Deleted Added
sdiff udiff text old ( 6129:05405c5b8c16 ) new ( 6130:0fb959250892 )
full compact
1/*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Nathan Binkert
29 */
30
31/** @file
32 * Declaration of Statistics objects.
33 */
34
35/**
36* @todo
37*
38* Generalized N-dimensinal vector
39* documentation
40* key stats
41* interval stats
42* -- these both can use the same function that prints out a
43* specific set of stats
44* VectorStandardDeviation totals
45* Document Namespaces
46*/
47#ifndef __BASE_STATISTICS_HH__
48#define __BASE_STATISTICS_HH__
49
50#include <algorithm>
51#include <cassert>
52#ifdef __SUNPRO_CC
53#include <math.h>
54#endif
55#include <cmath>
56#include <functional>
57#include <iosfwd>
58#include <list>
59#include <string>
60#include <vector>
61
62#include "base/cast.hh"
63#include "base/cprintf.hh"
64#include "base/intmath.hh"
65#include "base/refcnt.hh"
66#include "base/str.hh"
67#include "base/stats/flags.hh"
68#include "base/stats/info.hh"
69#include "base/stats/types.hh"
70#include "base/stats/visit.hh"
71#include "sim/host.hh"
72
73class Callback;
74
75/** The current simulated tick. */
76extern Tick curTick;
77
78/* A namespace for all of the Statistics */
79namespace Stats {
80
81template <class Stat, class Base>
82class InfoProxy : public Base
83{
84 protected:
85 Stat &s;
86
87 public:
88 InfoProxy(Stat &stat) : s(stat) {}
89
90 bool check() const { return s.check(); }
91 void prepare() { s.prepare(); }
92 void reset() { s.reset(); }
93 void
94 visit(Visit &visitor)
95 {
96 visitor.visit(*static_cast<Base *>(this));
97 }
98 bool zero() const { return s.zero(); }
99};
100
101template <class Stat>
102class ScalarInfoProxy : public InfoProxy<Stat, ScalarInfo>
103{
104 public:
105 ScalarInfoProxy(Stat &stat) : InfoProxy<Stat, ScalarInfo>(stat) {}
106
107 Counter value() const { return this->s.value(); }
108 Result result() const { return this->s.result(); }
109 Result total() const { return this->s.total(); }
110};
111
112template <class Stat>
113class VectorInfoProxy : public InfoProxy<Stat, VectorInfo>
114{
115 protected:
116 mutable VCounter cvec;
117 mutable VResult rvec;
118
119 public:
120 VectorInfoProxy(Stat &stat) : InfoProxy<Stat, VectorInfo>(stat) {}
121
122 size_type size() const { return this->s.size(); }
123
124 VCounter &
125 value() const
126 {
127 this->s.value(cvec);
128 return cvec;
129 }
130
131 const VResult &
132 result() const
133 {
134 this->s.result(rvec);
135 return rvec;
136 }
137
138 Result total() const { return this->s.total(); }
139};
140
141template <class Stat>
142class DistInfoProxy : public InfoProxy<Stat, DistInfo>
143{
144 public:
145 DistInfoProxy(Stat &stat) : InfoProxy<Stat, DistInfo>(stat) {}
146};
147
148template <class Stat>
149class VectorDistInfoProxy : public InfoProxy<Stat, VectorDistInfo>
150{
151 public:
152 VectorDistInfoProxy(Stat &stat) : InfoProxy<Stat, VectorDistInfo>(stat) {}
153
154 size_type size() const { return this->s.size(); }
155};
156
157template <class Stat>
158class Vector2dInfoProxy : public InfoProxy<Stat, Vector2dInfo>
159{
160 public:
161 Vector2dInfoProxy(Stat &stat) : InfoProxy<Stat, Vector2dInfo>(stat) {}
162};
163
164class InfoAccess
165{
166 protected:
167 /** Set up an info class for this statistic */
168 void setInfo(Info *info);
169 /** Save Storage class parameters if any */
170 void setParams(const StorageParams *params);
171 /** Save Storage class parameters if any */
172 void setInit();
173
174 /** Grab the information class for this statistic */
175 Info *info();
176 /** Grab the information class for this statistic */
177 const Info *info() const;
178
179 public:
180 /**
181 * Reset the stat to the default state.
182 */
183 void reset() { }
184
185 /**
186 * @return true if this stat has a value and satisfies its
187 * requirement as a prereq
188 */
189 bool zero() const { return true; }
190
191 /**
192 * Check that this stat has been set up properly and is ready for
193 * use
194 * @return true for success
195 */
196 bool check() const { return true; }
197};
198
199template <class Derived, template <class> class InfoProxyType>
200class DataWrap : public InfoAccess
201{
202 public:
203 typedef InfoProxyType<Derived> Info;
204
205 protected:
206 Derived &self() { return *static_cast<Derived *>(this); }
207
208 protected:
209 Info *
210 info()
211 {
212 return safe_cast<Info *>(InfoAccess::info());
213 }
214
215 public:
216 const Info *
217 info() const
218 {
219 return safe_cast<const Info *>(InfoAccess::info());
220 }
221
222 protected:
223 /**
224 * Copy constructor, copies are not allowed.
225 */
226 DataWrap(const DataWrap &stat);
227
228 /**
229 * Can't copy stats.
230 */
231 void operator=(const DataWrap &);
232
233 public:
234 DataWrap()
235 {
236 this->setInfo(new Info(self()));
237 }
238
239 /**
240 * Set the name and marks this stat to print at the end of simulation.
241 * @param name The new name.
242 * @return A reference to this stat.
243 */
244 Derived &
245 name(const std::string &name)
246 {
247 Info *info = this->info();
248 info->setName(name);
249 info->flags |= print;
250 return this->self();
251 }
252 const std::string &name() const { return this->info()->name; }
253
254 /**
255 * Set the description and marks this stat to print at the end of
256 * simulation.
257 * @param desc The new description.
258 * @return A reference to this stat.
259 */
260 Derived &
261 desc(const std::string &_desc)
262 {
263 this->info()->desc = _desc;
264 return this->self();
265 }
266
267 /**
268 * Set the precision and marks this stat to print at the end of simulation.
269 * @param _precision The new precision
270 * @return A reference to this stat.
271 */
272 Derived &
273 precision(int _precision)
274 {
275 this->info()->precision = _precision;
276 return this->self();
277 }
278
279 /**
280 * Set the flags and marks this stat to print at the end of simulation.
281 * @param f The new flags.
282 * @return A reference to this stat.
283 */
284 Derived &
285 flags(StatFlags _flags)
286 {
287 this->info()->flags |= _flags;
288 return this->self();
289 }
290
291 /**
292 * Set the prerequisite stat and marks this stat to print at the end of
293 * simulation.
294 * @param prereq The prerequisite stat.
295 * @return A reference to this stat.
296 */
297 template <class Stat>
298 Derived &
299 prereq(const Stat &prereq)
300 {
301 this->info()->prereq = prereq.info();
302 return this->self();
303 }
304};
305
306template <class Derived, template <class> class InfoProxyType>
307class DataWrapVec : public DataWrap<Derived, InfoProxyType>
308{
309 public:
310 typedef InfoProxyType<Derived> Info;
311
312 // The following functions are specific to vectors. If you use them
313 // in a non vector context, you will get a nice compiler error!
314
315 /**
316 * Set the subfield name for the given index, and marks this stat to print
317 * at the end of simulation.
318 * @param index The subfield index.
319 * @param name The new name of the subfield.
320 * @return A reference to this stat.
321 */
322 Derived &
323 subname(off_type index, const std::string &name)
324 {
325 Derived &self = this->self();
326 Info *info = self.info();
327
328 std::vector<std::string> &subn = info->subnames;
329 if (subn.size() <= index)
330 subn.resize(index + 1);
331 subn[index] = name;
332 return self;
333 }
334
335 // The following functions are specific to 2d vectors. If you use
336 // them in a non vector context, you will get a nice compiler
337 // error because info doesn't have the right variables.
338
339 /**
340 * Set the subfield description for the given index and marks this stat to
341 * print at the end of simulation.
342 * @param index The subfield index.
343 * @param desc The new description of the subfield
344 * @return A reference to this stat.
345 */
346 Derived &
347 subdesc(off_type index, const std::string &desc)
348 {
349 Info *info = this->info();
350
351 std::vector<std::string> &subd = info->subdescs;
352 if (subd.size() <= index)
353 subd.resize(index + 1);
354 subd[index] = desc;
355
356 return this->self();
357 }
358
359 void
360 prepare()
361 {
362 Derived &self = this->self();
363 Info *info = this->info();
364
365 size_t size = self.size();
366 for (off_type i = 0; i < size; ++i)
367 self.data(i)->prepare(info);
368 }
369
370 void
371 reset()
372 {
373 Derived &self = this->self();
374 Info *info = this->info();
375
376 size_t size = self.size();
377 for (off_type i = 0; i < size; ++i)
378 self.data(i)->reset(info);
379 }
380};
381
382template <class Derived, template <class> class InfoProxyType>
383class DataWrapVec2d : public DataWrapVec<Derived, InfoProxyType>
384{
385 public:
386 typedef InfoProxyType<Derived> Info;
387
388 /**
389 * @warning This makes the assumption that if you're gonna subnames a 2d
390 * vector, you're subnaming across all y
391 */
392 Derived &
393 ysubnames(const char **names)
394 {
395 Derived &self = this->self();
396 Info *info = this->info();
397
398 info->y_subnames.resize(self.y);
399 for (off_type i = 0; i < self.y; ++i)
400 info->y_subnames[i] = names[i];
401 return self;
402 }
403
404 Derived &
405 ysubname(off_type index, const std::string subname)
406 {
407 Derived &self = this->self();
408 Info *info = this->info();
409
410 assert(index < self.y);
411 info->y_subnames.resize(self.y);
412 info->y_subnames[index] = subname.c_str();
413 return self;
414 }
415};
416
417//////////////////////////////////////////////////////////////////////
418//
419// Simple Statistics
420//
421//////////////////////////////////////////////////////////////////////
422
423/**
424 * Templatized storage and interface for a simple scalar stat.
425 */
426class StatStor
427{
428 private:
429 /** The statistic value. */
430 Counter data;
431
432 public:
433 struct Params : public StorageParams {};
434
435 public:
436 /**
437 * Builds this storage element and calls the base constructor of the
438 * datatype.
439 */
440 StatStor(Info *info)
441 : data(Counter())
442 { }
443
444 /**
445 * The the stat to the given value.
446 * @param val The new value.
447 */
448 void set(Counter val) { data = val; }
449 /**
450 * Increment the stat by the given value.
451 * @param val The new value.
452 */
453 void inc(Counter val) { data += val; }
454 /**
455 * Decrement the stat by the given value.
456 * @param val The new value.
457 */
458 void dec(Counter val) { data -= val; }
459 /**
460 * Return the value of this stat as its base type.
461 * @return The value of this stat.
462 */
463 Counter value() const { return data; }
464 /**
465 * Return the value of this stat as a result type.
466 * @return The value of this stat.
467 */
468 Result result() const { return (Result)data; }
469 /**
470 * Prepare stat data for dumping or serialization
471 */
472 void prepare(Info *info) { }
473 /**
474 * Reset stat value to default
475 */
476 void reset(Info *info) { data = Counter(); }
477
478 /**
479 * @return true if zero value
480 */
481 bool zero() const { return data == Counter(); }
482};
483
484/**
485 * Templatized storage and interface to a per-tick average stat. This keeps
486 * a current count and updates a total (count * ticks) when this count
487 * changes. This allows the quick calculation of a per tick count of the item
488 * being watched. This is good for keeping track of residencies in structures
489 * among other things.
490 */
491class AvgStor
492{
493 private:
494 /** The current count. */
495 Counter current;
496 /** The total count for all tick. */
497 mutable Result total;
498 /** The tick that current last changed. */
499 mutable Tick last;
500
501 public:
502 struct Params : public StorageParams {};
503
504 public:
505 /**
506 * Build and initializes this stat storage.
507 */
508 AvgStor(Info *info)
509 : current(0), total(0), last(0)
510 { }
511
512 /**
513 * Set the current count to the one provided, update the total and last
514 * set values.
515 * @param val The new count.
516 */
517 void
518 set(Counter val)
519 {
520 total += current * (curTick - last);
521 last = curTick;
522 current = val;
523 }
524
525 /**
526 * Increment the current count by the provided value, calls set.
527 * @param val The amount to increment.
528 */
529 void inc(Counter val) { set(current + val); }
530
531 /**
532 * Deccrement the current count by the provided value, calls set.
533 * @param val The amount to decrement.
534 */
535 void dec(Counter val) { set(current - val); }
536
537 /**
538 * Return the current count.
539 * @return The current count.
540 */
541 Counter value() const { return current; }
542
543 /**
544 * Return the current average.
545 * @return The current average.
546 */
547 Result
548 result() const
549 {
550 assert(last == curTick);
551 return (Result)(total + current) / (Result)(curTick + 1);
552 }
553
554 /**
555 * @return true if zero value
556 */
557 bool zero() const { return total == 0.0; }
558
559 /**
560 * Prepare stat data for dumping or serialization
561 */
562 void
563 prepare(Info *info)
564 {
565 total += current * (curTick - last);
566 last = curTick;
567 }
568
569 /**
570 * Reset stat value to default
571 */
572 void
573 reset(Info *info)
574 {
575 total = 0.0;
576 last = curTick;
577 }
578
579};
580
581/**
582 * Implementation of a scalar stat. The type of stat is determined by the
583 * Storage template.
584 */
585template <class Derived, class Stor>
586class ScalarBase : public DataWrap<Derived, ScalarInfoProxy>
587{
588 public:
589 typedef Stor Storage;
590 typedef typename Stor::Params Params;
591
592 protected:
593 /** The storage of this stat. */
594 char storage[sizeof(Storage)] __attribute__ ((aligned (8)));
595
596 protected:
597 /**
598 * Retrieve the storage.
599 * @param index The vector index to access.
600 * @return The storage object at the given index.
601 */
602 Storage *
603 data()
604 {
605 return reinterpret_cast<Storage *>(storage);
606 }
607
608 /**
609 * Retrieve a const pointer to the storage.
610 * for the given index.
611 * @param index The vector index to access.
612 * @return A const pointer to the storage object at the given index.
613 */
614 const Storage *
615 data() const
616 {
617 return reinterpret_cast<const Storage *>(storage);
618 }
619
620 void
621 doInit()
622 {
623 new (storage) Storage(this->info());
624 this->setInit();
625 }
626
627 public:
628 /**
629 * Return the current value of this stat as its base type.
630 * @return The current value.
631 */
632 Counter value() const { return data()->value(); }
633
634 public:
635 ScalarBase()
636 {
637 this->doInit();
638 }
639
640 public:
641 // Common operators for stats
642 /**
643 * Increment the stat by 1. This calls the associated storage object inc
644 * function.
645 */
646 void operator++() { data()->inc(1); }
647 /**
648 * Decrement the stat by 1. This calls the associated storage object dec
649 * function.
650 */
651 void operator--() { data()->dec(1); }
652
653 /** Increment the stat by 1. */
654 void operator++(int) { ++*this; }
655 /** Decrement the stat by 1. */
656 void operator--(int) { --*this; }
657
658 /**
659 * Set the data value to the given value. This calls the associated storage
660 * object set function.
661 * @param v The new value.
662 */
663 template <typename U>
664 void operator=(const U &v) { data()->set(v); }
665
666 /**
667 * Increment the stat by the given value. This calls the associated
668 * storage object inc function.
669 * @param v The value to add.
670 */
671 template <typename U>
672 void operator+=(const U &v) { data()->inc(v); }
673
674 /**
675 * Decrement the stat by the given value. This calls the associated
676 * storage object dec function.
677 * @param v The value to substract.
678 */
679 template <typename U>
680 void operator-=(const U &v) { data()->dec(v); }
681
682 /**
683 * Return the number of elements, always 1 for a scalar.
684 * @return 1.
685 */
686 size_type size() const { return 1; }
687
688 Counter value() { return data()->value(); }
689
690 Result result() { return data()->result(); }
691
692 Result total() { return result(); }
693
694 bool zero() { return result() == 0.0; }
695
696 void reset() { data()->reset(this->info()); }
697 void prepare() { data()->prepare(this->info()); }
698};
699
700class ProxyInfo : public ScalarInfo
701{
702 public:
703 std::string str() const { return to_string(value()); }
704 size_type size() const { return 1; }
705 bool check() const { return true; }
706 void prepare() { }
707 void reset() { }
708 bool zero() const { return value() == 0; }
709
710 void visit(Visit &visitor) { visitor.visit(*this); }
711};
712
713template <class T>
714class ValueProxy : public ProxyInfo
715{
716 private:
717 T *scalar;
718
719 public:
720 ValueProxy(T &val) : scalar(&val) {}
721 Counter value() const { return *scalar; }
722 Result result() const { return *scalar; }
723 Result total() const { return *scalar; }
724};
725
726template <class T>
727class FunctorProxy : public ProxyInfo
728{
729 private:
730 T *functor;
731
732 public:
733 FunctorProxy(T &func) : functor(&func) {}
734 Counter value() const { return (*functor)(); }
735 Result result() const { return (*functor)(); }
736 Result total() const { return (*functor)(); }
737};
738
739template <class Derived>
740class ValueBase : public DataWrap<Derived, ScalarInfoProxy>
741{
742 private:
743 ProxyInfo *proxy;
744
745 public:
746 ValueBase() : proxy(NULL) { }
747 ~ValueBase() { if (proxy) delete proxy; }
748
749 template <class T>
750 Derived &
751 scalar(T &value)
752 {
753 proxy = new ValueProxy<T>(value);
754 this->setInit();
755 return this->self();
756 }
757
758 template <class T>
759 Derived &
760 functor(T &func)
761 {
762 proxy = new FunctorProxy<T>(func);
763 this->setInit();
764 return this->self();
765 }
766
767 Counter value() { return proxy->value(); }
768 Result result() const { return proxy->result(); }
769 Result total() const { return proxy->total(); };
770 size_type size() const { return proxy->size(); }
771
772 std::string str() const { return proxy->str(); }
773 bool zero() const { return proxy->zero(); }
774 bool check() const { return proxy != NULL; }
775 void prepare() { }
776 void reset() { }
777};
778
779//////////////////////////////////////////////////////////////////////
780//
781// Vector Statistics
782//
783//////////////////////////////////////////////////////////////////////
784
785/**
786 * A proxy class to access the stat at a given index in a VectorBase stat.
787 * Behaves like a ScalarBase.
788 */
789template <class Stat>
790class ScalarProxy
791{
792 private:
793 /** Pointer to the parent Vector. */
794 Stat &stat;
795
796 /** The index to access in the parent VectorBase. */
797 off_type index;
798
799 public:
800 /**
801 * Return the current value of this stat as its base type.
802 * @return The current value.
803 */
804 Counter value() const { return stat.data(index)->value(); }
805
806 /**
807 * Return the current value of this statas a result type.
808 * @return The current value.
809 */
810 Result result() const { return stat.data(index)->result(); }
811
812 public:
813 /**
814 * Create and initialize this proxy, do not register it with the database.
815 * @param i The index to access.
816 */
817 ScalarProxy(Stat &s, off_type i)
818 : stat(s), index(i)
819 {
820 }
821
822 /**
823 * Create a copy of the provided ScalarProxy.
824 * @param sp The proxy to copy.
825 */
826 ScalarProxy(const ScalarProxy &sp)
827 : stat(sp.stat), index(sp.index)
828 {}
829
830 /**
831 * Set this proxy equal to the provided one.
832 * @param sp The proxy to copy.
833 * @return A reference to this proxy.
834 */
835 const ScalarProxy &
836 operator=(const ScalarProxy &sp)
837 {
838 stat = sp.stat;
839 index = sp.index;
840 return *this;
841 }
842
843 public:
844 // Common operators for stats
845 /**
846 * Increment the stat by 1. This calls the associated storage object inc
847 * function.
848 */
849 void operator++() { stat.data(index)->inc(1); }
850 /**
851 * Decrement the stat by 1. This calls the associated storage object dec
852 * function.
853 */
854 void operator--() { stat.data(index)->dec(1); }
855
856 /** Increment the stat by 1. */
857 void operator++(int) { ++*this; }
858 /** Decrement the stat by 1. */
859 void operator--(int) { --*this; }
860
861 /**
862 * Set the data value to the given value. This calls the associated storage
863 * object set function.
864 * @param v The new value.
865 */
866 template <typename U>
867 void
868 operator=(const U &v)
869 {
870 stat.data(index)->set(v);
871 }
872
873 /**
874 * Increment the stat by the given value. This calls the associated
875 * storage object inc function.
876 * @param v The value to add.
877 */
878 template <typename U>
879 void
880 operator+=(const U &v)
881 {
882 stat.data(index)->inc(v);
883 }
884
885 /**
886 * Decrement the stat by the given value. This calls the associated
887 * storage object dec function.
888 * @param v The value to substract.
889 */
890 template <typename U>
891 void
892 operator-=(const U &v)
893 {
894 stat.data(index)->dec(v);
895 }
896
897 /**
898 * Return the number of elements, always 1 for a scalar.
899 * @return 1.
900 */
901 size_type size() const { return 1; }
902
903 public:
904 std::string
905 str() const
906 {
907 return csprintf("%s[%d]", stat.info()->name, index);
908 }
909};
910
911/**
912 * Implementation of a vector of stats. The type of stat is determined by the
913 * Storage class. @sa ScalarBase
914 */
915template <class Derived, class Stor>
916class VectorBase : public DataWrapVec<Derived, VectorInfoProxy>
917{
918 public:
919 typedef Stor Storage;
920 typedef typename Stor::Params Params;
921
922 /** Proxy type */
923 typedef ScalarProxy<Derived> Proxy;
924 friend class ScalarProxy<Derived>;
925 friend class DataWrapVec<Derived, VectorInfoProxy>;
926
927 protected:
928 /** The storage of this stat. */
929 Storage *storage;
930 size_type _size;
931
932 protected:
933 /**
934 * Retrieve the storage.
935 * @param index The vector index to access.
936 * @return The storage object at the given index.
937 */
938 Storage *data(off_type index) { return &storage[index]; }
939
940 /**
941 * Retrieve a const pointer to the storage.
942 * @param index The vector index to access.
943 * @return A const pointer to the storage object at the given index.
944 */
945 const Storage *data(off_type index) const { return &storage[index]; }
946
947 void
948 doInit(size_type s)
949 {
950 assert(s > 0 && "size must be positive!");
951 assert(!storage && "already initialized");
952 _size = s;
953
954 char *ptr = new char[_size * sizeof(Storage)];
955 storage = reinterpret_cast<Storage *>(ptr);
956
957 for (off_type i = 0; i < _size; ++i)
958 new (&storage[i]) Storage(this->info());
959
960 this->setInit();
961 }
962
963 public:
964 void
965 value(VCounter &vec) const
966 {
967 vec.resize(size());
968 for (off_type i = 0; i < size(); ++i)
969 vec[i] = data(i)->value();
970 }
971
972 /**
973 * Copy the values to a local vector and return a reference to it.
974 * @return A reference to a vector of the stat values.
975 */
976 void
977 result(VResult &vec) const
978 {
979 vec.resize(size());
980 for (off_type i = 0; i < size(); ++i)
981 vec[i] = data(i)->result();
982 }
983
984 /**
985 * Return a total of all entries in this vector.
986 * @return The total of all vector entries.
987 */
988 Result
989 total() const
990 {
991 Result total = 0.0;
992 for (off_type i = 0; i < size(); ++i)
993 total += data(i)->result();
994 return total;
995 }
996
997 /**
998 * @return the number of elements in this vector.
999 */
1000 size_type size() const { return _size; }
1001
1002 bool
1003 zero() const
1004 {
1005 for (off_type i = 0; i < size(); ++i)
1006 if (data(i)->zero())
1007 return false;
1008 return true;
1009 }
1010
1011 bool
1012 check() const
1013 {
1014 return storage != NULL;
1015 }
1016
1017 public:
1018 VectorBase()
1019 : storage(NULL)
1020 {}
1021
1022 ~VectorBase()
1023 {
1024 if (!storage)
1025 return;
1026
1027 for (off_type i = 0; i < _size; ++i)
1028 data(i)->~Storage();
1029 delete [] reinterpret_cast<char *>(storage);
1030 }
1031
1032 /**
1033 * Set this vector to have the given size.
1034 * @param size The new size.
1035 * @return A reference to this stat.
1036 */
1037 Derived &
1038 init(size_type size)
1039 {
1040 Derived &self = this->self();
1041 self.doInit(size);
1042 return self;
1043 }
1044
1045 /**
1046 * Return a reference (ScalarProxy) to the stat at the given index.
1047 * @param index The vector index to access.
1048 * @return A reference of the stat.
1049 */
1050 Proxy
1051 operator[](off_type index)
1052 {
1053 assert (index >= 0 && index < size());
1054 return Proxy(this->self(), index);
1055 }
1056};
1057
1058template <class Stat>
1059class VectorProxy
1060{
1061 private:
1062 Stat &stat;
1063 off_type offset;
1064 size_type len;
1065
1066 private:
1067 mutable VResult vec;
1068
1069 typename Stat::Storage *
1070 data(off_type index)
1071 {
1072 assert(index < len);
1073 return stat.data(offset + index);
1074 }
1075
1076 const typename Stat::Storage *
1077 data(off_type index) const
1078 {
1079 assert(index < len);
1080 return stat.data(offset + index);
1081 }
1082
1083 public:
1084 const VResult &
1085 result() const
1086 {
1087 vec.resize(size());
1088
1089 for (off_type i = 0; i < size(); ++i)
1090 vec[i] = data(i)->result();
1091
1092 return vec;
1093 }
1094
1095 Result
1096 total() const
1097 {
1098 Result total = 0.0;
1099 for (off_type i = 0; i < size(); ++i)
1100 total += data(i)->result();
1101 return total;
1102 }
1103
1104 public:
1105 VectorProxy(Stat &s, off_type o, size_type l)
1106 : stat(s), offset(o), len(l)
1107 {
1108 }
1109
1110 VectorProxy(const VectorProxy &sp)
1111 : stat(sp.stat), offset(sp.offset), len(sp.len)
1112 {
1113 }
1114
1115 const VectorProxy &
1116 operator=(const VectorProxy &sp)
1117 {
1118 stat = sp.stat;
1119 offset = sp.offset;
1120 len = sp.len;
1121 return *this;
1122 }
1123
1124 ScalarProxy<Stat>
1125 operator[](off_type index)
1126 {
1127 assert (index >= 0 && index < size());
1128 return ScalarProxy<Stat>(stat, offset + index);
1129 }
1130
1131 size_type size() const { return len; }
1132};
1133
1134template <class Derived, class Stor>
1135class Vector2dBase : public DataWrapVec2d<Derived, Vector2dInfoProxy>
1136{
1137 public:
1138 typedef Vector2dInfoProxy<Derived> Info;
1139 typedef Stor Storage;
1140 typedef typename Stor::Params Params;
1141 typedef VectorProxy<Derived> Proxy;
1142 friend class ScalarProxy<Derived>;
1143 friend class VectorProxy<Derived>;
1144 friend class DataWrapVec<Derived, Vector2dInfoProxy>;
1145 friend class DataWrapVec2d<Derived, Vector2dInfoProxy>;
1146
1147 protected:
1148 size_type x;
1149 size_type y;
1150 size_type _size;
1151 Storage *storage;
1152
1153 protected:
1154 Storage *data(off_type index) { return &storage[index]; }
1155 const Storage *data(off_type index) const { return &storage[index]; }
1156
1157 public:
1158 Vector2dBase()
1159 : storage(NULL)
1160 {}
1161
1162 ~Vector2dBase()
1163 {
1164 if (!storage)
1165 return;
1166
1167 for (off_type i = 0; i < _size; ++i)
1168 data(i)->~Storage();
1169 delete [] reinterpret_cast<char *>(storage);
1170 }
1171
1172 Derived &
1173 init(size_type _x, size_type _y)
1174 {
1175 assert(_x > 0 && _y > 0 && "sizes must be positive!");
1176 assert(!storage && "already initialized");
1177
1178 Derived &self = this->self();
1179 Info *info = this->info();
1180
1181 x = _x;
1182 y = _y;
1183 info->x = _x;
1184 info->y = _y;
1185 _size = x * y;
1186
1187 char *ptr = new char[_size * sizeof(Storage)];
1188 storage = reinterpret_cast<Storage *>(ptr);
1189
1190 for (off_type i = 0; i < _size; ++i)
1191 new (&storage[i]) Storage(info);
1192
1193 this->setInit();
1194
1195 return self;
1196 }
1197
1198 std::string ysubname(off_type i) const { return (*this->y_subnames)[i]; }
1199
1200 Proxy
1201 operator[](off_type index)
1202 {
1203 off_type offset = index * y;
1204 assert (index >= 0 && offset + index < size());
1205 return Proxy(this->self(), offset, y);
1206 }
1207
1208
1209 size_type
1210 size() const
1211 {
1212 return _size;
1213 }
1214
1215 bool
1216 zero() const
1217 {
1218 return data(0)->zero();
1219#if 0
1220 for (off_type i = 0; i < size(); ++i)
1221 if (!data(i)->zero())
1222 return false;
1223 return true;
1224#endif
1225 }
1226
1227 void
1228 prepare()
1229 {
1230 Info *info = this->info();
1231 size_type size = this->size();
1232
1233 for (off_type i = 0; i < size; ++i)
1234 data(i)->prepare(info);
1235
1236 info->cvec.resize(size);
1237 for (off_type i = 0; i < size; ++i)
1238 info->cvec[i] = data(i)->value();
1239 }
1240
1241 /**
1242 * Reset stat value to default
1243 */
1244 void
1245 reset()
1246 {
1247 Info *info = this->info();
1248 size_type size = this->size();
1249 for (off_type i = 0; i < size; ++i)
1250 data(i)->reset(info);
1251 }
1252
1253 bool
1254 check() const
1255 {
1256 return storage != NULL;
1257 }
1258};
1259
1260//////////////////////////////////////////////////////////////////////
1261//
1262// Non formula statistics
1263//
1264//////////////////////////////////////////////////////////////////////
1265
1266/**
1267 * Templatized storage and interface for a distrbution stat.
1268 */
1269class DistStor
1270{
1271 public:
1272 /** The parameters for a distribution stat. */
1273 struct Params : public DistParams
1274 {
1275 Params() : DistParams(false) {}
1276 };
1277
1278 private:
1279 /** The minimum value to track. */
1280 Counter min_track;
1281 /** The maximum value to track. */
1282 Counter max_track;
1283 /** The number of entries in each bucket. */
1284 Counter bucket_size;
1285 /** The number of buckets. Equal to (max-min)/bucket_size. */
1286 size_type buckets;
1287
1288 /** The smallest value sampled. */
1289 Counter min_val;
1290 /** The largest value sampled. */
1291 Counter max_val;
1292 /** The number of values sampled less than min. */
1293 Counter underflow;
1294 /** The number of values sampled more than max. */
1295 Counter overflow;
1296 /** The current sum. */
1297 Counter sum;
1298 /** The sum of squares. */
1299 Counter squares;
1300 /** The number of samples. */
1301 Counter samples;
1302 /** Counter for each bucket. */
1303 VCounter cvec;
1304
1305 public:
1306 DistStor(Info *info)
1307 : cvec(safe_cast<const Params *>(info->storageParams)->buckets)
1308 {
1309 reset(info);
1310 }
1311
1312 /**
1313 * Add a value to the distribution for the given number of times.
1314 * @param val The value to add.
1315 * @param number The number of times to add the value.
1316 */
1317 void
1318 sample(Counter val, int number)
1319 {
1320 if (val < min_track)
1321 underflow += number;
1322 else if (val > max_track)
1323 overflow += number;
1324 else {
1325 size_type index =
1326 (size_type)std::floor((val - min_track) / bucket_size);
1327 assert(index < size());
1328 cvec[index] += number;
1329 }
1330
1331 if (val < min_val)
1332 min_val = val;
1333
1334 if (val > max_val)
1335 max_val = val;
1336
1337 Counter sample = val * number;
1338 sum += sample;
1339 squares += sample * sample;
1340 samples += number;
1341 }
1342
1343 /**
1344 * Return the number of buckets in this distribution.
1345 * @return the number of buckets.
1346 */
1347 size_type size() const { return cvec.size(); }
1348
1349 /**
1350 * Returns true if any calls to sample have been made.
1351 * @return True if any values have been sampled.
1352 */
1353 bool
1354 zero() const
1355 {
1356 return samples == Counter();
1357 }
1358
1359 void
1360 prepare(Info *info, DistData &data)
1361 {
1362 const Params *params = safe_cast<const Params *>(info->storageParams);
1363
1364 data.min_val = (min_val == CounterLimits::max()) ? 0 : min_val;
1365 data.max_val = (max_val == CounterLimits::min()) ? 0 : max_val;
1366 data.underflow = underflow;
1367 data.overflow = overflow;
1368
1369 int buckets = params->buckets;
1370 data.cvec.resize(buckets);
1371 for (off_type i = 0; i < buckets; ++i)
1372 data.cvec[i] = cvec[i];
1373
1374 data.sum = sum;
1375 data.squares = squares;
1376 data.samples = samples;
1377 }
1378
1379 /**
1380 * Reset stat value to default
1381 */
1382 void
1383 reset(Info *info)
1384 {
1385 const Params *params = safe_cast<const Params *>(info->storageParams);
1386 min_track = params->min;
1387 max_track = params->max;
1388 bucket_size = params->bucket_size;
1389
1390 min_val = CounterLimits::max();
1391 max_val = CounterLimits::min();
1392 underflow = 0;
1393 overflow = 0;
1394
1395 size_type size = cvec.size();
1396 for (off_type i = 0; i < size; ++i)
1397 cvec[i] = Counter();
1398
1399 sum = Counter();
1400 squares = Counter();
1401 samples = Counter();
1402 }
1403};
1404
1405/**
1406 * Templatized storage and interface for a distribution that calculates mean
1407 * and variance.
1408 */
1409class FancyStor
1410{
1411 public:
1412 struct Params : public DistParams
1413 {
1414 Params() : DistParams(true) {}
1415 };
1416
1417 private:
1418 /** The current sum. */
1419 Counter sum;
1420 /** The sum of squares. */
1421 Counter squares;
1422 /** The number of samples. */
1423 Counter samples;
1424
1425 public:
1426 /**
1427 * Create and initialize this storage.
1428 */
1429 FancyStor(Info *info)
1430 : sum(Counter()), squares(Counter()), samples(Counter())
1431 { }
1432
1433 /**
1434 * Add a value the given number of times to this running average.
1435 * Update the running sum and sum of squares, increment the number of
1436 * values seen by the given number.
1437 * @param val The value to add.
1438 * @param number The number of times to add the value.
1439 */
1440 void
1441 sample(Counter val, int number)
1442 {
1443 Counter value = val * number;
1444 sum += value;
1445 squares += value * value;
1446 samples += number;
1447 }
1448
1449 /**
1450 * Return the number of entries in this stat, 1
1451 * @return 1.
1452 */
1453 size_type size() const { return 1; }
1454
1455 /**
1456 * Return true if no samples have been added.
1457 * @return True if no samples have been added.
1458 */
1459 bool zero() const { return samples == Counter(); }
1460
1461 void
1462 prepare(Info *info, DistData &data)
1463 {
1464 data.sum = sum;
1465 data.squares = squares;
1466 data.samples = samples;
1467 }
1468
1469 /**
1470 * Reset stat value to default
1471 */
1472 void
1473 reset(Info *info)
1474 {
1475 sum = Counter();
1476 squares = Counter();
1477 samples = Counter();
1478 }
1479};
1480
1481/**
1482 * Templatized storage for distribution that calculates per tick mean and
1483 * variance.
1484 */
1485class AvgFancy
1486{
1487 public:
1488 struct Params : public DistParams
1489 {
1490 Params() : DistParams(true) {}
1491 };
1492
1493 private:
1494 /** Current total. */
1495 Counter sum;
1496 /** Current sum of squares. */
1497 Counter squares;
1498
1499 public:
1500 /**
1501 * Create and initialize this storage.
1502 */
1503 AvgFancy(Info *info)
1504 : sum(Counter()), squares(Counter())
1505 {}
1506
1507 /**
1508 * Add a value to the distribution for the given number of times.
1509 * Update the running sum and sum of squares.
1510 * @param val The value to add.
1511 * @param number The number of times to add the value.
1512 */
1513 void
1514 sample(Counter val, int number)
1515 {
1516 Counter value = val * number;
1517 sum += value;
1518 squares += value * value;
1519 }
1520
1521 /**
1522 * Return the number of entries, in this case 1.
1523 * @return 1.
1524 */
1525 size_type size() const { return 1; }
1526
1527 /**
1528 * Return true if no samples have been added.
1529 * @return True if the sum is zero.
1530 */
1531 bool zero() const { return sum == Counter(); }
1532
1533 void
1534 prepare(Info *info, DistData &data)
1535 {
1536 data.sum = sum;
1537 data.squares = squares;
1538 data.samples = curTick;
1539 }
1540
1541 /**
1542 * Reset stat value to default
1543 */
1544 void
1545 reset(Info *info)
1546 {
1547 sum = Counter();
1548 squares = Counter();
1549 }
1550};
1551
1552/**
1553 * Implementation of a distribution stat. The type of distribution is
1554 * determined by the Storage template. @sa ScalarBase
1555 */
1556template <class Derived, class Stor>
1557class DistBase : public DataWrap<Derived, DistInfoProxy>
1558{
1559 public:
1560 typedef DistInfoProxy<Derived> Info;
1561 typedef Stor Storage;
1562 typedef typename Stor::Params Params;
1563
1564 protected:
1565 /** The storage for this stat. */
1566 char storage[sizeof(Storage)] __attribute__ ((aligned (8)));
1567
1568 protected:
1569 /**
1570 * Retrieve the storage.
1571 * @return The storage object for this stat.
1572 */
1573 Storage *
1574 data()
1575 {
1576 return reinterpret_cast<Storage *>(storage);
1577 }
1578
1579 /**
1580 * Retrieve a const pointer to the storage.
1581 * @return A const pointer to the storage object for this stat.
1582 */
1583 const Storage *
1584 data() const
1585 {
1586 return reinterpret_cast<const Storage *>(storage);
1587 }
1588
1589 void
1590 doInit()
1591 {
1592 new (storage) Storage(this->info());
1593 this->setInit();
1594 }
1595
1596 public:
1597 DistBase() { }
1598
1599 /**
1600 * Add a value to the distribtion n times. Calls sample on the storage
1601 * class.
1602 * @param v The value to add.
1603 * @param n The number of times to add it, defaults to 1.
1604 */
1605 template <typename U>
1606 void sample(const U &v, int n = 1) { data()->sample(v, n); }
1607
1608 /**
1609 * Return the number of entries in this stat.
1610 * @return The number of entries.
1611 */
1612 size_type size() const { return data()->size(); }
1613 /**
1614 * Return true if no samples have been added.
1615 * @return True if there haven't been any samples.
1616 */
1617 bool zero() const { return data()->zero(); }
1618
1619 void
1620 prepare()
1621 {
1622 Info *info = this->info();
1623 data()->prepare(info, info->data);
1624 }
1625
1626 /**
1627 * Reset stat value to default
1628 */
1629 void
1630 reset()
1631 {
1632 data()->reset(this->info());
1633 }
1634};
1635
1636template <class Stat>
1637class DistProxy;
1638
1639template <class Derived, class Stor>
1640class VectorDistBase : public DataWrapVec<Derived, VectorDistInfoProxy>
1641{
1642 public:
1643 typedef VectorDistInfoProxy<Derived> Info;
1644 typedef Stor Storage;
1645 typedef typename Stor::Params Params;
1646 typedef DistProxy<Derived> Proxy;
1647 friend class DistProxy<Derived>;
1648 friend class DataWrapVec<Derived, VectorDistInfoProxy>;
1649
1650 protected:
1651 Storage *storage;
1652 size_type _size;
1653
1654 protected:
1655 Storage *
1656 data(off_type index)
1657 {
1658 return &storage[index];
1659 }
1660
1661 const Storage *
1662 data(off_type index) const
1663 {
1664 return &storage[index];
1665 }
1666
1667 void
1668 doInit(size_type s)
1669 {
1670 assert(s > 0 && "size must be positive!");
1671 assert(!storage && "already initialized");
1672 _size = s;
1673
1674 char *ptr = new char[_size * sizeof(Storage)];
1675 storage = reinterpret_cast<Storage *>(ptr);
1676
1677 Info *info = this->info();
1678 for (off_type i = 0; i < _size; ++i)
1679 new (&storage[i]) Storage(info);
1680
1681 this->setInit();
1682 }
1683
1684 public:
1685 VectorDistBase()
1686 : storage(NULL)
1687 {}
1688
1689 ~VectorDistBase()
1690 {
1691 if (!storage)
1692 return ;
1693
1694 for (off_type i = 0; i < _size; ++i)
1695 data(i)->~Storage();
1696 delete [] reinterpret_cast<char *>(storage);
1697 }
1698
1699 Proxy operator[](off_type index);
1700
1701 size_type
1702 size() const
1703 {
1704 return _size;
1705 }
1706
1707 bool
1708 zero() const
1709 {
1710 return false;
1711#if 0
1712 for (off_type i = 0; i < size(); ++i)
1713 if (!data(i)->zero())
1714 return false;
1715 return true;
1716#endif
1717 }
1718
1719 void
1720 prepare()
1721 {
1722 Info *info = this->info();
1723 size_type size = this->size();
1724 info->data.resize(size);
1725 for (off_type i = 0; i < size; ++i)
1726 data(i)->prepare(info, info->data[i]);
1727 }
1728
1729 bool
1730 check() const
1731 {
1732 return storage != NULL;
1733 }
1734};
1735
1736template <class Stat>
1737class DistProxy
1738{
1739 private:
1740 Stat *stat;
1741 off_type index;
1742
1743 protected:
1744 typename Stat::Storage *data() { return stat->data(index); }
1745 const typename Stat::Storage *data() const { return stat->data(index); }
1746
1747 public:
1748 DistProxy(Stat *s, off_type i)
1749 : stat(s), index(i)
1750 {}
1751
1752 DistProxy(const DistProxy &sp)
1753 : stat(sp.stat), index(sp.index)
1754 {}
1755
1756 const DistProxy &
1757 operator=(const DistProxy &sp)
1758 {
1759 stat = sp.stat;
1760 index = sp.index;
1761 return *this;
1762 }
1763
1764 public:
1765 template <typename U>
1766 void
1767 sample(const U &v, int n = 1)
1768 {
1769 data()->sample(v, n);
1770 }
1771
1772 size_type
1773 size() const
1774 {
1775 return 1;
1776 }
1777
1778 bool
1779 zero() const
1780 {
1781 return data()->zero();
1782 }
1783
1784 /**
1785 * Proxy has no state. Nothing to reset.
1786 */
1787 void reset() { }
1788};
1789
1790template <class Derived, class Stor>
1791inline typename VectorDistBase<Derived, Stor>::Proxy
1792VectorDistBase<Derived, Stor>::operator[](off_type index)
1793{
1794 assert (index >= 0 && index < size());
1795 typedef typename VectorDistBase<Derived, Stor>::Proxy Proxy;
1796 return Proxy(this, index);
1797}
1798
1799#if 0
1800template <class Storage>
1801Result
1802VectorDistBase<Storage>::total(off_type index) const
1803{
1804 Result total = 0.0;
1805 for (off_type i = 0; i < x_size(); ++i)
1806 total += data(i)->result();
1807}
1808#endif
1809
1810//////////////////////////////////////////////////////////////////////
1811//
1812// Formula Details
1813//
1814//////////////////////////////////////////////////////////////////////
1815
1816/**
1817 * Base class for formula statistic node. These nodes are used to build a tree
1818 * that represents the formula.
1819 */
1820class Node : public RefCounted
1821{
1822 public:
1823 /**
1824 * Return the number of nodes in the subtree starting at this node.
1825 * @return the number of nodes in this subtree.
1826 */
1827 virtual size_type size() const = 0;
1828 /**
1829 * Return the result vector of this subtree.
1830 * @return The result vector of this subtree.
1831 */
1832 virtual const VResult &result() const = 0;
1833 /**
1834 * Return the total of the result vector.
1835 * @return The total of the result vector.
1836 */
1837 virtual Result total() const = 0;
1838
1839 /**
1840 *
1841 */
1842 virtual std::string str() const = 0;
1843};
1844
1845/** Reference counting pointer to a function Node. */
1846typedef RefCountingPtr<Node> NodePtr;
1847
1848class ScalarStatNode : public Node
1849{
1850 private:
1851 const ScalarInfo *data;
1852 mutable VResult vresult;
1853
1854 public:
1855 ScalarStatNode(const ScalarInfo *d) : data(d), vresult(1) {}
1856
1857 const VResult &
1858 result() const
1859 {
1860 vresult[0] = data->result();
1861 return vresult;
1862 }
1863
1864 Result total() const { return data->result(); };
1865
1866 size_type size() const { return 1; }
1867
1868 /**
1869 *
1870 */
1871 std::string str() const { return data->name; }
1872};
1873
1874template <class Stat>
1875class ScalarProxyNode : public Node
1876{
1877 private:
1878 const ScalarProxy<Stat> proxy;
1879 mutable VResult vresult;
1880
1881 public:
1882 ScalarProxyNode(const ScalarProxy<Stat> &p)
1883 : proxy(p), vresult(1)
1884 { }
1885
1886 const VResult &
1887 result() const
1888 {
1889 vresult[0] = proxy.result();
1890 return vresult;
1891 }
1892
1893 Result
1894 total() const
1895 {
1896 return proxy.result();
1897 }
1898
1899 size_type
1900 size() const
1901 {
1902 return 1;
1903 }
1904
1905 /**
1906 *
1907 */
1908 std::string
1909 str() const
1910 {
1911 return proxy.str();
1912 }
1913};
1914
1915class VectorStatNode : public Node
1916{
1917 private:
1918 const VectorInfo *data;
1919
1920 public:
1921 VectorStatNode(const VectorInfo *d) : data(d) { }
1922 const VResult &result() const { return data->result(); }
1923 Result total() const { return data->total(); };
1924
1925 size_type size() const { return data->size(); }
1926
1927 std::string str() const { return data->name; }
1928};
1929
1930template <class T>
1931class ConstNode : public Node
1932{
1933 private:
1934 VResult vresult;
1935
1936 public:
1937 ConstNode(T s) : vresult(1, (Result)s) {}
1938 const VResult &result() const { return vresult; }
1939 Result total() const { return vresult[0]; };
1940 size_type size() const { return 1; }
1941 std::string str() const { return to_string(vresult[0]); }
1942};
1943
1944template <class T>
1945class ConstVectorNode : public Node
1946{
1947 private:
1948 VResult vresult;
1949
1950 public:
1951 ConstVectorNode(const T &s) : vresult(s.begin(), s.end()) {}
1952 const VResult &result() const { return vresult; }
1953
1954 Result
1955 total() const
1956 {
1957 size_type size = this->size();
1958 Result tmp = 0;
1959 for (off_type i = 0; i < size; i++)
1960 tmp += vresult[i];
1961 return tmp;
1962 }
1963
1964 size_type size() const { return vresult.size(); }
1965 std::string
1966 str() const
1967 {
1968 size_type size = this->size();
1969 std::string tmp = "(";
1970 for (off_type i = 0; i < size; i++)
1971 tmp += csprintf("%s ",to_string(vresult[i]));
1972 tmp += ")";
1973 return tmp;
1974 }
1975};
1976
1977template <class Op>
1978struct OpString;
1979
1980template<>
1981struct OpString<std::plus<Result> >
1982{
1983 static std::string str() { return "+"; }
1984};
1985
1986template<>
1987struct OpString<std::minus<Result> >
1988{
1989 static std::string str() { return "-"; }
1990};
1991
1992template<>
1993struct OpString<std::multiplies<Result> >
1994{
1995 static std::string str() { return "*"; }
1996};
1997
1998template<>
1999struct OpString<std::divides<Result> >
2000{
2001 static std::string str() { return "/"; }
2002};
2003
2004template<>
2005struct OpString<std::modulus<Result> >
2006{
2007 static std::string str() { return "%"; }
2008};
2009
2010template<>
2011struct OpString<std::negate<Result> >
2012{
2013 static std::string str() { return "-"; }
2014};
2015
2016template <class Op>
2017class UnaryNode : public Node
2018{
2019 public:
2020 NodePtr l;
2021 mutable VResult vresult;
2022
2023 public:
2024 UnaryNode(NodePtr &p) : l(p) {}
2025
2026 const VResult &
2027 result() const
2028 {
2029 const VResult &lvec = l->result();
2030 size_type size = lvec.size();
2031
2032 assert(size > 0);
2033
2034 vresult.resize(size);
2035 Op op;
2036 for (off_type i = 0; i < size; ++i)
2037 vresult[i] = op(lvec[i]);
2038
2039 return vresult;
2040 }
2041
2042 Result
2043 total() const
2044 {
2045 const VResult &vec = this->result();
2046 Result total = 0.0;
2047 for (off_type i = 0; i < size(); i++)
2048 total += vec[i];
2049 return total;
2050 }
2051
2052 size_type size() const { return l->size(); }
2053
2054 std::string
2055 str() const
2056 {
2057 return OpString<Op>::str() + l->str();
2058 }
2059};
2060
2061template <class Op>
2062class BinaryNode : public Node
2063{
2064 public:
2065 NodePtr l;
2066 NodePtr r;
2067 mutable VResult vresult;
2068
2069 public:
2070 BinaryNode(NodePtr &a, NodePtr &b) : l(a), r(b) {}
2071
2072 const VResult &
2073 result() const
2074 {
2075 Op op;
2076 const VResult &lvec = l->result();
2077 const VResult &rvec = r->result();
2078
2079 assert(lvec.size() > 0 && rvec.size() > 0);
2080
2081 if (lvec.size() == 1 && rvec.size() == 1) {
2082 vresult.resize(1);
2083 vresult[0] = op(lvec[0], rvec[0]);
2084 } else if (lvec.size() == 1) {
2085 size_type size = rvec.size();
2086 vresult.resize(size);
2087 for (off_type i = 0; i < size; ++i)
2088 vresult[i] = op(lvec[0], rvec[i]);
2089 } else if (rvec.size() == 1) {
2090 size_type size = lvec.size();
2091 vresult.resize(size);
2092 for (off_type i = 0; i < size; ++i)
2093 vresult[i] = op(lvec[i], rvec[0]);
2094 } else if (rvec.size() == lvec.size()) {
2095 size_type size = rvec.size();
2096 vresult.resize(size);
2097 for (off_type i = 0; i < size; ++i)
2098 vresult[i] = op(lvec[i], rvec[i]);
2099 }
2100
2101 return vresult;
2102 }
2103
2104 Result
2105 total() const
2106 {
2107 const VResult &vec = this->result();
2108 Result total = 0.0;
2109 for (off_type i = 0; i < size(); i++)
2110 total += vec[i];
2111 return total;
2112 }
2113
2114 size_type
2115 size() const
2116 {
2117 size_type ls = l->size();
2118 size_type rs = r->size();
2119 if (ls == 1) {
2120 return rs;
2121 } else if (rs == 1) {
2122 return ls;
2123 } else {
2124 assert(ls == rs && "Node vector sizes are not equal");
2125 return ls;
2126 }
2127 }
2128
2129 std::string
2130 str() const
2131 {
2132 return csprintf("(%s %s %s)", l->str(), OpString<Op>::str(), r->str());
2133 }
2134};
2135
2136template <class Op>
2137class SumNode : public Node
2138{
2139 public:
2140 NodePtr l;
2141 mutable VResult vresult;
2142
2143 public:
2144 SumNode(NodePtr &p) : l(p), vresult(1) {}
2145
2146 const VResult &
2147 result() const
2148 {
2149 const VResult &lvec = l->result();
2150 size_type size = lvec.size();
2151 assert(size > 0);
2152
2153 vresult[0] = 0.0;
2154
2155 Op op;
2156 for (off_type i = 0; i < size; ++i)
2157 vresult[0] = op(vresult[0], lvec[i]);
2158
2159 return vresult;
2160 }
2161
2162 Result
2163 total() const
2164 {
2165 const VResult &lvec = l->result();
2166 size_type size = lvec.size();
2167 assert(size > 0);
2168
2169 Result vresult = 0.0;
2170
2171 Op op;
2172 for (off_type i = 0; i < size; ++i)
2173 vresult = op(vresult, lvec[i]);
2174
2175 return vresult;
2176 }
2177
2178 size_type size() const { return 1; }
2179
2180 std::string
2181 str() const
2182 {
2183 return csprintf("total(%s)", l->str());
2184 }
2185};
2186
2187
2188//////////////////////////////////////////////////////////////////////
2189//
2190// Visible Statistics Types
2191//
2192//////////////////////////////////////////////////////////////////////
2193/**
2194 * @defgroup VisibleStats "Statistic Types"
2195 * These are the statistics that are used in the simulator.
2196 * @{
2197 */
2198
2199/**
2200 * This is a simple scalar statistic, like a counter.
2201 * @sa Stat, ScalarBase, StatStor
2202 */
2203class Scalar : public ScalarBase<Scalar, StatStor>
2204{
2205 public:
2206 using ScalarBase<Scalar, StatStor>::operator=;
2207};
2208
2209/**
2210 * A stat that calculates the per tick average of a value.
2211 * @sa Stat, ScalarBase, AvgStor
2212 */
2213class Average : public ScalarBase<Average, AvgStor>
2214{
2215 public:
2216 using ScalarBase<Average, AvgStor>::operator=;
2217};
2218
2219class Value : public ValueBase<Value>
2220{
2221};
2222
2223/**
2224 * A vector of scalar stats.
2225 * @sa Stat, VectorBase, StatStor
2226 */
2227class Vector : public VectorBase<Vector, StatStor>
2228{
2229};
2230
2231/**
2232 * A vector of Average stats.
2233 * @sa Stat, VectorBase, AvgStor
2234 */
2235class AverageVector : public VectorBase<AverageVector, AvgStor>
2236{
2237};
2238
2239/**
2240 * A 2-Dimensional vecto of scalar stats.
2241 * @sa Stat, Vector2dBase, StatStor
2242 */
2243class Vector2d : public Vector2dBase<Vector2d, StatStor>
2244{
2245};
2246
2247/**
2248 * A simple distribution stat.
2249 * @sa Stat, DistBase, DistStor
2250 */
2251class Distribution : public DistBase<Distribution, DistStor>
2252{
2253 public:
2254 /**
2255 * Set the parameters of this distribution. @sa DistStor::Params
2256 * @param min The minimum value of the distribution.
2257 * @param max The maximum value of the distribution.
2258 * @param bkt The number of values in each bucket.
2259 * @return A reference to this distribution.
2260 */
2261 Distribution &
2262 init(Counter min, Counter max, Counter bkt)
2263 {
2264 DistStor::Params *params = new DistStor::Params;
2265 params->min = min;
2266 params->max = max;
2267 params->bucket_size = bkt;
2268 params->buckets = (size_type)rint((max - min) / bkt + 1.0);
2269 this->setParams(params);
2270 this->doInit();
2271 return this->self();
2272 }
2273};
2274
2275/**
2276 * Calculates the mean and variance of all the samples.
2277 * @sa Stat, DistBase, FancyStor
2278 */
2279class StandardDeviation : public DistBase<StandardDeviation, FancyStor>
2280{
2281 public:
2282 /**
2283 * Construct and initialize this distribution.
2284 */
2285 StandardDeviation()
2286 {
2287 this->doInit();
2288 }
2289};
2290
2291/**
2292 * Calculates the per tick mean and variance of the samples.
2293 * @sa Stat, DistBase, AvgFancy
2294 */
2295class AverageDeviation : public DistBase<AverageDeviation, AvgFancy>
2296{
2297 public:
2298 /**
2299 * Construct and initialize this distribution.
2300 */
2301 AverageDeviation()
2302 {
2303 this->doInit();
2304 }
2305};
2306
2307/**
2308 * A vector of distributions.
2309 * @sa Stat, VectorDistBase, DistStor
2310 */
2311class VectorDistribution : public VectorDistBase<VectorDistribution, DistStor>
2312{
2313 public:
2314 /**
2315 * Initialize storage and parameters for this distribution.
2316 * @param size The size of the vector (the number of distributions).
2317 * @param min The minimum value of the distribution.
2318 * @param max The maximum value of the distribution.
2319 * @param bkt The number of values in each bucket.
2320 * @return A reference to this distribution.
2321 */
2322 VectorDistribution &
2323 init(size_type size, Counter min, Counter max, Counter bkt)
2324 {
2325 DistStor::Params *params = new DistStor::Params;
2326 params->min = min;
2327 params->max = max;
2328 params->bucket_size = bkt;
2329 params->buckets = (size_type)rint((max - min) / bkt + 1.0);
2330 this->setParams(params);
2331 this->doInit(size);
2332 return this->self();
2333 }
2334};
2335
2336/**
2337 * This is a vector of StandardDeviation stats.
2338 * @sa Stat, VectorDistBase, FancyStor
2339 */
2340class VectorStandardDeviation
2341 : public VectorDistBase<VectorStandardDeviation, FancyStor>
2342{
2343 public:
2344 /**
2345 * Initialize storage for this distribution.
2346 * @param size The size of the vector.
2347 * @return A reference to this distribution.
2348 */
2349 VectorStandardDeviation &
2350 init(size_type size)
2351 {
2352 this->doInit(size);
2353 return this->self();
2354 }
2355};
2356
2357/**
2358 * This is a vector of AverageDeviation stats.
2359 * @sa Stat, VectorDistBase, AvgFancy
2360 */
2361class VectorAverageDeviation
2362 : public VectorDistBase<VectorAverageDeviation, AvgFancy>
2363{
2364 public:
2365 /**
2366 * Initialize storage for this distribution.
2367 * @param size The size of the vector.
2368 * @return A reference to this distribution.
2369 */
2370 VectorAverageDeviation &
2371 init(size_type size)
2372 {
2373 this->doInit(size);
2374 return this->self();
2375 }
2376};
2377
2378template <class Stat>
2379class FormulaInfoProxy : public InfoProxy<Stat, FormulaInfo>
2380{
2381 protected:
2382 mutable VResult vec;
2383 mutable VCounter cvec;
2384
2385 public:
2386 FormulaInfoProxy(Stat &stat) : InfoProxy<Stat, FormulaInfo>(stat) {}
2387
2388 size_type size() const { return this->s.size(); }
2389
2390 const VResult &
2391 result() const
2392 {
2393 this->s.result(vec);
2394 return vec;
2395 }
2396 Result total() const { return this->s.total(); }
2397 VCounter &value() const { return cvec; }
2398
2399 std::string str() const { return this->s.str(); }
2400};
2401
2402class Temp;
2403/**
2404 * A formula for statistics that is calculated when printed. A formula is
2405 * stored as a tree of Nodes that represent the equation to calculate.
2406 * @sa Stat, ScalarStat, VectorStat, Node, Temp
2407 */
2408class Formula : public DataWrapVec<Formula, FormulaInfoProxy>
2409{
2410 protected:
2411 /** The root of the tree which represents the Formula */
2412 NodePtr root;
2413 friend class Temp;
2414
2415 public:
2416 /**
2417 * Create and initialize thie formula, and register it with the database.
2418 */
2419 Formula();
2420
2421 /**
2422 * Create a formula with the given root node, register it with the
2423 * database.
2424 * @param r The root of the expression tree.
2425 */
2426 Formula(Temp r);
2427
2428 /**
2429 * Set an unitialized Formula to the given root.
2430 * @param r The root of the expression tree.
2431 * @return a reference to this formula.
2432 */
2433 const Formula &operator=(Temp r);
2434
2435 /**
2436 * Add the given tree to the existing one.
2437 * @param r The root of the expression tree.
2438 * @return a reference to this formula.
2439 */
2440 const Formula &operator+=(Temp r);
2441 /**
2442 * Return the result of the Fomula in a vector. If there were no Vector
2443 * components to the Formula, then the vector is size 1. If there were,
2444 * like x/y with x being a vector of size 3, then the result returned will
2445 * be x[0]/y, x[1]/y, x[2]/y, respectively.
2446 * @return The result vector.
2447 */
2448 void result(VResult &vec) const;
2449
2450 /**
2451 * Return the total Formula result. If there is a Vector
2452 * component to this Formula, then this is the result of the
2453 * Formula if the formula is applied after summing all the
2454 * components of the Vector. For example, if Formula is x/y where
2455 * x is size 3, then total() will return (x[1]+x[2]+x[3])/y. If
2456 * there is no Vector component, total() returns the same value as
2457 * the first entry in the VResult val() returns.
2458 * @return The total of the result vector.
2459 */
2460 Result total() const;
2461
2462 /**
2463 * Return the number of elements in the tree.
2464 */
2465 size_type size() const;
2466
2467 void prepare() { }
2468
2469 /**
2470 * Formulas don't need to be reset
2471 */
2472 void reset();
2473
2474 /**
2475 *
2476 */
2477 bool zero() const;
2478
2479 std::string str() const;
2480};
2481
2482class FormulaNode : public Node
2483{
2484 private:
2485 const Formula &formula;
2486 mutable VResult vec;
2487
2488 public:
2489 FormulaNode(const Formula &f) : formula(f) {}
2490
2491 size_type size() const { return formula.size(); }
2492 const VResult &result() const { formula.result(vec); return vec; }
2493 Result total() const { return formula.total(); }
2494
2495 std::string str() const { return formula.str(); }
2496};
2497
2498/**
2499 * Helper class to construct formula node trees.
2500 */
2501class Temp
2502{
2503 protected:
2504 /**
2505 * Pointer to a Node object.
2506 */
2507 NodePtr node;
2508
2509 public:
2510 /**
2511 * Copy the given pointer to this class.
2512 * @param n A pointer to a Node object to copy.
2513 */
2514 Temp(NodePtr n) : node(n) { }
2515
2516 /**
2517 * Return the node pointer.
2518 * @return the node pointer.
2519 */
2520 operator NodePtr&() { return node; }
2521
2522 public:
2523 /**
2524 * Create a new ScalarStatNode.
2525 * @param s The ScalarStat to place in a node.
2526 */
2527 Temp(const Scalar &s)
2528 : node(new ScalarStatNode(s.info()))
2529 { }
2530
2531 /**
2532 * Create a new ScalarStatNode.
2533 * @param s The ScalarStat to place in a node.
2534 */
2535 Temp(const Value &s)
2536 : node(new ScalarStatNode(s.info()))
2537 { }
2538
2539 /**
2540 * Create a new ScalarStatNode.
2541 * @param s The ScalarStat to place in a node.
2542 */
2543 Temp(const Average &s)
2544 : node(new ScalarStatNode(s.info()))
2545 { }
2546
2547 /**
2548 * Create a new VectorStatNode.
2549 * @param s The VectorStat to place in a node.
2550 */
2551 Temp(const Vector &s)
2552 : node(new VectorStatNode(s.info()))
2553 { }
2554
2555 /**
2556 *
2557 */
2558 Temp(const Formula &f)
2559 : node(new FormulaNode(f))
2560 { }
2561
2562 /**
2563 * Create a new ScalarProxyNode.
2564 * @param p The ScalarProxy to place in a node.
2565 */
2566 template <class Stat>
2567 Temp(const ScalarProxy<Stat> &p)
2568 : node(new ScalarProxyNode<Stat>(p))
2569 { }
2570
2571 /**
2572 * Create a ConstNode
2573 * @param value The value of the const node.
2574 */
2575 Temp(signed char value)
2576 : node(new ConstNode<signed char>(value))
2577 { }
2578
2579 /**
2580 * Create a ConstNode
2581 * @param value The value of the const node.
2582 */
2583 Temp(unsigned char value)
2584 : node(new ConstNode<unsigned char>(value))
2585 { }
2586
2587 /**
2588 * Create a ConstNode
2589 * @param value The value of the const node.
2590 */
2591 Temp(signed short value)
2592 : node(new ConstNode<signed short>(value))
2593 { }
2594
2595 /**
2596 * Create a ConstNode
2597 * @param value The value of the const node.
2598 */
2599 Temp(unsigned short value)
2600 : node(new ConstNode<unsigned short>(value))
2601 { }
2602
2603 /**
2604 * Create a ConstNode
2605 * @param value The value of the const node.
2606 */
2607 Temp(signed int value)
2608 : node(new ConstNode<signed int>(value))
2609 { }
2610
2611 /**
2612 * Create a ConstNode
2613 * @param value The value of the const node.
2614 */
2615 Temp(unsigned int value)
2616 : node(new ConstNode<unsigned int>(value))
2617 { }
2618
2619 /**
2620 * Create a ConstNode
2621 * @param value The value of the const node.
2622 */
2623 Temp(signed long value)
2624 : node(new ConstNode<signed long>(value))
2625 { }
2626
2627 /**
2628 * Create a ConstNode
2629 * @param value The value of the const node.
2630 */
2631 Temp(unsigned long value)
2632 : node(new ConstNode<unsigned long>(value))
2633 { }
2634
2635 /**
2636 * Create a ConstNode
2637 * @param value The value of the const node.
2638 */
2639 Temp(signed long long value)
2640 : node(new ConstNode<signed long long>(value))
2641 { }
2642
2643 /**
2644 * Create a ConstNode
2645 * @param value The value of the const node.
2646 */
2647 Temp(unsigned long long value)
2648 : node(new ConstNode<unsigned long long>(value))
2649 { }
2650
2651 /**
2652 * Create a ConstNode
2653 * @param value The value of the const node.
2654 */
2655 Temp(float value)
2656 : node(new ConstNode<float>(value))
2657 { }
2658
2659 /**
2660 * Create a ConstNode
2661 * @param value The value of the const node.
2662 */
2663 Temp(double value)
2664 : node(new ConstNode<double>(value))
2665 { }
2666};
2667
2668
2669/**
2670 * @}
2671 */
2672
2673inline Temp
2674operator+(Temp l, Temp r)
2675{
2676 return NodePtr(new BinaryNode<std::plus<Result> >(l, r));
2677}
2678
2679inline Temp
2680operator-(Temp l, Temp r)
2681{
2682 return NodePtr(new BinaryNode<std::minus<Result> >(l, r));
2683}
2684
2685inline Temp
2686operator*(Temp l, Temp r)
2687{
2688 return NodePtr(new BinaryNode<std::multiplies<Result> >(l, r));
2689}
2690
2691inline Temp
2692operator/(Temp l, Temp r)
2693{
2694 return NodePtr(new BinaryNode<std::divides<Result> >(l, r));
2695}
2696
2697inline Temp
2698operator-(Temp l)
2699{
2700 return NodePtr(new UnaryNode<std::negate<Result> >(l));
2701}
2702
2703template <typename T>
2704inline Temp
2705constant(T val)
2706{
2707 return NodePtr(new ConstNode<T>(val));
2708}
2709
2710template <typename T>
2711inline Temp
2712constantVector(T val)
2713{
2714 return NodePtr(new ConstVectorNode<T>(val));
2715}
2716
2717inline Temp
2718sum(Temp val)
2719{
2720 return NodePtr(new SumNode<std::plus<Result> >(val));
2721}
2722
2723/**
2724 * Enable the statistics package. Before the statistics package is
2725 * enabled, all statistics must be created and initialized and once
2726 * the package is enabled, no more statistics can be created.
2727 */
2728void enable();
2729
2730/**
2731 * Prepare all stats for data access. This must be done before
2732 * dumping and serialization.
2733 */
2734void prepare();
2735
2736/**
2737 * Dump all statistics data to the registered outputs
2738 */
2739void dump();
2740
2741/**
2742 * Reset all statistics to the base state
2743 */
2744void reset();
2745/**
2746 * Register a callback that should be called whenever statistics are
2747 * reset
2748 */
2749void registerResetCallback(Callback *cb);
2750
2751std::list<Info *> &statsList();
2752
2753/* namespace Stats */ }
2754
2755#endif // __BASE_STATISTICS_HH__