Deleted Added
sdiff udiff text old ( 8666:97d873b8b13e ) new ( 8986:4cc63185478b )
full compact
1/*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Nathan Binkert
29 */
30
31/** @file
32 * Declaration of Statistics objects.
33 */
34
35/**
36* @todo
37*
38* Generalized N-dimensinal vector
39* documentation
40* key stats
41* interval stats
42* -- these both can use the same function that prints out a
43* specific set of stats
44* VectorStandardDeviation totals
45* Document Namespaces
46*/
47#ifndef __BASE_STATISTICS_HH__
48#define __BASE_STATISTICS_HH__
49
50#include <algorithm>
51#include <cassert>
52#ifdef __SUNPRO_CC
53#include <math.h>
54#endif
55#include <cmath>
56#include <functional>
57#include <iosfwd>
58#include <list>
59#include <map>
60#include <string>
61#include <vector>
62
63#include "base/stats/info.hh"
64#include "base/stats/output.hh"
65#include "base/stats/types.hh"
66#include "base/cast.hh"
67#include "base/cprintf.hh"
68#include "base/intmath.hh"
69#include "base/refcnt.hh"
70#include "base/str.hh"
71#include "base/types.hh"
72
73class Callback;
74
75/** The current simulated tick. */
76extern Tick curTick();
77
78/* A namespace for all of the Statistics */
79namespace Stats {
80
81template <class Stat, class Base>
82class InfoProxy : public Base
83{
84 protected:
85 Stat &s;
86
87 public:
88 InfoProxy(Stat &stat) : s(stat) {}
89
90 bool check() const { return s.check(); }
91 void prepare() { s.prepare(); }
92 void reset() { s.reset(); }
93 void
94 visit(Output &visitor)
95 {
96 visitor.visit(*static_cast<Base *>(this));
97 }
98 bool zero() const { return s.zero(); }
99};
100
101template <class Stat>
102class ScalarInfoProxy : public InfoProxy<Stat, ScalarInfo>
103{
104 public:
105 ScalarInfoProxy(Stat &stat) : InfoProxy<Stat, ScalarInfo>(stat) {}
106
107 Counter value() const { return this->s.value(); }
108 Result result() const { return this->s.result(); }
109 Result total() const { return this->s.total(); }
110};
111
112template <class Stat>
113class VectorInfoProxy : public InfoProxy<Stat, VectorInfo>
114{
115 protected:
116 mutable VCounter cvec;
117 mutable VResult rvec;
118
119 public:
120 VectorInfoProxy(Stat &stat) : InfoProxy<Stat, VectorInfo>(stat) {}
121
122 size_type size() const { return this->s.size(); }
123
124 VCounter &
125 value() const
126 {
127 this->s.value(cvec);
128 return cvec;
129 }
130
131 const VResult &
132 result() const
133 {
134 this->s.result(rvec);
135 return rvec;
136 }
137
138 Result total() const { return this->s.total(); }
139};
140
141template <class Stat>
142class DistInfoProxy : public InfoProxy<Stat, DistInfo>
143{
144 public:
145 DistInfoProxy(Stat &stat) : InfoProxy<Stat, DistInfo>(stat) {}
146};
147
148template <class Stat>
149class VectorDistInfoProxy : public InfoProxy<Stat, VectorDistInfo>
150{
151 public:
152 VectorDistInfoProxy(Stat &stat) : InfoProxy<Stat, VectorDistInfo>(stat) {}
153
154 size_type size() const { return this->s.size(); }
155};
156
157template <class Stat>
158class Vector2dInfoProxy : public InfoProxy<Stat, Vector2dInfo>
159{
160 public:
161 Vector2dInfoProxy(Stat &stat) : InfoProxy<Stat, Vector2dInfo>(stat) {}
162};
163
164struct StorageParams
165{
166 virtual ~StorageParams();
167};
168
169class InfoAccess
170{
171 protected:
172 /** Set up an info class for this statistic */
173 void setInfo(Info *info);
174 /** Save Storage class parameters if any */
175 void setParams(const StorageParams *params);
176 /** Save Storage class parameters if any */
177 void setInit();
178
179 /** Grab the information class for this statistic */
180 Info *info();
181 /** Grab the information class for this statistic */
182 const Info *info() const;
183
184 public:
185 /**
186 * Reset the stat to the default state.
187 */
188 void reset() { }
189
190 /**
191 * @return true if this stat has a value and satisfies its
192 * requirement as a prereq
193 */
194 bool zero() const { return true; }
195
196 /**
197 * Check that this stat has been set up properly and is ready for
198 * use
199 * @return true for success
200 */
201 bool check() const { return true; }
202};
203
204template <class Derived, template <class> class InfoProxyType>
205class DataWrap : public InfoAccess
206{
207 public:
208 typedef InfoProxyType<Derived> Info;
209
210 protected:
211 Derived &self() { return *static_cast<Derived *>(this); }
212
213 protected:
214 Info *
215 info()
216 {
217 return safe_cast<Info *>(InfoAccess::info());
218 }
219
220 public:
221 const Info *
222 info() const
223 {
224 return safe_cast<const Info *>(InfoAccess::info());
225 }
226
227 protected:
228 /**
229 * Copy constructor, copies are not allowed.
230 */
231 DataWrap(const DataWrap &stat);
232
233 /**
234 * Can't copy stats.
235 */
236 void operator=(const DataWrap &);
237
238 public:
239 DataWrap()
240 {
241 this->setInfo(new Info(self()));
242 }
243
244 /**
245 * Set the name and marks this stat to print at the end of simulation.
246 * @param name The new name.
247 * @return A reference to this stat.
248 */
249 Derived &
250 name(const std::string &name)
251 {
252 Info *info = this->info();
253 info->setName(name);
254 info->flags.set(display);
255 return this->self();
256 }
257 const std::string &name() const { return this->info()->name; }
258
259 /**
260 * Set the character(s) used between the name and vector number
261 * on vectors, dist, etc.
262 * @param _sep The new separator string
263 * @return A reference to this stat.
264 */
265 Derived &
266 setSeparator(const std::string &_sep)
267 {
268 this->info()->setSeparator(_sep);
269 return this->self();
270 }
271 const std::string &setSeparator() const
272 {
273 return this->info()->separatorString;
274 }
275
276 /**
277 * Set the description and marks this stat to print at the end of
278 * simulation.
279 * @param desc The new description.
280 * @return A reference to this stat.
281 */
282 Derived &
283 desc(const std::string &_desc)
284 {
285 this->info()->desc = _desc;
286 return this->self();
287 }
288
289 /**
290 * Set the precision and marks this stat to print at the end of simulation.
291 * @param _precision The new precision
292 * @return A reference to this stat.
293 */
294 Derived &
295 precision(int _precision)
296 {
297 this->info()->precision = _precision;
298 return this->self();
299 }
300
301 /**
302 * Set the flags and marks this stat to print at the end of simulation.
303 * @param f The new flags.
304 * @return A reference to this stat.
305 */
306 Derived &
307 flags(Flags _flags)
308 {
309 this->info()->flags.set(_flags);
310 return this->self();
311 }
312
313 /**
314 * Set the prerequisite stat and marks this stat to print at the end of
315 * simulation.
316 * @param prereq The prerequisite stat.
317 * @return A reference to this stat.
318 */
319 template <class Stat>
320 Derived &
321 prereq(const Stat &prereq)
322 {
323 this->info()->prereq = prereq.info();
324 return this->self();
325 }
326};
327
328template <class Derived, template <class> class InfoProxyType>
329class DataWrapVec : public DataWrap<Derived, InfoProxyType>
330{
331 public:
332 typedef InfoProxyType<Derived> Info;
333
334 // The following functions are specific to vectors. If you use them
335 // in a non vector context, you will get a nice compiler error!
336
337 /**
338 * Set the subfield name for the given index, and marks this stat to print
339 * at the end of simulation.
340 * @param index The subfield index.
341 * @param name The new name of the subfield.
342 * @return A reference to this stat.
343 */
344 Derived &
345 subname(off_type index, const std::string &name)
346 {
347 Derived &self = this->self();
348 Info *info = self.info();
349
350 std::vector<std::string> &subn = info->subnames;
351 if (subn.size() <= index)
352 subn.resize(index + 1);
353 subn[index] = name;
354 return self;
355 }
356
357 // The following functions are specific to 2d vectors. If you use
358 // them in a non vector context, you will get a nice compiler
359 // error because info doesn't have the right variables.
360
361 /**
362 * Set the subfield description for the given index and marks this stat to
363 * print at the end of simulation.
364 * @param index The subfield index.
365 * @param desc The new description of the subfield
366 * @return A reference to this stat.
367 */
368 Derived &
369 subdesc(off_type index, const std::string &desc)
370 {
371 Info *info = this->info();
372
373 std::vector<std::string> &subd = info->subdescs;
374 if (subd.size() <= index)
375 subd.resize(index + 1);
376 subd[index] = desc;
377
378 return this->self();
379 }
380
381 void
382 prepare()
383 {
384 Derived &self = this->self();
385 Info *info = this->info();
386
387 size_t size = self.size();
388 for (off_type i = 0; i < size; ++i)
389 self.data(i)->prepare(info);
390 }
391
392 void
393 reset()
394 {
395 Derived &self = this->self();
396 Info *info = this->info();
397
398 size_t size = self.size();
399 for (off_type i = 0; i < size; ++i)
400 self.data(i)->reset(info);
401 }
402};
403
404template <class Derived, template <class> class InfoProxyType>
405class DataWrapVec2d : public DataWrapVec<Derived, InfoProxyType>
406{
407 public:
408 typedef InfoProxyType<Derived> Info;
409
410 /**
411 * @warning This makes the assumption that if you're gonna subnames a 2d
412 * vector, you're subnaming across all y
413 */
414 Derived &
415 ysubnames(const char **names)
416 {
417 Derived &self = this->self();
418 Info *info = this->info();
419
420 info->y_subnames.resize(self.y);
421 for (off_type i = 0; i < self.y; ++i)
422 info->y_subnames[i] = names[i];
423 return self;
424 }
425
426 Derived &
427 ysubname(off_type index, const std::string &subname)
428 {
429 Derived &self = this->self();
430 Info *info = this->info();
431
432 assert(index < self.y);
433 info->y_subnames.resize(self.y);
434 info->y_subnames[index] = subname.c_str();
435 return self;
436 }
437
438 std::string
439 ysubname(off_type i) const
440 {
441 return this->info()->y_subnames[i];
442 }
443
444};
445
446//////////////////////////////////////////////////////////////////////
447//
448// Simple Statistics
449//
450//////////////////////////////////////////////////////////////////////
451
452/**
453 * Templatized storage and interface for a simple scalar stat.
454 */
455class StatStor
456{
457 private:
458 /** The statistic value. */
459 Counter data;
460
461 public:
462 struct Params : public StorageParams {};
463
464 public:
465 /**
466 * Builds this storage element and calls the base constructor of the
467 * datatype.
468 */
469 StatStor(Info *info)
470 : data(Counter())
471 { }
472
473 /**
474 * The the stat to the given value.
475 * @param val The new value.
476 */
477 void set(Counter val) { data = val; }
478 /**
479 * Increment the stat by the given value.
480 * @param val The new value.
481 */
482 void inc(Counter val) { data += val; }
483 /**
484 * Decrement the stat by the given value.
485 * @param val The new value.
486 */
487 void dec(Counter val) { data -= val; }
488 /**
489 * Return the value of this stat as its base type.
490 * @return The value of this stat.
491 */
492 Counter value() const { return data; }
493 /**
494 * Return the value of this stat as a result type.
495 * @return The value of this stat.
496 */
497 Result result() const { return (Result)data; }
498 /**
499 * Prepare stat data for dumping or serialization
500 */
501 void prepare(Info *info) { }
502 /**
503 * Reset stat value to default
504 */
505 void reset(Info *info) { data = Counter(); }
506
507 /**
508 * @return true if zero value
509 */
510 bool zero() const { return data == Counter(); }
511};
512
513/**
514 * Templatized storage and interface to a per-tick average stat. This keeps
515 * a current count and updates a total (count * ticks) when this count
516 * changes. This allows the quick calculation of a per tick count of the item
517 * being watched. This is good for keeping track of residencies in structures
518 * among other things.
519 */
520class AvgStor
521{
522 private:
523 /** The current count. */
524 Counter current;
525 /** The tick of the last reset */
526 Tick lastReset;
527 /** The total count for all tick. */
528 mutable Result total;
529 /** The tick that current last changed. */
530 mutable Tick last;
531
532 public:
533 struct Params : public StorageParams {};
534
535 public:
536 /**
537 * Build and initializes this stat storage.
538 */
539 AvgStor(Info *info)
540 : current(0), lastReset(0), total(0), last(0)
541 { }
542
543 /**
544 * Set the current count to the one provided, update the total and last
545 * set values.
546 * @param val The new count.
547 */
548 void
549 set(Counter val)
550 {
551 total += current * (curTick() - last);
552 last = curTick();
553 current = val;
554 }
555
556 /**
557 * Increment the current count by the provided value, calls set.
558 * @param val The amount to increment.
559 */
560 void inc(Counter val) { set(current + val); }
561
562 /**
563 * Deccrement the current count by the provided value, calls set.
564 * @param val The amount to decrement.
565 */
566 void dec(Counter val) { set(current - val); }
567
568 /**
569 * Return the current count.
570 * @return The current count.
571 */
572 Counter value() const { return current; }
573
574 /**
575 * Return the current average.
576 * @return The current average.
577 */
578 Result
579 result() const
580 {
581 assert(last == curTick());
582 return (Result)(total + current) / (Result)(curTick() - lastReset + 1);
583 }
584
585 /**
586 * @return true if zero value
587 */
588 bool zero() const { return total == 0.0; }
589
590 /**
591 * Prepare stat data for dumping or serialization
592 */
593 void
594 prepare(Info *info)
595 {
596 total += current * (curTick() - last);
597 last = curTick();
598 }
599
600 /**
601 * Reset stat value to default
602 */
603 void
604 reset(Info *info)
605 {
606 total = 0.0;
607 last = curTick();
608 lastReset = curTick();
609 }
610
611};
612
613/**
614 * Implementation of a scalar stat. The type of stat is determined by the
615 * Storage template.
616 */
617template <class Derived, class Stor>
618class ScalarBase : public DataWrap<Derived, ScalarInfoProxy>
619{
620 public:
621 typedef Stor Storage;
622 typedef typename Stor::Params Params;
623
624 protected:
625 /** The storage of this stat. */
626 char storage[sizeof(Storage)] __attribute__ ((aligned (8)));
627
628 protected:
629 /**
630 * Retrieve the storage.
631 * @param index The vector index to access.
632 * @return The storage object at the given index.
633 */
634 Storage *
635 data()
636 {
637 return reinterpret_cast<Storage *>(storage);
638 }
639
640 /**
641 * Retrieve a const pointer to the storage.
642 * for the given index.
643 * @param index The vector index to access.
644 * @return A const pointer to the storage object at the given index.
645 */
646 const Storage *
647 data() const
648 {
649 return reinterpret_cast<const Storage *>(storage);
650 }
651
652 void
653 doInit()
654 {
655 new (storage) Storage(this->info());
656 this->setInit();
657 }
658
659 public:
660 /**
661 * Return the current value of this stat as its base type.
662 * @return The current value.
663 */
664 Counter value() const { return data()->value(); }
665
666 public:
667 ScalarBase()
668 {
669 this->doInit();
670 }
671
672 public:
673 // Common operators for stats
674 /**
675 * Increment the stat by 1. This calls the associated storage object inc
676 * function.
677 */
678 void operator++() { data()->inc(1); }
679 /**
680 * Decrement the stat by 1. This calls the associated storage object dec
681 * function.
682 */
683 void operator--() { data()->dec(1); }
684
685 /** Increment the stat by 1. */
686 void operator++(int) { ++*this; }
687 /** Decrement the stat by 1. */
688 void operator--(int) { --*this; }
689
690 /**
691 * Set the data value to the given value. This calls the associated storage
692 * object set function.
693 * @param v The new value.
694 */
695 template <typename U>
696 void operator=(const U &v) { data()->set(v); }
697
698 /**
699 * Increment the stat by the given value. This calls the associated
700 * storage object inc function.
701 * @param v The value to add.
702 */
703 template <typename U>
704 void operator+=(const U &v) { data()->inc(v); }
705
706 /**
707 * Decrement the stat by the given value. This calls the associated
708 * storage object dec function.
709 * @param v The value to substract.
710 */
711 template <typename U>
712 void operator-=(const U &v) { data()->dec(v); }
713
714 /**
715 * Return the number of elements, always 1 for a scalar.
716 * @return 1.
717 */
718 size_type size() const { return 1; }
719
720 Counter value() { return data()->value(); }
721
722 Result result() { return data()->result(); }
723
724 Result total() { return result(); }
725
726 bool zero() { return result() == 0.0; }
727
728 void reset() { data()->reset(this->info()); }
729 void prepare() { data()->prepare(this->info()); }
730};
731
732class ProxyInfo : public ScalarInfo
733{
734 public:
735 std::string str() const { return to_string(value()); }
736 size_type size() const { return 1; }
737 bool check() const { return true; }
738 void prepare() { }
739 void reset() { }
740 bool zero() const { return value() == 0; }
741
742 void visit(Output &visitor) { visitor.visit(*this); }
743};
744
745template <class T>
746class ValueProxy : public ProxyInfo
747{
748 private:
749 T *scalar;
750
751 public:
752 ValueProxy(T &val) : scalar(&val) {}
753 Counter value() const { return *scalar; }
754 Result result() const { return *scalar; }
755 Result total() const { return *scalar; }
756};
757
758template <class T>
759class FunctorProxy : public ProxyInfo
760{
761 private:
762 T *functor;
763
764 public:
765 FunctorProxy(T &func) : functor(&func) {}
766 Counter value() const { return (*functor)(); }
767 Result result() const { return (*functor)(); }
768 Result total() const { return (*functor)(); }
769};
770
771template <class Derived>
772class ValueBase : public DataWrap<Derived, ScalarInfoProxy>
773{
774 private:
775 ProxyInfo *proxy;
776
777 public:
778 ValueBase() : proxy(NULL) { }
779 ~ValueBase() { if (proxy) delete proxy; }
780
781 template <class T>
782 Derived &
783 scalar(T &value)
784 {
785 proxy = new ValueProxy<T>(value);
786 this->setInit();
787 return this->self();
788 }
789
790 template <class T>
791 Derived &
792 functor(T &func)
793 {
794 proxy = new FunctorProxy<T>(func);
795 this->setInit();
796 return this->self();
797 }
798
799 Counter value() { return proxy->value(); }
800 Result result() const { return proxy->result(); }
801 Result total() const { return proxy->total(); };
802 size_type size() const { return proxy->size(); }
803
804 std::string str() const { return proxy->str(); }
805 bool zero() const { return proxy->zero(); }
806 bool check() const { return proxy != NULL; }
807 void prepare() { }
808 void reset() { }
809};
810
811//////////////////////////////////////////////////////////////////////
812//
813// Vector Statistics
814//
815//////////////////////////////////////////////////////////////////////
816
817/**
818 * A proxy class to access the stat at a given index in a VectorBase stat.
819 * Behaves like a ScalarBase.
820 */
821template <class Stat>
822class ScalarProxy
823{
824 private:
825 /** Pointer to the parent Vector. */
826 Stat &stat;
827
828 /** The index to access in the parent VectorBase. */
829 off_type index;
830
831 public:
832 /**
833 * Return the current value of this stat as its base type.
834 * @return The current value.
835 */
836 Counter value() const { return stat.data(index)->value(); }
837
838 /**
839 * Return the current value of this statas a result type.
840 * @return The current value.
841 */
842 Result result() const { return stat.data(index)->result(); }
843
844 public:
845 /**
846 * Create and initialize this proxy, do not register it with the database.
847 * @param i The index to access.
848 */
849 ScalarProxy(Stat &s, off_type i)
850 : stat(s), index(i)
851 {
852 }
853
854 /**
855 * Create a copy of the provided ScalarProxy.
856 * @param sp The proxy to copy.
857 */
858 ScalarProxy(const ScalarProxy &sp)
859 : stat(sp.stat), index(sp.index)
860 {}
861
862 /**
863 * Set this proxy equal to the provided one.
864 * @param sp The proxy to copy.
865 * @return A reference to this proxy.
866 */
867 const ScalarProxy &
868 operator=(const ScalarProxy &sp)
869 {
870 stat = sp.stat;
871 index = sp.index;
872 return *this;
873 }
874
875 public:
876 // Common operators for stats
877 /**
878 * Increment the stat by 1. This calls the associated storage object inc
879 * function.
880 */
881 void operator++() { stat.data(index)->inc(1); }
882 /**
883 * Decrement the stat by 1. This calls the associated storage object dec
884 * function.
885 */
886 void operator--() { stat.data(index)->dec(1); }
887
888 /** Increment the stat by 1. */
889 void operator++(int) { ++*this; }
890 /** Decrement the stat by 1. */
891 void operator--(int) { --*this; }
892
893 /**
894 * Set the data value to the given value. This calls the associated storage
895 * object set function.
896 * @param v The new value.
897 */
898 template <typename U>
899 void
900 operator=(const U &v)
901 {
902 stat.data(index)->set(v);
903 }
904
905 /**
906 * Increment the stat by the given value. This calls the associated
907 * storage object inc function.
908 * @param v The value to add.
909 */
910 template <typename U>
911 void
912 operator+=(const U &v)
913 {
914 stat.data(index)->inc(v);
915 }
916
917 /**
918 * Decrement the stat by the given value. This calls the associated
919 * storage object dec function.
920 * @param v The value to substract.
921 */
922 template <typename U>
923 void
924 operator-=(const U &v)
925 {
926 stat.data(index)->dec(v);
927 }
928
929 /**
930 * Return the number of elements, always 1 for a scalar.
931 * @return 1.
932 */
933 size_type size() const { return 1; }
934
935 public:
936 std::string
937 str() const
938 {
939 return csprintf("%s[%d]", stat.info()->name, index);
940 }
941};
942
943/**
944 * Implementation of a vector of stats. The type of stat is determined by the
945 * Storage class. @sa ScalarBase
946 */
947template <class Derived, class Stor>
948class VectorBase : public DataWrapVec<Derived, VectorInfoProxy>
949{
950 public:
951 typedef Stor Storage;
952 typedef typename Stor::Params Params;
953
954 /** Proxy type */
955 typedef ScalarProxy<Derived> Proxy;
956 friend class ScalarProxy<Derived>;
957 friend class DataWrapVec<Derived, VectorInfoProxy>;
958
959 protected:
960 /** The storage of this stat. */
961 Storage *storage;
962 size_type _size;
963
964 protected:
965 /**
966 * Retrieve the storage.
967 * @param index The vector index to access.
968 * @return The storage object at the given index.
969 */
970 Storage *data(off_type index) { return &storage[index]; }
971
972 /**
973 * Retrieve a const pointer to the storage.
974 * @param index The vector index to access.
975 * @return A const pointer to the storage object at the given index.
976 */
977 const Storage *data(off_type index) const { return &storage[index]; }
978
979 void
980 doInit(size_type s)
981 {
982 assert(s > 0 && "size must be positive!");
983 assert(!storage && "already initialized");
984 _size = s;
985
986 char *ptr = new char[_size * sizeof(Storage)];
987 storage = reinterpret_cast<Storage *>(ptr);
988
989 for (off_type i = 0; i < _size; ++i)
990 new (&storage[i]) Storage(this->info());
991
992 this->setInit();
993 }
994
995 public:
996 void
997 value(VCounter &vec) const
998 {
999 vec.resize(size());
1000 for (off_type i = 0; i < size(); ++i)
1001 vec[i] = data(i)->value();
1002 }
1003
1004 /**
1005 * Copy the values to a local vector and return a reference to it.
1006 * @return A reference to a vector of the stat values.
1007 */
1008 void
1009 result(VResult &vec) const
1010 {
1011 vec.resize(size());
1012 for (off_type i = 0; i < size(); ++i)
1013 vec[i] = data(i)->result();
1014 }
1015
1016 /**
1017 * Return a total of all entries in this vector.
1018 * @return The total of all vector entries.
1019 */
1020 Result
1021 total() const
1022 {
1023 Result total = 0.0;
1024 for (off_type i = 0; i < size(); ++i)
1025 total += data(i)->result();
1026 return total;
1027 }
1028
1029 /**
1030 * @return the number of elements in this vector.
1031 */
1032 size_type size() const { return _size; }
1033
1034 bool
1035 zero() const
1036 {
1037 for (off_type i = 0; i < size(); ++i)
1038 if (data(i)->zero())
1039 return false;
1040 return true;
1041 }
1042
1043 bool
1044 check() const
1045 {
1046 return storage != NULL;
1047 }
1048
1049 public:
1050 VectorBase()
1051 : storage(NULL)
1052 {}
1053
1054 ~VectorBase()
1055 {
1056 if (!storage)
1057 return;
1058
1059 for (off_type i = 0; i < _size; ++i)
1060 data(i)->~Storage();
1061 delete [] reinterpret_cast<char *>(storage);
1062 }
1063
1064 /**
1065 * Set this vector to have the given size.
1066 * @param size The new size.
1067 * @return A reference to this stat.
1068 */
1069 Derived &
1070 init(size_type size)
1071 {
1072 Derived &self = this->self();
1073 self.doInit(size);
1074 return self;
1075 }
1076
1077 /**
1078 * Return a reference (ScalarProxy) to the stat at the given index.
1079 * @param index The vector index to access.
1080 * @return A reference of the stat.
1081 */
1082 Proxy
1083 operator[](off_type index)
1084 {
1085 assert (index >= 0 && index < size());
1086 return Proxy(this->self(), index);
1087 }
1088};
1089
1090template <class Stat>
1091class VectorProxy
1092{
1093 private:
1094 Stat &stat;
1095 off_type offset;
1096 size_type len;
1097
1098 private:
1099 mutable VResult vec;
1100
1101 typename Stat::Storage *
1102 data(off_type index)
1103 {
1104 assert(index < len);
1105 return stat.data(offset + index);
1106 }
1107
1108 const typename Stat::Storage *
1109 data(off_type index) const
1110 {
1111 assert(index < len);
1112 return stat.data(offset + index);
1113 }
1114
1115 public:
1116 const VResult &
1117 result() const
1118 {
1119 vec.resize(size());
1120
1121 for (off_type i = 0; i < size(); ++i)
1122 vec[i] = data(i)->result();
1123
1124 return vec;
1125 }
1126
1127 Result
1128 total() const
1129 {
1130 Result total = 0.0;
1131 for (off_type i = 0; i < size(); ++i)
1132 total += data(i)->result();
1133 return total;
1134 }
1135
1136 public:
1137 VectorProxy(Stat &s, off_type o, size_type l)
1138 : stat(s), offset(o), len(l)
1139 {
1140 }
1141
1142 VectorProxy(const VectorProxy &sp)
1143 : stat(sp.stat), offset(sp.offset), len(sp.len)
1144 {
1145 }
1146
1147 const VectorProxy &
1148 operator=(const VectorProxy &sp)
1149 {
1150 stat = sp.stat;
1151 offset = sp.offset;
1152 len = sp.len;
1153 return *this;
1154 }
1155
1156 ScalarProxy<Stat>
1157 operator[](off_type index)
1158 {
1159 assert (index >= 0 && index < size());
1160 return ScalarProxy<Stat>(stat, offset + index);
1161 }
1162
1163 size_type size() const { return len; }
1164};
1165
1166template <class Derived, class Stor>
1167class Vector2dBase : public DataWrapVec2d<Derived, Vector2dInfoProxy>
1168{
1169 public:
1170 typedef Vector2dInfoProxy<Derived> Info;
1171 typedef Stor Storage;
1172 typedef typename Stor::Params Params;
1173 typedef VectorProxy<Derived> Proxy;
1174 friend class ScalarProxy<Derived>;
1175 friend class VectorProxy<Derived>;
1176 friend class DataWrapVec<Derived, Vector2dInfoProxy>;
1177 friend class DataWrapVec2d<Derived, Vector2dInfoProxy>;
1178
1179 protected:
1180 size_type x;
1181 size_type y;
1182 size_type _size;
1183 Storage *storage;
1184
1185 protected:
1186 Storage *data(off_type index) { return &storage[index]; }
1187 const Storage *data(off_type index) const { return &storage[index]; }
1188
1189 public:
1190 Vector2dBase()
1191 : storage(NULL)
1192 {}
1193
1194 ~Vector2dBase()
1195 {
1196 if (!storage)
1197 return;
1198
1199 for (off_type i = 0; i < _size; ++i)
1200 data(i)->~Storage();
1201 delete [] reinterpret_cast<char *>(storage);
1202 }
1203
1204 Derived &
1205 init(size_type _x, size_type _y)
1206 {
1207 assert(_x > 0 && _y > 0 && "sizes must be positive!");
1208 assert(!storage && "already initialized");
1209
1210 Derived &self = this->self();
1211 Info *info = this->info();
1212
1213 x = _x;
1214 y = _y;
1215 info->x = _x;
1216 info->y = _y;
1217 _size = x * y;
1218
1219 char *ptr = new char[_size * sizeof(Storage)];
1220 storage = reinterpret_cast<Storage *>(ptr);
1221
1222 for (off_type i = 0; i < _size; ++i)
1223 new (&storage[i]) Storage(info);
1224
1225 this->setInit();
1226
1227 return self;
1228 }
1229
1230 Proxy
1231 operator[](off_type index)
1232 {
1233 off_type offset = index * y;
1234 assert (index >= 0 && offset + index < size());
1235 return Proxy(this->self(), offset, y);
1236 }
1237
1238
1239 size_type
1240 size() const
1241 {
1242 return _size;
1243 }
1244
1245 bool
1246 zero() const
1247 {
1248 return data(0)->zero();
1249#if 0
1250 for (off_type i = 0; i < size(); ++i)
1251 if (!data(i)->zero())
1252 return false;
1253 return true;
1254#endif
1255 }
1256
1257 void
1258 prepare()
1259 {
1260 Info *info = this->info();
1261 size_type size = this->size();
1262
1263 for (off_type i = 0; i < size; ++i)
1264 data(i)->prepare(info);
1265
1266 info->cvec.resize(size);
1267 for (off_type i = 0; i < size; ++i)
1268 info->cvec[i] = data(i)->value();
1269 }
1270
1271 /**
1272 * Reset stat value to default
1273 */
1274 void
1275 reset()
1276 {
1277 Info *info = this->info();
1278 size_type size = this->size();
1279 for (off_type i = 0; i < size; ++i)
1280 data(i)->reset(info);
1281 }
1282
1283 bool
1284 check() const
1285 {
1286 return storage != NULL;
1287 }
1288};
1289
1290//////////////////////////////////////////////////////////////////////
1291//
1292// Non formula statistics
1293//
1294//////////////////////////////////////////////////////////////////////
1295/** The parameters for a distribution stat. */
1296struct DistParams : public StorageParams
1297{
1298 const DistType type;
1299 DistParams(DistType t) : type(t) {}
1300};
1301
1302/**
1303 * Templatized storage and interface for a distrbution stat.
1304 */
1305class DistStor
1306{
1307 public:
1308 /** The parameters for a distribution stat. */
1309 struct Params : public DistParams
1310 {
1311 /** The minimum value to track. */
1312 Counter min;
1313 /** The maximum value to track. */
1314 Counter max;
1315 /** The number of entries in each bucket. */
1316 Counter bucket_size;
1317 /** The number of buckets. Equal to (max-min)/bucket_size. */
1318 size_type buckets;
1319
1320 Params() : DistParams(Dist) {}
1321 };
1322
1323 private:
1324 /** The minimum value to track. */
1325 Counter min_track;
1326 /** The maximum value to track. */
1327 Counter max_track;
1328 /** The number of entries in each bucket. */
1329 Counter bucket_size;
1330 /** The number of buckets. Equal to (max-min)/bucket_size. */
1331 size_type buckets;
1332
1333 /** The smallest value sampled. */
1334 Counter min_val;
1335 /** The largest value sampled. */
1336 Counter max_val;
1337 /** The number of values sampled less than min. */
1338 Counter underflow;
1339 /** The number of values sampled more than max. */
1340 Counter overflow;
1341 /** The current sum. */
1342 Counter sum;
1343 /** The sum of squares. */
1344 Counter squares;
1345 /** The number of samples. */
1346 Counter samples;
1347 /** Counter for each bucket. */
1348 VCounter cvec;
1349
1350 public:
1351 DistStor(Info *info)
1352 : cvec(safe_cast<const Params *>(info->storageParams)->buckets)
1353 {
1354 reset(info);
1355 }
1356
1357 /**
1358 * Add a value to the distribution for the given number of times.
1359 * @param val The value to add.
1360 * @param number The number of times to add the value.
1361 */
1362 void
1363 sample(Counter val, int number)
1364 {
1365 if (val < min_track)
1366 underflow += number;
1367 else if (val > max_track)
1368 overflow += number;
1369 else {
1370 size_type index =
1371 (size_type)std::floor((val - min_track) / bucket_size);
1372 assert(index < size());
1373 cvec[index] += number;
1374 }
1375
1376 if (val < min_val)
1377 min_val = val;
1378
1379 if (val > max_val)
1380 max_val = val;
1381
1382 sum += val * number;
1383 squares += val * val * number;
1384 samples += number;
1385 }
1386
1387 /**
1388 * Return the number of buckets in this distribution.
1389 * @return the number of buckets.
1390 */
1391 size_type size() const { return cvec.size(); }
1392
1393 /**
1394 * Returns true if any calls to sample have been made.
1395 * @return True if any values have been sampled.
1396 */
1397 bool
1398 zero() const
1399 {
1400 return samples == Counter();
1401 }
1402
1403 void
1404 prepare(Info *info, DistData &data)
1405 {
1406 const Params *params = safe_cast<const Params *>(info->storageParams);
1407
1408 assert(params->type == Dist);
1409 data.type = params->type;
1410 data.min = params->min;
1411 data.max = params->max;
1412 data.bucket_size = params->bucket_size;
1413
1414 data.min_val = (min_val == CounterLimits::max()) ? 0 : min_val;
1415 data.max_val = (max_val == CounterLimits::min()) ? 0 : max_val;
1416 data.underflow = underflow;
1417 data.overflow = overflow;
1418
1419 size_type buckets = params->buckets;
1420 data.cvec.resize(buckets);
1421 for (off_type i = 0; i < buckets; ++i)
1422 data.cvec[i] = cvec[i];
1423
1424 data.sum = sum;
1425 data.squares = squares;
1426 data.samples = samples;
1427 }
1428
1429 /**
1430 * Reset stat value to default
1431 */
1432 void
1433 reset(Info *info)
1434 {
1435 const Params *params = safe_cast<const Params *>(info->storageParams);
1436 min_track = params->min;
1437 max_track = params->max;
1438 bucket_size = params->bucket_size;
1439
1440 min_val = CounterLimits::max();
1441 max_val = CounterLimits::min();
1442 underflow = Counter();
1443 overflow = Counter();
1444
1445 size_type size = cvec.size();
1446 for (off_type i = 0; i < size; ++i)
1447 cvec[i] = Counter();
1448
1449 sum = Counter();
1450 squares = Counter();
1451 samples = Counter();
1452 }
1453};
1454
1455/**
1456 * Templatized storage and interface for a histogram stat.
1457 */
1458class HistStor
1459{
1460 public:
1461 /** The parameters for a distribution stat. */
1462 struct Params : public DistParams
1463 {
1464 /** The number of buckets.. */
1465 size_type buckets;
1466
1467 Params() : DistParams(Hist) {}
1468 };
1469
1470 private:
1471 /** The minimum value to track. */
1472 Counter min_bucket;
1473 /** The maximum value to track. */
1474 Counter max_bucket;
1475 /** The number of entries in each bucket. */
1476 Counter bucket_size;
1477
1478 /** The current sum. */
1479 Counter sum;
1480 /** The sum of logarithm of each sample, used to compute geometric mean. */
1481 Counter logs;
1482 /** The sum of squares. */
1483 Counter squares;
1484 /** The number of samples. */
1485 Counter samples;
1486 /** Counter for each bucket. */
1487 VCounter cvec;
1488
1489 public:
1490 HistStor(Info *info)
1491 : cvec(safe_cast<const Params *>(info->storageParams)->buckets)
1492 {
1493 reset(info);
1494 }
1495
1496 void grow_up();
1497 void grow_out();
1498 void grow_convert();
1499
1500 /**
1501 * Add a value to the distribution for the given number of times.
1502 * @param val The value to add.
1503 * @param number The number of times to add the value.
1504 */
1505 void
1506 sample(Counter val, int number)
1507 {
1508 assert(min_bucket < max_bucket);
1509 if (val < min_bucket) {
1510 if (min_bucket == 0)
1511 grow_convert();
1512
1513 while (val < min_bucket)
1514 grow_out();
1515 } else if (val >= max_bucket + bucket_size) {
1516 if (min_bucket == 0) {
1517 while (val >= max_bucket + bucket_size)
1518 grow_up();
1519 } else {
1520 while (val >= max_bucket + bucket_size)
1521 grow_out();
1522 }
1523 }
1524
1525 size_type index =
1526 (int64_t)std::floor((val - min_bucket) / bucket_size);
1527
1528 assert(index >= 0 && index < size());
1529 cvec[index] += number;
1530
1531 sum += val * number;
1532 squares += val * val * number;
1533 logs += log(val) * number;
1534 samples += number;
1535 }
1536
1537 /**
1538 * Return the number of buckets in this distribution.
1539 * @return the number of buckets.
1540 */
1541 size_type size() const { return cvec.size(); }
1542
1543 /**
1544 * Returns true if any calls to sample have been made.
1545 * @return True if any values have been sampled.
1546 */
1547 bool
1548 zero() const
1549 {
1550 return samples == Counter();
1551 }
1552
1553 void
1554 prepare(Info *info, DistData &data)
1555 {
1556 const Params *params = safe_cast<const Params *>(info->storageParams);
1557
1558 assert(params->type == Hist);
1559 data.type = params->type;
1560 data.min = min_bucket;
1561 data.max = max_bucket + bucket_size - 1;
1562 data.bucket_size = bucket_size;
1563
1564 data.min_val = min_bucket;
1565 data.max_val = max_bucket;
1566
1567 int buckets = params->buckets;
1568 data.cvec.resize(buckets);
1569 for (off_type i = 0; i < buckets; ++i)
1570 data.cvec[i] = cvec[i];
1571
1572 data.sum = sum;
1573 data.logs = logs;
1574 data.squares = squares;
1575 data.samples = samples;
1576 }
1577
1578 /**
1579 * Reset stat value to default
1580 */
1581 void
1582 reset(Info *info)
1583 {
1584 const Params *params = safe_cast<const Params *>(info->storageParams);
1585 min_bucket = 0;
1586 max_bucket = params->buckets - 1;
1587 bucket_size = 1;
1588
1589 size_type size = cvec.size();
1590 for (off_type i = 0; i < size; ++i)
1591 cvec[i] = Counter();
1592
1593 sum = Counter();
1594 squares = Counter();
1595 samples = Counter();
1596 logs = Counter();
1597 }
1598};
1599
1600/**
1601 * Templatized storage and interface for a distribution that calculates mean
1602 * and variance.
1603 */
1604class SampleStor
1605{
1606 public:
1607 struct Params : public DistParams
1608 {
1609 Params() : DistParams(Deviation) {}
1610 };
1611
1612 private:
1613 /** The current sum. */
1614 Counter sum;
1615 /** The sum of squares. */
1616 Counter squares;
1617 /** The number of samples. */
1618 Counter samples;
1619
1620 public:
1621 /**
1622 * Create and initialize this storage.
1623 */
1624 SampleStor(Info *info)
1625 : sum(Counter()), squares(Counter()), samples(Counter())
1626 { }
1627
1628 /**
1629 * Add a value the given number of times to this running average.
1630 * Update the running sum and sum of squares, increment the number of
1631 * values seen by the given number.
1632 * @param val The value to add.
1633 * @param number The number of times to add the value.
1634 */
1635 void
1636 sample(Counter val, int number)
1637 {
1638 Counter value = val * number;
1639 sum += value;
1640 squares += value * value;
1641 samples += number;
1642 }
1643
1644 /**
1645 * Return the number of entries in this stat, 1
1646 * @return 1.
1647 */
1648 size_type size() const { return 1; }
1649
1650 /**
1651 * Return true if no samples have been added.
1652 * @return True if no samples have been added.
1653 */
1654 bool zero() const { return samples == Counter(); }
1655
1656 void
1657 prepare(Info *info, DistData &data)
1658 {
1659 const Params *params = safe_cast<const Params *>(info->storageParams);
1660
1661 assert(params->type == Deviation);
1662 data.type = params->type;
1663 data.sum = sum;
1664 data.squares = squares;
1665 data.samples = samples;
1666 }
1667
1668 /**
1669 * Reset stat value to default
1670 */
1671 void
1672 reset(Info *info)
1673 {
1674 sum = Counter();
1675 squares = Counter();
1676 samples = Counter();
1677 }
1678};
1679
1680/**
1681 * Templatized storage for distribution that calculates per tick mean and
1682 * variance.
1683 */
1684class AvgSampleStor
1685{
1686 public:
1687 struct Params : public DistParams
1688 {
1689 Params() : DistParams(Deviation) {}
1690 };
1691
1692 private:
1693 /** Current total. */
1694 Counter sum;
1695 /** Current sum of squares. */
1696 Counter squares;
1697
1698 public:
1699 /**
1700 * Create and initialize this storage.
1701 */
1702 AvgSampleStor(Info *info)
1703 : sum(Counter()), squares(Counter())
1704 {}
1705
1706 /**
1707 * Add a value to the distribution for the given number of times.
1708 * Update the running sum and sum of squares.
1709 * @param val The value to add.
1710 * @param number The number of times to add the value.
1711 */
1712 void
1713 sample(Counter val, int number)
1714 {
1715 Counter value = val * number;
1716 sum += value;
1717 squares += value * value;
1718 }
1719
1720 /**
1721 * Return the number of entries, in this case 1.
1722 * @return 1.
1723 */
1724 size_type size() const { return 1; }
1725
1726 /**
1727 * Return true if no samples have been added.
1728 * @return True if the sum is zero.
1729 */
1730 bool zero() const { return sum == Counter(); }
1731
1732 void
1733 prepare(Info *info, DistData &data)
1734 {
1735 const Params *params = safe_cast<const Params *>(info->storageParams);
1736
1737 assert(params->type == Deviation);
1738 data.type = params->type;
1739 data.sum = sum;
1740 data.squares = squares;
1741 data.samples = curTick();
1742 }
1743
1744 /**
1745 * Reset stat value to default
1746 */
1747 void
1748 reset(Info *info)
1749 {
1750 sum = Counter();
1751 squares = Counter();
1752 }
1753};
1754
1755/**
1756 * Implementation of a distribution stat. The type of distribution is
1757 * determined by the Storage template. @sa ScalarBase
1758 */
1759template <class Derived, class Stor>
1760class DistBase : public DataWrap<Derived, DistInfoProxy>
1761{
1762 public:
1763 typedef DistInfoProxy<Derived> Info;
1764 typedef Stor Storage;
1765 typedef typename Stor::Params Params;
1766
1767 protected:
1768 /** The storage for this stat. */
1769 char storage[sizeof(Storage)] __attribute__ ((aligned (8)));
1770
1771 protected:
1772 /**
1773 * Retrieve the storage.
1774 * @return The storage object for this stat.
1775 */
1776 Storage *
1777 data()
1778 {
1779 return reinterpret_cast<Storage *>(storage);
1780 }
1781
1782 /**
1783 * Retrieve a const pointer to the storage.
1784 * @return A const pointer to the storage object for this stat.
1785 */
1786 const Storage *
1787 data() const
1788 {
1789 return reinterpret_cast<const Storage *>(storage);
1790 }
1791
1792 void
1793 doInit()
1794 {
1795 new (storage) Storage(this->info());
1796 this->setInit();
1797 }
1798
1799 public:
1800 DistBase() { }
1801
1802 /**
1803 * Add a value to the distribtion n times. Calls sample on the storage
1804 * class.
1805 * @param v The value to add.
1806 * @param n The number of times to add it, defaults to 1.
1807 */
1808 template <typename U>
1809 void sample(const U &v, int n = 1) { data()->sample(v, n); }
1810
1811 /**
1812 * Return the number of entries in this stat.
1813 * @return The number of entries.
1814 */
1815 size_type size() const { return data()->size(); }
1816 /**
1817 * Return true if no samples have been added.
1818 * @return True if there haven't been any samples.
1819 */
1820 bool zero() const { return data()->zero(); }
1821
1822 void
1823 prepare()
1824 {
1825 Info *info = this->info();
1826 data()->prepare(info, info->data);
1827 }
1828
1829 /**
1830 * Reset stat value to default
1831 */
1832 void
1833 reset()
1834 {
1835 data()->reset(this->info());
1836 }
1837};
1838
1839template <class Stat>
1840class DistProxy;
1841
1842template <class Derived, class Stor>
1843class VectorDistBase : public DataWrapVec<Derived, VectorDistInfoProxy>
1844{
1845 public:
1846 typedef VectorDistInfoProxy<Derived> Info;
1847 typedef Stor Storage;
1848 typedef typename Stor::Params Params;
1849 typedef DistProxy<Derived> Proxy;
1850 friend class DistProxy<Derived>;
1851 friend class DataWrapVec<Derived, VectorDistInfoProxy>;
1852
1853 protected:
1854 Storage *storage;
1855 size_type _size;
1856
1857 protected:
1858 Storage *
1859 data(off_type index)
1860 {
1861 return &storage[index];
1862 }
1863
1864 const Storage *
1865 data(off_type index) const
1866 {
1867 return &storage[index];
1868 }
1869
1870 void
1871 doInit(size_type s)
1872 {
1873 assert(s > 0 && "size must be positive!");
1874 assert(!storage && "already initialized");
1875 _size = s;
1876
1877 char *ptr = new char[_size * sizeof(Storage)];
1878 storage = reinterpret_cast<Storage *>(ptr);
1879
1880 Info *info = this->info();
1881 for (off_type i = 0; i < _size; ++i)
1882 new (&storage[i]) Storage(info);
1883
1884 this->setInit();
1885 }
1886
1887 public:
1888 VectorDistBase()
1889 : storage(NULL)
1890 {}
1891
1892 ~VectorDistBase()
1893 {
1894 if (!storage)
1895 return ;
1896
1897 for (off_type i = 0; i < _size; ++i)
1898 data(i)->~Storage();
1899 delete [] reinterpret_cast<char *>(storage);
1900 }
1901
1902 Proxy operator[](off_type index)
1903 {
1904 assert(index >= 0 && index < size());
1905 return Proxy(this->self(), index);
1906 }
1907
1908 size_type
1909 size() const
1910 {
1911 return _size;
1912 }
1913
1914 bool
1915 zero() const
1916 {
1917 for (off_type i = 0; i < size(); ++i)
1918 if (!data(i)->zero())
1919 return false;
1920 return true;
1921 }
1922
1923 void
1924 prepare()
1925 {
1926 Info *info = this->info();
1927 size_type size = this->size();
1928 info->data.resize(size);
1929 for (off_type i = 0; i < size; ++i)
1930 data(i)->prepare(info, info->data[i]);
1931 }
1932
1933 bool
1934 check() const
1935 {
1936 return storage != NULL;
1937 }
1938};
1939
1940template <class Stat>
1941class DistProxy
1942{
1943 private:
1944 Stat &stat;
1945 off_type index;
1946
1947 protected:
1948 typename Stat::Storage *data() { return stat.data(index); }
1949 const typename Stat::Storage *data() const { return stat.data(index); }
1950
1951 public:
1952 DistProxy(Stat &s, off_type i)
1953 : stat(s), index(i)
1954 {}
1955
1956 DistProxy(const DistProxy &sp)
1957 : stat(sp.stat), index(sp.index)
1958 {}
1959
1960 const DistProxy &
1961 operator=(const DistProxy &sp)
1962 {
1963 stat = sp.stat;
1964 index = sp.index;
1965 return *this;
1966 }
1967
1968 public:
1969 template <typename U>
1970 void
1971 sample(const U &v, int n = 1)
1972 {
1973 data()->sample(v, n);
1974 }
1975
1976 size_type
1977 size() const
1978 {
1979 return 1;
1980 }
1981
1982 bool
1983 zero() const
1984 {
1985 return data()->zero();
1986 }
1987
1988 /**
1989 * Proxy has no state. Nothing to reset.
1990 */
1991 void reset() { }
1992};
1993
1994//////////////////////////////////////////////////////////////////////
1995//
1996// Formula Details
1997//
1998//////////////////////////////////////////////////////////////////////
1999
2000/**
2001 * Base class for formula statistic node. These nodes are used to build a tree
2002 * that represents the formula.
2003 */
2004class Node : public RefCounted
2005{
2006 public:
2007 /**
2008 * Return the number of nodes in the subtree starting at this node.
2009 * @return the number of nodes in this subtree.
2010 */
2011 virtual size_type size() const = 0;
2012 /**
2013 * Return the result vector of this subtree.
2014 * @return The result vector of this subtree.
2015 */
2016 virtual const VResult &result() const = 0;
2017 /**
2018 * Return the total of the result vector.
2019 * @return The total of the result vector.
2020 */
2021 virtual Result total() const = 0;
2022
2023 /**
2024 *
2025 */
2026 virtual std::string str() const = 0;
2027};
2028
2029/** Reference counting pointer to a function Node. */
2030typedef RefCountingPtr<Node> NodePtr;
2031
2032class ScalarStatNode : public Node
2033{
2034 private:
2035 const ScalarInfo *data;
2036 mutable VResult vresult;
2037
2038 public:
2039 ScalarStatNode(const ScalarInfo *d) : data(d), vresult(1) {}
2040
2041 const VResult &
2042 result() const
2043 {
2044 vresult[0] = data->result();
2045 return vresult;
2046 }
2047
2048 Result total() const { return data->result(); };
2049
2050 size_type size() const { return 1; }
2051
2052 /**
2053 *
2054 */
2055 std::string str() const { return data->name; }
2056};
2057
2058template <class Stat>
2059class ScalarProxyNode : public Node
2060{
2061 private:
2062 const ScalarProxy<Stat> proxy;
2063 mutable VResult vresult;
2064
2065 public:
2066 ScalarProxyNode(const ScalarProxy<Stat> &p)
2067 : proxy(p), vresult(1)
2068 { }
2069
2070 const VResult &
2071 result() const
2072 {
2073 vresult[0] = proxy.result();
2074 return vresult;
2075 }
2076
2077 Result
2078 total() const
2079 {
2080 return proxy.result();
2081 }
2082
2083 size_type
2084 size() const
2085 {
2086 return 1;
2087 }
2088
2089 /**
2090 *
2091 */
2092 std::string
2093 str() const
2094 {
2095 return proxy.str();
2096 }
2097};
2098
2099class VectorStatNode : public Node
2100{
2101 private:
2102 const VectorInfo *data;
2103
2104 public:
2105 VectorStatNode(const VectorInfo *d) : data(d) { }
2106 const VResult &result() const { return data->result(); }
2107 Result total() const { return data->total(); };
2108
2109 size_type size() const { return data->size(); }
2110
2111 std::string str() const { return data->name; }
2112};
2113
2114template <class T>
2115class ConstNode : public Node
2116{
2117 private:
2118 VResult vresult;
2119
2120 public:
2121 ConstNode(T s) : vresult(1, (Result)s) {}
2122 const VResult &result() const { return vresult; }
2123 Result total() const { return vresult[0]; };
2124 size_type size() const { return 1; }
2125 std::string str() const { return to_string(vresult[0]); }
2126};
2127
2128template <class T>
2129class ConstVectorNode : public Node
2130{
2131 private:
2132 VResult vresult;
2133
2134 public:
2135 ConstVectorNode(const T &s) : vresult(s.begin(), s.end()) {}
2136 const VResult &result() const { return vresult; }
2137
2138 Result
2139 total() const
2140 {
2141 size_type size = this->size();
2142 Result tmp = 0;
2143 for (off_type i = 0; i < size; i++)
2144 tmp += vresult[i];
2145 return tmp;
2146 }
2147
2148 size_type size() const { return vresult.size(); }
2149 std::string
2150 str() const
2151 {
2152 size_type size = this->size();
2153 std::string tmp = "(";
2154 for (off_type i = 0; i < size; i++)
2155 tmp += csprintf("%s ",to_string(vresult[i]));
2156 tmp += ")";
2157 return tmp;
2158 }
2159};
2160
2161template <class Op>
2162struct OpString;
2163
2164template<>
2165struct OpString<std::plus<Result> >
2166{
2167 static std::string str() { return "+"; }
2168};
2169
2170template<>
2171struct OpString<std::minus<Result> >
2172{
2173 static std::string str() { return "-"; }
2174};
2175
2176template<>
2177struct OpString<std::multiplies<Result> >
2178{
2179 static std::string str() { return "*"; }
2180};
2181
2182template<>
2183struct OpString<std::divides<Result> >
2184{
2185 static std::string str() { return "/"; }
2186};
2187
2188template<>
2189struct OpString<std::modulus<Result> >
2190{
2191 static std::string str() { return "%"; }
2192};
2193
2194template<>
2195struct OpString<std::negate<Result> >
2196{
2197 static std::string str() { return "-"; }
2198};
2199
2200template <class Op>
2201class UnaryNode : public Node
2202{
2203 public:
2204 NodePtr l;
2205 mutable VResult vresult;
2206
2207 public:
2208 UnaryNode(NodePtr &p) : l(p) {}
2209
2210 const VResult &
2211 result() const
2212 {
2213 const VResult &lvec = l->result();
2214 size_type size = lvec.size();
2215
2216 assert(size > 0);
2217
2218 vresult.resize(size);
2219 Op op;
2220 for (off_type i = 0; i < size; ++i)
2221 vresult[i] = op(lvec[i]);
2222
2223 return vresult;
2224 }
2225
2226 Result
2227 total() const
2228 {
2229 const VResult &vec = this->result();
2230 Result total = 0.0;
2231 for (off_type i = 0; i < size(); i++)
2232 total += vec[i];
2233 return total;
2234 }
2235
2236 size_type size() const { return l->size(); }
2237
2238 std::string
2239 str() const
2240 {
2241 return OpString<Op>::str() + l->str();
2242 }
2243};
2244
2245template <class Op>
2246class BinaryNode : public Node
2247{
2248 public:
2249 NodePtr l;
2250 NodePtr r;
2251 mutable VResult vresult;
2252
2253 public:
2254 BinaryNode(NodePtr &a, NodePtr &b) : l(a), r(b) {}
2255
2256 const VResult &
2257 result() const
2258 {
2259 Op op;
2260 const VResult &lvec = l->result();
2261 const VResult &rvec = r->result();
2262
2263 assert(lvec.size() > 0 && rvec.size() > 0);
2264
2265 if (lvec.size() == 1 && rvec.size() == 1) {
2266 vresult.resize(1);
2267 vresult[0] = op(lvec[0], rvec[0]);
2268 } else if (lvec.size() == 1) {
2269 size_type size = rvec.size();
2270 vresult.resize(size);
2271 for (off_type i = 0; i < size; ++i)
2272 vresult[i] = op(lvec[0], rvec[i]);
2273 } else if (rvec.size() == 1) {
2274 size_type size = lvec.size();
2275 vresult.resize(size);
2276 for (off_type i = 0; i < size; ++i)
2277 vresult[i] = op(lvec[i], rvec[0]);
2278 } else if (rvec.size() == lvec.size()) {
2279 size_type size = rvec.size();
2280 vresult.resize(size);
2281 for (off_type i = 0; i < size; ++i)
2282 vresult[i] = op(lvec[i], rvec[i]);
2283 }
2284
2285 return vresult;
2286 }
2287
2288 Result
2289 total() const
2290 {
2291 const VResult &vec = this->result();
2292 Result total = 0.0;
2293 for (off_type i = 0; i < size(); i++)
2294 total += vec[i];
2295 return total;
2296 }
2297
2298 size_type
2299 size() const
2300 {
2301 size_type ls = l->size();
2302 size_type rs = r->size();
2303 if (ls == 1) {
2304 return rs;
2305 } else if (rs == 1) {
2306 return ls;
2307 } else {
2308 assert(ls == rs && "Node vector sizes are not equal");
2309 return ls;
2310 }
2311 }
2312
2313 std::string
2314 str() const
2315 {
2316 return csprintf("(%s %s %s)", l->str(), OpString<Op>::str(), r->str());
2317 }
2318};
2319
2320template <class Op>
2321class SumNode : public Node
2322{
2323 public:
2324 NodePtr l;
2325 mutable VResult vresult;
2326
2327 public:
2328 SumNode(NodePtr &p) : l(p), vresult(1) {}
2329
2330 const VResult &
2331 result() const
2332 {
2333 const VResult &lvec = l->result();
2334 size_type size = lvec.size();
2335 assert(size > 0);
2336
2337 vresult[0] = 0.0;
2338
2339 Op op;
2340 for (off_type i = 0; i < size; ++i)
2341 vresult[0] = op(vresult[0], lvec[i]);
2342
2343 return vresult;
2344 }
2345
2346 Result
2347 total() const
2348 {
2349 const VResult &lvec = l->result();
2350 size_type size = lvec.size();
2351 assert(size > 0);
2352
2353 Result vresult = 0.0;
2354
2355 Op op;
2356 for (off_type i = 0; i < size; ++i)
2357 vresult = op(vresult, lvec[i]);
2358
2359 return vresult;
2360 }
2361
2362 size_type size() const { return 1; }
2363
2364 std::string
2365 str() const
2366 {
2367 return csprintf("total(%s)", l->str());
2368 }
2369};
2370
2371
2372//////////////////////////////////////////////////////////////////////
2373//
2374// Visible Statistics Types
2375//
2376//////////////////////////////////////////////////////////////////////
2377/**
2378 * @defgroup VisibleStats "Statistic Types"
2379 * These are the statistics that are used in the simulator.
2380 * @{
2381 */
2382
2383/**
2384 * This is a simple scalar statistic, like a counter.
2385 * @sa Stat, ScalarBase, StatStor
2386 */
2387class Scalar : public ScalarBase<Scalar, StatStor>
2388{
2389 public:
2390 using ScalarBase<Scalar, StatStor>::operator=;
2391};
2392
2393/**
2394 * A stat that calculates the per tick average of a value.
2395 * @sa Stat, ScalarBase, AvgStor
2396 */
2397class Average : public ScalarBase<Average, AvgStor>
2398{
2399 public:
2400 using ScalarBase<Average, AvgStor>::operator=;
2401};
2402
2403class Value : public ValueBase<Value>
2404{
2405};
2406
2407/**
2408 * A vector of scalar stats.
2409 * @sa Stat, VectorBase, StatStor
2410 */
2411class Vector : public VectorBase<Vector, StatStor>
2412{
2413};
2414
2415/**
2416 * A vector of Average stats.
2417 * @sa Stat, VectorBase, AvgStor
2418 */
2419class AverageVector : public VectorBase<AverageVector, AvgStor>
2420{
2421};
2422
2423/**
2424 * A 2-Dimensional vecto of scalar stats.
2425 * @sa Stat, Vector2dBase, StatStor
2426 */
2427class Vector2d : public Vector2dBase<Vector2d, StatStor>
2428{
2429};
2430
2431/**
2432 * A simple distribution stat.
2433 * @sa Stat, DistBase, DistStor
2434 */
2435class Distribution : public DistBase<Distribution, DistStor>
2436{
2437 public:
2438 /**
2439 * Set the parameters of this distribution. @sa DistStor::Params
2440 * @param min The minimum value of the distribution.
2441 * @param max The maximum value of the distribution.
2442 * @param bkt The number of values in each bucket.
2443 * @return A reference to this distribution.
2444 */
2445 Distribution &
2446 init(Counter min, Counter max, Counter bkt)
2447 {
2448 DistStor::Params *params = new DistStor::Params;
2449 params->min = min;
2450 params->max = max;
2451 params->bucket_size = bkt;
2452 params->buckets = (size_type)ceil((max - min + 1.0) / bkt);
2453 this->setParams(params);
2454 this->doInit();
2455 return this->self();
2456 }
2457};
2458
2459/**
2460 * A simple histogram stat.
2461 * @sa Stat, DistBase, HistStor
2462 */
2463class Histogram : public DistBase<Histogram, HistStor>
2464{
2465 public:
2466 /**
2467 * Set the parameters of this histogram. @sa HistStor::Params
2468 * @param size The number of buckets in the histogram
2469 * @return A reference to this histogram.
2470 */
2471 Histogram &
2472 init(size_type size)
2473 {
2474 HistStor::Params *params = new HistStor::Params;
2475 params->buckets = size;
2476 this->setParams(params);
2477 this->doInit();
2478 return this->self();
2479 }
2480};
2481
2482/**
2483 * Calculates the mean and variance of all the samples.
2484 * @sa DistBase, SampleStor
2485 */
2486class StandardDeviation : public DistBase<StandardDeviation, SampleStor>
2487{
2488 public:
2489 /**
2490 * Construct and initialize this distribution.
2491 */
2492 StandardDeviation()
2493 {
2494 SampleStor::Params *params = new SampleStor::Params;
2495 this->doInit();
2496 this->setParams(params);
2497 }
2498};
2499
2500/**
2501 * Calculates the per tick mean and variance of the samples.
2502 * @sa DistBase, AvgSampleStor
2503 */
2504class AverageDeviation : public DistBase<AverageDeviation, AvgSampleStor>
2505{
2506 public:
2507 /**
2508 * Construct and initialize this distribution.
2509 */
2510 AverageDeviation()
2511 {
2512 AvgSampleStor::Params *params = new AvgSampleStor::Params;
2513 this->doInit();
2514 this->setParams(params);
2515 }
2516};
2517
2518/**
2519 * A vector of distributions.
2520 * @sa VectorDistBase, DistStor
2521 */
2522class VectorDistribution : public VectorDistBase<VectorDistribution, DistStor>
2523{
2524 public:
2525 /**
2526 * Initialize storage and parameters for this distribution.
2527 * @param size The size of the vector (the number of distributions).
2528 * @param min The minimum value of the distribution.
2529 * @param max The maximum value of the distribution.
2530 * @param bkt The number of values in each bucket.
2531 * @return A reference to this distribution.
2532 */
2533 VectorDistribution &
2534 init(size_type size, Counter min, Counter max, Counter bkt)
2535 {
2536 DistStor::Params *params = new DistStor::Params;
2537 params->min = min;
2538 params->max = max;
2539 params->bucket_size = bkt;
2540 params->buckets = (size_type)ceil((max - min + 1.0) / bkt);
2541 this->setParams(params);
2542 this->doInit(size);
2543 return this->self();
2544 }
2545};
2546
2547/**
2548 * This is a vector of StandardDeviation stats.
2549 * @sa VectorDistBase, SampleStor
2550 */
2551class VectorStandardDeviation
2552 : public VectorDistBase<VectorStandardDeviation, SampleStor>
2553{
2554 public:
2555 /**
2556 * Initialize storage for this distribution.
2557 * @param size The size of the vector.
2558 * @return A reference to this distribution.
2559 */
2560 VectorStandardDeviation &
2561 init(size_type size)
2562 {
2563 SampleStor::Params *params = new SampleStor::Params;
2564 this->doInit(size);
2565 this->setParams(params);
2566 return this->self();
2567 }
2568};
2569
2570/**
2571 * This is a vector of AverageDeviation stats.
2572 * @sa VectorDistBase, AvgSampleStor
2573 */
2574class VectorAverageDeviation
2575 : public VectorDistBase<VectorAverageDeviation, AvgSampleStor>
2576{
2577 public:
2578 /**
2579 * Initialize storage for this distribution.
2580 * @param size The size of the vector.
2581 * @return A reference to this distribution.
2582 */
2583 VectorAverageDeviation &
2584 init(size_type size)
2585 {
2586 AvgSampleStor::Params *params = new AvgSampleStor::Params;
2587 this->doInit(size);
2588 this->setParams(params);
2589 return this->self();
2590 }
2591};
2592
2593template <class Stat>
2594class FormulaInfoProxy : public InfoProxy<Stat, FormulaInfo>
2595{
2596 protected:
2597 mutable VResult vec;
2598 mutable VCounter cvec;
2599
2600 public:
2601 FormulaInfoProxy(Stat &stat) : InfoProxy<Stat, FormulaInfo>(stat) {}
2602
2603 size_type size() const { return this->s.size(); }
2604
2605 const VResult &
2606 result() const
2607 {
2608 this->s.result(vec);
2609 return vec;
2610 }
2611 Result total() const { return this->s.total(); }
2612 VCounter &value() const { return cvec; }
2613
2614 std::string str() const { return this->s.str(); }
2615};
2616
2617template <class Stat>
2618class SparseHistInfoProxy : public InfoProxy<Stat, SparseHistInfo>
2619{
2620 public:
2621 SparseHistInfoProxy(Stat &stat) : InfoProxy<Stat, SparseHistInfo>(stat) {}
2622};
2623
2624/**
2625 * Implementation of a sparse histogram stat. The storage class is
2626 * determined by the Storage template.
2627 */
2628template <class Derived, class Stor>
2629class SparseHistBase : public DataWrap<Derived, SparseHistInfoProxy>
2630{
2631 public:
2632 typedef SparseHistInfoProxy<Derived> Info;
2633 typedef Stor Storage;
2634 typedef typename Stor::Params Params;
2635
2636 protected:
2637 /** The storage for this stat. */
2638 char storage[sizeof(Storage)];
2639
2640 protected:
2641 /**
2642 * Retrieve the storage.
2643 * @return The storage object for this stat.
2644 */
2645 Storage *
2646 data()
2647 {
2648 return reinterpret_cast<Storage *>(storage);
2649 }
2650
2651 /**
2652 * Retrieve a const pointer to the storage.
2653 * @return A const pointer to the storage object for this stat.
2654 */
2655 const Storage *
2656 data() const
2657 {
2658 return reinterpret_cast<const Storage *>(storage);
2659 }
2660
2661 void
2662 doInit()
2663 {
2664 new (storage) Storage(this->info());
2665 this->setInit();
2666 }
2667
2668 public:
2669 SparseHistBase() { }
2670
2671 /**
2672 * Add a value to the distribtion n times. Calls sample on the storage
2673 * class.
2674 * @param v The value to add.
2675 * @param n The number of times to add it, defaults to 1.
2676 */
2677 template <typename U>
2678 void sample(const U &v, int n = 1) { data()->sample(v, n); }
2679
2680 /**
2681 * Return the number of entries in this stat.
2682 * @return The number of entries.
2683 */
2684 size_type size() const { return data()->size(); }
2685 /**
2686 * Return true if no samples have been added.
2687 * @return True if there haven't been any samples.
2688 */
2689 bool zero() const { return data()->zero(); }
2690
2691 void
2692 prepare()
2693 {
2694 Info *info = this->info();
2695 data()->prepare(info, info->data);
2696 }
2697
2698 /**
2699 * Reset stat value to default
2700 */
2701 void
2702 reset()
2703 {
2704 data()->reset(this->info());
2705 }
2706};
2707
2708/**
2709 * Templatized storage and interface for a sparse histogram stat.
2710 */
2711class SparseHistStor
2712{
2713 public:
2714 /** The parameters for a sparse histogram stat. */
2715 struct Params : public DistParams
2716 {
2717 Params() : DistParams(Hist) {}
2718 };
2719
2720 private:
2721 /** Counter for number of samples */
2722 Counter samples;
2723 /** Counter for each bucket. */
2724 MCounter cmap;
2725
2726 public:
2727 SparseHistStor(Info *info)
2728 {
2729 reset(info);
2730 }
2731
2732 /**
2733 * Add a value to the distribution for the given number of times.
2734 * @param val The value to add.
2735 * @param number The number of times to add the value.
2736 */
2737 void
2738 sample(Counter val, int number)
2739 {
2740 cmap[val] += number;
2741 samples += number;
2742 }
2743
2744 /**
2745 * Return the number of buckets in this distribution.
2746 * @return the number of buckets.
2747 */
2748 size_type size() const { return cmap.size(); }
2749
2750 /**
2751 * Returns true if any calls to sample have been made.
2752 * @return True if any values have been sampled.
2753 */
2754 bool
2755 zero() const
2756 {
2757 return samples == Counter();
2758 }
2759
2760 void
2761 prepare(Info *info, SparseHistData &data)
2762 {
2763 MCounter::iterator it;
2764 data.cmap.clear();
2765 for (it = cmap.begin(); it != cmap.end(); it++) {
2766 data.cmap[(*it).first] = (*it).second;
2767 }
2768
2769 data.samples = samples;
2770 }
2771
2772 /**
2773 * Reset stat value to default
2774 */
2775 void
2776 reset(Info *info)
2777 {
2778 cmap.clear();
2779 samples = 0;
2780 }
2781};
2782
2783class SparseHistogram : public SparseHistBase<SparseHistogram, SparseHistStor>
2784{
2785 public:
2786 /**
2787 * Set the parameters of this histogram. @sa HistStor::Params
2788 * @param size The number of buckets in the histogram
2789 * @return A reference to this histogram.
2790 */
2791 SparseHistogram &
2792 init(size_type size)
2793 {
2794 SparseHistStor::Params *params = new SparseHistStor::Params;
2795 this->setParams(params);
2796 this->doInit();
2797 return this->self();
2798 }
2799};
2800
2801class Temp;
2802/**
2803 * A formula for statistics that is calculated when printed. A formula is
2804 * stored as a tree of Nodes that represent the equation to calculate.
2805 * @sa Stat, ScalarStat, VectorStat, Node, Temp
2806 */
2807class Formula : public DataWrapVec<Formula, FormulaInfoProxy>
2808{
2809 protected:
2810 /** The root of the tree which represents the Formula */
2811 NodePtr root;
2812 friend class Temp;
2813
2814 public:
2815 /**
2816 * Create and initialize thie formula, and register it with the database.
2817 */
2818 Formula();
2819
2820 /**
2821 * Create a formula with the given root node, register it with the
2822 * database.
2823 * @param r The root of the expression tree.
2824 */
2825 Formula(Temp r);
2826
2827 /**
2828 * Set an unitialized Formula to the given root.
2829 * @param r The root of the expression tree.
2830 * @return a reference to this formula.
2831 */
2832 const Formula &operator=(Temp r);
2833
2834 /**
2835 * Add the given tree to the existing one.
2836 * @param r The root of the expression tree.
2837 * @return a reference to this formula.
2838 */
2839 const Formula &operator+=(Temp r);
2840 /**
2841 * Return the result of the Fomula in a vector. If there were no Vector
2842 * components to the Formula, then the vector is size 1. If there were,
2843 * like x/y with x being a vector of size 3, then the result returned will
2844 * be x[0]/y, x[1]/y, x[2]/y, respectively.
2845 * @return The result vector.
2846 */
2847 void result(VResult &vec) const;
2848
2849 /**
2850 * Return the total Formula result. If there is a Vector
2851 * component to this Formula, then this is the result of the
2852 * Formula if the formula is applied after summing all the
2853 * components of the Vector. For example, if Formula is x/y where
2854 * x is size 3, then total() will return (x[1]+x[2]+x[3])/y. If
2855 * there is no Vector component, total() returns the same value as
2856 * the first entry in the VResult val() returns.
2857 * @return The total of the result vector.
2858 */
2859 Result total() const;
2860
2861 /**
2862 * Return the number of elements in the tree.
2863 */
2864 size_type size() const;
2865
2866 void prepare() { }
2867
2868 /**
2869 * Formulas don't need to be reset
2870 */
2871 void reset();
2872
2873 /**
2874 *
2875 */
2876 bool zero() const;
2877
2878 std::string str() const;
2879};
2880
2881class FormulaNode : public Node
2882{
2883 private:
2884 const Formula &formula;
2885 mutable VResult vec;
2886
2887 public:
2888 FormulaNode(const Formula &f) : formula(f) {}
2889
2890 size_type size() const { return formula.size(); }
2891 const VResult &result() const { formula.result(vec); return vec; }
2892 Result total() const { return formula.total(); }
2893
2894 std::string str() const { return formula.str(); }
2895};
2896
2897/**
2898 * Helper class to construct formula node trees.
2899 */
2900class Temp
2901{
2902 protected:
2903 /**
2904 * Pointer to a Node object.
2905 */
2906 NodePtr node;
2907
2908 public:
2909 /**
2910 * Copy the given pointer to this class.
2911 * @param n A pointer to a Node object to copy.
2912 */
2913 Temp(NodePtr n) : node(n) { }
2914
2915 /**
2916 * Return the node pointer.
2917 * @return the node pointer.
2918 */
2919 operator NodePtr&() { return node; }
2920
2921 public:
2922 /**
2923 * Create a new ScalarStatNode.
2924 * @param s The ScalarStat to place in a node.
2925 */
2926 Temp(const Scalar &s)
2927 : node(new ScalarStatNode(s.info()))
2928 { }
2929
2930 /**
2931 * Create a new ScalarStatNode.
2932 * @param s The ScalarStat to place in a node.
2933 */
2934 Temp(const Value &s)
2935 : node(new ScalarStatNode(s.info()))
2936 { }
2937
2938 /**
2939 * Create a new ScalarStatNode.
2940 * @param s The ScalarStat to place in a node.
2941 */
2942 Temp(const Average &s)
2943 : node(new ScalarStatNode(s.info()))
2944 { }
2945
2946 /**
2947 * Create a new VectorStatNode.
2948 * @param s The VectorStat to place in a node.
2949 */
2950 Temp(const Vector &s)
2951 : node(new VectorStatNode(s.info()))
2952 { }
2953
2954 Temp(const AverageVector &s)
2955 : node(new VectorStatNode(s.info()))
2956 { }
2957
2958 /**
2959 *
2960 */
2961 Temp(const Formula &f)
2962 : node(new FormulaNode(f))
2963 { }
2964
2965 /**
2966 * Create a new ScalarProxyNode.
2967 * @param p The ScalarProxy to place in a node.
2968 */
2969 template <class Stat>
2970 Temp(const ScalarProxy<Stat> &p)
2971 : node(new ScalarProxyNode<Stat>(p))
2972 { }
2973
2974 /**
2975 * Create a ConstNode
2976 * @param value The value of the const node.
2977 */
2978 Temp(signed char value)
2979 : node(new ConstNode<signed char>(value))
2980 { }
2981
2982 /**
2983 * Create a ConstNode
2984 * @param value The value of the const node.
2985 */
2986 Temp(unsigned char value)
2987 : node(new ConstNode<unsigned char>(value))
2988 { }
2989
2990 /**
2991 * Create a ConstNode
2992 * @param value The value of the const node.
2993 */
2994 Temp(signed short value)
2995 : node(new ConstNode<signed short>(value))
2996 { }
2997
2998 /**
2999 * Create a ConstNode
3000 * @param value The value of the const node.
3001 */
3002 Temp(unsigned short value)
3003 : node(new ConstNode<unsigned short>(value))
3004 { }
3005
3006 /**
3007 * Create a ConstNode
3008 * @param value The value of the const node.
3009 */
3010 Temp(signed int value)
3011 : node(new ConstNode<signed int>(value))
3012 { }
3013
3014 /**
3015 * Create a ConstNode
3016 * @param value The value of the const node.
3017 */
3018 Temp(unsigned int value)
3019 : node(new ConstNode<unsigned int>(value))
3020 { }
3021
3022 /**
3023 * Create a ConstNode
3024 * @param value The value of the const node.
3025 */
3026 Temp(signed long value)
3027 : node(new ConstNode<signed long>(value))
3028 { }
3029
3030 /**
3031 * Create a ConstNode
3032 * @param value The value of the const node.
3033 */
3034 Temp(unsigned long value)
3035 : node(new ConstNode<unsigned long>(value))
3036 { }
3037
3038 /**
3039 * Create a ConstNode
3040 * @param value The value of the const node.
3041 */
3042 Temp(signed long long value)
3043 : node(new ConstNode<signed long long>(value))
3044 { }
3045
3046 /**
3047 * Create a ConstNode
3048 * @param value The value of the const node.
3049 */
3050 Temp(unsigned long long value)
3051 : node(new ConstNode<unsigned long long>(value))
3052 { }
3053
3054 /**
3055 * Create a ConstNode
3056 * @param value The value of the const node.
3057 */
3058 Temp(float value)
3059 : node(new ConstNode<float>(value))
3060 { }
3061
3062 /**
3063 * Create a ConstNode
3064 * @param value The value of the const node.
3065 */
3066 Temp(double value)
3067 : node(new ConstNode<double>(value))
3068 { }
3069};
3070
3071
3072/**
3073 * @}
3074 */
3075
3076inline Temp
3077operator+(Temp l, Temp r)
3078{
3079 return NodePtr(new BinaryNode<std::plus<Result> >(l, r));
3080}
3081
3082inline Temp
3083operator-(Temp l, Temp r)
3084{
3085 return NodePtr(new BinaryNode<std::minus<Result> >(l, r));
3086}
3087
3088inline Temp
3089operator*(Temp l, Temp r)
3090{
3091 return NodePtr(new BinaryNode<std::multiplies<Result> >(l, r));
3092}
3093
3094inline Temp
3095operator/(Temp l, Temp r)
3096{
3097 return NodePtr(new BinaryNode<std::divides<Result> >(l, r));
3098}
3099
3100inline Temp
3101operator-(Temp l)
3102{
3103 return NodePtr(new UnaryNode<std::negate<Result> >(l));
3104}
3105
3106template <typename T>
3107inline Temp
3108constant(T val)
3109{
3110 return NodePtr(new ConstNode<T>(val));
3111}
3112
3113template <typename T>
3114inline Temp
3115constantVector(T val)
3116{
3117 return NodePtr(new ConstVectorNode<T>(val));
3118}
3119
3120inline Temp
3121sum(Temp val)
3122{
3123 return NodePtr(new SumNode<std::plus<Result> >(val));
3124}
3125
3126/** Dump all statistics data to the registered outputs */
3127void dump();
3128void reset();
3129void enable();
3130bool enabled();
3131
3132/**
3133 * Register a callback that should be called whenever statistics are
3134 * reset
3135 */
3136void registerResetCallback(Callback *cb);
3137
3138std::list<Info *> &statsList();
3139
3140} // namespace Stats
3141
3142#endif // __BASE_STATISTICS_HH__