Deleted Added
sdiff udiff text old ( 6026:45c8a91d1174 ) new ( 6128:fdfbd4c6e449 )
full compact
1/*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Nathan Binkert
29 */
30
31/** @file
32 * Declaration of Statistics objects.
33 */
34
35/**
36* @todo
37*
38* Generalized N-dimensinal vector
39* documentation
40* key stats
41* interval stats
42* -- these both can use the same function that prints out a
43* specific set of stats
44* VectorStandardDeviation totals
45* Document Namespaces
46*/
47#ifndef __BASE_STATISTICS_HH__
48#define __BASE_STATISTICS_HH__
49
50#include <algorithm>
51#include <cassert>
52#ifdef __SUNPRO_CC
53#include <math.h>
54#endif
55#include <cmath>
56#include <functional>
57#include <iosfwd>
58#include <list>
59#include <string>
60#include <vector>
61
62#include "base/cast.hh"
63#include "base/cprintf.hh"
64#include "base/intmath.hh"
65#include "base/refcnt.hh"
66#include "base/str.hh"
67#include "base/stats/flags.hh"
68#include "base/stats/visit.hh"
69#include "base/stats/types.hh"
70#include "sim/host.hh"
71
72class Callback;
73
74/** The current simulated tick. */
75extern Tick curTick;
76
77/* A namespace for all of the Statistics */
78namespace Stats {
79
80struct StorageParams
81{
82 virtual ~StorageParams();
83};
84
85//////////////////////////////////////////////////////////////////////
86//
87// Statistics Framework Base classes
88//
89//////////////////////////////////////////////////////////////////////
90class Info
91{
92 public:
93 /** The name of the stat. */
94 std::string name;
95 /** The description of the stat. */
96 std::string desc;
97 /** The formatting flags. */
98 StatFlags flags;
99 /** The display precision. */
100 int precision;
101 /** A pointer to a prerequisite Stat. */
102 const Info *prereq;
103 /**
104 * A unique stat ID for each stat in the simulator.
105 * Can be used externally for lookups as well as for debugging.
106 */
107 static int id_count;
108 int id;
109
110 public:
111 const StorageParams *storageParams;
112
113 public:
114 Info();
115 virtual ~Info();
116
117 /** Set the name of this statistic */
118 void setName(const std::string &name);
119
120 /**
121 * Check that this stat has been set up properly and is ready for
122 * use
123 * @return true for success
124 */
125 virtual bool check() const = 0;
126 bool baseCheck() const;
127
128 /**
129 * Enable the stat for use
130 */
131 virtual void enable();
132
133 /**
134 * Prepare the stat for dumping.
135 */
136 virtual void prepare() = 0;
137
138 /**
139 * Reset the stat to the default state.
140 */
141 virtual void reset() = 0;
142
143 /**
144 * @return true if this stat has a value and satisfies its
145 * requirement as a prereq
146 */
147 virtual bool zero() const = 0;
148
149 /**
150 * Visitor entry for outputing statistics data
151 */
152 virtual void visit(Visit &visitor) = 0;
153
154 /**
155 * Checks if the first stat's name is alphabetically less than the second.
156 * This function breaks names up at periods and considers each subname
157 * separately.
158 * @param stat1 The first stat.
159 * @param stat2 The second stat.
160 * @return stat1's name is alphabetically before stat2's
161 */
162 static bool less(Info *stat1, Info *stat2);
163};
164struct StorageParams;
165
166template <class Stat, class Base>
167class InfoProxy : public Base
168{
169 protected:
170 Stat &s;
171
172 public:
173 InfoProxy(Stat &stat) : s(stat) {}
174
175 bool check() const { return s.check(); }
176 void prepare() { s.prepare(); }
177 void reset() { s.reset(); }
178 void
179 visit(Visit &visitor)
180 {
181 visitor.visit(*static_cast<Base *>(this));
182 }
183 bool zero() const { return s.zero(); }
184};
185
186class ScalarInfo : public Info
187{
188 public:
189 virtual Counter value() const = 0;
190 virtual Result result() const = 0;
191 virtual Result total() const = 0;
192};
193
194template <class Stat>
195class ScalarInfoProxy : public InfoProxy<Stat, ScalarInfo>
196{
197 public:
198 ScalarInfoProxy(Stat &stat) : InfoProxy<Stat, ScalarInfo>(stat) {}
199
200 Counter value() const { return this->s.value(); }
201 Result result() const { return this->s.result(); }
202 Result total() const { return this->s.total(); }
203};
204
205class VectorInfo : public Info
206{
207 public:
208 /** Names and descriptions of subfields. */
209 std::vector<std::string> subnames;
210 std::vector<std::string> subdescs;
211
212 public:
213 void enable();
214
215 public:
216 virtual size_type size() const = 0;
217 virtual const VCounter &value() const = 0;
218 virtual const VResult &result() const = 0;
219 virtual Result total() const = 0;
220};
221
222template <class Stat>
223class VectorInfoProxy : public InfoProxy<Stat, VectorInfo>
224{
225 protected:
226 mutable VCounter cvec;
227 mutable VResult rvec;
228
229 public:
230 VectorInfoProxy(Stat &stat) : InfoProxy<Stat, VectorInfo>(stat) {}
231
232 size_type size() const { return this->s.size(); }
233
234 VCounter &
235 value() const
236 {
237 this->s.value(cvec);
238 return cvec;
239 }
240
241 const VResult &
242 result() const
243 {
244 this->s.result(rvec);
245 return rvec;
246 }
247
248 Result total() const { return this->s.total(); }
249};
250
251struct DistData
252{
253 Counter min_val;
254 Counter max_val;
255 Counter underflow;
256 Counter overflow;
257 VCounter cvec;
258 Counter sum;
259 Counter squares;
260 Counter samples;
261};
262
263class DistInfo : public Info
264{
265 public:
266 /** Local storage for the entry values, used for printing. */
267 DistData data;
268};
269
270template <class Stat>
271class DistInfoProxy : public InfoProxy<Stat, DistInfo>
272{
273 public:
274 DistInfoProxy(Stat &stat) : InfoProxy<Stat, DistInfo>(stat) {}
275};
276
277class VectorDistInfo : public Info
278{
279 public:
280 std::vector<DistData> data;
281
282 /** Names and descriptions of subfields. */
283 std::vector<std::string> subnames;
284 std::vector<std::string> subdescs;
285 void enable();
286
287 protected:
288 /** Local storage for the entry values, used for printing. */
289 mutable VResult rvec;
290
291 public:
292 virtual size_type size() const = 0;
293};
294
295template <class Stat>
296class VectorDistInfoProxy : public InfoProxy<Stat, VectorDistInfo>
297{
298 public:
299 VectorDistInfoProxy(Stat &stat) : InfoProxy<Stat, VectorDistInfo>(stat) {}
300
301 size_type size() const { return this->s.size(); }
302};
303
304class Vector2dInfo : public Info
305{
306 public:
307 /** Names and descriptions of subfields. */
308 std::vector<std::string> subnames;
309 std::vector<std::string> subdescs;
310 std::vector<std::string> y_subnames;
311
312 size_type x;
313 size_type y;
314
315 /** Local storage for the entry values, used for printing. */
316 mutable VCounter cvec;
317
318 void enable();
319};
320
321template <class Stat>
322class Vector2dInfoProxy : public InfoProxy<Stat, Vector2dInfo>
323{
324 public:
325 Vector2dInfoProxy(Stat &stat) : InfoProxy<Stat, Vector2dInfo>(stat) {}
326};
327
328class InfoAccess
329{
330 protected:
331 /** Set up an info class for this statistic */
332 void setInfo(Info *info);
333 /** Save Storage class parameters if any */
334 void setParams(const StorageParams *params);
335 /** Save Storage class parameters if any */
336 void setInit();
337
338 /** Grab the information class for this statistic */
339 Info *info();
340 /** Grab the information class for this statistic */
341 const Info *info() const;
342
343 public:
344 /**
345 * Reset the stat to the default state.
346 */
347 void reset() { }
348
349 /**
350 * @return true if this stat has a value and satisfies its
351 * requirement as a prereq
352 */
353 bool zero() const { return true; }
354
355 /**
356 * Check that this stat has been set up properly and is ready for
357 * use
358 * @return true for success
359 */
360 bool check() const { return true; }
361};
362
363template <class Derived, template <class> class InfoProxyType>
364class DataWrap : public InfoAccess
365{
366 public:
367 typedef InfoProxyType<Derived> Info;
368
369 protected:
370 Derived &self() { return *static_cast<Derived *>(this); }
371
372 protected:
373 Info *
374 info()
375 {
376 return safe_cast<Info *>(InfoAccess::info());
377 }
378
379 public:
380 const Info *
381 info() const
382 {
383 return safe_cast<const Info *>(InfoAccess::info());
384 }
385
386 protected:
387 /**
388 * Copy constructor, copies are not allowed.
389 */
390 DataWrap(const DataWrap &stat);
391
392 /**
393 * Can't copy stats.
394 */
395 void operator=(const DataWrap &);
396
397 public:
398 DataWrap()
399 {
400 this->setInfo(new Info(self()));
401 }
402
403 /**
404 * Set the name and marks this stat to print at the end of simulation.
405 * @param name The new name.
406 * @return A reference to this stat.
407 */
408 Derived &
409 name(const std::string &name)
410 {
411 Info *info = this->info();
412 info->setName(name);
413 info->flags |= print;
414 return this->self();
415 }
416 const std::string &name() const { return this->info()->name; }
417
418 /**
419 * Set the description and marks this stat to print at the end of
420 * simulation.
421 * @param desc The new description.
422 * @return A reference to this stat.
423 */
424 Derived &
425 desc(const std::string &_desc)
426 {
427 this->info()->desc = _desc;
428 return this->self();
429 }
430
431 /**
432 * Set the precision and marks this stat to print at the end of simulation.
433 * @param _precision The new precision
434 * @return A reference to this stat.
435 */
436 Derived &
437 precision(int _precision)
438 {
439 this->info()->precision = _precision;
440 return this->self();
441 }
442
443 /**
444 * Set the flags and marks this stat to print at the end of simulation.
445 * @param f The new flags.
446 * @return A reference to this stat.
447 */
448 Derived &
449 flags(StatFlags _flags)
450 {
451 this->info()->flags |= _flags;
452 return this->self();
453 }
454
455 /**
456 * Set the prerequisite stat and marks this stat to print at the end of
457 * simulation.
458 * @param prereq The prerequisite stat.
459 * @return A reference to this stat.
460 */
461 template <class Stat>
462 Derived &
463 prereq(const Stat &prereq)
464 {
465 this->info()->prereq = prereq.info();
466 return this->self();
467 }
468};
469
470template <class Derived, template <class> class InfoProxyType>
471class DataWrapVec : public DataWrap<Derived, InfoProxyType>
472{
473 public:
474 typedef InfoProxyType<Derived> Info;
475
476 // The following functions are specific to vectors. If you use them
477 // in a non vector context, you will get a nice compiler error!
478
479 /**
480 * Set the subfield name for the given index, and marks this stat to print
481 * at the end of simulation.
482 * @param index The subfield index.
483 * @param name The new name of the subfield.
484 * @return A reference to this stat.
485 */
486 Derived &
487 subname(off_type index, const std::string &name)
488 {
489 Derived &self = this->self();
490 Info *info = self.info();
491
492 std::vector<std::string> &subn = info->subnames;
493 if (subn.size() <= index)
494 subn.resize(index + 1);
495 subn[index] = name;
496 return self;
497 }
498
499 // The following functions are specific to 2d vectors. If you use
500 // them in a non vector context, you will get a nice compiler
501 // error because info doesn't have the right variables.
502
503 /**
504 * Set the subfield description for the given index and marks this stat to
505 * print at the end of simulation.
506 * @param index The subfield index.
507 * @param desc The new description of the subfield
508 * @return A reference to this stat.
509 */
510 Derived &
511 subdesc(off_type index, const std::string &desc)
512 {
513 Info *info = this->info();
514
515 std::vector<std::string> &subd = info->subdescs;
516 if (subd.size() <= index)
517 subd.resize(index + 1);
518 subd[index] = desc;
519
520 return this->self();
521 }
522
523 void
524 prepare()
525 {
526 Derived &self = this->self();
527 Info *info = this->info();
528
529 size_t size = self.size();
530 for (off_type i = 0; i < size; ++i)
531 self.data(i)->prepare(info);
532 }
533
534 void
535 reset()
536 {
537 Derived &self = this->self();
538 Info *info = this->info();
539
540 size_t size = self.size();
541 for (off_type i = 0; i < size; ++i)
542 self.data(i)->reset(info);
543 }
544};
545
546template <class Derived, template <class> class InfoProxyType>
547class DataWrapVec2d : public DataWrapVec<Derived, InfoProxyType>
548{
549 public:
550 typedef InfoProxyType<Derived> Info;
551
552 /**
553 * @warning This makes the assumption that if you're gonna subnames a 2d
554 * vector, you're subnaming across all y
555 */
556 Derived &
557 ysubnames(const char **names)
558 {
559 Derived &self = this->self();
560 Info *info = this->info();
561
562 info->y_subnames.resize(self.y);
563 for (off_type i = 0; i < self.y; ++i)
564 info->y_subnames[i] = names[i];
565 return self;
566 }
567
568 Derived &
569 ysubname(off_type index, const std::string subname)
570 {
571 Derived &self = this->self();
572 Info *info = this->info();
573
574 assert(index < self.y);
575 info->y_subnames.resize(self.y);
576 info->y_subnames[index] = subname.c_str();
577 return self;
578 }
579};
580
581//////////////////////////////////////////////////////////////////////
582//
583// Simple Statistics
584//
585//////////////////////////////////////////////////////////////////////
586
587/**
588 * Templatized storage and interface for a simple scalar stat.
589 */
590class StatStor
591{
592 private:
593 /** The statistic value. */
594 Counter data;
595
596 public:
597 struct Params : public StorageParams {};
598
599 public:
600 /**
601 * Builds this storage element and calls the base constructor of the
602 * datatype.
603 */
604 StatStor(Info *info)
605 : data(Counter())
606 { }
607
608 /**
609 * The the stat to the given value.
610 * @param val The new value.
611 */
612 void set(Counter val) { data = val; }
613 /**
614 * Increment the stat by the given value.
615 * @param val The new value.
616 */
617 void inc(Counter val) { data += val; }
618 /**
619 * Decrement the stat by the given value.
620 * @param val The new value.
621 */
622 void dec(Counter val) { data -= val; }
623 /**
624 * Return the value of this stat as its base type.
625 * @return The value of this stat.
626 */
627 Counter value() const { return data; }
628 /**
629 * Return the value of this stat as a result type.
630 * @return The value of this stat.
631 */
632 Result result() const { return (Result)data; }
633 /**
634 * Prepare stat data for dumping or serialization
635 */
636 void prepare(Info *info) { }
637 /**
638 * Reset stat value to default
639 */
640 void reset(Info *info) { data = Counter(); }
641
642 /**
643 * @return true if zero value
644 */
645 bool zero() const { return data == Counter(); }
646};
647
648/**
649 * Templatized storage and interface to a per-tick average stat. This keeps
650 * a current count and updates a total (count * ticks) when this count
651 * changes. This allows the quick calculation of a per tick count of the item
652 * being watched. This is good for keeping track of residencies in structures
653 * among other things.
654 */
655class AvgStor
656{
657 private:
658 /** The current count. */
659 Counter current;
660 /** The total count for all tick. */
661 mutable Result total;
662 /** The tick that current last changed. */
663 mutable Tick last;
664
665 public:
666 struct Params : public StorageParams {};
667
668 public:
669 /**
670 * Build and initializes this stat storage.
671 */
672 AvgStor(Info *info)
673 : current(0), total(0), last(0)
674 { }
675
676 /**
677 * Set the current count to the one provided, update the total and last
678 * set values.
679 * @param val The new count.
680 */
681 void
682 set(Counter val)
683 {
684 total += current * (curTick - last);
685 last = curTick;
686 current = val;
687 }
688
689 /**
690 * Increment the current count by the provided value, calls set.
691 * @param val The amount to increment.
692 */
693 void inc(Counter val) { set(current + val); }
694
695 /**
696 * Deccrement the current count by the provided value, calls set.
697 * @param val The amount to decrement.
698 */
699 void dec(Counter val) { set(current - val); }
700
701 /**
702 * Return the current count.
703 * @return The current count.
704 */
705 Counter value() const { return current; }
706
707 /**
708 * Return the current average.
709 * @return The current average.
710 */
711 Result
712 result() const
713 {
714 assert(last == curTick);
715 return (Result)(total + current) / (Result)(curTick + 1);
716 }
717
718 /**
719 * @return true if zero value
720 */
721 bool zero() const { return total == 0.0; }
722
723 /**
724 * Prepare stat data for dumping or serialization
725 */
726 void
727 prepare(Info *info)
728 {
729 total += current * (curTick - last);
730 last = curTick;
731 }
732
733 /**
734 * Reset stat value to default
735 */
736 void
737 reset(Info *info)
738 {
739 total = 0.0;
740 last = curTick;
741 }
742
743};
744
745/**
746 * Implementation of a scalar stat. The type of stat is determined by the
747 * Storage template.
748 */
749template <class Derived, class Stor>
750class ScalarBase : public DataWrap<Derived, ScalarInfoProxy>
751{
752 public:
753 typedef Stor Storage;
754 typedef typename Stor::Params Params;
755
756 protected:
757 /** The storage of this stat. */
758 char storage[sizeof(Storage)] __attribute__ ((aligned (8)));
759
760 protected:
761 /**
762 * Retrieve the storage.
763 * @param index The vector index to access.
764 * @return The storage object at the given index.
765 */
766 Storage *
767 data()
768 {
769 return reinterpret_cast<Storage *>(storage);
770 }
771
772 /**
773 * Retrieve a const pointer to the storage.
774 * for the given index.
775 * @param index The vector index to access.
776 * @return A const pointer to the storage object at the given index.
777 */
778 const Storage *
779 data() const
780 {
781 return reinterpret_cast<const Storage *>(storage);
782 }
783
784 void
785 doInit()
786 {
787 new (storage) Storage(this->info());
788 this->setInit();
789 }
790
791 public:
792 /**
793 * Return the current value of this stat as its base type.
794 * @return The current value.
795 */
796 Counter value() const { return data()->value(); }
797
798 public:
799 ScalarBase()
800 {
801 this->doInit();
802 }
803
804 public:
805 // Common operators for stats
806 /**
807 * Increment the stat by 1. This calls the associated storage object inc
808 * function.
809 */
810 void operator++() { data()->inc(1); }
811 /**
812 * Decrement the stat by 1. This calls the associated storage object dec
813 * function.
814 */
815 void operator--() { data()->dec(1); }
816
817 /** Increment the stat by 1. */
818 void operator++(int) { ++*this; }
819 /** Decrement the stat by 1. */
820 void operator--(int) { --*this; }
821
822 /**
823 * Set the data value to the given value. This calls the associated storage
824 * object set function.
825 * @param v The new value.
826 */
827 template <typename U>
828 void operator=(const U &v) { data()->set(v); }
829
830 /**
831 * Increment the stat by the given value. This calls the associated
832 * storage object inc function.
833 * @param v The value to add.
834 */
835 template <typename U>
836 void operator+=(const U &v) { data()->inc(v); }
837
838 /**
839 * Decrement the stat by the given value. This calls the associated
840 * storage object dec function.
841 * @param v The value to substract.
842 */
843 template <typename U>
844 void operator-=(const U &v) { data()->dec(v); }
845
846 /**
847 * Return the number of elements, always 1 for a scalar.
848 * @return 1.
849 */
850 size_type size() const { return 1; }
851
852 Counter value() { return data()->value(); }
853
854 Result result() { return data()->result(); }
855
856 Result total() { return result(); }
857
858 bool zero() { return result() == 0.0; }
859
860 void reset() { data()->reset(this->info()); }
861 void prepare() { data()->prepare(this->info()); }
862};
863
864class ProxyInfo : public ScalarInfo
865{
866 public:
867 std::string str() const { return to_string(value()); }
868 size_type size() const { return 1; }
869 bool check() const { return true; }
870 void prepare() { }
871 void reset() { }
872 bool zero() const { return value() == 0; }
873
874 void visit(Visit &visitor) { visitor.visit(*this); }
875};
876
877template <class T>
878class ValueProxy : public ProxyInfo
879{
880 private:
881 T *scalar;
882
883 public:
884 ValueProxy(T &val) : scalar(&val) {}
885 Counter value() const { return *scalar; }
886 Result result() const { return *scalar; }
887 Result total() const { return *scalar; }
888};
889
890template <class T>
891class FunctorProxy : public ProxyInfo
892{
893 private:
894 T *functor;
895
896 public:
897 FunctorProxy(T &func) : functor(&func) {}
898 Counter value() const { return (*functor)(); }
899 Result result() const { return (*functor)(); }
900 Result total() const { return (*functor)(); }
901};
902
903template <class Derived>
904class ValueBase : public DataWrap<Derived, ScalarInfoProxy>
905{
906 private:
907 ProxyInfo *proxy;
908
909 public:
910 ValueBase() : proxy(NULL) { }
911 ~ValueBase() { if (proxy) delete proxy; }
912
913 template <class T>
914 Derived &
915 scalar(T &value)
916 {
917 proxy = new ValueProxy<T>(value);
918 this->setInit();
919 return this->self();
920 }
921
922 template <class T>
923 Derived &
924 functor(T &func)
925 {
926 proxy = new FunctorProxy<T>(func);
927 this->setInit();
928 return this->self();
929 }
930
931 Counter value() { return proxy->value(); }
932 Result result() const { return proxy->result(); }
933 Result total() const { return proxy->total(); };
934 size_type size() const { return proxy->size(); }
935
936 std::string str() const { return proxy->str(); }
937 bool zero() const { return proxy->zero(); }
938 bool check() const { return proxy != NULL; }
939 void prepare() { }
940 void reset() { }
941};
942
943//////////////////////////////////////////////////////////////////////
944//
945// Vector Statistics
946//
947//////////////////////////////////////////////////////////////////////
948
949/**
950 * A proxy class to access the stat at a given index in a VectorBase stat.
951 * Behaves like a ScalarBase.
952 */
953template <class Stat>
954class ScalarProxy
955{
956 private:
957 /** Pointer to the parent Vector. */
958 Stat &stat;
959
960 /** The index to access in the parent VectorBase. */
961 off_type index;
962
963 public:
964 /**
965 * Return the current value of this stat as its base type.
966 * @return The current value.
967 */
968 Counter value() const { return stat.data(index)->value(); }
969
970 /**
971 * Return the current value of this statas a result type.
972 * @return The current value.
973 */
974 Result result() const { return stat.data(index)->result(); }
975
976 public:
977 /**
978 * Create and initialize this proxy, do not register it with the database.
979 * @param i The index to access.
980 */
981 ScalarProxy(Stat &s, off_type i)
982 : stat(s), index(i)
983 {
984 }
985
986 /**
987 * Create a copy of the provided ScalarProxy.
988 * @param sp The proxy to copy.
989 */
990 ScalarProxy(const ScalarProxy &sp)
991 : stat(sp.stat), index(sp.index)
992 {}
993
994 /**
995 * Set this proxy equal to the provided one.
996 * @param sp The proxy to copy.
997 * @return A reference to this proxy.
998 */
999 const ScalarProxy &
1000 operator=(const ScalarProxy &sp)
1001 {
1002 stat = sp.stat;
1003 index = sp.index;
1004 return *this;
1005 }
1006
1007 public:
1008 // Common operators for stats
1009 /**
1010 * Increment the stat by 1. This calls the associated storage object inc
1011 * function.
1012 */
1013 void operator++() { stat.data(index)->inc(1); }
1014 /**
1015 * Decrement the stat by 1. This calls the associated storage object dec
1016 * function.
1017 */
1018 void operator--() { stat.data(index)->dec(1); }
1019
1020 /** Increment the stat by 1. */
1021 void operator++(int) { ++*this; }
1022 /** Decrement the stat by 1. */
1023 void operator--(int) { --*this; }
1024
1025 /**
1026 * Set the data value to the given value. This calls the associated storage
1027 * object set function.
1028 * @param v The new value.
1029 */
1030 template <typename U>
1031 void
1032 operator=(const U &v)
1033 {
1034 stat.data(index)->set(v);
1035 }
1036
1037 /**
1038 * Increment the stat by the given value. This calls the associated
1039 * storage object inc function.
1040 * @param v The value to add.
1041 */
1042 template <typename U>
1043 void
1044 operator+=(const U &v)
1045 {
1046 stat.data(index)->inc(v);
1047 }
1048
1049 /**
1050 * Decrement the stat by the given value. This calls the associated
1051 * storage object dec function.
1052 * @param v The value to substract.
1053 */
1054 template <typename U>
1055 void
1056 operator-=(const U &v)
1057 {
1058 stat.data(index)->dec(v);
1059 }
1060
1061 /**
1062 * Return the number of elements, always 1 for a scalar.
1063 * @return 1.
1064 */
1065 size_type size() const { return 1; }
1066
1067 public:
1068 std::string
1069 str() const
1070 {
1071 return csprintf("%s[%d]", stat.info()->name, index);
1072 }
1073};
1074
1075/**
1076 * Implementation of a vector of stats. The type of stat is determined by the
1077 * Storage class. @sa ScalarBase
1078 */
1079template <class Derived, class Stor>
1080class VectorBase : public DataWrapVec<Derived, VectorInfoProxy>
1081{
1082 public:
1083 typedef Stor Storage;
1084 typedef typename Stor::Params Params;
1085
1086 /** Proxy type */
1087 typedef ScalarProxy<Derived> Proxy;
1088 friend class ScalarProxy<Derived>;
1089 friend class DataWrapVec<Derived, VectorInfoProxy>;
1090
1091 protected:
1092 /** The storage of this stat. */
1093 Storage *storage;
1094 size_type _size;
1095
1096 protected:
1097 /**
1098 * Retrieve the storage.
1099 * @param index The vector index to access.
1100 * @return The storage object at the given index.
1101 */
1102 Storage *data(off_type index) { return &storage[index]; }
1103
1104 /**
1105 * Retrieve a const pointer to the storage.
1106 * @param index The vector index to access.
1107 * @return A const pointer to the storage object at the given index.
1108 */
1109 const Storage *data(off_type index) const { return &storage[index]; }
1110
1111 void
1112 doInit(size_type s)
1113 {
1114 assert(s > 0 && "size must be positive!");
1115 assert(!storage && "already initialized");
1116 _size = s;
1117
1118 char *ptr = new char[_size * sizeof(Storage)];
1119 storage = reinterpret_cast<Storage *>(ptr);
1120
1121 for (off_type i = 0; i < _size; ++i)
1122 new (&storage[i]) Storage(this->info());
1123
1124 this->setInit();
1125 }
1126
1127 public:
1128 void
1129 value(VCounter &vec) const
1130 {
1131 vec.resize(size());
1132 for (off_type i = 0; i < size(); ++i)
1133 vec[i] = data(i)->value();
1134 }
1135
1136 /**
1137 * Copy the values to a local vector and return a reference to it.
1138 * @return A reference to a vector of the stat values.
1139 */
1140 void
1141 result(VResult &vec) const
1142 {
1143 vec.resize(size());
1144 for (off_type i = 0; i < size(); ++i)
1145 vec[i] = data(i)->result();
1146 }
1147
1148 /**
1149 * Return a total of all entries in this vector.
1150 * @return The total of all vector entries.
1151 */
1152 Result
1153 total() const
1154 {
1155 Result total = 0.0;
1156 for (off_type i = 0; i < size(); ++i)
1157 total += data(i)->result();
1158 return total;
1159 }
1160
1161 /**
1162 * @return the number of elements in this vector.
1163 */
1164 size_type size() const { return _size; }
1165
1166 bool
1167 zero() const
1168 {
1169 for (off_type i = 0; i < size(); ++i)
1170 if (data(i)->zero())
1171 return false;
1172 return true;
1173 }
1174
1175 bool
1176 check() const
1177 {
1178 return storage != NULL;
1179 }
1180
1181 public:
1182 VectorBase()
1183 : storage(NULL)
1184 {}
1185
1186 ~VectorBase()
1187 {
1188 if (!storage)
1189 return;
1190
1191 for (off_type i = 0; i < _size; ++i)
1192 data(i)->~Storage();
1193 delete [] reinterpret_cast<char *>(storage);
1194 }
1195
1196 /**
1197 * Set this vector to have the given size.
1198 * @param size The new size.
1199 * @return A reference to this stat.
1200 */
1201 Derived &
1202 init(size_type size)
1203 {
1204 Derived &self = this->self();
1205 self.doInit(size);
1206 return self;
1207 }
1208
1209 /**
1210 * Return a reference (ScalarProxy) to the stat at the given index.
1211 * @param index The vector index to access.
1212 * @return A reference of the stat.
1213 */
1214 Proxy
1215 operator[](off_type index)
1216 {
1217 assert (index >= 0 && index < size());
1218 return Proxy(this->self(), index);
1219 }
1220};
1221
1222template <class Stat>
1223class VectorProxy
1224{
1225 private:
1226 Stat &stat;
1227 off_type offset;
1228 size_type len;
1229
1230 private:
1231 mutable VResult vec;
1232
1233 typename Stat::Storage *
1234 data(off_type index)
1235 {
1236 assert(index < len);
1237 return stat.data(offset + index);
1238 }
1239
1240 const typename Stat::Storage *
1241 data(off_type index) const
1242 {
1243 assert(index < len);
1244 return stat.data(offset + index);
1245 }
1246
1247 public:
1248 const VResult &
1249 result() const
1250 {
1251 vec.resize(size());
1252
1253 for (off_type i = 0; i < size(); ++i)
1254 vec[i] = data(i)->result();
1255
1256 return vec;
1257 }
1258
1259 Result
1260 total() const
1261 {
1262 Result total = 0.0;
1263 for (off_type i = 0; i < size(); ++i)
1264 total += data(i)->result();
1265 return total;
1266 }
1267
1268 public:
1269 VectorProxy(Stat &s, off_type o, size_type l)
1270 : stat(s), offset(o), len(l)
1271 {
1272 }
1273
1274 VectorProxy(const VectorProxy &sp)
1275 : stat(sp.stat), offset(sp.offset), len(sp.len)
1276 {
1277 }
1278
1279 const VectorProxy &
1280 operator=(const VectorProxy &sp)
1281 {
1282 stat = sp.stat;
1283 offset = sp.offset;
1284 len = sp.len;
1285 return *this;
1286 }
1287
1288 ScalarProxy<Stat>
1289 operator[](off_type index)
1290 {
1291 assert (index >= 0 && index < size());
1292 return ScalarProxy<Stat>(stat, offset + index);
1293 }
1294
1295 size_type size() const { return len; }
1296};
1297
1298template <class Derived, class Stor>
1299class Vector2dBase : public DataWrapVec2d<Derived, Vector2dInfoProxy>
1300{
1301 public:
1302 typedef Vector2dInfoProxy<Derived> Info;
1303 typedef Stor Storage;
1304 typedef typename Stor::Params Params;
1305 typedef VectorProxy<Derived> Proxy;
1306 friend class ScalarProxy<Derived>;
1307 friend class VectorProxy<Derived>;
1308 friend class DataWrapVec<Derived, Vector2dInfoProxy>;
1309 friend class DataWrapVec2d<Derived, Vector2dInfoProxy>;
1310
1311 protected:
1312 size_type x;
1313 size_type y;
1314 size_type _size;
1315 Storage *storage;
1316
1317 protected:
1318 Storage *data(off_type index) { return &storage[index]; }
1319 const Storage *data(off_type index) const { return &storage[index]; }
1320
1321 public:
1322 Vector2dBase()
1323 : storage(NULL)
1324 {}
1325
1326 ~Vector2dBase()
1327 {
1328 if (!storage)
1329 return;
1330
1331 for (off_type i = 0; i < _size; ++i)
1332 data(i)->~Storage();
1333 delete [] reinterpret_cast<char *>(storage);
1334 }
1335
1336 Derived &
1337 init(size_type _x, size_type _y)
1338 {
1339 assert(_x > 0 && _y > 0 && "sizes must be positive!");
1340 assert(!storage && "already initialized");
1341
1342 Derived &self = this->self();
1343 Info *info = this->info();
1344
1345 x = _x;
1346 y = _y;
1347 info->x = _x;
1348 info->y = _y;
1349 _size = x * y;
1350
1351 char *ptr = new char[_size * sizeof(Storage)];
1352 storage = reinterpret_cast<Storage *>(ptr);
1353
1354 for (off_type i = 0; i < _size; ++i)
1355 new (&storage[i]) Storage(info);
1356
1357 this->setInit();
1358
1359 return self;
1360 }
1361
1362 std::string ysubname(off_type i) const { return (*this->y_subnames)[i]; }
1363
1364 Proxy
1365 operator[](off_type index)
1366 {
1367 off_type offset = index * y;
1368 assert (index >= 0 && offset + index < size());
1369 return Proxy(this->self(), offset, y);
1370 }
1371
1372
1373 size_type
1374 size() const
1375 {
1376 return _size;
1377 }
1378
1379 bool
1380 zero() const
1381 {
1382 return data(0)->zero();
1383#if 0
1384 for (off_type i = 0; i < size(); ++i)
1385 if (!data(i)->zero())
1386 return false;
1387 return true;
1388#endif
1389 }
1390
1391 void
1392 prepare()
1393 {
1394 Info *info = this->info();
1395 size_type size = this->size();
1396
1397 for (off_type i = 0; i < size; ++i)
1398 data(i)->prepare(info);
1399
1400 info->cvec.resize(size);
1401 for (off_type i = 0; i < size; ++i)
1402 info->cvec[i] = data(i)->value();
1403 }
1404
1405 /**
1406 * Reset stat value to default
1407 */
1408 void
1409 reset()
1410 {
1411 Info *info = this->info();
1412 size_type size = this->size();
1413 for (off_type i = 0; i < size; ++i)
1414 data(i)->reset(info);
1415 }
1416
1417 bool
1418 check() const
1419 {
1420 return storage != NULL;
1421 }
1422};
1423
1424//////////////////////////////////////////////////////////////////////
1425//
1426// Non formula statistics
1427//
1428//////////////////////////////////////////////////////////////////////
1429
1430struct DistParams : public StorageParams
1431{
1432 const bool fancy;
1433
1434 /** The minimum value to track. */
1435 Counter min;
1436 /** The maximum value to track. */
1437 Counter max;
1438 /** The number of entries in each bucket. */
1439 Counter bucket_size;
1440 /** The number of buckets. Equal to (max-min)/bucket_size. */
1441 size_type buckets;
1442
1443 explicit DistParams(bool f) : fancy(f) {}
1444};
1445
1446/**
1447 * Templatized storage and interface for a distrbution stat.
1448 */
1449class DistStor
1450{
1451 public:
1452 /** The parameters for a distribution stat. */
1453 struct Params : public DistParams
1454 {
1455 Params() : DistParams(false) {}
1456 };
1457
1458 private:
1459 /** The minimum value to track. */
1460 Counter min_track;
1461 /** The maximum value to track. */
1462 Counter max_track;
1463 /** The number of entries in each bucket. */
1464 Counter bucket_size;
1465 /** The number of buckets. Equal to (max-min)/bucket_size. */
1466 size_type buckets;
1467
1468 /** The smallest value sampled. */
1469 Counter min_val;
1470 /** The largest value sampled. */
1471 Counter max_val;
1472 /** The number of values sampled less than min. */
1473 Counter underflow;
1474 /** The number of values sampled more than max. */
1475 Counter overflow;
1476 /** The current sum. */
1477 Counter sum;
1478 /** The sum of squares. */
1479 Counter squares;
1480 /** The number of samples. */
1481 Counter samples;
1482 /** Counter for each bucket. */
1483 VCounter cvec;
1484
1485 public:
1486 DistStor(Info *info)
1487 : cvec(safe_cast<const Params *>(info->storageParams)->buckets)
1488 {
1489 reset(info);
1490 }
1491
1492 /**
1493 * Add a value to the distribution for the given number of times.
1494 * @param val The value to add.
1495 * @param number The number of times to add the value.
1496 */
1497 void
1498 sample(Counter val, int number)
1499 {
1500 if (val < min_track)
1501 underflow += number;
1502 else if (val > max_track)
1503 overflow += number;
1504 else {
1505 size_type index =
1506 (size_type)std::floor((val - min_track) / bucket_size);
1507 assert(index < size());
1508 cvec[index] += number;
1509 }
1510
1511 if (val < min_val)
1512 min_val = val;
1513
1514 if (val > max_val)
1515 max_val = val;
1516
1517 Counter sample = val * number;
1518 sum += sample;
1519 squares += sample * sample;
1520 samples += number;
1521 }
1522
1523 /**
1524 * Return the number of buckets in this distribution.
1525 * @return the number of buckets.
1526 */
1527 size_type size() const { return cvec.size(); }
1528
1529 /**
1530 * Returns true if any calls to sample have been made.
1531 * @return True if any values have been sampled.
1532 */
1533 bool
1534 zero() const
1535 {
1536 return samples == Counter();
1537 }
1538
1539 void
1540 prepare(Info *info, DistData &data)
1541 {
1542 const Params *params = safe_cast<const Params *>(info->storageParams);
1543
1544 data.min_val = (min_val == CounterLimits::max()) ? 0 : min_val;
1545 data.max_val = (max_val == CounterLimits::min()) ? 0 : max_val;
1546 data.underflow = underflow;
1547 data.overflow = overflow;
1548
1549 int buckets = params->buckets;
1550 data.cvec.resize(buckets);
1551 for (off_type i = 0; i < buckets; ++i)
1552 data.cvec[i] = cvec[i];
1553
1554 data.sum = sum;
1555 data.squares = squares;
1556 data.samples = samples;
1557 }
1558
1559 /**
1560 * Reset stat value to default
1561 */
1562 void
1563 reset(Info *info)
1564 {
1565 const Params *params = safe_cast<const Params *>(info->storageParams);
1566 min_track = params->min;
1567 max_track = params->max;
1568 bucket_size = params->bucket_size;
1569
1570 min_val = CounterLimits::max();
1571 max_val = CounterLimits::min();
1572 underflow = 0;
1573 overflow = 0;
1574
1575 size_type size = cvec.size();
1576 for (off_type i = 0; i < size; ++i)
1577 cvec[i] = Counter();
1578
1579 sum = Counter();
1580 squares = Counter();
1581 samples = Counter();
1582 }
1583};
1584
1585/**
1586 * Templatized storage and interface for a distribution that calculates mean
1587 * and variance.
1588 */
1589class FancyStor
1590{
1591 public:
1592 struct Params : public DistParams
1593 {
1594 Params() : DistParams(true) {}
1595 };
1596
1597 private:
1598 /** The current sum. */
1599 Counter sum;
1600 /** The sum of squares. */
1601 Counter squares;
1602 /** The number of samples. */
1603 Counter samples;
1604
1605 public:
1606 /**
1607 * Create and initialize this storage.
1608 */
1609 FancyStor(Info *info)
1610 : sum(Counter()), squares(Counter()), samples(Counter())
1611 { }
1612
1613 /**
1614 * Add a value the given number of times to this running average.
1615 * Update the running sum and sum of squares, increment the number of
1616 * values seen by the given number.
1617 * @param val The value to add.
1618 * @param number The number of times to add the value.
1619 */
1620 void
1621 sample(Counter val, int number)
1622 {
1623 Counter value = val * number;
1624 sum += value;
1625 squares += value * value;
1626 samples += number;
1627 }
1628
1629 /**
1630 * Return the number of entries in this stat, 1
1631 * @return 1.
1632 */
1633 size_type size() const { return 1; }
1634
1635 /**
1636 * Return true if no samples have been added.
1637 * @return True if no samples have been added.
1638 */
1639 bool zero() const { return samples == Counter(); }
1640
1641 void
1642 prepare(Info *info, DistData &data)
1643 {
1644 data.sum = sum;
1645 data.squares = squares;
1646 data.samples = samples;
1647 }
1648
1649 /**
1650 * Reset stat value to default
1651 */
1652 void
1653 reset(Info *info)
1654 {
1655 sum = Counter();
1656 squares = Counter();
1657 samples = Counter();
1658 }
1659};
1660
1661/**
1662 * Templatized storage for distribution that calculates per tick mean and
1663 * variance.
1664 */
1665class AvgFancy
1666{
1667 public:
1668 struct Params : public DistParams
1669 {
1670 Params() : DistParams(true) {}
1671 };
1672
1673 private:
1674 /** Current total. */
1675 Counter sum;
1676 /** Current sum of squares. */
1677 Counter squares;
1678
1679 public:
1680 /**
1681 * Create and initialize this storage.
1682 */
1683 AvgFancy(Info *info)
1684 : sum(Counter()), squares(Counter())
1685 {}
1686
1687 /**
1688 * Add a value to the distribution for the given number of times.
1689 * Update the running sum and sum of squares.
1690 * @param val The value to add.
1691 * @param number The number of times to add the value.
1692 */
1693 void
1694 sample(Counter val, int number)
1695 {
1696 Counter value = val * number;
1697 sum += value;
1698 squares += value * value;
1699 }
1700
1701 /**
1702 * Return the number of entries, in this case 1.
1703 * @return 1.
1704 */
1705 size_type size() const { return 1; }
1706
1707 /**
1708 * Return true if no samples have been added.
1709 * @return True if the sum is zero.
1710 */
1711 bool zero() const { return sum == Counter(); }
1712
1713 void
1714 prepare(Info *info, DistData &data)
1715 {
1716 data.sum = sum;
1717 data.squares = squares;
1718 data.samples = curTick;
1719 }
1720
1721 /**
1722 * Reset stat value to default
1723 */
1724 void
1725 reset(Info *info)
1726 {
1727 sum = Counter();
1728 squares = Counter();
1729 }
1730};
1731
1732/**
1733 * Implementation of a distribution stat. The type of distribution is
1734 * determined by the Storage template. @sa ScalarBase
1735 */
1736template <class Derived, class Stor>
1737class DistBase : public DataWrap<Derived, DistInfoProxy>
1738{
1739 public:
1740 typedef DistInfoProxy<Derived> Info;
1741 typedef Stor Storage;
1742 typedef typename Stor::Params Params;
1743
1744 protected:
1745 /** The storage for this stat. */
1746 char storage[sizeof(Storage)] __attribute__ ((aligned (8)));
1747
1748 protected:
1749 /**
1750 * Retrieve the storage.
1751 * @return The storage object for this stat.
1752 */
1753 Storage *
1754 data()
1755 {
1756 return reinterpret_cast<Storage *>(storage);
1757 }
1758
1759 /**
1760 * Retrieve a const pointer to the storage.
1761 * @return A const pointer to the storage object for this stat.
1762 */
1763 const Storage *
1764 data() const
1765 {
1766 return reinterpret_cast<const Storage *>(storage);
1767 }
1768
1769 void
1770 doInit()
1771 {
1772 new (storage) Storage(this->info());
1773 this->setInit();
1774 }
1775
1776 public:
1777 DistBase() { }
1778
1779 /**
1780 * Add a value to the distribtion n times. Calls sample on the storage
1781 * class.
1782 * @param v The value to add.
1783 * @param n The number of times to add it, defaults to 1.
1784 */
1785 template <typename U>
1786 void sample(const U &v, int n = 1) { data()->sample(v, n); }
1787
1788 /**
1789 * Return the number of entries in this stat.
1790 * @return The number of entries.
1791 */
1792 size_type size() const { return data()->size(); }
1793 /**
1794 * Return true if no samples have been added.
1795 * @return True if there haven't been any samples.
1796 */
1797 bool zero() const { return data()->zero(); }
1798
1799 void
1800 prepare()
1801 {
1802 Info *info = this->info();
1803 data()->prepare(info, info->data);
1804 }
1805
1806 /**
1807 * Reset stat value to default
1808 */
1809 void
1810 reset()
1811 {
1812 data()->reset(this->info());
1813 }
1814};
1815
1816template <class Stat>
1817class DistProxy;
1818
1819template <class Derived, class Stor>
1820class VectorDistBase : public DataWrapVec<Derived, VectorDistInfoProxy>
1821{
1822 public:
1823 typedef VectorDistInfoProxy<Derived> Info;
1824 typedef Stor Storage;
1825 typedef typename Stor::Params Params;
1826 typedef DistProxy<Derived> Proxy;
1827 friend class DistProxy<Derived>;
1828 friend class DataWrapVec<Derived, VectorDistInfoProxy>;
1829
1830 protected:
1831 Storage *storage;
1832 size_type _size;
1833
1834 protected:
1835 Storage *
1836 data(off_type index)
1837 {
1838 return &storage[index];
1839 }
1840
1841 const Storage *
1842 data(off_type index) const
1843 {
1844 return &storage[index];
1845 }
1846
1847 void
1848 doInit(size_type s)
1849 {
1850 assert(s > 0 && "size must be positive!");
1851 assert(!storage && "already initialized");
1852 _size = s;
1853
1854 char *ptr = new char[_size * sizeof(Storage)];
1855 storage = reinterpret_cast<Storage *>(ptr);
1856
1857 Info *info = this->info();
1858 for (off_type i = 0; i < _size; ++i)
1859 new (&storage[i]) Storage(info);
1860
1861 this->setInit();
1862 }
1863
1864 public:
1865 VectorDistBase()
1866 : storage(NULL)
1867 {}
1868
1869 ~VectorDistBase()
1870 {
1871 if (!storage)
1872 return ;
1873
1874 for (off_type i = 0; i < _size; ++i)
1875 data(i)->~Storage();
1876 delete [] reinterpret_cast<char *>(storage);
1877 }
1878
1879 Proxy operator[](off_type index);
1880
1881 size_type
1882 size() const
1883 {
1884 return _size;
1885 }
1886
1887 bool
1888 zero() const
1889 {
1890 return false;
1891#if 0
1892 for (off_type i = 0; i < size(); ++i)
1893 if (!data(i)->zero())
1894 return false;
1895 return true;
1896#endif
1897 }
1898
1899 void
1900 prepare()
1901 {
1902 Info *info = this->info();
1903 size_type size = this->size();
1904 info->data.resize(size);
1905 for (off_type i = 0; i < size; ++i)
1906 data(i)->prepare(info, info->data[i]);
1907 }
1908
1909 bool
1910 check() const
1911 {
1912 return storage != NULL;
1913 }
1914};
1915
1916template <class Stat>
1917class DistProxy
1918{
1919 private:
1920 Stat *stat;
1921 off_type index;
1922
1923 protected:
1924 typename Stat::Storage *data() { return stat->data(index); }
1925 const typename Stat::Storage *data() const { return stat->data(index); }
1926
1927 public:
1928 DistProxy(Stat *s, off_type i)
1929 : stat(s), index(i)
1930 {}
1931
1932 DistProxy(const DistProxy &sp)
1933 : stat(sp.stat), index(sp.index)
1934 {}
1935
1936 const DistProxy &
1937 operator=(const DistProxy &sp)
1938 {
1939 stat = sp.stat;
1940 index = sp.index;
1941 return *this;
1942 }
1943
1944 public:
1945 template <typename U>
1946 void
1947 sample(const U &v, int n = 1)
1948 {
1949 data()->sample(v, n);
1950 }
1951
1952 size_type
1953 size() const
1954 {
1955 return 1;
1956 }
1957
1958 bool
1959 zero() const
1960 {
1961 return data()->zero();
1962 }
1963
1964 /**
1965 * Proxy has no state. Nothing to reset.
1966 */
1967 void reset() { }
1968};
1969
1970template <class Derived, class Stor>
1971inline typename VectorDistBase<Derived, Stor>::Proxy
1972VectorDistBase<Derived, Stor>::operator[](off_type index)
1973{
1974 assert (index >= 0 && index < size());
1975 typedef typename VectorDistBase<Derived, Stor>::Proxy Proxy;
1976 return Proxy(this, index);
1977}
1978
1979#if 0
1980template <class Storage>
1981Result
1982VectorDistBase<Storage>::total(off_type index) const
1983{
1984 Result total = 0.0;
1985 for (off_type i = 0; i < x_size(); ++i)
1986 total += data(i)->result();
1987}
1988#endif
1989
1990//////////////////////////////////////////////////////////////////////
1991//
1992// Formula Details
1993//
1994//////////////////////////////////////////////////////////////////////
1995
1996/**
1997 * Base class for formula statistic node. These nodes are used to build a tree
1998 * that represents the formula.
1999 */
2000class Node : public RefCounted
2001{
2002 public:
2003 /**
2004 * Return the number of nodes in the subtree starting at this node.
2005 * @return the number of nodes in this subtree.
2006 */
2007 virtual size_type size() const = 0;
2008 /**
2009 * Return the result vector of this subtree.
2010 * @return The result vector of this subtree.
2011 */
2012 virtual const VResult &result() const = 0;
2013 /**
2014 * Return the total of the result vector.
2015 * @return The total of the result vector.
2016 */
2017 virtual Result total() const = 0;
2018
2019 /**
2020 *
2021 */
2022 virtual std::string str() const = 0;
2023};
2024
2025/** Reference counting pointer to a function Node. */
2026typedef RefCountingPtr<Node> NodePtr;
2027
2028class ScalarStatNode : public Node
2029{
2030 private:
2031 const ScalarInfo *data;
2032 mutable VResult vresult;
2033
2034 public:
2035 ScalarStatNode(const ScalarInfo *d) : data(d), vresult(1) {}
2036
2037 const VResult &
2038 result() const
2039 {
2040 vresult[0] = data->result();
2041 return vresult;
2042 }
2043
2044 Result total() const { return data->result(); };
2045
2046 size_type size() const { return 1; }
2047
2048 /**
2049 *
2050 */
2051 std::string str() const { return data->name; }
2052};
2053
2054template <class Stat>
2055class ScalarProxyNode : public Node
2056{
2057 private:
2058 const ScalarProxy<Stat> proxy;
2059 mutable VResult vresult;
2060
2061 public:
2062 ScalarProxyNode(const ScalarProxy<Stat> &p)
2063 : proxy(p), vresult(1)
2064 { }
2065
2066 const VResult &
2067 result() const
2068 {
2069 vresult[0] = proxy.result();
2070 return vresult;
2071 }
2072
2073 Result
2074 total() const
2075 {
2076 return proxy.result();
2077 }
2078
2079 size_type
2080 size() const
2081 {
2082 return 1;
2083 }
2084
2085 /**
2086 *
2087 */
2088 std::string
2089 str() const
2090 {
2091 return proxy.str();
2092 }
2093};
2094
2095class VectorStatNode : public Node
2096{
2097 private:
2098 const VectorInfo *data;
2099
2100 public:
2101 VectorStatNode(const VectorInfo *d) : data(d) { }
2102 const VResult &result() const { return data->result(); }
2103 Result total() const { return data->total(); };
2104
2105 size_type size() const { return data->size(); }
2106
2107 std::string str() const { return data->name; }
2108};
2109
2110template <class T>
2111class ConstNode : public Node
2112{
2113 private:
2114 VResult vresult;
2115
2116 public:
2117 ConstNode(T s) : vresult(1, (Result)s) {}
2118 const VResult &result() const { return vresult; }
2119 Result total() const { return vresult[0]; };
2120 size_type size() const { return 1; }
2121 std::string str() const { return to_string(vresult[0]); }
2122};
2123
2124template <class T>
2125class ConstVectorNode : public Node
2126{
2127 private:
2128 VResult vresult;
2129
2130 public:
2131 ConstVectorNode(const T &s) : vresult(s.begin(), s.end()) {}
2132 const VResult &result() const { return vresult; }
2133
2134 Result
2135 total() const
2136 {
2137 size_type size = this->size();
2138 Result tmp = 0;
2139 for (off_type i = 0; i < size; i++)
2140 tmp += vresult[i];
2141 return tmp;
2142 }
2143
2144 size_type size() const { return vresult.size(); }
2145 std::string
2146 str() const
2147 {
2148 size_type size = this->size();
2149 std::string tmp = "(";
2150 for (off_type i = 0; i < size; i++)
2151 tmp += csprintf("%s ",to_string(vresult[i]));
2152 tmp += ")";
2153 return tmp;
2154 }
2155};
2156
2157template <class Op>
2158struct OpString;
2159
2160template<>
2161struct OpString<std::plus<Result> >
2162{
2163 static std::string str() { return "+"; }
2164};
2165
2166template<>
2167struct OpString<std::minus<Result> >
2168{
2169 static std::string str() { return "-"; }
2170};
2171
2172template<>
2173struct OpString<std::multiplies<Result> >
2174{
2175 static std::string str() { return "*"; }
2176};
2177
2178template<>
2179struct OpString<std::divides<Result> >
2180{
2181 static std::string str() { return "/"; }
2182};
2183
2184template<>
2185struct OpString<std::modulus<Result> >
2186{
2187 static std::string str() { return "%"; }
2188};
2189
2190template<>
2191struct OpString<std::negate<Result> >
2192{
2193 static std::string str() { return "-"; }
2194};
2195
2196template <class Op>
2197class UnaryNode : public Node
2198{
2199 public:
2200 NodePtr l;
2201 mutable VResult vresult;
2202
2203 public:
2204 UnaryNode(NodePtr &p) : l(p) {}
2205
2206 const VResult &
2207 result() const
2208 {
2209 const VResult &lvec = l->result();
2210 size_type size = lvec.size();
2211
2212 assert(size > 0);
2213
2214 vresult.resize(size);
2215 Op op;
2216 for (off_type i = 0; i < size; ++i)
2217 vresult[i] = op(lvec[i]);
2218
2219 return vresult;
2220 }
2221
2222 Result
2223 total() const
2224 {
2225 const VResult &vec = this->result();
2226 Result total = 0.0;
2227 for (off_type i = 0; i < size(); i++)
2228 total += vec[i];
2229 return total;
2230 }
2231
2232 size_type size() const { return l->size(); }
2233
2234 std::string
2235 str() const
2236 {
2237 return OpString<Op>::str() + l->str();
2238 }
2239};
2240
2241template <class Op>
2242class BinaryNode : public Node
2243{
2244 public:
2245 NodePtr l;
2246 NodePtr r;
2247 mutable VResult vresult;
2248
2249 public:
2250 BinaryNode(NodePtr &a, NodePtr &b) : l(a), r(b) {}
2251
2252 const VResult &
2253 result() const
2254 {
2255 Op op;
2256 const VResult &lvec = l->result();
2257 const VResult &rvec = r->result();
2258
2259 assert(lvec.size() > 0 && rvec.size() > 0);
2260
2261 if (lvec.size() == 1 && rvec.size() == 1) {
2262 vresult.resize(1);
2263 vresult[0] = op(lvec[0], rvec[0]);
2264 } else if (lvec.size() == 1) {
2265 size_type size = rvec.size();
2266 vresult.resize(size);
2267 for (off_type i = 0; i < size; ++i)
2268 vresult[i] = op(lvec[0], rvec[i]);
2269 } else if (rvec.size() == 1) {
2270 size_type size = lvec.size();
2271 vresult.resize(size);
2272 for (off_type i = 0; i < size; ++i)
2273 vresult[i] = op(lvec[i], rvec[0]);
2274 } else if (rvec.size() == lvec.size()) {
2275 size_type size = rvec.size();
2276 vresult.resize(size);
2277 for (off_type i = 0; i < size; ++i)
2278 vresult[i] = op(lvec[i], rvec[i]);
2279 }
2280
2281 return vresult;
2282 }
2283
2284 Result
2285 total() const
2286 {
2287 const VResult &vec = this->result();
2288 Result total = 0.0;
2289 for (off_type i = 0; i < size(); i++)
2290 total += vec[i];
2291 return total;
2292 }
2293
2294 size_type
2295 size() const
2296 {
2297 size_type ls = l->size();
2298 size_type rs = r->size();
2299 if (ls == 1) {
2300 return rs;
2301 } else if (rs == 1) {
2302 return ls;
2303 } else {
2304 assert(ls == rs && "Node vector sizes are not equal");
2305 return ls;
2306 }
2307 }
2308
2309 std::string
2310 str() const
2311 {
2312 return csprintf("(%s %s %s)", l->str(), OpString<Op>::str(), r->str());
2313 }
2314};
2315
2316template <class Op>
2317class SumNode : public Node
2318{
2319 public:
2320 NodePtr l;
2321 mutable VResult vresult;
2322
2323 public:
2324 SumNode(NodePtr &p) : l(p), vresult(1) {}
2325
2326 const VResult &
2327 result() const
2328 {
2329 const VResult &lvec = l->result();
2330 size_type size = lvec.size();
2331 assert(size > 0);
2332
2333 vresult[0] = 0.0;
2334
2335 Op op;
2336 for (off_type i = 0; i < size; ++i)
2337 vresult[0] = op(vresult[0], lvec[i]);
2338
2339 return vresult;
2340 }
2341
2342 Result
2343 total() const
2344 {
2345 const VResult &lvec = l->result();
2346 size_type size = lvec.size();
2347 assert(size > 0);
2348
2349 Result vresult = 0.0;
2350
2351 Op op;
2352 for (off_type i = 0; i < size; ++i)
2353 vresult = op(vresult, lvec[i]);
2354
2355 return vresult;
2356 }
2357
2358 size_type size() const { return 1; }
2359
2360 std::string
2361 str() const
2362 {
2363 return csprintf("total(%s)", l->str());
2364 }
2365};
2366
2367
2368//////////////////////////////////////////////////////////////////////
2369//
2370// Visible Statistics Types
2371//
2372//////////////////////////////////////////////////////////////////////
2373/**
2374 * @defgroup VisibleStats "Statistic Types"
2375 * These are the statistics that are used in the simulator.
2376 * @{
2377 */
2378
2379/**
2380 * This is a simple scalar statistic, like a counter.
2381 * @sa Stat, ScalarBase, StatStor
2382 */
2383class Scalar : public ScalarBase<Scalar, StatStor>
2384{
2385 public:
2386 using ScalarBase<Scalar, StatStor>::operator=;
2387};
2388
2389/**
2390 * A stat that calculates the per tick average of a value.
2391 * @sa Stat, ScalarBase, AvgStor
2392 */
2393class Average : public ScalarBase<Average, AvgStor>
2394{
2395 public:
2396 using ScalarBase<Average, AvgStor>::operator=;
2397};
2398
2399class Value : public ValueBase<Value>
2400{
2401};
2402
2403/**
2404 * A vector of scalar stats.
2405 * @sa Stat, VectorBase, StatStor
2406 */
2407class Vector : public VectorBase<Vector, StatStor>
2408{
2409};
2410
2411/**
2412 * A vector of Average stats.
2413 * @sa Stat, VectorBase, AvgStor
2414 */
2415class AverageVector : public VectorBase<AverageVector, AvgStor>
2416{
2417};
2418
2419/**
2420 * A 2-Dimensional vecto of scalar stats.
2421 * @sa Stat, Vector2dBase, StatStor
2422 */
2423class Vector2d : public Vector2dBase<Vector2d, StatStor>
2424{
2425};
2426
2427/**
2428 * A simple distribution stat.
2429 * @sa Stat, DistBase, DistStor
2430 */
2431class Distribution : public DistBase<Distribution, DistStor>
2432{
2433 public:
2434 /**
2435 * Set the parameters of this distribution. @sa DistStor::Params
2436 * @param min The minimum value of the distribution.
2437 * @param max The maximum value of the distribution.
2438 * @param bkt The number of values in each bucket.
2439 * @return A reference to this distribution.
2440 */
2441 Distribution &
2442 init(Counter min, Counter max, Counter bkt)
2443 {
2444 DistStor::Params *params = new DistStor::Params;
2445 params->min = min;
2446 params->max = max;
2447 params->bucket_size = bkt;
2448 params->buckets = (size_type)rint((max - min) / bkt + 1.0);
2449 this->setParams(params);
2450 this->doInit();
2451 return this->self();
2452 }
2453};
2454
2455/**
2456 * Calculates the mean and variance of all the samples.
2457 * @sa Stat, DistBase, FancyStor
2458 */
2459class StandardDeviation : public DistBase<StandardDeviation, FancyStor>
2460{
2461 public:
2462 /**
2463 * Construct and initialize this distribution.
2464 */
2465 StandardDeviation()
2466 {
2467 this->doInit();
2468 }
2469};
2470
2471/**
2472 * Calculates the per tick mean and variance of the samples.
2473 * @sa Stat, DistBase, AvgFancy
2474 */
2475class AverageDeviation : public DistBase<AverageDeviation, AvgFancy>
2476{
2477 public:
2478 /**
2479 * Construct and initialize this distribution.
2480 */
2481 AverageDeviation()
2482 {
2483 this->doInit();
2484 }
2485};
2486
2487/**
2488 * A vector of distributions.
2489 * @sa Stat, VectorDistBase, DistStor
2490 */
2491class VectorDistribution : public VectorDistBase<VectorDistribution, DistStor>
2492{
2493 public:
2494 /**
2495 * Initialize storage and parameters for this distribution.
2496 * @param size The size of the vector (the number of distributions).
2497 * @param min The minimum value of the distribution.
2498 * @param max The maximum value of the distribution.
2499 * @param bkt The number of values in each bucket.
2500 * @return A reference to this distribution.
2501 */
2502 VectorDistribution &
2503 init(size_type size, Counter min, Counter max, Counter bkt)
2504 {
2505 DistStor::Params *params = new DistStor::Params;
2506 params->min = min;
2507 params->max = max;
2508 params->bucket_size = bkt;
2509 params->buckets = (size_type)rint((max - min) / bkt + 1.0);
2510 this->setParams(params);
2511 this->doInit(size);
2512 return this->self();
2513 }
2514};
2515
2516/**
2517 * This is a vector of StandardDeviation stats.
2518 * @sa Stat, VectorDistBase, FancyStor
2519 */
2520class VectorStandardDeviation
2521 : public VectorDistBase<VectorStandardDeviation, FancyStor>
2522{
2523 public:
2524 /**
2525 * Initialize storage for this distribution.
2526 * @param size The size of the vector.
2527 * @return A reference to this distribution.
2528 */
2529 VectorStandardDeviation &
2530 init(size_type size)
2531 {
2532 this->doInit(size);
2533 return this->self();
2534 }
2535};
2536
2537/**
2538 * This is a vector of AverageDeviation stats.
2539 * @sa Stat, VectorDistBase, AvgFancy
2540 */
2541class VectorAverageDeviation
2542 : public VectorDistBase<VectorAverageDeviation, AvgFancy>
2543{
2544 public:
2545 /**
2546 * Initialize storage for this distribution.
2547 * @param size The size of the vector.
2548 * @return A reference to this distribution.
2549 */
2550 VectorAverageDeviation &
2551 init(size_type size)
2552 {
2553 this->doInit(size);
2554 return this->self();
2555 }
2556};
2557
2558class FormulaInfo : public VectorInfo
2559{
2560 public:
2561 virtual std::string str() const = 0;
2562};
2563
2564template <class Stat>
2565class FormulaInfoProxy : public InfoProxy<Stat, FormulaInfo>
2566{
2567 protected:
2568 mutable VResult vec;
2569 mutable VCounter cvec;
2570
2571 public:
2572 FormulaInfoProxy(Stat &stat) : InfoProxy<Stat, FormulaInfo>(stat) {}
2573
2574 size_type size() const { return this->s.size(); }
2575
2576 const VResult &
2577 result() const
2578 {
2579 this->s.result(vec);
2580 return vec;
2581 }
2582 Result total() const { return this->s.total(); }
2583 VCounter &value() const { return cvec; }
2584
2585 std::string str() const { return this->s.str(); }
2586};
2587
2588class Temp;
2589/**
2590 * A formula for statistics that is calculated when printed. A formula is
2591 * stored as a tree of Nodes that represent the equation to calculate.
2592 * @sa Stat, ScalarStat, VectorStat, Node, Temp
2593 */
2594class Formula : public DataWrapVec<Formula, FormulaInfoProxy>
2595{
2596 protected:
2597 /** The root of the tree which represents the Formula */
2598 NodePtr root;
2599 friend class Temp;
2600
2601 public:
2602 /**
2603 * Create and initialize thie formula, and register it with the database.
2604 */
2605 Formula();
2606
2607 /**
2608 * Create a formula with the given root node, register it with the
2609 * database.
2610 * @param r The root of the expression tree.
2611 */
2612 Formula(Temp r);
2613
2614 /**
2615 * Set an unitialized Formula to the given root.
2616 * @param r The root of the expression tree.
2617 * @return a reference to this formula.
2618 */
2619 const Formula &operator=(Temp r);
2620
2621 /**
2622 * Add the given tree to the existing one.
2623 * @param r The root of the expression tree.
2624 * @return a reference to this formula.
2625 */
2626 const Formula &operator+=(Temp r);
2627 /**
2628 * Return the result of the Fomula in a vector. If there were no Vector
2629 * components to the Formula, then the vector is size 1. If there were,
2630 * like x/y with x being a vector of size 3, then the result returned will
2631 * be x[0]/y, x[1]/y, x[2]/y, respectively.
2632 * @return The result vector.
2633 */
2634 void result(VResult &vec) const;
2635
2636 /**
2637 * Return the total Formula result. If there is a Vector
2638 * component to this Formula, then this is the result of the
2639 * Formula if the formula is applied after summing all the
2640 * components of the Vector. For example, if Formula is x/y where
2641 * x is size 3, then total() will return (x[1]+x[2]+x[3])/y. If
2642 * there is no Vector component, total() returns the same value as
2643 * the first entry in the VResult val() returns.
2644 * @return The total of the result vector.
2645 */
2646 Result total() const;
2647
2648 /**
2649 * Return the number of elements in the tree.
2650 */
2651 size_type size() const;
2652
2653 void prepare() { }
2654
2655 /**
2656 * Formulas don't need to be reset
2657 */
2658 void reset();
2659
2660 /**
2661 *
2662 */
2663 bool zero() const;
2664
2665 std::string str() const;
2666};
2667
2668class FormulaNode : public Node
2669{
2670 private:
2671 const Formula &formula;
2672 mutable VResult vec;
2673
2674 public:
2675 FormulaNode(const Formula &f) : formula(f) {}
2676
2677 size_type size() const { return formula.size(); }
2678 const VResult &result() const { formula.result(vec); return vec; }
2679 Result total() const { return formula.total(); }
2680
2681 std::string str() const { return formula.str(); }
2682};
2683
2684/**
2685 * Helper class to construct formula node trees.
2686 */
2687class Temp
2688{
2689 protected:
2690 /**
2691 * Pointer to a Node object.
2692 */
2693 NodePtr node;
2694
2695 public:
2696 /**
2697 * Copy the given pointer to this class.
2698 * @param n A pointer to a Node object to copy.
2699 */
2700 Temp(NodePtr n) : node(n) { }
2701
2702 /**
2703 * Return the node pointer.
2704 * @return the node pointer.
2705 */
2706 operator NodePtr&() { return node; }
2707
2708 public:
2709 /**
2710 * Create a new ScalarStatNode.
2711 * @param s The ScalarStat to place in a node.
2712 */
2713 Temp(const Scalar &s)
2714 : node(new ScalarStatNode(s.info()))
2715 { }
2716
2717 /**
2718 * Create a new ScalarStatNode.
2719 * @param s The ScalarStat to place in a node.
2720 */
2721 Temp(const Value &s)
2722 : node(new ScalarStatNode(s.info()))
2723 { }
2724
2725 /**
2726 * Create a new ScalarStatNode.
2727 * @param s The ScalarStat to place in a node.
2728 */
2729 Temp(const Average &s)
2730 : node(new ScalarStatNode(s.info()))
2731 { }
2732
2733 /**
2734 * Create a new VectorStatNode.
2735 * @param s The VectorStat to place in a node.
2736 */
2737 Temp(const Vector &s)
2738 : node(new VectorStatNode(s.info()))
2739 { }
2740
2741 /**
2742 *
2743 */
2744 Temp(const Formula &f)
2745 : node(new FormulaNode(f))
2746 { }
2747
2748 /**
2749 * Create a new ScalarProxyNode.
2750 * @param p The ScalarProxy to place in a node.
2751 */
2752 template <class Stat>
2753 Temp(const ScalarProxy<Stat> &p)
2754 : node(new ScalarProxyNode<Stat>(p))
2755 { }
2756
2757 /**
2758 * Create a ConstNode
2759 * @param value The value of the const node.
2760 */
2761 Temp(signed char value)
2762 : node(new ConstNode<signed char>(value))
2763 { }
2764
2765 /**
2766 * Create a ConstNode
2767 * @param value The value of the const node.
2768 */
2769 Temp(unsigned char value)
2770 : node(new ConstNode<unsigned char>(value))
2771 { }
2772
2773 /**
2774 * Create a ConstNode
2775 * @param value The value of the const node.
2776 */
2777 Temp(signed short value)
2778 : node(new ConstNode<signed short>(value))
2779 { }
2780
2781 /**
2782 * Create a ConstNode
2783 * @param value The value of the const node.
2784 */
2785 Temp(unsigned short value)
2786 : node(new ConstNode<unsigned short>(value))
2787 { }
2788
2789 /**
2790 * Create a ConstNode
2791 * @param value The value of the const node.
2792 */
2793 Temp(signed int value)
2794 : node(new ConstNode<signed int>(value))
2795 { }
2796
2797 /**
2798 * Create a ConstNode
2799 * @param value The value of the const node.
2800 */
2801 Temp(unsigned int value)
2802 : node(new ConstNode<unsigned int>(value))
2803 { }
2804
2805 /**
2806 * Create a ConstNode
2807 * @param value The value of the const node.
2808 */
2809 Temp(signed long value)
2810 : node(new ConstNode<signed long>(value))
2811 { }
2812
2813 /**
2814 * Create a ConstNode
2815 * @param value The value of the const node.
2816 */
2817 Temp(unsigned long value)
2818 : node(new ConstNode<unsigned long>(value))
2819 { }
2820
2821 /**
2822 * Create a ConstNode
2823 * @param value The value of the const node.
2824 */
2825 Temp(signed long long value)
2826 : node(new ConstNode<signed long long>(value))
2827 { }
2828
2829 /**
2830 * Create a ConstNode
2831 * @param value The value of the const node.
2832 */
2833 Temp(unsigned long long value)
2834 : node(new ConstNode<unsigned long long>(value))
2835 { }
2836
2837 /**
2838 * Create a ConstNode
2839 * @param value The value of the const node.
2840 */
2841 Temp(float value)
2842 : node(new ConstNode<float>(value))
2843 { }
2844
2845 /**
2846 * Create a ConstNode
2847 * @param value The value of the const node.
2848 */
2849 Temp(double value)
2850 : node(new ConstNode<double>(value))
2851 { }
2852};
2853
2854
2855/**
2856 * @}
2857 */
2858
2859inline Temp
2860operator+(Temp l, Temp r)
2861{
2862 return NodePtr(new BinaryNode<std::plus<Result> >(l, r));
2863}
2864
2865inline Temp
2866operator-(Temp l, Temp r)
2867{
2868 return NodePtr(new BinaryNode<std::minus<Result> >(l, r));
2869}
2870
2871inline Temp
2872operator*(Temp l, Temp r)
2873{
2874 return NodePtr(new BinaryNode<std::multiplies<Result> >(l, r));
2875}
2876
2877inline Temp
2878operator/(Temp l, Temp r)
2879{
2880 return NodePtr(new BinaryNode<std::divides<Result> >(l, r));
2881}
2882
2883inline Temp
2884operator-(Temp l)
2885{
2886 return NodePtr(new UnaryNode<std::negate<Result> >(l));
2887}
2888
2889template <typename T>
2890inline Temp
2891constant(T val)
2892{
2893 return NodePtr(new ConstNode<T>(val));
2894}
2895
2896template <typename T>
2897inline Temp
2898constantVector(T val)
2899{
2900 return NodePtr(new ConstVectorNode<T>(val));
2901}
2902
2903inline Temp
2904sum(Temp val)
2905{
2906 return NodePtr(new SumNode<std::plus<Result> >(val));
2907}
2908
2909/**
2910 * Enable the statistics package. Before the statistics package is
2911 * enabled, all statistics must be created and initialized and once
2912 * the package is enabled, no more statistics can be created.
2913 */
2914void enable();
2915
2916/**
2917 * Prepare all stats for data access. This must be done before
2918 * dumping and serialization.
2919 */
2920void prepare();
2921
2922/**
2923 * Dump all statistics data to the registered outputs
2924 */
2925void dump();
2926
2927/**
2928 * Reset all statistics to the base state
2929 */
2930void reset();
2931/**
2932 * Register a callback that should be called whenever statistics are
2933 * reset
2934 */
2935void registerResetCallback(Callback *cb);
2936
2937std::list<Info *> &statsList();
2938
2939/* namespace Stats */ }
2940
2941#endif // __BASE_STATISTICS_HH__