type
2295 size() const
2296 {
2297 size_type ls = l->size();
2298 size_type rs = r->size();
2299 if (ls == 1) {
2300 return rs;
2301 } else if (rs == 1) {
2302 return ls;
2303 } else {
2304 assert(ls == rs && "Node vector sizes are not equal");
2305 return ls;
2306 }
2307 }
2308
2309 std::string
2310 str() const
2311 {
2312 return csprintf("(%s %s %s)", l->str(), OpString<Op>::str(), r->str());
2313 }
2314};
2315
2316template <class Op>
2317class SumNode : public Node
2318{
2319 public:
2320 NodePtr l;
2321 mutable VResult vresult;
2322
2323 public:
2324 SumNode(NodePtr &p) : l(p), vresult(1) {}
2325
2326 const VResult &
2327 result() const
2328 {
2329 const VResult &lvec = l->result();
2330 size_type size = lvec.size();
2331 assert(size > 0);
2332
2333 vresult[0] = 0.0;
2334
2335 Op op;
2336 for (off_type i = 0; i < size; ++i)
2337 vresult[0] = op(vresult[0], lvec[i]);
2338
2339 return vresult;
2340 }
2341
2342 Result
2343 total() const
2344 {
2345 const VResult &lvec = l->result();
2346 size_type size = lvec.size();
2347 assert(size > 0);
2348
2349 Result vresult = 0.0;
2350
2351 Op op;
2352 for (off_type i = 0; i < size; ++i)
2353 vresult = op(vresult, lvec[i]);
2354
2355 return vresult;
2356 }
2357
2358 size_type size() const { return 1; }
2359
2360 std::string
2361 str() const
2362 {
2363 return csprintf("total(%s)", l->str());
2364 }
2365};
2366
2367
2368//////////////////////////////////////////////////////////////////////
2369//
2370// Visible Statistics Types
2371//
2372//////////////////////////////////////////////////////////////////////
2373/**
2374 * @defgroup VisibleStats "Statistic Types"
2375 * These are the statistics that are used in the simulator.
2376 * @{
2377 */
2378
2379/**
2380 * This is a simple scalar statistic, like a counter.
2381 * @sa Stat, ScalarBase, StatStor
2382 */
2383class Scalar : public ScalarBase<Scalar, StatStor>
2384{
2385 public:
2386 using ScalarBase<Scalar, StatStor>::operator=;
2387};
2388
2389/**
2390 * A stat that calculates the per tick average of a value.
2391 * @sa Stat, ScalarBase, AvgStor
2392 */
2393class Average : public ScalarBase<Average, AvgStor>
2394{
2395 public:
2396 using ScalarBase<Average, AvgStor>::operator=;
2397};
2398
2399class Value : public ValueBase<Value>
2400{
2401};
2402
2403/**
2404 * A vector of scalar stats.
2405 * @sa Stat, VectorBase, StatStor
2406 */
2407class Vector : public VectorBase<Vector, StatStor>
2408{
2409};
2410
2411/**
2412 * A vector of Average stats.
2413 * @sa Stat, VectorBase, AvgStor
2414 */
2415class AverageVector : public VectorBase<AverageVector, AvgStor>
2416{
2417};
2418
2419/**
2420 * A 2-Dimensional vecto of scalar stats.
2421 * @sa Stat, Vector2dBase, StatStor
2422 */
2423class Vector2d : public Vector2dBase<Vector2d, StatStor>
2424{
2425};
2426
2427/**
2428 * A simple distribution stat.
2429 * @sa Stat, DistBase, DistStor
2430 */
2431class Distribution : public DistBase<Distribution, DistStor>
2432{
2433 public:
2434 /**
2435 * Set the parameters of this distribution. @sa DistStor::Params
2436 * @param min The minimum value of the distribution.
2437 * @param max The maximum value of the distribution.
2438 * @param bkt The number of values in each bucket.
2439 * @return A reference to this distribution.
2440 */
2441 Distribution &
2442 init(Counter min, Counter max, Counter bkt)
2443 {
2444 DistStor::Params *params = new DistStor::Params;
2445 params->min = min;
2446 params->max = max;
2447 params->bucket_size = bkt;
2448 params->buckets = (size_type)rint((max - min) / bkt + 1.0);
2449 this->setParams(params);
2450 this->doInit();
2451 return this->self();
2452 }
2453};
2454
2455/**
2456 * Calculates the mean and variance of all the samples.
2457 * @sa Stat, DistBase, FancyStor
2458 */
2459class StandardDeviation : public DistBase<StandardDeviation, FancyStor>
2460{
2461 public:
2462 /**
2463 * Construct and initialize this distribution.
2464 */
2465 StandardDeviation()
2466 {
2467 this->doInit();
2468 }
2469};
2470
2471/**
2472 * Calculates the per tick mean and variance of the samples.
2473 * @sa Stat, DistBase, AvgFancy
2474 */
2475class AverageDeviation : public DistBase<AverageDeviation, AvgFancy>
2476{
2477 public:
2478 /**
2479 * Construct and initialize this distribution.
2480 */
2481 AverageDeviation()
2482 {
2483 this->doInit();
2484 }
2485};
2486
2487/**
2488 * A vector of distributions.
2489 * @sa Stat, VectorDistBase, DistStor
2490 */
2491class VectorDistribution : public VectorDistBase<VectorDistribution, DistStor>
2492{
2493 public:
2494 /**
2495 * Initialize storage and parameters for this distribution.
2496 * @param size The size of the vector (the number of distributions).
2497 * @param min The minimum value of the distribution.
2498 * @param max The maximum value of the distribution.
2499 * @param bkt The number of values in each bucket.
2500 * @return A reference to this distribution.
2501 */
2502 VectorDistribution &
2503 init(size_type size, Counter min, Counter max, Counter bkt)
2504 {
2505 DistStor::Params *params = new DistStor::Params;
2506 params->min = min;
2507 params->max = max;
2508 params->bucket_size = bkt;
2509 params->buckets = (size_type)rint((max - min) / bkt + 1.0);
2510 this->setParams(params);
2511 this->doInit(size);
2512 return this->self();
2513 }
2514};
2515
2516/**
2517 * This is a vector of StandardDeviation stats.
2518 * @sa Stat, VectorDistBase, FancyStor
2519 */
2520class VectorStandardDeviation
2521 : public VectorDistBase<VectorStandardDeviation, FancyStor>
2522{
2523 public:
2524 /**
2525 * Initialize storage for this distribution.
2526 * @param size The size of the vector.
2527 * @return A reference to this distribution.
2528 */
2529 VectorStandardDeviation &
2530 init(size_type size)
2531 {
2532 this->doInit(size);
2533 return this->self();
2534 }
2535};
2536
2537/**
2538 * This is a vector of AverageDeviation stats.
2539 * @sa Stat, VectorDistBase, AvgFancy
2540 */
2541class VectorAverageDeviation
2542 : public VectorDistBase<VectorAverageDeviation, AvgFancy>
2543{
2544 public:
2545 /**
2546 * Initialize storage for this distribution.
2547 * @param size The size of the vector.
2548 * @return A reference to this distribution.
2549 */
2550 VectorAverageDeviation &
2551 init(size_type size)
2552 {
2553 this->doInit(size);
2554 return this->self();
2555 }
2556};
2557
1266/**
1267 * Templatized storage and interface for a distrbution stat.
1268 */
1269class DistStor
1270{
1271 public:
1272 /** The parameters for a distribution stat. */
1273 struct Params : public DistParams
1274 {
1275 Params() : DistParams(false) {}
1276 };
1277
1278 private:
1279 /** The minimum value to track. */
1280 Counter min_track;
1281 /** The maximum value to track. */
1282 Counter max_track;
1283 /** The number of entries in each bucket. */
1284 Counter bucket_size;
1285 /** The number of buckets. Equal to (max-min)/bucket_size. */
1286 size_type buckets;
1287
1288 /** The smallest value sampled. */
1289 Counter min_val;
1290 /** The largest value sampled. */
1291 Counter max_val;
1292 /** The number of values sampled less than min. */
1293 Counter underflow;
1294 /** The number of values sampled more than max. */
1295 Counter overflow;
1296 /** The current sum. */
1297 Counter sum;
1298 /** The sum of squares. */
1299 Counter squares;
1300 /** The number of samples. */
1301 Counter samples;
1302 /** Counter for each bucket. */
1303 VCounter cvec;
1304
1305 public:
1306 DistStor(Info *info)
1307 : cvec(safe_cast<const Params *>(info->storageParams)->buckets)
1308 {
1309 reset(info);
1310 }
1311
1312 /**
1313 * Add a value to the distribution for the given number of times.
1314 * @param val The value to add.
1315 * @param number The number of times to add the value.
1316 */
1317 void
1318 sample(Counter val, int number)
1319 {
1320 if (val < min_track)
1321 underflow += number;
1322 else if (val > max_track)
1323 overflow += number;
1324 else {
1325 size_type index =
1326 (size_type)std::floor((val - min_track) / bucket_size);
1327 assert(index < size());
1328 cvec[index] += number;
1329 }
1330
1331 if (val < min_val)
1332 min_val = val;
1333
1334 if (val > max_val)
1335 max_val = val;
1336
1337 Counter sample = val * number;
1338 sum += sample;
1339 squares += sample * sample;
1340 samples += number;
1341 }
1342
1343 /**
1344 * Return the number of buckets in this distribution.
1345 * @return the number of buckets.
1346 */
1347 size_type size() const { return cvec.size(); }
1348
1349 /**
1350 * Returns true if any calls to sample have been made.
1351 * @return True if any values have been sampled.
1352 */
1353 bool
1354 zero() const
1355 {
1356 return samples == Counter();
1357 }
1358
1359 void
1360 prepare(Info *info, DistData &data)
1361 {
1362 const Params *params = safe_cast<const Params *>(info->storageParams);
1363
1364 data.min_val = (min_val == CounterLimits::max()) ? 0 : min_val;
1365 data.max_val = (max_val == CounterLimits::min()) ? 0 : max_val;
1366 data.underflow = underflow;
1367 data.overflow = overflow;
1368
1369 int buckets = params->buckets;
1370 data.cvec.resize(buckets);
1371 for (off_type i = 0; i < buckets; ++i)
1372 data.cvec[i] = cvec[i];
1373
1374 data.sum = sum;
1375 data.squares = squares;
1376 data.samples = samples;
1377 }
1378
1379 /**
1380 * Reset stat value to default
1381 */
1382 void
1383 reset(Info *info)
1384 {
1385 const Params *params = safe_cast<const Params *>(info->storageParams);
1386 min_track = params->min;
1387 max_track = params->max;
1388 bucket_size = params->bucket_size;
1389
1390 min_val = CounterLimits::max();
1391 max_val = CounterLimits::min();
1392 underflow = 0;
1393 overflow = 0;
1394
1395 size_type size = cvec.size();
1396 for (off_type i = 0; i < size; ++i)
1397 cvec[i] = Counter();
1398
1399 sum = Counter();
1400 squares = Counter();
1401 samples = Counter();
1402 }
1403};
1404
1405/**
1406 * Templatized storage and interface for a distribution that calculates mean
1407 * and variance.
1408 */
1409class FancyStor
1410{
1411 public:
1412 struct Params : public DistParams
1413 {
1414 Params() : DistParams(true) {}
1415 };
1416
1417 private:
1418 /** The current sum. */
1419 Counter sum;
1420 /** The sum of squares. */
1421 Counter squares;
1422 /** The number of samples. */
1423 Counter samples;
1424
1425 public:
1426 /**
1427 * Create and initialize this storage.
1428 */
1429 FancyStor(Info *info)
1430 : sum(Counter()), squares(Counter()), samples(Counter())
1431 { }
1432
1433 /**
1434 * Add a value the given number of times to this running average.
1435 * Update the running sum and sum of squares, increment the number of
1436 * values seen by the given number.
1437 * @param val The value to add.
1438 * @param number The number of times to add the value.
1439 */
1440 void
1441 sample(Counter val, int number)
1442 {
1443 Counter value = val * number;
1444 sum += value;
1445 squares += value * value;
1446 samples += number;
1447 }
1448
1449 /**
1450 * Return the number of entries in this stat, 1
1451 * @return 1.
1452 */
1453 size_type size() const { return 1; }
1454
1455 /**
1456 * Return true if no samples have been added.
1457 * @return True if no samples have been added.
1458 */
1459 bool zero() const { return samples == Counter(); }
1460
1461 void
1462 prepare(Info *info, DistData &data)
1463 {
1464 data.sum = sum;
1465 data.squares = squares;
1466 data.samples = samples;
1467 }
1468
1469 /**
1470 * Reset stat value to default
1471 */
1472 void
1473 reset(Info *info)
1474 {
1475 sum = Counter();
1476 squares = Counter();
1477 samples = Counter();
1478 }
1479};
1480
1481/**
1482 * Templatized storage for distribution that calculates per tick mean and
1483 * variance.
1484 */
1485class AvgFancy
1486{
1487 public:
1488 struct Params : public DistParams
1489 {
1490 Params() : DistParams(true) {}
1491 };
1492
1493 private:
1494 /** Current total. */
1495 Counter sum;
1496 /** Current sum of squares. */
1497 Counter squares;
1498
1499 public:
1500 /**
1501 * Create and initialize this storage.
1502 */
1503 AvgFancy(Info *info)
1504 : sum(Counter()), squares(Counter())
1505 {}
1506
1507 /**
1508 * Add a value to the distribution for the given number of times.
1509 * Update the running sum and sum of squares.
1510 * @param val The value to add.
1511 * @param number The number of times to add the value.
1512 */
1513 void
1514 sample(Counter val, int number)
1515 {
1516 Counter value = val * number;
1517 sum += value;
1518 squares += value * value;
1519 }
1520
1521 /**
1522 * Return the number of entries, in this case 1.
1523 * @return 1.
1524 */
1525 size_type size() const { return 1; }
1526
1527 /**
1528 * Return true if no samples have been added.
1529 * @return True if the sum is zero.
1530 */
1531 bool zero() const { return sum == Counter(); }
1532
1533 void
1534 prepare(Info *info, DistData &data)
1535 {
1536 data.sum = sum;
1537 data.squares = squares;
1538 data.samples = curTick;
1539 }
1540
1541 /**
1542 * Reset stat value to default
1543 */
1544 void
1545 reset(Info *info)
1546 {
1547 sum = Counter();
1548 squares = Counter();
1549 }
1550};
1551
1552/**
1553 * Implementation of a distribution stat. The type of distribution is
1554 * determined by the Storage template. @sa ScalarBase
1555 */
1556template <class Derived, class Stor>
1557class DistBase : public DataWrap<Derived, DistInfoProxy>
1558{
1559 public:
1560 typedef DistInfoProxy<Derived> Info;
1561 typedef Stor Storage;
1562 typedef typename Stor::Params Params;
1563
1564 protected:
1565 /** The storage for this stat. */
1566 char storage[sizeof(Storage)] __attribute__ ((aligned (8)));
1567
1568 protected:
1569 /**
1570 * Retrieve the storage.
1571 * @return The storage object for this stat.
1572 */
1573 Storage *
1574 data()
1575 {
1576 return reinterpret_cast<Storage *>(storage);
1577 }
1578
1579 /**
1580 * Retrieve a const pointer to the storage.
1581 * @return A const pointer to the storage object for this stat.
1582 */
1583 const Storage *
1584 data() const
1585 {
1586 return reinterpret_cast<const Storage *>(storage);
1587 }
1588
1589 void
1590 doInit()
1591 {
1592 new (storage) Storage(this->info());
1593 this->setInit();
1594 }
1595
1596 public:
1597 DistBase() { }
1598
1599 /**
1600 * Add a value to the distribtion n times. Calls sample on the storage
1601 * class.
1602 * @param v The value to add.
1603 * @param n The number of times to add it, defaults to 1.
1604 */
1605 template <typename U>
1606 void sample(const U &v, int n = 1) { data()->sample(v, n); }
1607
1608 /**
1609 * Return the number of entries in this stat.
1610 * @return The number of entries.
1611 */
1612 size_type size() const { return data()->size(); }
1613 /**
1614 * Return true if no samples have been added.
1615 * @return True if there haven't been any samples.
1616 */
1617 bool zero() const { return data()->zero(); }
1618
1619 void
1620 prepare()
1621 {
1622 Info *info = this->info();
1623 data()->prepare(info, info->data);
1624 }
1625
1626 /**
1627 * Reset stat value to default
1628 */
1629 void
1630 reset()
1631 {
1632 data()->reset(this->info());
1633 }
1634};
1635
1636template <class Stat>
1637class DistProxy;
1638
1639template <class Derived, class Stor>
1640class VectorDistBase : public DataWrapVec<Derived, VectorDistInfoProxy>
1641{
1642 public:
1643 typedef VectorDistInfoProxy<Derived> Info;
1644 typedef Stor Storage;
1645 typedef typename Stor::Params Params;
1646 typedef DistProxy<Derived> Proxy;
1647 friend class DistProxy<Derived>;
1648 friend class DataWrapVec<Derived, VectorDistInfoProxy>;
1649
1650 protected:
1651 Storage *storage;
1652 size_type _size;
1653
1654 protected:
1655 Storage *
1656 data(off_type index)
1657 {
1658 return &storage[index];
1659 }
1660
1661 const Storage *
1662 data(off_type index) const
1663 {
1664 return &storage[index];
1665 }
1666
1667 void
1668 doInit(size_type s)
1669 {
1670 assert(s > 0 && "size must be positive!");
1671 assert(!storage && "already initialized");
1672 _size = s;
1673
1674 char *ptr = new char[_size * sizeof(Storage)];
1675 storage = reinterpret_cast<Storage *>(ptr);
1676
1677 Info *info = this->info();
1678 for (off_type i = 0; i < _size; ++i)
1679 new (&storage[i]) Storage(info);
1680
1681 this->setInit();
1682 }
1683
1684 public:
1685 VectorDistBase()
1686 : storage(NULL)
1687 {}
1688
1689 ~VectorDistBase()
1690 {
1691 if (!storage)
1692 return ;
1693
1694 for (off_type i = 0; i < _size; ++i)
1695 data(i)->~Storage();
1696 delete [] reinterpret_cast<char *>(storage);
1697 }
1698
1699 Proxy operator[](off_type index);
1700
1701 size_type
1702 size() const
1703 {
1704 return _size;
1705 }
1706
1707 bool
1708 zero() const
1709 {
1710 return false;
1711#if 0
1712 for (off_type i = 0; i < size(); ++i)
1713 if (!data(i)->zero())
1714 return false;
1715 return true;
1716#endif
1717 }
1718
1719 void
1720 prepare()
1721 {
1722 Info *info = this->info();
1723 size_type size = this->size();
1724 info->data.resize(size);
1725 for (off_type i = 0; i < size; ++i)
1726 data(i)->prepare(info, info->data[i]);
1727 }
1728
1729 bool
1730 check() const
1731 {
1732 return storage != NULL;
1733 }
1734};
1735
1736template <class Stat>
1737class DistProxy
1738{
1739 private:
1740 Stat *stat;
1741 off_type index;
1742
1743 protected:
1744 typename Stat::Storage *data() { return stat->data(index); }
1745 const typename Stat::Storage *data() const { return stat->data(index); }
1746
1747 public:
1748 DistProxy(Stat *s, off_type i)
1749 : stat(s), index(i)
1750 {}
1751
1752 DistProxy(const DistProxy &sp)
1753 : stat(sp.stat), index(sp.index)
1754 {}
1755
1756 const DistProxy &
1757 operator=(const DistProxy &sp)
1758 {
1759 stat = sp.stat;
1760 index = sp.index;
1761 return *this;
1762 }
1763
1764 public:
1765 template <typename U>
1766 void
1767 sample(const U &v, int n = 1)
1768 {
1769 data()->sample(v, n);
1770 }
1771
1772 size_type
1773 size() const
1774 {
1775 return 1;
1776 }
1777
1778 bool
1779 zero() const
1780 {
1781 return data()->zero();
1782 }
1783
1784 /**
1785 * Proxy has no state. Nothing to reset.
1786 */
1787 void reset() { }
1788};
1789
1790template <class Derived, class Stor>
1791inline typename VectorDistBase<Derived, Stor>::Proxy
1792VectorDistBase<Derived, Stor>::operator[](off_type index)
1793{
1794 assert (index >= 0 && index < size());
1795 typedef typename VectorDistBase<Derived, Stor>::Proxy Proxy;
1796 return Proxy(this, index);
1797}
1798
1799#if 0
1800template <class Storage>
1801Result
1802VectorDistBase<Storage>::total(off_type index) const
1803{
1804 Result total = 0.0;
1805 for (off_type i = 0; i < x_size(); ++i)
1806 total += data(i)->result();
1807}
1808#endif
1809
1810//////////////////////////////////////////////////////////////////////
1811//
1812// Formula Details
1813//
1814//////////////////////////////////////////////////////////////////////
1815
1816/**
1817 * Base class for formula statistic node. These nodes are used to build a tree
1818 * that represents the formula.
1819 */
1820class Node : public RefCounted
1821{
1822 public:
1823 /**
1824 * Return the number of nodes in the subtree starting at this node.
1825 * @return the number of nodes in this subtree.
1826 */
1827 virtual size_type size() const = 0;
1828 /**
1829 * Return the result vector of this subtree.
1830 * @return The result vector of this subtree.
1831 */
1832 virtual const VResult &result() const = 0;
1833 /**
1834 * Return the total of the result vector.
1835 * @return The total of the result vector.
1836 */
1837 virtual Result total() const = 0;
1838
1839 /**
1840 *
1841 */
1842 virtual std::string str() const = 0;
1843};
1844
1845/** Reference counting pointer to a function Node. */
1846typedef RefCountingPtr<Node> NodePtr;
1847
1848class ScalarStatNode : public Node
1849{
1850 private:
1851 const ScalarInfo *data;
1852 mutable VResult vresult;
1853
1854 public:
1855 ScalarStatNode(const ScalarInfo *d) : data(d), vresult(1) {}
1856
1857 const VResult &
1858 result() const
1859 {
1860 vresult[0] = data->result();
1861 return vresult;
1862 }
1863
1864 Result total() const { return data->result(); };
1865
1866 size_type size() const { return 1; }
1867
1868 /**
1869 *
1870 */
1871 std::string str() const { return data->name; }
1872};
1873
1874template <class Stat>
1875class ScalarProxyNode : public Node
1876{
1877 private:
1878 const ScalarProxy<Stat> proxy;
1879 mutable VResult vresult;
1880
1881 public:
1882 ScalarProxyNode(const ScalarProxy<Stat> &p)
1883 : proxy(p), vresult(1)
1884 { }
1885
1886 const VResult &
1887 result() const
1888 {
1889 vresult[0] = proxy.result();
1890 return vresult;
1891 }
1892
1893 Result
1894 total() const
1895 {
1896 return proxy.result();
1897 }
1898
1899 size_type
1900 size() const
1901 {
1902 return 1;
1903 }
1904
1905 /**
1906 *
1907 */
1908 std::string
1909 str() const
1910 {
1911 return proxy.str();
1912 }
1913};
1914
1915class VectorStatNode : public Node
1916{
1917 private:
1918 const VectorInfo *data;
1919
1920 public:
1921 VectorStatNode(const VectorInfo *d) : data(d) { }
1922 const VResult &result() const { return data->result(); }
1923 Result total() const { return data->total(); };
1924
1925 size_type size() const { return data->size(); }
1926
1927 std::string str() const { return data->name; }
1928};
1929
1930template <class T>
1931class ConstNode : public Node
1932{
1933 private:
1934 VResult vresult;
1935
1936 public:
1937 ConstNode(T s) : vresult(1, (Result)s) {}
1938 const VResult &result() const { return vresult; }
1939 Result total() const { return vresult[0]; };
1940 size_type size() const { return 1; }
1941 std::string str() const { return to_string(vresult[0]); }
1942};
1943
1944template <class T>
1945class ConstVectorNode : public Node
1946{
1947 private:
1948 VResult vresult;
1949
1950 public:
1951 ConstVectorNode(const T &s) : vresult(s.begin(), s.end()) {}
1952 const VResult &result() const { return vresult; }
1953
1954 Result
1955 total() const
1956 {
1957 size_type size = this->size();
1958 Result tmp = 0;
1959 for (off_type i = 0; i < size; i++)
1960 tmp += vresult[i];
1961 return tmp;
1962 }
1963
1964 size_type size() const { return vresult.size(); }
1965 std::string
1966 str() const
1967 {
1968 size_type size = this->size();
1969 std::string tmp = "(";
1970 for (off_type i = 0; i < size; i++)
1971 tmp += csprintf("%s ",to_string(vresult[i]));
1972 tmp += ")";
1973 return tmp;
1974 }
1975};
1976
1977template <class Op>
1978struct OpString;
1979
1980template<>
1981struct OpString<std::plus<Result> >
1982{
1983 static std::string str() { return "+"; }
1984};
1985
1986template<>
1987struct OpString<std::minus<Result> >
1988{
1989 static std::string str() { return "-"; }
1990};
1991
1992template<>
1993struct OpString<std::multiplies<Result> >
1994{
1995 static std::string str() { return "*"; }
1996};
1997
1998template<>
1999struct OpString<std::divides<Result> >
2000{
2001 static std::string str() { return "/"; }
2002};
2003
2004template<>
2005struct OpString<std::modulus<Result> >
2006{
2007 static std::string str() { return "%"; }
2008};
2009
2010template<>
2011struct OpString<std::negate<Result> >
2012{
2013 static std::string str() { return "-"; }
2014};
2015
2016template <class Op>
2017class UnaryNode : public Node
2018{
2019 public:
2020 NodePtr l;
2021 mutable VResult vresult;
2022
2023 public:
2024 UnaryNode(NodePtr &p) : l(p) {}
2025
2026 const VResult &
2027 result() const
2028 {
2029 const VResult &lvec = l->result();
2030 size_type size = lvec.size();
2031
2032 assert(size > 0);
2033
2034 vresult.resize(size);
2035 Op op;
2036 for (off_type i = 0; i < size; ++i)
2037 vresult[i] = op(lvec[i]);
2038
2039 return vresult;
2040 }
2041
2042 Result
2043 total() const
2044 {
2045 const VResult &vec = this->result();
2046 Result total = 0.0;
2047 for (off_type i = 0; i < size(); i++)
2048 total += vec[i];
2049 return total;
2050 }
2051
2052 size_type size() const { return l->size(); }
2053
2054 std::string
2055 str() const
2056 {
2057 return OpString<Op>::str() + l->str();
2058 }
2059};
2060
2061template <class Op>
2062class BinaryNode : public Node
2063{
2064 public:
2065 NodePtr l;
2066 NodePtr r;
2067 mutable VResult vresult;
2068
2069 public:
2070 BinaryNode(NodePtr &a, NodePtr &b) : l(a), r(b) {}
2071
2072 const VResult &
2073 result() const
2074 {
2075 Op op;
2076 const VResult &lvec = l->result();
2077 const VResult &rvec = r->result();
2078
2079 assert(lvec.size() > 0 && rvec.size() > 0);
2080
2081 if (lvec.size() == 1 && rvec.size() == 1) {
2082 vresult.resize(1);
2083 vresult[0] = op(lvec[0], rvec[0]);
2084 } else if (lvec.size() == 1) {
2085 size_type size = rvec.size();
2086 vresult.resize(size);
2087 for (off_type i = 0; i < size; ++i)
2088 vresult[i] = op(lvec[0], rvec[i]);
2089 } else if (rvec.size() == 1) {
2090 size_type size = lvec.size();
2091 vresult.resize(size);
2092 for (off_type i = 0; i < size; ++i)
2093 vresult[i] = op(lvec[i], rvec[0]);
2094 } else if (rvec.size() == lvec.size()) {
2095 size_type size = rvec.size();
2096 vresult.resize(size);
2097 for (off_type i = 0; i < size; ++i)
2098 vresult[i] = op(lvec[i], rvec[i]);
2099 }
2100
2101 return vresult;
2102 }
2103
2104 Result
2105 total() const
2106 {
2107 const VResult &vec = this->result();
2108 Result total = 0.0;
2109 for (off_type i = 0; i < size(); i++)
2110 total += vec[i];
2111 return total;
2112 }
2113
2114 size_type
2115 size() const
2116 {
2117 size_type ls = l->size();
2118 size_type rs = r->size();
2119 if (ls == 1) {
2120 return rs;
2121 } else if (rs == 1) {
2122 return ls;
2123 } else {
2124 assert(ls == rs && "Node vector sizes are not equal");
2125 return ls;
2126 }
2127 }
2128
2129 std::string
2130 str() const
2131 {
2132 return csprintf("(%s %s %s)", l->str(), OpString<Op>::str(), r->str());
2133 }
2134};
2135
2136template <class Op>
2137class SumNode : public Node
2138{
2139 public:
2140 NodePtr l;
2141 mutable VResult vresult;
2142
2143 public:
2144 SumNode(NodePtr &p) : l(p), vresult(1) {}
2145
2146 const VResult &
2147 result() const
2148 {
2149 const VResult &lvec = l->result();
2150 size_type size = lvec.size();
2151 assert(size > 0);
2152
2153 vresult[0] = 0.0;
2154
2155 Op op;
2156 for (off_type i = 0; i < size; ++i)
2157 vresult[0] = op(vresult[0], lvec[i]);
2158
2159 return vresult;
2160 }
2161
2162 Result
2163 total() const
2164 {
2165 const VResult &lvec = l->result();
2166 size_type size = lvec.size();
2167 assert(size > 0);
2168
2169 Result vresult = 0.0;
2170
2171 Op op;
2172 for (off_type i = 0; i < size; ++i)
2173 vresult = op(vresult, lvec[i]);
2174
2175 return vresult;
2176 }
2177
2178 size_type size() const { return 1; }
2179
2180 std::string
2181 str() const
2182 {
2183 return csprintf("total(%s)", l->str());
2184 }
2185};
2186
2187
2188//////////////////////////////////////////////////////////////////////
2189//
2190// Visible Statistics Types
2191//
2192//////////////////////////////////////////////////////////////////////
2193/**
2194 * @defgroup VisibleStats "Statistic Types"
2195 * These are the statistics that are used in the simulator.
2196 * @{
2197 */
2198
2199/**
2200 * This is a simple scalar statistic, like a counter.
2201 * @sa Stat, ScalarBase, StatStor
2202 */
2203class Scalar : public ScalarBase<Scalar, StatStor>
2204{
2205 public:
2206 using ScalarBase<Scalar, StatStor>::operator=;
2207};
2208
2209/**
2210 * A stat that calculates the per tick average of a value.
2211 * @sa Stat, ScalarBase, AvgStor
2212 */
2213class Average : public ScalarBase<Average, AvgStor>
2214{
2215 public:
2216 using ScalarBase<Average, AvgStor>::operator=;
2217};
2218
2219class Value : public ValueBase<Value>
2220{
2221};
2222
2223/**
2224 * A vector of scalar stats.
2225 * @sa Stat, VectorBase, StatStor
2226 */
2227class Vector : public VectorBase<Vector, StatStor>
2228{
2229};
2230
2231/**
2232 * A vector of Average stats.
2233 * @sa Stat, VectorBase, AvgStor
2234 */
2235class AverageVector : public VectorBase<AverageVector, AvgStor>
2236{
2237};
2238
2239/**
2240 * A 2-Dimensional vecto of scalar stats.
2241 * @sa Stat, Vector2dBase, StatStor
2242 */
2243class Vector2d : public Vector2dBase<Vector2d, StatStor>
2244{
2245};
2246
2247/**
2248 * A simple distribution stat.
2249 * @sa Stat, DistBase, DistStor
2250 */
2251class Distribution : public DistBase<Distribution, DistStor>
2252{
2253 public:
2254 /**
2255 * Set the parameters of this distribution. @sa DistStor::Params
2256 * @param min The minimum value of the distribution.
2257 * @param max The maximum value of the distribution.
2258 * @param bkt The number of values in each bucket.
2259 * @return A reference to this distribution.
2260 */
2261 Distribution &
2262 init(Counter min, Counter max, Counter bkt)
2263 {
2264 DistStor::Params *params = new DistStor::Params;
2265 params->min = min;
2266 params->max = max;
2267 params->bucket_size = bkt;
2268 params->buckets = (size_type)rint((max - min) / bkt + 1.0);
2269 this->setParams(params);
2270 this->doInit();
2271 return this->self();
2272 }
2273};
2274
2275/**
2276 * Calculates the mean and variance of all the samples.
2277 * @sa Stat, DistBase, FancyStor
2278 */
2279class StandardDeviation : public DistBase<StandardDeviation, FancyStor>
2280{
2281 public:
2282 /**
2283 * Construct and initialize this distribution.
2284 */
2285 StandardDeviation()
2286 {
2287 this->doInit();
2288 }
2289};
2290
2291/**
2292 * Calculates the per tick mean and variance of the samples.
2293 * @sa Stat, DistBase, AvgFancy
2294 */
2295class AverageDeviation : public DistBase<AverageDeviation, AvgFancy>
2296{
2297 public:
2298 /**
2299 * Construct and initialize this distribution.
2300 */
2301 AverageDeviation()
2302 {
2303 this->doInit();
2304 }
2305};
2306
2307/**
2308 * A vector of distributions.
2309 * @sa Stat, VectorDistBase, DistStor
2310 */
2311class VectorDistribution : public VectorDistBase<VectorDistribution, DistStor>
2312{
2313 public:
2314 /**
2315 * Initialize storage and parameters for this distribution.
2316 * @param size The size of the vector (the number of distributions).
2317 * @param min The minimum value of the distribution.
2318 * @param max The maximum value of the distribution.
2319 * @param bkt The number of values in each bucket.
2320 * @return A reference to this distribution.
2321 */
2322 VectorDistribution &
2323 init(size_type size, Counter min, Counter max, Counter bkt)
2324 {
2325 DistStor::Params *params = new DistStor::Params;
2326 params->min = min;
2327 params->max = max;
2328 params->bucket_size = bkt;
2329 params->buckets = (size_type)rint((max - min) / bkt + 1.0);
2330 this->setParams(params);
2331 this->doInit(size);
2332 return this->self();
2333 }
2334};
2335
2336/**
2337 * This is a vector of StandardDeviation stats.
2338 * @sa Stat, VectorDistBase, FancyStor
2339 */
2340class VectorStandardDeviation
2341 : public VectorDistBase<VectorStandardDeviation, FancyStor>
2342{
2343 public:
2344 /**
2345 * Initialize storage for this distribution.
2346 * @param size The size of the vector.
2347 * @return A reference to this distribution.
2348 */
2349 VectorStandardDeviation &
2350 init(size_type size)
2351 {
2352 this->doInit(size);
2353 return this->self();
2354 }
2355};
2356
2357/**
2358 * This is a vector of AverageDeviation stats.
2359 * @sa Stat, VectorDistBase, AvgFancy
2360 */
2361class VectorAverageDeviation
2362 : public VectorDistBase<VectorAverageDeviation, AvgFancy>
2363{
2364 public:
2365 /**
2366 * Initialize storage for this distribution.
2367 * @param size The size of the vector.
2368 * @return A reference to this distribution.
2369 */
2370 VectorAverageDeviation &
2371 init(size_type size)
2372 {
2373 this->doInit(size);
2374 return this->self();
2375 }
2376};
2377
2558class FormulaInfo : public VectorInfo
2559{
2560 public:
2561 virtual std::string str() const = 0;
2562};
2563
2564template <class Stat>
2565class FormulaInfoProxy : public InfoProxy<Stat, FormulaInfo>
2566{
2567 protected:
2568 mutable VResult vec;
2569 mutable VCounter cvec;
2570
2571 public:
2572 FormulaInfoProxy(Stat &stat) : InfoProxy<Stat, FormulaInfo>(stat) {}
2573
2574 size_type size() const { return this->s.size(); }
2575
2576 const VResult &
2577 result() const
2578 {
2579 this->s.result(vec);
2580 return vec;
2581 }
2582 Result total() const { return this->s.total(); }
2583 VCounter &value() const { return cvec; }
2584
2585 std::string str() const { return this->s.str(); }
2586};
2587
2588class Temp;
2589/**
2590 * A formula for statistics that is calculated when printed. A formula is
2591 * stored as a tree of Nodes that represent the equation to calculate.
2592 * @sa Stat, ScalarStat, VectorStat, Node, Temp
2593 */
2594class Formula : public DataWrapVec<Formula, FormulaInfoProxy>
2595{
2596 protected:
2597 /** The root of the tree which represents the Formula */
2598 NodePtr root;
2599 friend class Temp;
2600
2601 public:
2602 /**
2603 * Create and initialize thie formula, and register it with the database.
2604 */
2605 Formula();
2606
2607 /**
2608 * Create a formula with the given root node, register it with the
2609 * database.
2610 * @param r The root of the expression tree.
2611 */
2612 Formula(Temp r);
2613
2614 /**
2615 * Set an unitialized Formula to the given root.
2616 * @param r The root of the expression tree.
2617 * @return a reference to this formula.
2618 */
2619 const Formula &operator=(Temp r);
2620
2621 /**
2622 * Add the given tree to the existing one.
2623 * @param r The root of the expression tree.
2624 * @return a reference to this formula.
2625 */
2626 const Formula &operator+=(Temp r);
2627 /**
2628 * Return the result of the Fomula in a vector. If there were no Vector
2629 * components to the Formula, then the vector is size 1. If there were,
2630 * like x/y with x being a vector of size 3, then the result returned will
2631 * be x[0]/y, x[1]/y, x[2]/y, respectively.
2632 * @return The result vector.
2633 */
2634 void result(VResult &vec) const;
2635
2636 /**
2637 * Return the total Formula result. If there is a Vector
2638 * component to this Formula, then this is the result of the
2639 * Formula if the formula is applied after summing all the
2640 * components of the Vector. For example, if Formula is x/y where
2641 * x is size 3, then total() will return (x[1]+x[2]+x[3])/y. If
2642 * there is no Vector component, total() returns the same value as
2643 * the first entry in the VResult val() returns.
2644 * @return The total of the result vector.
2645 */
2646 Result total() const;
2647
2648 /**
2649 * Return the number of elements in the tree.
2650 */
2651 size_type size() const;
2652
2653 void prepare() { }
2654
2655 /**
2656 * Formulas don't need to be reset
2657 */
2658 void reset();
2659
2660 /**
2661 *
2662 */
2663 bool zero() const;
2664
2665 std::string str() const;
2666};
2667
2668class FormulaNode : public Node
2669{
2670 private:
2671 const Formula &formula;
2672 mutable VResult vec;
2673
2674 public:
2675 FormulaNode(const Formula &f) : formula(f) {}
2676
2677 size_type size() const { return formula.size(); }
2678 const VResult &result() const { formula.result(vec); return vec; }
2679 Result total() const { return formula.total(); }
2680
2681 std::string str() const { return formula.str(); }
2682};
2683
2684/**
2685 * Helper class to construct formula node trees.
2686 */
2687class Temp
2688{
2689 protected:
2690 /**
2691 * Pointer to a Node object.
2692 */
2693 NodePtr node;
2694
2695 public:
2696 /**
2697 * Copy the given pointer to this class.
2698 * @param n A pointer to a Node object to copy.
2699 */
2700 Temp(NodePtr n) : node(n) { }
2701
2702 /**
2703 * Return the node pointer.
2704 * @return the node pointer.
2705 */
2706 operator NodePtr&() { return node; }
2707
2708 public:
2709 /**
2710 * Create a new ScalarStatNode.
2711 * @param s The ScalarStat to place in a node.
2712 */
2713 Temp(const Scalar &s)
2714 : node(new ScalarStatNode(s.info()))
2715 { }
2716
2717 /**
2718 * Create a new ScalarStatNode.
2719 * @param s The ScalarStat to place in a node.
2720 */
2721 Temp(const Value &s)
2722 : node(new ScalarStatNode(s.info()))
2723 { }
2724
2725 /**
2726 * Create a new ScalarStatNode.
2727 * @param s The ScalarStat to place in a node.
2728 */
2729 Temp(const Average &s)
2730 : node(new ScalarStatNode(s.info()))
2731 { }
2732
2733 /**
2734 * Create a new VectorStatNode.
2735 * @param s The VectorStat to place in a node.
2736 */
2737 Temp(const Vector &s)
2738 : node(new VectorStatNode(s.info()))
2739 { }
2740
2741 /**
2742 *
2743 */
2744 Temp(const Formula &f)
2745 : node(new FormulaNode(f))
2746 { }
2747
2748 /**
2749 * Create a new ScalarProxyNode.
2750 * @param p The ScalarProxy to place in a node.
2751 */
2752 template <class Stat>
2753 Temp(const ScalarProxy<Stat> &p)
2754 : node(new ScalarProxyNode<Stat>(p))
2755 { }
2756
2757 /**
2758 * Create a ConstNode
2759 * @param value The value of the const node.
2760 */
2761 Temp(signed char value)
2762 : node(new ConstNode<signed char>(value))
2763 { }
2764
2765 /**
2766 * Create a ConstNode
2767 * @param value The value of the const node.
2768 */
2769 Temp(unsigned char value)
2770 : node(new ConstNode<unsigned char>(value))
2771 { }
2772
2773 /**
2774 * Create a ConstNode
2775 * @param value The value of the const node.
2776 */
2777 Temp(signed short value)
2778 : node(new ConstNode<signed short>(value))
2779 { }
2780
2781 /**
2782 * Create a ConstNode
2783 * @param value The value of the const node.
2784 */
2785 Temp(unsigned short value)
2786 : node(new ConstNode<unsigned short>(value))
2787 { }
2788
2789 /**
2790 * Create a ConstNode
2791 * @param value The value of the const node.
2792 */
2793 Temp(signed int value)
2794 : node(new ConstNode<signed int>(value))
2795 { }
2796
2797 /**
2798 * Create a ConstNode
2799 * @param value The value of the const node.
2800 */
2801 Temp(unsigned int value)
2802 : node(new ConstNode<unsigned int>(value))
2803 { }
2804
2805 /**
2806 * Create a ConstNode
2807 * @param value The value of the const node.
2808 */
2809 Temp(signed long value)
2810 : node(new ConstNode<signed long>(value))
2811 { }
2812
2813 /**
2814 * Create a ConstNode
2815 * @param value The value of the const node.
2816 */
2817 Temp(unsigned long value)
2818 : node(new ConstNode<unsigned long>(value))
2819 { }
2820
2821 /**
2822 * Create a ConstNode
2823 * @param value The value of the const node.
2824 */
2825 Temp(signed long long value)
2826 : node(new ConstNode<signed long long>(value))
2827 { }
2828
2829 /**
2830 * Create a ConstNode
2831 * @param value The value of the const node.
2832 */
2833 Temp(unsigned long long value)
2834 : node(new ConstNode<unsigned long long>(value))
2835 { }
2836
2837 /**
2838 * Create a ConstNode
2839 * @param value The value of the const node.
2840 */
2841 Temp(float value)
2842 : node(new ConstNode<float>(value))
2843 { }
2844
2845 /**
2846 * Create a ConstNode
2847 * @param value The value of the const node.
2848 */
2849 Temp(double value)
2850 : node(new ConstNode<double>(value))
2851 { }
2852};
2853
2854
2855/**
2856 * @}
2857 */
2858
2859inline Temp
2860operator+(Temp l, Temp r)
2861{
2862 return NodePtr(new BinaryNode<std::plus<Result> >(l, r));
2863}
2864
2865inline Temp
2866operator-(Temp l, Temp r)
2867{
2868 return NodePtr(new BinaryNode<std::minus<Result> >(l, r));
2869}
2870
2871inline Temp
2872operator*(Temp l, Temp r)
2873{
2874 return NodePtr(new BinaryNode<std::multiplies<Result> >(l, r));
2875}
2876
2877inline Temp
2878operator/(Temp l, Temp r)
2879{
2880 return NodePtr(new BinaryNode<std::divides<Result> >(l, r));
2881}
2882
2883inline Temp
2884operator-(Temp l)
2885{
2886 return NodePtr(new UnaryNode<std::negate<Result> >(l));
2887}
2888
2889template <typename T>
2890inline Temp
2891constant(T val)
2892{
2893 return NodePtr(new ConstNode<T>(val));
2894}
2895
2896template <typename T>
2897inline Temp
2898constantVector(T val)
2899{
2900 return NodePtr(new ConstVectorNode<T>(val));
2901}
2902
2903inline Temp
2904sum(Temp val)
2905{
2906 return NodePtr(new SumNode<std::plus<Result> >(val));
2907}
2908
2909/**
2910 * Enable the statistics package. Before the statistics package is
2911 * enabled, all statistics must be created and initialized and once
2912 * the package is enabled, no more statistics can be created.
2913 */
2914void enable();
2915
2916/**
2917 * Prepare all stats for data access. This must be done before
2918 * dumping and serialization.
2919 */
2920void prepare();
2921
2922/**
2923 * Dump all statistics data to the registered outputs
2924 */
2925void dump();
2926
2927/**
2928 * Reset all statistics to the base state
2929 */
2930void reset();
2931/**
2932 * Register a callback that should be called whenever statistics are
2933 * reset
2934 */
2935void registerResetCallback(Callback *cb);
2936
2937std::list<Info *> &statsList();
2938
2939/* namespace Stats */ }
2940
2941#endif // __BASE_STATISTICS_HH__
2378template <class Stat>
2379class FormulaInfoProxy : public InfoProxy<Stat, FormulaInfo>
2380{
2381 protected:
2382 mutable VResult vec;
2383 mutable VCounter cvec;
2384
2385 public:
2386 FormulaInfoProxy(Stat &stat) : InfoProxy<Stat, FormulaInfo>(stat) {}
2387
2388 size_type size() const { return this->s.size(); }
2389
2390 const VResult &
2391 result() const
2392 {
2393 this->s.result(vec);
2394 return vec;
2395 }
2396 Result total() const { return this->s.total(); }
2397 VCounter &value() const { return cvec; }
2398
2399 std::string str() const { return this->s.str(); }
2400};
2401
2402class Temp;
2403/**
2404 * A formula for statistics that is calculated when printed. A formula is
2405 * stored as a tree of Nodes that represent the equation to calculate.
2406 * @sa Stat, ScalarStat, VectorStat, Node, Temp
2407 */
2408class Formula : public DataWrapVec<Formula, FormulaInfoProxy>
2409{
2410 protected:
2411 /** The root of the tree which represents the Formula */
2412 NodePtr root;
2413 friend class Temp;
2414
2415 public:
2416 /**
2417 * Create and initialize thie formula, and register it with the database.
2418 */
2419 Formula();
2420
2421 /**
2422 * Create a formula with the given root node, register it with the
2423 * database.
2424 * @param r The root of the expression tree.
2425 */
2426 Formula(Temp r);
2427
2428 /**
2429 * Set an unitialized Formula to the given root.
2430 * @param r The root of the expression tree.
2431 * @return a reference to this formula.
2432 */
2433 const Formula &operator=(Temp r);
2434
2435 /**
2436 * Add the given tree to the existing one.
2437 * @param r The root of the expression tree.
2438 * @return a reference to this formula.
2439 */
2440 const Formula &operator+=(Temp r);
2441 /**
2442 * Return the result of the Fomula in a vector. If there were no Vector
2443 * components to the Formula, then the vector is size 1. If there were,
2444 * like x/y with x being a vector of size 3, then the result returned will
2445 * be x[0]/y, x[1]/y, x[2]/y, respectively.
2446 * @return The result vector.
2447 */
2448 void result(VResult &vec) const;
2449
2450 /**
2451 * Return the total Formula result. If there is a Vector
2452 * component to this Formula, then this is the result of the
2453 * Formula if the formula is applied after summing all the
2454 * components of the Vector. For example, if Formula is x/y where
2455 * x is size 3, then total() will return (x[1]+x[2]+x[3])/y. If
2456 * there is no Vector component, total() returns the same value as
2457 * the first entry in the VResult val() returns.
2458 * @return The total of the result vector.
2459 */
2460 Result total() const;
2461
2462 /**
2463 * Return the number of elements in the tree.
2464 */
2465 size_type size() const;
2466
2467 void prepare() { }
2468
2469 /**
2470 * Formulas don't need to be reset
2471 */
2472 void reset();
2473
2474 /**
2475 *
2476 */
2477 bool zero() const;
2478
2479 std::string str() const;
2480};
2481
2482class FormulaNode : public Node
2483{
2484 private:
2485 const Formula &formula;
2486 mutable VResult vec;
2487
2488 public:
2489 FormulaNode(const Formula &f) : formula(f) {}
2490
2491 size_type size() const { return formula.size(); }
2492 const VResult &result() const { formula.result(vec); return vec; }
2493 Result total() const { return formula.total(); }
2494
2495 std::string str() const { return formula.str(); }
2496};
2497
2498/**
2499 * Helper class to construct formula node trees.
2500 */
2501class Temp
2502{
2503 protected:
2504 /**
2505 * Pointer to a Node object.
2506 */
2507 NodePtr node;
2508
2509 public:
2510 /**
2511 * Copy the given pointer to this class.
2512 * @param n A pointer to a Node object to copy.
2513 */
2514 Temp(NodePtr n) : node(n) { }
2515
2516 /**
2517 * Return the node pointer.
2518 * @return the node pointer.
2519 */
2520 operator NodePtr&() { return node; }
2521
2522 public:
2523 /**
2524 * Create a new ScalarStatNode.
2525 * @param s The ScalarStat to place in a node.
2526 */
2527 Temp(const Scalar &s)
2528 : node(new ScalarStatNode(s.info()))
2529 { }
2530
2531 /**
2532 * Create a new ScalarStatNode.
2533 * @param s The ScalarStat to place in a node.
2534 */
2535 Temp(const Value &s)
2536 : node(new ScalarStatNode(s.info()))
2537 { }
2538
2539 /**
2540 * Create a new ScalarStatNode.
2541 * @param s The ScalarStat to place in a node.
2542 */
2543 Temp(const Average &s)
2544 : node(new ScalarStatNode(s.info()))
2545 { }
2546
2547 /**
2548 * Create a new VectorStatNode.
2549 * @param s The VectorStat to place in a node.
2550 */
2551 Temp(const Vector &s)
2552 : node(new VectorStatNode(s.info()))
2553 { }
2554
2555 /**
2556 *
2557 */
2558 Temp(const Formula &f)
2559 : node(new FormulaNode(f))
2560 { }
2561
2562 /**
2563 * Create a new ScalarProxyNode.
2564 * @param p The ScalarProxy to place in a node.
2565 */
2566 template <class Stat>
2567 Temp(const ScalarProxy<Stat> &p)
2568 : node(new ScalarProxyNode<Stat>(p))
2569 { }
2570
2571 /**
2572 * Create a ConstNode
2573 * @param value The value of the const node.
2574 */
2575 Temp(signed char value)
2576 : node(new ConstNode<signed char>(value))
2577 { }
2578
2579 /**
2580 * Create a ConstNode
2581 * @param value The value of the const node.
2582 */
2583 Temp(unsigned char value)
2584 : node(new ConstNode<unsigned char>(value))
2585 { }
2586
2587 /**
2588 * Create a ConstNode
2589 * @param value The value of the const node.
2590 */
2591 Temp(signed short value)
2592 : node(new ConstNode<signed short>(value))
2593 { }
2594
2595 /**
2596 * Create a ConstNode
2597 * @param value The value of the const node.
2598 */
2599 Temp(unsigned short value)
2600 : node(new ConstNode<unsigned short>(value))
2601 { }
2602
2603 /**
2604 * Create a ConstNode
2605 * @param value The value of the const node.
2606 */
2607 Temp(signed int value)
2608 : node(new ConstNode<signed int>(value))
2609 { }
2610
2611 /**
2612 * Create a ConstNode
2613 * @param value The value of the const node.
2614 */
2615 Temp(unsigned int value)
2616 : node(new ConstNode<unsigned int>(value))
2617 { }
2618
2619 /**
2620 * Create a ConstNode
2621 * @param value The value of the const node.
2622 */
2623 Temp(signed long value)
2624 : node(new ConstNode<signed long>(value))
2625 { }
2626
2627 /**
2628 * Create a ConstNode
2629 * @param value The value of the const node.
2630 */
2631 Temp(unsigned long value)
2632 : node(new ConstNode<unsigned long>(value))
2633 { }
2634
2635 /**
2636 * Create a ConstNode
2637 * @param value The value of the const node.
2638 */
2639 Temp(signed long long value)
2640 : node(new ConstNode<signed long long>(value))
2641 { }
2642
2643 /**
2644 * Create a ConstNode
2645 * @param value The value of the const node.
2646 */
2647 Temp(unsigned long long value)
2648 : node(new ConstNode<unsigned long long>(value))
2649 { }
2650
2651 /**
2652 * Create a ConstNode
2653 * @param value The value of the const node.
2654 */
2655 Temp(float value)
2656 : node(new ConstNode<float>(value))
2657 { }
2658
2659 /**
2660 * Create a ConstNode
2661 * @param value The value of the const node.
2662 */
2663 Temp(double value)
2664 : node(new ConstNode<double>(value))
2665 { }
2666};
2667
2668
2669/**
2670 * @}
2671 */
2672
2673inline Temp
2674operator+(Temp l, Temp r)
2675{
2676 return NodePtr(new BinaryNode<std::plus<Result> >(l, r));
2677}
2678
2679inline Temp
2680operator-(Temp l, Temp r)
2681{
2682 return NodePtr(new BinaryNode<std::minus<Result> >(l, r));
2683}
2684
2685inline Temp
2686operator*(Temp l, Temp r)
2687{
2688 return NodePtr(new BinaryNode<std::multiplies<Result> >(l, r));
2689}
2690
2691inline Temp
2692operator/(Temp l, Temp r)
2693{
2694 return NodePtr(new BinaryNode<std::divides<Result> >(l, r));
2695}
2696
2697inline Temp
2698operator-(Temp l)
2699{
2700 return NodePtr(new UnaryNode<std::negate<Result> >(l));
2701}
2702
2703template <typename T>
2704inline Temp
2705constant(T val)
2706{
2707 return NodePtr(new ConstNode<T>(val));
2708}
2709
2710template <typename T>
2711inline Temp
2712constantVector(T val)
2713{
2714 return NodePtr(new ConstVectorNode<T>(val));
2715}
2716
2717inline Temp
2718sum(Temp val)
2719{
2720 return NodePtr(new SumNode<std::plus<Result> >(val));
2721}
2722
2723/**
2724 * Enable the statistics package. Before the statistics package is
2725 * enabled, all statistics must be created and initialized and once
2726 * the package is enabled, no more statistics can be created.
2727 */
2728void enable();
2729
2730/**
2731 * Prepare all stats for data access. This must be done before
2732 * dumping and serialization.
2733 */
2734void prepare();
2735
2736/**
2737 * Dump all statistics data to the registered outputs
2738 */
2739void dump();
2740
2741/**
2742 * Reset all statistics to the base state
2743 */
2744void reset();
2745/**
2746 * Register a callback that should be called whenever statistics are
2747 * reset
2748 */
2749void registerResetCallback(Callback *cb);
2750
2751std::list<Info *> &statsList();
2752
2753/* namespace Stats */ }
2754
2755#endif // __BASE_STATISTICS_HH__