process.cc (11800:54436a1784dc) process.cc (11851:824055fe6b30)
1/*
2 * Copyright (c) 2014 Advanced Micro Devices, Inc.
3 * Copyright (c) 2007 The Hewlett-Packard Development Company
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Gabe Black
42 * Ali Saidi
43 */
44
45#include "arch/x86/process.hh"
46
47#include "arch/x86/isa_traits.hh"
48#include "arch/x86/regs/misc.hh"
49#include "arch/x86/regs/segment.hh"
50#include "arch/x86/system.hh"
51#include "arch/x86/types.hh"
52#include "base/loader/elf_object.hh"
53#include "base/loader/object_file.hh"
54#include "base/misc.hh"
55#include "base/trace.hh"
56#include "cpu/thread_context.hh"
57#include "debug/Stack.hh"
58#include "mem/multi_level_page_table.hh"
59#include "mem/page_table.hh"
60#include "sim/process_impl.hh"
61#include "sim/syscall_desc.hh"
62#include "sim/syscall_return.hh"
63#include "sim/system.hh"
64
65using namespace std;
66using namespace X86ISA;
67
68static const int ArgumentReg[] = {
69 INTREG_RDI,
70 INTREG_RSI,
71 INTREG_RDX,
72 //This argument register is r10 for syscalls and rcx for C.
73 INTREG_R10W,
74 //INTREG_RCX,
75 INTREG_R8W,
76 INTREG_R9W
77};
78
79static const int NumArgumentRegs M5_VAR_USED =
80 sizeof(ArgumentReg) / sizeof(const int);
81
82static const int ArgumentReg32[] = {
83 INTREG_EBX,
84 INTREG_ECX,
85 INTREG_EDX,
86 INTREG_ESI,
87 INTREG_EDI,
88 INTREG_EBP
89};
90
91static const int NumArgumentRegs32 M5_VAR_USED =
92 sizeof(ArgumentReg) / sizeof(const int);
93
1/*
2 * Copyright (c) 2014 Advanced Micro Devices, Inc.
3 * Copyright (c) 2007 The Hewlett-Packard Development Company
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Gabe Black
42 * Ali Saidi
43 */
44
45#include "arch/x86/process.hh"
46
47#include "arch/x86/isa_traits.hh"
48#include "arch/x86/regs/misc.hh"
49#include "arch/x86/regs/segment.hh"
50#include "arch/x86/system.hh"
51#include "arch/x86/types.hh"
52#include "base/loader/elf_object.hh"
53#include "base/loader/object_file.hh"
54#include "base/misc.hh"
55#include "base/trace.hh"
56#include "cpu/thread_context.hh"
57#include "debug/Stack.hh"
58#include "mem/multi_level_page_table.hh"
59#include "mem/page_table.hh"
60#include "sim/process_impl.hh"
61#include "sim/syscall_desc.hh"
62#include "sim/syscall_return.hh"
63#include "sim/system.hh"
64
65using namespace std;
66using namespace X86ISA;
67
68static const int ArgumentReg[] = {
69 INTREG_RDI,
70 INTREG_RSI,
71 INTREG_RDX,
72 //This argument register is r10 for syscalls and rcx for C.
73 INTREG_R10W,
74 //INTREG_RCX,
75 INTREG_R8W,
76 INTREG_R9W
77};
78
79static const int NumArgumentRegs M5_VAR_USED =
80 sizeof(ArgumentReg) / sizeof(const int);
81
82static const int ArgumentReg32[] = {
83 INTREG_EBX,
84 INTREG_ECX,
85 INTREG_EDX,
86 INTREG_ESI,
87 INTREG_EDI,
88 INTREG_EBP
89};
90
91static const int NumArgumentRegs32 M5_VAR_USED =
92 sizeof(ArgumentReg) / sizeof(const int);
93
94X86LiveProcess::X86LiveProcess(LiveProcessParams * params, ObjectFile *objFile,
95 SyscallDesc *_syscallDescs, int _numSyscallDescs) :
96 LiveProcess(params, objFile), syscallDescs(_syscallDescs),
97 numSyscallDescs(_numSyscallDescs)
94X86Process::X86Process(ProcessParams * params, ObjectFile *objFile,
95 SyscallDesc *_syscallDescs, int _numSyscallDescs)
96 : Process(params, objFile), syscallDescs(_syscallDescs),
97 numSyscallDescs(_numSyscallDescs)
98{
99 brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize();
100 brk_point = roundUp(brk_point, PageBytes);
101}
102
98{
99 brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize();
100 brk_point = roundUp(brk_point, PageBytes);
101}
102
103X86_64LiveProcess::X86_64LiveProcess(LiveProcessParams *params,
104 ObjectFile *objFile, SyscallDesc *_syscallDescs,
105 int _numSyscallDescs) :
106 X86LiveProcess(params, objFile, _syscallDescs, _numSyscallDescs)
103X86_64Process::X86_64Process(ProcessParams *params, ObjectFile *objFile,
104 SyscallDesc *_syscallDescs, int _numSyscallDescs)
105 : X86Process(params, objFile, _syscallDescs, _numSyscallDescs)
107{
108
109 vsyscallPage.base = 0xffffffffff600000ULL;
110 vsyscallPage.size = PageBytes;
111 vsyscallPage.vtimeOffset = 0x400;
112 vsyscallPage.vgettimeofdayOffset = 0x0;
113
114 // Set up stack. On X86_64 Linux, stack goes from the top of memory
115 // downward, less the hole for the kernel address space plus one page
116 // for undertermined purposes.
117 stack_base = (Addr)0x7FFFFFFFF000ULL;
118
119 // Set pointer for next thread stack. Reserve 8M for main stack.
120 next_thread_stack_base = stack_base - (8 * 1024 * 1024);
121
122 // "mmap_base" is a function which defines where mmap region starts in
123 // the process address space.
124 // mmap_base: PAGE_ALIGN(TASK_SIZE-MIN_GAP-mmap_rnd())
125 // TASK_SIZE: (1<<47)-PAGE_SIZE
126 // MIN_GAP: 128*1024*1024+stack_maxrandom_size()
127 // We do not use any address space layout randomization in gem5
128 // therefore the random fields become zero; the smallest gap space was
129 // chosen but gap could potentially be much larger.
130 mmap_end = (Addr)0x7FFFF7FFF000ULL;
131}
132
133void
106{
107
108 vsyscallPage.base = 0xffffffffff600000ULL;
109 vsyscallPage.size = PageBytes;
110 vsyscallPage.vtimeOffset = 0x400;
111 vsyscallPage.vgettimeofdayOffset = 0x0;
112
113 // Set up stack. On X86_64 Linux, stack goes from the top of memory
114 // downward, less the hole for the kernel address space plus one page
115 // for undertermined purposes.
116 stack_base = (Addr)0x7FFFFFFFF000ULL;
117
118 // Set pointer for next thread stack. Reserve 8M for main stack.
119 next_thread_stack_base = stack_base - (8 * 1024 * 1024);
120
121 // "mmap_base" is a function which defines where mmap region starts in
122 // the process address space.
123 // mmap_base: PAGE_ALIGN(TASK_SIZE-MIN_GAP-mmap_rnd())
124 // TASK_SIZE: (1<<47)-PAGE_SIZE
125 // MIN_GAP: 128*1024*1024+stack_maxrandom_size()
126 // We do not use any address space layout randomization in gem5
127 // therefore the random fields become zero; the smallest gap space was
128 // chosen but gap could potentially be much larger.
129 mmap_end = (Addr)0x7FFFF7FFF000ULL;
130}
131
132void
134I386LiveProcess::syscall(int64_t callnum, ThreadContext *tc)
133I386Process::syscall(int64_t callnum, ThreadContext *tc)
135{
136 TheISA::PCState pc = tc->pcState();
137 Addr eip = pc.pc();
138 if (eip >= vsyscallPage.base &&
139 eip < vsyscallPage.base + vsyscallPage.size) {
140 pc.npc(vsyscallPage.base + vsyscallPage.vsysexitOffset);
141 tc->pcState(pc);
142 }
134{
135 TheISA::PCState pc = tc->pcState();
136 Addr eip = pc.pc();
137 if (eip >= vsyscallPage.base &&
138 eip < vsyscallPage.base + vsyscallPage.size) {
139 pc.npc(vsyscallPage.base + vsyscallPage.vsysexitOffset);
140 tc->pcState(pc);
141 }
143 X86LiveProcess::syscall(callnum, tc);
142 X86Process::syscall(callnum, tc);
144}
145
146
143}
144
145
147I386LiveProcess::I386LiveProcess(LiveProcessParams *params,
148 ObjectFile *objFile, SyscallDesc *_syscallDescs,
149 int _numSyscallDescs) :
150 X86LiveProcess(params, objFile, _syscallDescs, _numSyscallDescs)
146I386Process::I386Process(ProcessParams *params, ObjectFile *objFile,
147 SyscallDesc *_syscallDescs, int _numSyscallDescs)
148 : X86Process(params, objFile, _syscallDescs, _numSyscallDescs)
151{
152 _gdtStart = ULL(0xffffd000);
153 _gdtSize = PageBytes;
154
155 vsyscallPage.base = 0xffffe000ULL;
156 vsyscallPage.size = PageBytes;
157 vsyscallPage.vsyscallOffset = 0x400;
158 vsyscallPage.vsysexitOffset = 0x410;
159
160 stack_base = _gdtStart;
161
162 // Set pointer for next thread stack. Reserve 8M for main stack.
163 next_thread_stack_base = stack_base - (8 * 1024 * 1024);
164
165 // "mmap_base" is a function which defines where mmap region starts in
166 // the process address space.
167 // mmap_base: PAGE_ALIGN(TASK_SIZE-MIN_GAP-mmap_rnd())
168 // TASK_SIZE: 0xC0000000
169 // MIN_GAP: 128*1024*1024+stack_maxrandom_size()
170 // We do not use any address space layout randomization in gem5
171 // therefore the random fields become zero; the smallest gap space was
172 // chosen but gap could potentially be much larger.
173 mmap_end = (Addr)0xB7FFF000ULL;
174}
175
176SyscallDesc*
149{
150 _gdtStart = ULL(0xffffd000);
151 _gdtSize = PageBytes;
152
153 vsyscallPage.base = 0xffffe000ULL;
154 vsyscallPage.size = PageBytes;
155 vsyscallPage.vsyscallOffset = 0x400;
156 vsyscallPage.vsysexitOffset = 0x410;
157
158 stack_base = _gdtStart;
159
160 // Set pointer for next thread stack. Reserve 8M for main stack.
161 next_thread_stack_base = stack_base - (8 * 1024 * 1024);
162
163 // "mmap_base" is a function which defines where mmap region starts in
164 // the process address space.
165 // mmap_base: PAGE_ALIGN(TASK_SIZE-MIN_GAP-mmap_rnd())
166 // TASK_SIZE: 0xC0000000
167 // MIN_GAP: 128*1024*1024+stack_maxrandom_size()
168 // We do not use any address space layout randomization in gem5
169 // therefore the random fields become zero; the smallest gap space was
170 // chosen but gap could potentially be much larger.
171 mmap_end = (Addr)0xB7FFF000ULL;
172}
173
174SyscallDesc*
177X86LiveProcess::getDesc(int callnum)
175X86Process::getDesc(int callnum)
178{
179 if (callnum < 0 || callnum >= numSyscallDescs)
180 return NULL;
181 return &syscallDescs[callnum];
182}
183
184void
176{
177 if (callnum < 0 || callnum >= numSyscallDescs)
178 return NULL;
179 return &syscallDescs[callnum];
180}
181
182void
185X86_64LiveProcess::initState()
183X86_64Process::initState()
186{
184{
187 X86LiveProcess::initState();
185 X86Process::initState();
188
189 argsInit(sizeof(uint64_t), PageBytes);
190
191 // Set up the vsyscall page for this process.
192 allocateMem(vsyscallPage.base, vsyscallPage.size);
193 uint8_t vtimeBlob[] = {
194 0x48,0xc7,0xc0,0xc9,0x00,0x00,0x00, // mov $0xc9,%rax
195 0x0f,0x05, // syscall
196 0xc3 // retq
197 };
198 initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vtimeOffset,
199 vtimeBlob, sizeof(vtimeBlob));
200
201 uint8_t vgettimeofdayBlob[] = {
202 0x48,0xc7,0xc0,0x60,0x00,0x00,0x00, // mov $0x60,%rax
203 0x0f,0x05, // syscall
204 0xc3 // retq
205 };
206 initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vgettimeofdayOffset,
207 vgettimeofdayBlob, sizeof(vgettimeofdayBlob));
208
209 if (kvmInSE) {
210 PortProxy physProxy = system->physProxy;
211
212 /*
213 * Set up the gdt.
214 */
215 uint8_t numGDTEntries = 0;
216 uint64_t nullDescriptor = 0;
217 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
218 (uint8_t *)(&nullDescriptor), 8);
219 numGDTEntries++;
220
221 SegDescriptor initDesc = 0;
222 initDesc.type.codeOrData = 0; // code or data type
223 initDesc.type.c = 0; // conforming
224 initDesc.type.r = 1; // readable
225 initDesc.dpl = 0; // privilege
226 initDesc.p = 1; // present
227 initDesc.l = 1; // longmode - 64 bit
228 initDesc.d = 0; // operand size
229 initDesc.g = 1; // granularity
230 initDesc.s = 1; // system segment
231 initDesc.limitHigh = 0xFFFF;
232 initDesc.limitLow = 0xF;
233 initDesc.baseHigh = 0x0;
234 initDesc.baseLow = 0x0;
235
236 //64 bit code segment
237 SegDescriptor csLowPLDesc = initDesc;
238 csLowPLDesc.type.codeOrData = 1;
239 csLowPLDesc.dpl = 0;
240 uint64_t csLowPLDescVal = csLowPLDesc;
241 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
242 (uint8_t *)(&csLowPLDescVal), 8);
243
244 numGDTEntries++;
245
246 SegSelector csLowPL = 0;
247 csLowPL.si = numGDTEntries - 1;
248 csLowPL.rpl = 0;
249
250 //64 bit data segment
251 SegDescriptor dsLowPLDesc = initDesc;
252 dsLowPLDesc.type.codeOrData = 0;
253 dsLowPLDesc.dpl = 0;
254 uint64_t dsLowPLDescVal = dsLowPLDesc;
255 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
256 (uint8_t *)(&dsLowPLDescVal), 8);
257
258 numGDTEntries++;
259
260 SegSelector dsLowPL = 0;
261 dsLowPL.si = numGDTEntries - 1;
262 dsLowPL.rpl = 0;
263
264 //64 bit data segment
265 SegDescriptor dsDesc = initDesc;
266 dsDesc.type.codeOrData = 0;
267 dsDesc.dpl = 3;
268 uint64_t dsDescVal = dsDesc;
269 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
270 (uint8_t *)(&dsDescVal), 8);
271
272 numGDTEntries++;
273
274 SegSelector ds = 0;
275 ds.si = numGDTEntries - 1;
276 ds.rpl = 3;
277
278 //64 bit code segment
279 SegDescriptor csDesc = initDesc;
280 csDesc.type.codeOrData = 1;
281 csDesc.dpl = 3;
282 uint64_t csDescVal = csDesc;
283 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
284 (uint8_t *)(&csDescVal), 8);
285
286 numGDTEntries++;
287
288 SegSelector cs = 0;
289 cs.si = numGDTEntries - 1;
290 cs.rpl = 3;
291
292 SegSelector scall = 0;
293 scall.si = csLowPL.si;
294 scall.rpl = 0;
295
296 SegSelector sret = 0;
297 sret.si = dsLowPL.si;
298 sret.rpl = 3;
299
300 /* In long mode the TSS has been extended to 16 Bytes */
301 TSSlow TSSDescLow = 0;
302 TSSDescLow.type = 0xB;
303 TSSDescLow.dpl = 0; // Privelege level 0
304 TSSDescLow.p = 1; // Present
305 TSSDescLow.g = 1; // Page granularity
306 TSSDescLow.limitHigh = 0xF;
307 TSSDescLow.limitLow = 0xFFFF;
308 TSSDescLow.baseLow = bits(TSSVirtAddr, 23, 0);
309 TSSDescLow.baseHigh = bits(TSSVirtAddr, 31, 24);
310
311 TSShigh TSSDescHigh = 0;
312 TSSDescHigh.base = bits(TSSVirtAddr, 63, 32);
313
314 struct TSSDesc {
315 uint64_t low;
316 uint64_t high;
317 } tssDescVal = {TSSDescLow, TSSDescHigh};
318
319 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
320 (uint8_t *)(&tssDescVal), sizeof(tssDescVal));
321
322 numGDTEntries++;
323
324 SegSelector tssSel = 0;
325 tssSel.si = numGDTEntries - 1;
326
327 uint64_t tss_base_addr = (TSSDescHigh.base << 32) |
328 (TSSDescLow.baseHigh << 24) |
329 TSSDescLow.baseLow;
330 uint64_t tss_limit = TSSDescLow.limitLow | (TSSDescLow.limitHigh << 16);
331
332 SegAttr tss_attr = 0;
333
334 tss_attr.type = TSSDescLow.type;
335 tss_attr.dpl = TSSDescLow.dpl;
336 tss_attr.present = TSSDescLow.p;
337 tss_attr.granularity = TSSDescLow.g;
338 tss_attr.unusable = 0;
339
340 for (int i = 0; i < contextIds.size(); i++) {
341 ThreadContext * tc = system->getThreadContext(contextIds[i]);
342
343 tc->setMiscReg(MISCREG_CS, cs);
344 tc->setMiscReg(MISCREG_DS, ds);
345 tc->setMiscReg(MISCREG_ES, ds);
346 tc->setMiscReg(MISCREG_FS, ds);
347 tc->setMiscReg(MISCREG_GS, ds);
348 tc->setMiscReg(MISCREG_SS, ds);
349
350 // LDT
351 tc->setMiscReg(MISCREG_TSL, 0);
352 SegAttr tslAttr = 0;
353 tslAttr.present = 1;
354 tslAttr.type = 2;
355 tc->setMiscReg(MISCREG_TSL_ATTR, tslAttr);
356
357 tc->setMiscReg(MISCREG_TSG_BASE, GDTVirtAddr);
358 tc->setMiscReg(MISCREG_TSG_LIMIT, 8 * numGDTEntries - 1);
359
360 tc->setMiscReg(MISCREG_TR, tssSel);
361 tc->setMiscReg(MISCREG_TR_BASE, tss_base_addr);
362 tc->setMiscReg(MISCREG_TR_EFF_BASE, 0);
363 tc->setMiscReg(MISCREG_TR_LIMIT, tss_limit);
364 tc->setMiscReg(MISCREG_TR_ATTR, tss_attr);
365
366 //Start using longmode segments.
367 installSegDesc(tc, SEGMENT_REG_CS, csDesc, true);
368 installSegDesc(tc, SEGMENT_REG_DS, dsDesc, true);
369 installSegDesc(tc, SEGMENT_REG_ES, dsDesc, true);
370 installSegDesc(tc, SEGMENT_REG_FS, dsDesc, true);
371 installSegDesc(tc, SEGMENT_REG_GS, dsDesc, true);
372 installSegDesc(tc, SEGMENT_REG_SS, dsDesc, true);
373
374 Efer efer = 0;
375 efer.sce = 1; // Enable system call extensions.
376 efer.lme = 1; // Enable long mode.
377 efer.lma = 1; // Activate long mode.
378 efer.nxe = 0; // Enable nx support.
379 efer.svme = 1; // Enable svm support for now.
380 efer.ffxsr = 0; // Turn on fast fxsave and fxrstor.
381 tc->setMiscReg(MISCREG_EFER, efer);
382
383 //Set up the registers that describe the operating mode.
384 CR0 cr0 = 0;
385 cr0.pg = 1; // Turn on paging.
386 cr0.cd = 0; // Don't disable caching.
387 cr0.nw = 0; // This is bit is defined to be ignored.
388 cr0.am = 1; // No alignment checking
389 cr0.wp = 1; // Supervisor mode can write read only pages
390 cr0.ne = 1;
391 cr0.et = 1; // This should always be 1
392 cr0.ts = 0; // We don't do task switching, so causing fp exceptions
393 // would be pointless.
394 cr0.em = 0; // Allow x87 instructions to execute natively.
395 cr0.mp = 1; // This doesn't really matter, but the manual suggests
396 // setting it to one.
397 cr0.pe = 1; // We're definitely in protected mode.
398 tc->setMiscReg(MISCREG_CR0, cr0);
399
400 CR0 cr2 = 0;
401 tc->setMiscReg(MISCREG_CR2, cr2);
402
403 CR3 cr3 = pageTablePhysAddr;
404 tc->setMiscReg(MISCREG_CR3, cr3);
405
406 CR4 cr4 = 0;
407 //Turn on pae.
408 cr4.osxsave = 1; // Enable XSAVE and Proc Extended States
409 cr4.osxmmexcpt = 1; // Operating System Unmasked Exception
410 cr4.osfxsr = 1; // Operating System FXSave/FSRSTOR Support
411 cr4.pce = 0; // Performance-Monitoring Counter Enable
412 cr4.pge = 0; // Page-Global Enable
413 cr4.mce = 0; // Machine Check Enable
414 cr4.pae = 1; // Physical-Address Extension
415 cr4.pse = 0; // Page Size Extensions
416 cr4.de = 0; // Debugging Extensions
417 cr4.tsd = 0; // Time Stamp Disable
418 cr4.pvi = 0; // Protected-Mode Virtual Interrupts
419 cr4.vme = 0; // Virtual-8086 Mode Extensions
420
421 tc->setMiscReg(MISCREG_CR4, cr4);
422
423 CR4 cr8 = 0;
424 tc->setMiscReg(MISCREG_CR8, cr8);
425
426 const Addr PageMapLevel4 = pageTablePhysAddr;
427 //Point to the page tables.
428 tc->setMiscReg(MISCREG_CR3, PageMapLevel4);
429
430 tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
431
432 tc->setMiscReg(MISCREG_APIC_BASE, 0xfee00900);
433
434 tc->setMiscReg(MISCREG_TSG_BASE, GDTVirtAddr);
435 tc->setMiscReg(MISCREG_TSG_LIMIT, 0xffff);
436
437 tc->setMiscReg(MISCREG_IDTR_BASE, IDTVirtAddr);
438 tc->setMiscReg(MISCREG_IDTR_LIMIT, 0xffff);
439
440 /* enabling syscall and sysret */
441 MiscReg star = ((MiscReg)sret << 48) | ((MiscReg)scall << 32);
442 tc->setMiscReg(MISCREG_STAR, star);
443 MiscReg lstar = (MiscReg)syscallCodeVirtAddr;
444 tc->setMiscReg(MISCREG_LSTAR, lstar);
445 MiscReg sfmask = (1 << 8) | (1 << 10); // TF | DF
446 tc->setMiscReg(MISCREG_SF_MASK, sfmask);
447 }
448
449 /* Set up the content of the TSS and write it to physical memory. */
450
451 struct {
452 uint32_t reserved0; // +00h
453 uint32_t RSP0_low; // +04h
454 uint32_t RSP0_high; // +08h
455 uint32_t RSP1_low; // +0Ch
456 uint32_t RSP1_high; // +10h
457 uint32_t RSP2_low; // +14h
458 uint32_t RSP2_high; // +18h
459 uint32_t reserved1; // +1Ch
460 uint32_t reserved2; // +20h
461 uint32_t IST1_low; // +24h
462 uint32_t IST1_high; // +28h
463 uint32_t IST2_low; // +2Ch
464 uint32_t IST2_high; // +30h
465 uint32_t IST3_low; // +34h
466 uint32_t IST3_high; // +38h
467 uint32_t IST4_low; // +3Ch
468 uint32_t IST4_high; // +40h
469 uint32_t IST5_low; // +44h
470 uint32_t IST5_high; // +48h
471 uint32_t IST6_low; // +4Ch
472 uint32_t IST6_high; // +50h
473 uint32_t IST7_low; // +54h
474 uint32_t IST7_high; // +58h
475 uint32_t reserved3; // +5Ch
476 uint32_t reserved4; // +60h
477 uint16_t reserved5; // +64h
478 uint16_t IO_MapBase; // +66h
479 } tss;
480
481 /** setting Interrupt Stack Table */
482 uint64_t IST_start = ISTVirtAddr + PageBytes;
483 tss.IST1_low = IST_start;
484 tss.IST1_high = IST_start >> 32;
485 tss.RSP0_low = tss.IST1_low;
486 tss.RSP0_high = tss.IST1_high;
487 tss.RSP1_low = tss.IST1_low;
488 tss.RSP1_high = tss.IST1_high;
489 tss.RSP2_low = tss.IST1_low;
490 tss.RSP2_high = tss.IST1_high;
491 physProxy.writeBlob(TSSPhysAddr, (uint8_t *)(&tss), sizeof(tss));
492
493 /* Setting IDT gates */
494 GateDescriptorLow PFGateLow = 0;
495 PFGateLow.offsetHigh = bits(PFHandlerVirtAddr, 31, 16);
496 PFGateLow.offsetLow = bits(PFHandlerVirtAddr, 15, 0);
497 PFGateLow.selector = csLowPL;
498 PFGateLow.p = 1;
499 PFGateLow.dpl = 0;
500 PFGateLow.type = 0xe; // gate interrupt type
501 PFGateLow.IST = 0; // setting IST to 0 and using RSP0
502
503 GateDescriptorHigh PFGateHigh = 0;
504 PFGateHigh.offset = bits(PFHandlerVirtAddr, 63, 32);
505
506 struct {
507 uint64_t low;
508 uint64_t high;
509 } PFGate = {PFGateLow, PFGateHigh};
510
511 physProxy.writeBlob(IDTPhysAddr + 0xE0,
512 (uint8_t *)(&PFGate), sizeof(PFGate));
513
514 /* System call handler */
515 uint8_t syscallBlob[] = {
516 // mov %rax, (0xffffc90000005600)
517 0x48, 0xa3, 0x00, 0x60, 0x00,
518 0x00, 0x00, 0xc9, 0xff, 0xff,
519 // sysret
520 0x48, 0x0f, 0x07
521 };
522
523 physProxy.writeBlob(syscallCodePhysAddr,
524 syscallBlob, sizeof(syscallBlob));
525
526 /** Page fault handler */
527 uint8_t faultBlob[] = {
528 // mov %rax, (0xffffc90000005700)
529 0x48, 0xa3, 0x00, 0x61, 0x00,
530 0x00, 0x00, 0xc9, 0xff, 0xff,
531 // add $0x8, %rsp # skip error
532 0x48, 0x83, 0xc4, 0x08,
533 // iretq
534 0x48, 0xcf
535 };
536
537 physProxy.writeBlob(PFHandlerPhysAddr, faultBlob, sizeof(faultBlob));
538
539 MultiLevelPageTable<PageTableOps> *pt =
540 dynamic_cast<MultiLevelPageTable<PageTableOps> *>(pTable);
541
542 /* Syscall handler */
543 pt->map(syscallCodeVirtAddr, syscallCodePhysAddr, PageBytes, false);
544 /* GDT */
545 pt->map(GDTVirtAddr, GDTPhysAddr, PageBytes, false);
546 /* IDT */
547 pt->map(IDTVirtAddr, IDTPhysAddr, PageBytes, false);
548 /* TSS */
549 pt->map(TSSVirtAddr, TSSPhysAddr, PageBytes, false);
550 /* IST */
551 pt->map(ISTVirtAddr, ISTPhysAddr, PageBytes, false);
552 /* PF handler */
553 pt->map(PFHandlerVirtAddr, PFHandlerPhysAddr, PageBytes, false);
554 /* MMIO region for m5ops */
555 pt->map(MMIORegionVirtAddr, MMIORegionPhysAddr, 16*PageBytes, false);
556 } else {
557 for (int i = 0; i < contextIds.size(); i++) {
558 ThreadContext * tc = system->getThreadContext(contextIds[i]);
559
560 SegAttr dataAttr = 0;
561 dataAttr.dpl = 3;
562 dataAttr.unusable = 0;
563 dataAttr.defaultSize = 1;
564 dataAttr.longMode = 1;
565 dataAttr.avl = 0;
566 dataAttr.granularity = 1;
567 dataAttr.present = 1;
568 dataAttr.type = 3;
569 dataAttr.writable = 1;
570 dataAttr.readable = 1;
571 dataAttr.expandDown = 0;
572 dataAttr.system = 1;
573
574 //Initialize the segment registers.
575 for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
576 tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
577 tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
578 tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
579 }
580
581 SegAttr csAttr = 0;
582 csAttr.dpl = 3;
583 csAttr.unusable = 0;
584 csAttr.defaultSize = 0;
585 csAttr.longMode = 1;
586 csAttr.avl = 0;
587 csAttr.granularity = 1;
588 csAttr.present = 1;
589 csAttr.type = 10;
590 csAttr.writable = 0;
591 csAttr.readable = 1;
592 csAttr.expandDown = 0;
593 csAttr.system = 1;
594
595 tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
596
597 Efer efer = 0;
598 efer.sce = 1; // Enable system call extensions.
599 efer.lme = 1; // Enable long mode.
600 efer.lma = 1; // Activate long mode.
601 efer.nxe = 1; // Enable nx support.
602 efer.svme = 0; // Disable svm support for now. It isn't implemented.
603 efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
604 tc->setMiscReg(MISCREG_EFER, efer);
605
606 //Set up the registers that describe the operating mode.
607 CR0 cr0 = 0;
608 cr0.pg = 1; // Turn on paging.
609 cr0.cd = 0; // Don't disable caching.
610 cr0.nw = 0; // This is bit is defined to be ignored.
611 cr0.am = 0; // No alignment checking
612 cr0.wp = 0; // Supervisor mode can write read only pages
613 cr0.ne = 1;
614 cr0.et = 1; // This should always be 1
615 cr0.ts = 0; // We don't do task switching, so causing fp exceptions
616 // would be pointless.
617 cr0.em = 0; // Allow x87 instructions to execute natively.
618 cr0.mp = 1; // This doesn't really matter, but the manual suggests
619 // setting it to one.
620 cr0.pe = 1; // We're definitely in protected mode.
621 tc->setMiscReg(MISCREG_CR0, cr0);
622
623 tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
624 }
625 }
626}
627
628void
186
187 argsInit(sizeof(uint64_t), PageBytes);
188
189 // Set up the vsyscall page for this process.
190 allocateMem(vsyscallPage.base, vsyscallPage.size);
191 uint8_t vtimeBlob[] = {
192 0x48,0xc7,0xc0,0xc9,0x00,0x00,0x00, // mov $0xc9,%rax
193 0x0f,0x05, // syscall
194 0xc3 // retq
195 };
196 initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vtimeOffset,
197 vtimeBlob, sizeof(vtimeBlob));
198
199 uint8_t vgettimeofdayBlob[] = {
200 0x48,0xc7,0xc0,0x60,0x00,0x00,0x00, // mov $0x60,%rax
201 0x0f,0x05, // syscall
202 0xc3 // retq
203 };
204 initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vgettimeofdayOffset,
205 vgettimeofdayBlob, sizeof(vgettimeofdayBlob));
206
207 if (kvmInSE) {
208 PortProxy physProxy = system->physProxy;
209
210 /*
211 * Set up the gdt.
212 */
213 uint8_t numGDTEntries = 0;
214 uint64_t nullDescriptor = 0;
215 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
216 (uint8_t *)(&nullDescriptor), 8);
217 numGDTEntries++;
218
219 SegDescriptor initDesc = 0;
220 initDesc.type.codeOrData = 0; // code or data type
221 initDesc.type.c = 0; // conforming
222 initDesc.type.r = 1; // readable
223 initDesc.dpl = 0; // privilege
224 initDesc.p = 1; // present
225 initDesc.l = 1; // longmode - 64 bit
226 initDesc.d = 0; // operand size
227 initDesc.g = 1; // granularity
228 initDesc.s = 1; // system segment
229 initDesc.limitHigh = 0xFFFF;
230 initDesc.limitLow = 0xF;
231 initDesc.baseHigh = 0x0;
232 initDesc.baseLow = 0x0;
233
234 //64 bit code segment
235 SegDescriptor csLowPLDesc = initDesc;
236 csLowPLDesc.type.codeOrData = 1;
237 csLowPLDesc.dpl = 0;
238 uint64_t csLowPLDescVal = csLowPLDesc;
239 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
240 (uint8_t *)(&csLowPLDescVal), 8);
241
242 numGDTEntries++;
243
244 SegSelector csLowPL = 0;
245 csLowPL.si = numGDTEntries - 1;
246 csLowPL.rpl = 0;
247
248 //64 bit data segment
249 SegDescriptor dsLowPLDesc = initDesc;
250 dsLowPLDesc.type.codeOrData = 0;
251 dsLowPLDesc.dpl = 0;
252 uint64_t dsLowPLDescVal = dsLowPLDesc;
253 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
254 (uint8_t *)(&dsLowPLDescVal), 8);
255
256 numGDTEntries++;
257
258 SegSelector dsLowPL = 0;
259 dsLowPL.si = numGDTEntries - 1;
260 dsLowPL.rpl = 0;
261
262 //64 bit data segment
263 SegDescriptor dsDesc = initDesc;
264 dsDesc.type.codeOrData = 0;
265 dsDesc.dpl = 3;
266 uint64_t dsDescVal = dsDesc;
267 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
268 (uint8_t *)(&dsDescVal), 8);
269
270 numGDTEntries++;
271
272 SegSelector ds = 0;
273 ds.si = numGDTEntries - 1;
274 ds.rpl = 3;
275
276 //64 bit code segment
277 SegDescriptor csDesc = initDesc;
278 csDesc.type.codeOrData = 1;
279 csDesc.dpl = 3;
280 uint64_t csDescVal = csDesc;
281 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
282 (uint8_t *)(&csDescVal), 8);
283
284 numGDTEntries++;
285
286 SegSelector cs = 0;
287 cs.si = numGDTEntries - 1;
288 cs.rpl = 3;
289
290 SegSelector scall = 0;
291 scall.si = csLowPL.si;
292 scall.rpl = 0;
293
294 SegSelector sret = 0;
295 sret.si = dsLowPL.si;
296 sret.rpl = 3;
297
298 /* In long mode the TSS has been extended to 16 Bytes */
299 TSSlow TSSDescLow = 0;
300 TSSDescLow.type = 0xB;
301 TSSDescLow.dpl = 0; // Privelege level 0
302 TSSDescLow.p = 1; // Present
303 TSSDescLow.g = 1; // Page granularity
304 TSSDescLow.limitHigh = 0xF;
305 TSSDescLow.limitLow = 0xFFFF;
306 TSSDescLow.baseLow = bits(TSSVirtAddr, 23, 0);
307 TSSDescLow.baseHigh = bits(TSSVirtAddr, 31, 24);
308
309 TSShigh TSSDescHigh = 0;
310 TSSDescHigh.base = bits(TSSVirtAddr, 63, 32);
311
312 struct TSSDesc {
313 uint64_t low;
314 uint64_t high;
315 } tssDescVal = {TSSDescLow, TSSDescHigh};
316
317 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
318 (uint8_t *)(&tssDescVal), sizeof(tssDescVal));
319
320 numGDTEntries++;
321
322 SegSelector tssSel = 0;
323 tssSel.si = numGDTEntries - 1;
324
325 uint64_t tss_base_addr = (TSSDescHigh.base << 32) |
326 (TSSDescLow.baseHigh << 24) |
327 TSSDescLow.baseLow;
328 uint64_t tss_limit = TSSDescLow.limitLow | (TSSDescLow.limitHigh << 16);
329
330 SegAttr tss_attr = 0;
331
332 tss_attr.type = TSSDescLow.type;
333 tss_attr.dpl = TSSDescLow.dpl;
334 tss_attr.present = TSSDescLow.p;
335 tss_attr.granularity = TSSDescLow.g;
336 tss_attr.unusable = 0;
337
338 for (int i = 0; i < contextIds.size(); i++) {
339 ThreadContext * tc = system->getThreadContext(contextIds[i]);
340
341 tc->setMiscReg(MISCREG_CS, cs);
342 tc->setMiscReg(MISCREG_DS, ds);
343 tc->setMiscReg(MISCREG_ES, ds);
344 tc->setMiscReg(MISCREG_FS, ds);
345 tc->setMiscReg(MISCREG_GS, ds);
346 tc->setMiscReg(MISCREG_SS, ds);
347
348 // LDT
349 tc->setMiscReg(MISCREG_TSL, 0);
350 SegAttr tslAttr = 0;
351 tslAttr.present = 1;
352 tslAttr.type = 2;
353 tc->setMiscReg(MISCREG_TSL_ATTR, tslAttr);
354
355 tc->setMiscReg(MISCREG_TSG_BASE, GDTVirtAddr);
356 tc->setMiscReg(MISCREG_TSG_LIMIT, 8 * numGDTEntries - 1);
357
358 tc->setMiscReg(MISCREG_TR, tssSel);
359 tc->setMiscReg(MISCREG_TR_BASE, tss_base_addr);
360 tc->setMiscReg(MISCREG_TR_EFF_BASE, 0);
361 tc->setMiscReg(MISCREG_TR_LIMIT, tss_limit);
362 tc->setMiscReg(MISCREG_TR_ATTR, tss_attr);
363
364 //Start using longmode segments.
365 installSegDesc(tc, SEGMENT_REG_CS, csDesc, true);
366 installSegDesc(tc, SEGMENT_REG_DS, dsDesc, true);
367 installSegDesc(tc, SEGMENT_REG_ES, dsDesc, true);
368 installSegDesc(tc, SEGMENT_REG_FS, dsDesc, true);
369 installSegDesc(tc, SEGMENT_REG_GS, dsDesc, true);
370 installSegDesc(tc, SEGMENT_REG_SS, dsDesc, true);
371
372 Efer efer = 0;
373 efer.sce = 1; // Enable system call extensions.
374 efer.lme = 1; // Enable long mode.
375 efer.lma = 1; // Activate long mode.
376 efer.nxe = 0; // Enable nx support.
377 efer.svme = 1; // Enable svm support for now.
378 efer.ffxsr = 0; // Turn on fast fxsave and fxrstor.
379 tc->setMiscReg(MISCREG_EFER, efer);
380
381 //Set up the registers that describe the operating mode.
382 CR0 cr0 = 0;
383 cr0.pg = 1; // Turn on paging.
384 cr0.cd = 0; // Don't disable caching.
385 cr0.nw = 0; // This is bit is defined to be ignored.
386 cr0.am = 1; // No alignment checking
387 cr0.wp = 1; // Supervisor mode can write read only pages
388 cr0.ne = 1;
389 cr0.et = 1; // This should always be 1
390 cr0.ts = 0; // We don't do task switching, so causing fp exceptions
391 // would be pointless.
392 cr0.em = 0; // Allow x87 instructions to execute natively.
393 cr0.mp = 1; // This doesn't really matter, but the manual suggests
394 // setting it to one.
395 cr0.pe = 1; // We're definitely in protected mode.
396 tc->setMiscReg(MISCREG_CR0, cr0);
397
398 CR0 cr2 = 0;
399 tc->setMiscReg(MISCREG_CR2, cr2);
400
401 CR3 cr3 = pageTablePhysAddr;
402 tc->setMiscReg(MISCREG_CR3, cr3);
403
404 CR4 cr4 = 0;
405 //Turn on pae.
406 cr4.osxsave = 1; // Enable XSAVE and Proc Extended States
407 cr4.osxmmexcpt = 1; // Operating System Unmasked Exception
408 cr4.osfxsr = 1; // Operating System FXSave/FSRSTOR Support
409 cr4.pce = 0; // Performance-Monitoring Counter Enable
410 cr4.pge = 0; // Page-Global Enable
411 cr4.mce = 0; // Machine Check Enable
412 cr4.pae = 1; // Physical-Address Extension
413 cr4.pse = 0; // Page Size Extensions
414 cr4.de = 0; // Debugging Extensions
415 cr4.tsd = 0; // Time Stamp Disable
416 cr4.pvi = 0; // Protected-Mode Virtual Interrupts
417 cr4.vme = 0; // Virtual-8086 Mode Extensions
418
419 tc->setMiscReg(MISCREG_CR4, cr4);
420
421 CR4 cr8 = 0;
422 tc->setMiscReg(MISCREG_CR8, cr8);
423
424 const Addr PageMapLevel4 = pageTablePhysAddr;
425 //Point to the page tables.
426 tc->setMiscReg(MISCREG_CR3, PageMapLevel4);
427
428 tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
429
430 tc->setMiscReg(MISCREG_APIC_BASE, 0xfee00900);
431
432 tc->setMiscReg(MISCREG_TSG_BASE, GDTVirtAddr);
433 tc->setMiscReg(MISCREG_TSG_LIMIT, 0xffff);
434
435 tc->setMiscReg(MISCREG_IDTR_BASE, IDTVirtAddr);
436 tc->setMiscReg(MISCREG_IDTR_LIMIT, 0xffff);
437
438 /* enabling syscall and sysret */
439 MiscReg star = ((MiscReg)sret << 48) | ((MiscReg)scall << 32);
440 tc->setMiscReg(MISCREG_STAR, star);
441 MiscReg lstar = (MiscReg)syscallCodeVirtAddr;
442 tc->setMiscReg(MISCREG_LSTAR, lstar);
443 MiscReg sfmask = (1 << 8) | (1 << 10); // TF | DF
444 tc->setMiscReg(MISCREG_SF_MASK, sfmask);
445 }
446
447 /* Set up the content of the TSS and write it to physical memory. */
448
449 struct {
450 uint32_t reserved0; // +00h
451 uint32_t RSP0_low; // +04h
452 uint32_t RSP0_high; // +08h
453 uint32_t RSP1_low; // +0Ch
454 uint32_t RSP1_high; // +10h
455 uint32_t RSP2_low; // +14h
456 uint32_t RSP2_high; // +18h
457 uint32_t reserved1; // +1Ch
458 uint32_t reserved2; // +20h
459 uint32_t IST1_low; // +24h
460 uint32_t IST1_high; // +28h
461 uint32_t IST2_low; // +2Ch
462 uint32_t IST2_high; // +30h
463 uint32_t IST3_low; // +34h
464 uint32_t IST3_high; // +38h
465 uint32_t IST4_low; // +3Ch
466 uint32_t IST4_high; // +40h
467 uint32_t IST5_low; // +44h
468 uint32_t IST5_high; // +48h
469 uint32_t IST6_low; // +4Ch
470 uint32_t IST6_high; // +50h
471 uint32_t IST7_low; // +54h
472 uint32_t IST7_high; // +58h
473 uint32_t reserved3; // +5Ch
474 uint32_t reserved4; // +60h
475 uint16_t reserved5; // +64h
476 uint16_t IO_MapBase; // +66h
477 } tss;
478
479 /** setting Interrupt Stack Table */
480 uint64_t IST_start = ISTVirtAddr + PageBytes;
481 tss.IST1_low = IST_start;
482 tss.IST1_high = IST_start >> 32;
483 tss.RSP0_low = tss.IST1_low;
484 tss.RSP0_high = tss.IST1_high;
485 tss.RSP1_low = tss.IST1_low;
486 tss.RSP1_high = tss.IST1_high;
487 tss.RSP2_low = tss.IST1_low;
488 tss.RSP2_high = tss.IST1_high;
489 physProxy.writeBlob(TSSPhysAddr, (uint8_t *)(&tss), sizeof(tss));
490
491 /* Setting IDT gates */
492 GateDescriptorLow PFGateLow = 0;
493 PFGateLow.offsetHigh = bits(PFHandlerVirtAddr, 31, 16);
494 PFGateLow.offsetLow = bits(PFHandlerVirtAddr, 15, 0);
495 PFGateLow.selector = csLowPL;
496 PFGateLow.p = 1;
497 PFGateLow.dpl = 0;
498 PFGateLow.type = 0xe; // gate interrupt type
499 PFGateLow.IST = 0; // setting IST to 0 and using RSP0
500
501 GateDescriptorHigh PFGateHigh = 0;
502 PFGateHigh.offset = bits(PFHandlerVirtAddr, 63, 32);
503
504 struct {
505 uint64_t low;
506 uint64_t high;
507 } PFGate = {PFGateLow, PFGateHigh};
508
509 physProxy.writeBlob(IDTPhysAddr + 0xE0,
510 (uint8_t *)(&PFGate), sizeof(PFGate));
511
512 /* System call handler */
513 uint8_t syscallBlob[] = {
514 // mov %rax, (0xffffc90000005600)
515 0x48, 0xa3, 0x00, 0x60, 0x00,
516 0x00, 0x00, 0xc9, 0xff, 0xff,
517 // sysret
518 0x48, 0x0f, 0x07
519 };
520
521 physProxy.writeBlob(syscallCodePhysAddr,
522 syscallBlob, sizeof(syscallBlob));
523
524 /** Page fault handler */
525 uint8_t faultBlob[] = {
526 // mov %rax, (0xffffc90000005700)
527 0x48, 0xa3, 0x00, 0x61, 0x00,
528 0x00, 0x00, 0xc9, 0xff, 0xff,
529 // add $0x8, %rsp # skip error
530 0x48, 0x83, 0xc4, 0x08,
531 // iretq
532 0x48, 0xcf
533 };
534
535 physProxy.writeBlob(PFHandlerPhysAddr, faultBlob, sizeof(faultBlob));
536
537 MultiLevelPageTable<PageTableOps> *pt =
538 dynamic_cast<MultiLevelPageTable<PageTableOps> *>(pTable);
539
540 /* Syscall handler */
541 pt->map(syscallCodeVirtAddr, syscallCodePhysAddr, PageBytes, false);
542 /* GDT */
543 pt->map(GDTVirtAddr, GDTPhysAddr, PageBytes, false);
544 /* IDT */
545 pt->map(IDTVirtAddr, IDTPhysAddr, PageBytes, false);
546 /* TSS */
547 pt->map(TSSVirtAddr, TSSPhysAddr, PageBytes, false);
548 /* IST */
549 pt->map(ISTVirtAddr, ISTPhysAddr, PageBytes, false);
550 /* PF handler */
551 pt->map(PFHandlerVirtAddr, PFHandlerPhysAddr, PageBytes, false);
552 /* MMIO region for m5ops */
553 pt->map(MMIORegionVirtAddr, MMIORegionPhysAddr, 16*PageBytes, false);
554 } else {
555 for (int i = 0; i < contextIds.size(); i++) {
556 ThreadContext * tc = system->getThreadContext(contextIds[i]);
557
558 SegAttr dataAttr = 0;
559 dataAttr.dpl = 3;
560 dataAttr.unusable = 0;
561 dataAttr.defaultSize = 1;
562 dataAttr.longMode = 1;
563 dataAttr.avl = 0;
564 dataAttr.granularity = 1;
565 dataAttr.present = 1;
566 dataAttr.type = 3;
567 dataAttr.writable = 1;
568 dataAttr.readable = 1;
569 dataAttr.expandDown = 0;
570 dataAttr.system = 1;
571
572 //Initialize the segment registers.
573 for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
574 tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
575 tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
576 tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
577 }
578
579 SegAttr csAttr = 0;
580 csAttr.dpl = 3;
581 csAttr.unusable = 0;
582 csAttr.defaultSize = 0;
583 csAttr.longMode = 1;
584 csAttr.avl = 0;
585 csAttr.granularity = 1;
586 csAttr.present = 1;
587 csAttr.type = 10;
588 csAttr.writable = 0;
589 csAttr.readable = 1;
590 csAttr.expandDown = 0;
591 csAttr.system = 1;
592
593 tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
594
595 Efer efer = 0;
596 efer.sce = 1; // Enable system call extensions.
597 efer.lme = 1; // Enable long mode.
598 efer.lma = 1; // Activate long mode.
599 efer.nxe = 1; // Enable nx support.
600 efer.svme = 0; // Disable svm support for now. It isn't implemented.
601 efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
602 tc->setMiscReg(MISCREG_EFER, efer);
603
604 //Set up the registers that describe the operating mode.
605 CR0 cr0 = 0;
606 cr0.pg = 1; // Turn on paging.
607 cr0.cd = 0; // Don't disable caching.
608 cr0.nw = 0; // This is bit is defined to be ignored.
609 cr0.am = 0; // No alignment checking
610 cr0.wp = 0; // Supervisor mode can write read only pages
611 cr0.ne = 1;
612 cr0.et = 1; // This should always be 1
613 cr0.ts = 0; // We don't do task switching, so causing fp exceptions
614 // would be pointless.
615 cr0.em = 0; // Allow x87 instructions to execute natively.
616 cr0.mp = 1; // This doesn't really matter, but the manual suggests
617 // setting it to one.
618 cr0.pe = 1; // We're definitely in protected mode.
619 tc->setMiscReg(MISCREG_CR0, cr0);
620
621 tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
622 }
623 }
624}
625
626void
629I386LiveProcess::initState()
627I386Process::initState()
630{
628{
631 X86LiveProcess::initState();
629 X86Process::initState();
632
633 argsInit(sizeof(uint32_t), PageBytes);
634
635 /*
636 * Set up a GDT for this process. The whole GDT wouldn't really be for
637 * this process, but the only parts we care about are.
638 */
639 allocateMem(_gdtStart, _gdtSize);
640 uint64_t zero = 0;
641 assert(_gdtSize % sizeof(zero) == 0);
642 for (Addr gdtCurrent = _gdtStart;
643 gdtCurrent < _gdtStart + _gdtSize; gdtCurrent += sizeof(zero)) {
644 initVirtMem.write(gdtCurrent, zero);
645 }
646
647 // Set up the vsyscall page for this process.
648 allocateMem(vsyscallPage.base, vsyscallPage.size);
649 uint8_t vsyscallBlob[] = {
650 0x51, // push %ecx
651 0x52, // push %edp
652 0x55, // push %ebp
653 0x89, 0xe5, // mov %esp, %ebp
654 0x0f, 0x34 // sysenter
655 };
656 initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vsyscallOffset,
657 vsyscallBlob, sizeof(vsyscallBlob));
658
659 uint8_t vsysexitBlob[] = {
660 0x5d, // pop %ebp
661 0x5a, // pop %edx
662 0x59, // pop %ecx
663 0xc3 // ret
664 };
665 initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vsysexitOffset,
666 vsysexitBlob, sizeof(vsysexitBlob));
667
668 for (int i = 0; i < contextIds.size(); i++) {
669 ThreadContext * tc = system->getThreadContext(contextIds[i]);
670
671 SegAttr dataAttr = 0;
672 dataAttr.dpl = 3;
673 dataAttr.unusable = 0;
674 dataAttr.defaultSize = 1;
675 dataAttr.longMode = 0;
676 dataAttr.avl = 0;
677 dataAttr.granularity = 1;
678 dataAttr.present = 1;
679 dataAttr.type = 3;
680 dataAttr.writable = 1;
681 dataAttr.readable = 1;
682 dataAttr.expandDown = 0;
683 dataAttr.system = 1;
684
685 //Initialize the segment registers.
686 for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
687 tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
688 tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
689 tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
690 tc->setMiscRegNoEffect(MISCREG_SEG_SEL(seg), 0xB);
691 tc->setMiscRegNoEffect(MISCREG_SEG_LIMIT(seg), (uint32_t)(-1));
692 }
693
694 SegAttr csAttr = 0;
695 csAttr.dpl = 3;
696 csAttr.unusable = 0;
697 csAttr.defaultSize = 1;
698 csAttr.longMode = 0;
699 csAttr.avl = 0;
700 csAttr.granularity = 1;
701 csAttr.present = 1;
702 csAttr.type = 0xa;
703 csAttr.writable = 0;
704 csAttr.readable = 1;
705 csAttr.expandDown = 0;
706 csAttr.system = 1;
707
708 tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
709
710 tc->setMiscRegNoEffect(MISCREG_TSG_BASE, _gdtStart);
711 tc->setMiscRegNoEffect(MISCREG_TSG_EFF_BASE, _gdtStart);
712 tc->setMiscRegNoEffect(MISCREG_TSG_LIMIT, _gdtStart + _gdtSize - 1);
713
714 // Set the LDT selector to 0 to deactivate it.
715 tc->setMiscRegNoEffect(MISCREG_TSL, 0);
716
717 Efer efer = 0;
718 efer.sce = 1; // Enable system call extensions.
719 efer.lme = 1; // Enable long mode.
720 efer.lma = 0; // Deactivate long mode.
721 efer.nxe = 1; // Enable nx support.
722 efer.svme = 0; // Disable svm support for now. It isn't implemented.
723 efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
724 tc->setMiscReg(MISCREG_EFER, efer);
725
726 //Set up the registers that describe the operating mode.
727 CR0 cr0 = 0;
728 cr0.pg = 1; // Turn on paging.
729 cr0.cd = 0; // Don't disable caching.
730 cr0.nw = 0; // This is bit is defined to be ignored.
731 cr0.am = 0; // No alignment checking
732 cr0.wp = 0; // Supervisor mode can write read only pages
733 cr0.ne = 1;
734 cr0.et = 1; // This should always be 1
735 cr0.ts = 0; // We don't do task switching, so causing fp exceptions
736 // would be pointless.
737 cr0.em = 0; // Allow x87 instructions to execute natively.
738 cr0.mp = 1; // This doesn't really matter, but the manual suggests
739 // setting it to one.
740 cr0.pe = 1; // We're definitely in protected mode.
741 tc->setMiscReg(MISCREG_CR0, cr0);
742
743 tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
744 }
745}
746
747template<class IntType>
748void
630
631 argsInit(sizeof(uint32_t), PageBytes);
632
633 /*
634 * Set up a GDT for this process. The whole GDT wouldn't really be for
635 * this process, but the only parts we care about are.
636 */
637 allocateMem(_gdtStart, _gdtSize);
638 uint64_t zero = 0;
639 assert(_gdtSize % sizeof(zero) == 0);
640 for (Addr gdtCurrent = _gdtStart;
641 gdtCurrent < _gdtStart + _gdtSize; gdtCurrent += sizeof(zero)) {
642 initVirtMem.write(gdtCurrent, zero);
643 }
644
645 // Set up the vsyscall page for this process.
646 allocateMem(vsyscallPage.base, vsyscallPage.size);
647 uint8_t vsyscallBlob[] = {
648 0x51, // push %ecx
649 0x52, // push %edp
650 0x55, // push %ebp
651 0x89, 0xe5, // mov %esp, %ebp
652 0x0f, 0x34 // sysenter
653 };
654 initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vsyscallOffset,
655 vsyscallBlob, sizeof(vsyscallBlob));
656
657 uint8_t vsysexitBlob[] = {
658 0x5d, // pop %ebp
659 0x5a, // pop %edx
660 0x59, // pop %ecx
661 0xc3 // ret
662 };
663 initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vsysexitOffset,
664 vsysexitBlob, sizeof(vsysexitBlob));
665
666 for (int i = 0; i < contextIds.size(); i++) {
667 ThreadContext * tc = system->getThreadContext(contextIds[i]);
668
669 SegAttr dataAttr = 0;
670 dataAttr.dpl = 3;
671 dataAttr.unusable = 0;
672 dataAttr.defaultSize = 1;
673 dataAttr.longMode = 0;
674 dataAttr.avl = 0;
675 dataAttr.granularity = 1;
676 dataAttr.present = 1;
677 dataAttr.type = 3;
678 dataAttr.writable = 1;
679 dataAttr.readable = 1;
680 dataAttr.expandDown = 0;
681 dataAttr.system = 1;
682
683 //Initialize the segment registers.
684 for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
685 tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
686 tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
687 tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
688 tc->setMiscRegNoEffect(MISCREG_SEG_SEL(seg), 0xB);
689 tc->setMiscRegNoEffect(MISCREG_SEG_LIMIT(seg), (uint32_t)(-1));
690 }
691
692 SegAttr csAttr = 0;
693 csAttr.dpl = 3;
694 csAttr.unusable = 0;
695 csAttr.defaultSize = 1;
696 csAttr.longMode = 0;
697 csAttr.avl = 0;
698 csAttr.granularity = 1;
699 csAttr.present = 1;
700 csAttr.type = 0xa;
701 csAttr.writable = 0;
702 csAttr.readable = 1;
703 csAttr.expandDown = 0;
704 csAttr.system = 1;
705
706 tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
707
708 tc->setMiscRegNoEffect(MISCREG_TSG_BASE, _gdtStart);
709 tc->setMiscRegNoEffect(MISCREG_TSG_EFF_BASE, _gdtStart);
710 tc->setMiscRegNoEffect(MISCREG_TSG_LIMIT, _gdtStart + _gdtSize - 1);
711
712 // Set the LDT selector to 0 to deactivate it.
713 tc->setMiscRegNoEffect(MISCREG_TSL, 0);
714
715 Efer efer = 0;
716 efer.sce = 1; // Enable system call extensions.
717 efer.lme = 1; // Enable long mode.
718 efer.lma = 0; // Deactivate long mode.
719 efer.nxe = 1; // Enable nx support.
720 efer.svme = 0; // Disable svm support for now. It isn't implemented.
721 efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
722 tc->setMiscReg(MISCREG_EFER, efer);
723
724 //Set up the registers that describe the operating mode.
725 CR0 cr0 = 0;
726 cr0.pg = 1; // Turn on paging.
727 cr0.cd = 0; // Don't disable caching.
728 cr0.nw = 0; // This is bit is defined to be ignored.
729 cr0.am = 0; // No alignment checking
730 cr0.wp = 0; // Supervisor mode can write read only pages
731 cr0.ne = 1;
732 cr0.et = 1; // This should always be 1
733 cr0.ts = 0; // We don't do task switching, so causing fp exceptions
734 // would be pointless.
735 cr0.em = 0; // Allow x87 instructions to execute natively.
736 cr0.mp = 1; // This doesn't really matter, but the manual suggests
737 // setting it to one.
738 cr0.pe = 1; // We're definitely in protected mode.
739 tc->setMiscReg(MISCREG_CR0, cr0);
740
741 tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
742 }
743}
744
745template<class IntType>
746void
749X86LiveProcess::argsInit(int pageSize,
747X86Process::argsInit(int pageSize,
750 std::vector<AuxVector<IntType> > extraAuxvs)
751{
752 int intSize = sizeof(IntType);
753
754 typedef AuxVector<IntType> auxv_t;
755 std::vector<auxv_t> auxv = extraAuxvs;
756
757 string filename;
758 if (argv.size() < 1)
759 filename = "";
760 else
761 filename = argv[0];
762
763 //We want 16 byte alignment
764 uint64_t align = 16;
765
766 // Patch the ld_bias for dynamic executables.
767 updateBias();
768
769 // load object file into target memory
770 objFile->loadSections(initVirtMem);
771
772 enum X86CpuFeature {
773 X86_OnboardFPU = 1 << 0,
774 X86_VirtualModeExtensions = 1 << 1,
775 X86_DebuggingExtensions = 1 << 2,
776 X86_PageSizeExtensions = 1 << 3,
777
778 X86_TimeStampCounter = 1 << 4,
779 X86_ModelSpecificRegisters = 1 << 5,
780 X86_PhysicalAddressExtensions = 1 << 6,
781 X86_MachineCheckExtensions = 1 << 7,
782
783 X86_CMPXCHG8Instruction = 1 << 8,
784 X86_OnboardAPIC = 1 << 9,
785 X86_SYSENTER_SYSEXIT = 1 << 11,
786
787 X86_MemoryTypeRangeRegisters = 1 << 12,
788 X86_PageGlobalEnable = 1 << 13,
789 X86_MachineCheckArchitecture = 1 << 14,
790 X86_CMOVInstruction = 1 << 15,
791
792 X86_PageAttributeTable = 1 << 16,
793 X86_36BitPSEs = 1 << 17,
794 X86_ProcessorSerialNumber = 1 << 18,
795 X86_CLFLUSHInstruction = 1 << 19,
796
797 X86_DebugTraceStore = 1 << 21,
798 X86_ACPIViaMSR = 1 << 22,
799 X86_MultimediaExtensions = 1 << 23,
800
801 X86_FXSAVE_FXRSTOR = 1 << 24,
802 X86_StreamingSIMDExtensions = 1 << 25,
803 X86_StreamingSIMDExtensions2 = 1 << 26,
804 X86_CPUSelfSnoop = 1 << 27,
805
806 X86_HyperThreading = 1 << 28,
807 X86_AutomaticClockControl = 1 << 29,
808 X86_IA64Processor = 1 << 30
809 };
810
811 // Setup the auxiliary vectors. These will already have endian
812 // conversion. Auxiliary vectors are loaded only for elf formatted
813 // executables; the auxv is responsible for passing information from
814 // the OS to the interpreter.
815 ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
816 if (elfObject) {
817 uint64_t features =
818 X86_OnboardFPU |
819 X86_VirtualModeExtensions |
820 X86_DebuggingExtensions |
821 X86_PageSizeExtensions |
822 X86_TimeStampCounter |
823 X86_ModelSpecificRegisters |
824 X86_PhysicalAddressExtensions |
825 X86_MachineCheckExtensions |
826 X86_CMPXCHG8Instruction |
827 X86_OnboardAPIC |
828 X86_SYSENTER_SYSEXIT |
829 X86_MemoryTypeRangeRegisters |
830 X86_PageGlobalEnable |
831 X86_MachineCheckArchitecture |
832 X86_CMOVInstruction |
833 X86_PageAttributeTable |
834 X86_36BitPSEs |
835// X86_ProcessorSerialNumber |
836 X86_CLFLUSHInstruction |
837// X86_DebugTraceStore |
838// X86_ACPIViaMSR |
839 X86_MultimediaExtensions |
840 X86_FXSAVE_FXRSTOR |
841 X86_StreamingSIMDExtensions |
842 X86_StreamingSIMDExtensions2 |
843// X86_CPUSelfSnoop |
844// X86_HyperThreading |
845// X86_AutomaticClockControl |
846// X86_IA64Processor |
847 0;
848
849 //Bits which describe the system hardware capabilities
850 //XXX Figure out what these should be
851 auxv.push_back(auxv_t(M5_AT_HWCAP, features));
852 //The system page size
853 auxv.push_back(auxv_t(M5_AT_PAGESZ, X86ISA::PageBytes));
854 //Frequency at which times() increments
855 //Defined to be 100 in the kernel source.
856 auxv.push_back(auxv_t(M5_AT_CLKTCK, 100));
857 // This is the virtual address of the program header tables if they
858 // appear in the executable image.
859 auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
860 // This is the size of a program header entry from the elf file.
861 auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
862 // This is the number of program headers from the original elf file.
863 auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
864 // This is the base address of the ELF interpreter; it should be
865 // zero for static executables or contain the base address for
866 // dynamic executables.
867 auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
868 //XXX Figure out what this should be.
869 auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
870 //The entry point to the program
871 auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
872 //Different user and group IDs
873 auxv.push_back(auxv_t(M5_AT_UID, uid()));
874 auxv.push_back(auxv_t(M5_AT_EUID, euid()));
875 auxv.push_back(auxv_t(M5_AT_GID, gid()));
876 auxv.push_back(auxv_t(M5_AT_EGID, egid()));
877 //Whether to enable "secure mode" in the executable
878 auxv.push_back(auxv_t(M5_AT_SECURE, 0));
879 //The address of 16 "random" bytes.
880 auxv.push_back(auxv_t(M5_AT_RANDOM, 0));
881 //The name of the program
882 auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
883 //The platform string
884 auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
885 }
886
887 //Figure out how big the initial stack needs to be
888
889 // A sentry NULL void pointer at the top of the stack.
890 int sentry_size = intSize;
891
892 //This is the name of the file which is present on the initial stack
893 //It's purpose is to let the user space linker examine the original file.
894 int file_name_size = filename.size() + 1;
895
896 const int numRandomBytes = 16;
897 int aux_data_size = numRandomBytes;
898
899 string platform = "x86_64";
900 aux_data_size += platform.size() + 1;
901
902 int env_data_size = 0;
903 for (int i = 0; i < envp.size(); ++i)
904 env_data_size += envp[i].size() + 1;
905 int arg_data_size = 0;
906 for (int i = 0; i < argv.size(); ++i)
907 arg_data_size += argv[i].size() + 1;
908
909 //The info_block needs to be padded so it's size is a multiple of the
910 //alignment mask. Also, it appears that there needs to be at least some
911 //padding, so if the size is already a multiple, we need to increase it
912 //anyway.
913 int base_info_block_size =
914 sentry_size + file_name_size + env_data_size + arg_data_size;
915
916 int info_block_size = roundUp(base_info_block_size, align);
917
918 int info_block_padding = info_block_size - base_info_block_size;
919
920 //Each auxilliary vector is two 8 byte words
921 int aux_array_size = intSize * 2 * (auxv.size() + 1);
922
923 int envp_array_size = intSize * (envp.size() + 1);
924 int argv_array_size = intSize * (argv.size() + 1);
925
926 int argc_size = intSize;
927
928 //Figure out the size of the contents of the actual initial frame
929 int frame_size =
930 aux_array_size +
931 envp_array_size +
932 argv_array_size +
933 argc_size;
934
935 //There needs to be padding after the auxiliary vector data so that the
936 //very bottom of the stack is aligned properly.
937 int partial_size = frame_size + aux_data_size;
938 int aligned_partial_size = roundUp(partial_size, align);
939 int aux_padding = aligned_partial_size - partial_size;
940
941 int space_needed =
942 info_block_size +
943 aux_data_size +
944 aux_padding +
945 frame_size;
946
947 stack_min = stack_base - space_needed;
948 stack_min = roundDown(stack_min, align);
949 stack_size = roundUp(stack_base - stack_min, pageSize);
950
951 // map memory
952 Addr stack_end = roundDown(stack_base - stack_size, pageSize);
953
954 DPRINTF(Stack, "Mapping the stack: 0x%x %dB\n", stack_end, stack_size);
955 allocateMem(stack_end, stack_size);
956
957 // map out initial stack contents
958 IntType sentry_base = stack_base - sentry_size;
959 IntType file_name_base = sentry_base - file_name_size;
960 IntType env_data_base = file_name_base - env_data_size;
961 IntType arg_data_base = env_data_base - arg_data_size;
962 IntType aux_data_base = arg_data_base - info_block_padding - aux_data_size;
963 IntType auxv_array_base = aux_data_base - aux_array_size - aux_padding;
964 IntType envp_array_base = auxv_array_base - envp_array_size;
965 IntType argv_array_base = envp_array_base - argv_array_size;
966 IntType argc_base = argv_array_base - argc_size;
967
968 DPRINTF(Stack, "The addresses of items on the initial stack:\n");
969 DPRINTF(Stack, "0x%x - file name\n", file_name_base);
970 DPRINTF(Stack, "0x%x - env data\n", env_data_base);
971 DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
972 DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
973 DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
974 DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
975 DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
976 DPRINTF(Stack, "0x%x - argc \n", argc_base);
977 DPRINTF(Stack, "0x%x - stack min\n", stack_min);
978
979 // write contents to stack
980
981 // figure out argc
982 IntType argc = argv.size();
983 IntType guestArgc = X86ISA::htog(argc);
984
985 //Write out the sentry void *
986 IntType sentry_NULL = 0;
987 initVirtMem.writeBlob(sentry_base,
988 (uint8_t*)&sentry_NULL, sentry_size);
989
990 //Write the file name
991 initVirtMem.writeString(file_name_base, filename.c_str());
992
993 //Fix up the aux vectors which point to data
994 assert(auxv[auxv.size() - 3].a_type == M5_AT_RANDOM);
995 auxv[auxv.size() - 3].a_val = aux_data_base;
996 assert(auxv[auxv.size() - 2].a_type == M5_AT_EXECFN);
997 auxv[auxv.size() - 2].a_val = argv_array_base;
998 assert(auxv[auxv.size() - 1].a_type == M5_AT_PLATFORM);
999 auxv[auxv.size() - 1].a_val = aux_data_base + numRandomBytes;
1000
1001 //Copy the aux stuff
1002 for (int x = 0; x < auxv.size(); x++) {
1003 initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
1004 (uint8_t*)&(auxv[x].a_type), intSize);
1005 initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
1006 (uint8_t*)&(auxv[x].a_val), intSize);
1007 }
1008 //Write out the terminating zeroed auxilliary vector
1009 const uint64_t zero = 0;
1010 initVirtMem.writeBlob(auxv_array_base + auxv.size() * 2 * intSize,
1011 (uint8_t*)&zero, intSize);
1012 initVirtMem.writeBlob(auxv_array_base + (auxv.size() * 2 + 1) * intSize,
1013 (uint8_t*)&zero, intSize);
1014
1015 initVirtMem.writeString(aux_data_base, platform.c_str());
1016
1017 copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
1018 copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
1019
1020 initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
1021
1022 ThreadContext *tc = system->getThreadContext(contextIds[0]);
1023 //Set the stack pointer register
1024 tc->setIntReg(StackPointerReg, stack_min);
1025
1026 // There doesn't need to be any segment base added in since we're dealing
1027 // with the flat segmentation model.
1028 tc->pcState(getStartPC());
1029
1030 //Align the "stack_min" to a page boundary.
1031 stack_min = roundDown(stack_min, pageSize);
1032
1033// num_processes++;
1034}
1035
1036void
748 std::vector<AuxVector<IntType> > extraAuxvs)
749{
750 int intSize = sizeof(IntType);
751
752 typedef AuxVector<IntType> auxv_t;
753 std::vector<auxv_t> auxv = extraAuxvs;
754
755 string filename;
756 if (argv.size() < 1)
757 filename = "";
758 else
759 filename = argv[0];
760
761 //We want 16 byte alignment
762 uint64_t align = 16;
763
764 // Patch the ld_bias for dynamic executables.
765 updateBias();
766
767 // load object file into target memory
768 objFile->loadSections(initVirtMem);
769
770 enum X86CpuFeature {
771 X86_OnboardFPU = 1 << 0,
772 X86_VirtualModeExtensions = 1 << 1,
773 X86_DebuggingExtensions = 1 << 2,
774 X86_PageSizeExtensions = 1 << 3,
775
776 X86_TimeStampCounter = 1 << 4,
777 X86_ModelSpecificRegisters = 1 << 5,
778 X86_PhysicalAddressExtensions = 1 << 6,
779 X86_MachineCheckExtensions = 1 << 7,
780
781 X86_CMPXCHG8Instruction = 1 << 8,
782 X86_OnboardAPIC = 1 << 9,
783 X86_SYSENTER_SYSEXIT = 1 << 11,
784
785 X86_MemoryTypeRangeRegisters = 1 << 12,
786 X86_PageGlobalEnable = 1 << 13,
787 X86_MachineCheckArchitecture = 1 << 14,
788 X86_CMOVInstruction = 1 << 15,
789
790 X86_PageAttributeTable = 1 << 16,
791 X86_36BitPSEs = 1 << 17,
792 X86_ProcessorSerialNumber = 1 << 18,
793 X86_CLFLUSHInstruction = 1 << 19,
794
795 X86_DebugTraceStore = 1 << 21,
796 X86_ACPIViaMSR = 1 << 22,
797 X86_MultimediaExtensions = 1 << 23,
798
799 X86_FXSAVE_FXRSTOR = 1 << 24,
800 X86_StreamingSIMDExtensions = 1 << 25,
801 X86_StreamingSIMDExtensions2 = 1 << 26,
802 X86_CPUSelfSnoop = 1 << 27,
803
804 X86_HyperThreading = 1 << 28,
805 X86_AutomaticClockControl = 1 << 29,
806 X86_IA64Processor = 1 << 30
807 };
808
809 // Setup the auxiliary vectors. These will already have endian
810 // conversion. Auxiliary vectors are loaded only for elf formatted
811 // executables; the auxv is responsible for passing information from
812 // the OS to the interpreter.
813 ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
814 if (elfObject) {
815 uint64_t features =
816 X86_OnboardFPU |
817 X86_VirtualModeExtensions |
818 X86_DebuggingExtensions |
819 X86_PageSizeExtensions |
820 X86_TimeStampCounter |
821 X86_ModelSpecificRegisters |
822 X86_PhysicalAddressExtensions |
823 X86_MachineCheckExtensions |
824 X86_CMPXCHG8Instruction |
825 X86_OnboardAPIC |
826 X86_SYSENTER_SYSEXIT |
827 X86_MemoryTypeRangeRegisters |
828 X86_PageGlobalEnable |
829 X86_MachineCheckArchitecture |
830 X86_CMOVInstruction |
831 X86_PageAttributeTable |
832 X86_36BitPSEs |
833// X86_ProcessorSerialNumber |
834 X86_CLFLUSHInstruction |
835// X86_DebugTraceStore |
836// X86_ACPIViaMSR |
837 X86_MultimediaExtensions |
838 X86_FXSAVE_FXRSTOR |
839 X86_StreamingSIMDExtensions |
840 X86_StreamingSIMDExtensions2 |
841// X86_CPUSelfSnoop |
842// X86_HyperThreading |
843// X86_AutomaticClockControl |
844// X86_IA64Processor |
845 0;
846
847 //Bits which describe the system hardware capabilities
848 //XXX Figure out what these should be
849 auxv.push_back(auxv_t(M5_AT_HWCAP, features));
850 //The system page size
851 auxv.push_back(auxv_t(M5_AT_PAGESZ, X86ISA::PageBytes));
852 //Frequency at which times() increments
853 //Defined to be 100 in the kernel source.
854 auxv.push_back(auxv_t(M5_AT_CLKTCK, 100));
855 // This is the virtual address of the program header tables if they
856 // appear in the executable image.
857 auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
858 // This is the size of a program header entry from the elf file.
859 auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
860 // This is the number of program headers from the original elf file.
861 auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
862 // This is the base address of the ELF interpreter; it should be
863 // zero for static executables or contain the base address for
864 // dynamic executables.
865 auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
866 //XXX Figure out what this should be.
867 auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
868 //The entry point to the program
869 auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
870 //Different user and group IDs
871 auxv.push_back(auxv_t(M5_AT_UID, uid()));
872 auxv.push_back(auxv_t(M5_AT_EUID, euid()));
873 auxv.push_back(auxv_t(M5_AT_GID, gid()));
874 auxv.push_back(auxv_t(M5_AT_EGID, egid()));
875 //Whether to enable "secure mode" in the executable
876 auxv.push_back(auxv_t(M5_AT_SECURE, 0));
877 //The address of 16 "random" bytes.
878 auxv.push_back(auxv_t(M5_AT_RANDOM, 0));
879 //The name of the program
880 auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
881 //The platform string
882 auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
883 }
884
885 //Figure out how big the initial stack needs to be
886
887 // A sentry NULL void pointer at the top of the stack.
888 int sentry_size = intSize;
889
890 //This is the name of the file which is present on the initial stack
891 //It's purpose is to let the user space linker examine the original file.
892 int file_name_size = filename.size() + 1;
893
894 const int numRandomBytes = 16;
895 int aux_data_size = numRandomBytes;
896
897 string platform = "x86_64";
898 aux_data_size += platform.size() + 1;
899
900 int env_data_size = 0;
901 for (int i = 0; i < envp.size(); ++i)
902 env_data_size += envp[i].size() + 1;
903 int arg_data_size = 0;
904 for (int i = 0; i < argv.size(); ++i)
905 arg_data_size += argv[i].size() + 1;
906
907 //The info_block needs to be padded so it's size is a multiple of the
908 //alignment mask. Also, it appears that there needs to be at least some
909 //padding, so if the size is already a multiple, we need to increase it
910 //anyway.
911 int base_info_block_size =
912 sentry_size + file_name_size + env_data_size + arg_data_size;
913
914 int info_block_size = roundUp(base_info_block_size, align);
915
916 int info_block_padding = info_block_size - base_info_block_size;
917
918 //Each auxilliary vector is two 8 byte words
919 int aux_array_size = intSize * 2 * (auxv.size() + 1);
920
921 int envp_array_size = intSize * (envp.size() + 1);
922 int argv_array_size = intSize * (argv.size() + 1);
923
924 int argc_size = intSize;
925
926 //Figure out the size of the contents of the actual initial frame
927 int frame_size =
928 aux_array_size +
929 envp_array_size +
930 argv_array_size +
931 argc_size;
932
933 //There needs to be padding after the auxiliary vector data so that the
934 //very bottom of the stack is aligned properly.
935 int partial_size = frame_size + aux_data_size;
936 int aligned_partial_size = roundUp(partial_size, align);
937 int aux_padding = aligned_partial_size - partial_size;
938
939 int space_needed =
940 info_block_size +
941 aux_data_size +
942 aux_padding +
943 frame_size;
944
945 stack_min = stack_base - space_needed;
946 stack_min = roundDown(stack_min, align);
947 stack_size = roundUp(stack_base - stack_min, pageSize);
948
949 // map memory
950 Addr stack_end = roundDown(stack_base - stack_size, pageSize);
951
952 DPRINTF(Stack, "Mapping the stack: 0x%x %dB\n", stack_end, stack_size);
953 allocateMem(stack_end, stack_size);
954
955 // map out initial stack contents
956 IntType sentry_base = stack_base - sentry_size;
957 IntType file_name_base = sentry_base - file_name_size;
958 IntType env_data_base = file_name_base - env_data_size;
959 IntType arg_data_base = env_data_base - arg_data_size;
960 IntType aux_data_base = arg_data_base - info_block_padding - aux_data_size;
961 IntType auxv_array_base = aux_data_base - aux_array_size - aux_padding;
962 IntType envp_array_base = auxv_array_base - envp_array_size;
963 IntType argv_array_base = envp_array_base - argv_array_size;
964 IntType argc_base = argv_array_base - argc_size;
965
966 DPRINTF(Stack, "The addresses of items on the initial stack:\n");
967 DPRINTF(Stack, "0x%x - file name\n", file_name_base);
968 DPRINTF(Stack, "0x%x - env data\n", env_data_base);
969 DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
970 DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
971 DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
972 DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
973 DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
974 DPRINTF(Stack, "0x%x - argc \n", argc_base);
975 DPRINTF(Stack, "0x%x - stack min\n", stack_min);
976
977 // write contents to stack
978
979 // figure out argc
980 IntType argc = argv.size();
981 IntType guestArgc = X86ISA::htog(argc);
982
983 //Write out the sentry void *
984 IntType sentry_NULL = 0;
985 initVirtMem.writeBlob(sentry_base,
986 (uint8_t*)&sentry_NULL, sentry_size);
987
988 //Write the file name
989 initVirtMem.writeString(file_name_base, filename.c_str());
990
991 //Fix up the aux vectors which point to data
992 assert(auxv[auxv.size() - 3].a_type == M5_AT_RANDOM);
993 auxv[auxv.size() - 3].a_val = aux_data_base;
994 assert(auxv[auxv.size() - 2].a_type == M5_AT_EXECFN);
995 auxv[auxv.size() - 2].a_val = argv_array_base;
996 assert(auxv[auxv.size() - 1].a_type == M5_AT_PLATFORM);
997 auxv[auxv.size() - 1].a_val = aux_data_base + numRandomBytes;
998
999 //Copy the aux stuff
1000 for (int x = 0; x < auxv.size(); x++) {
1001 initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
1002 (uint8_t*)&(auxv[x].a_type), intSize);
1003 initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
1004 (uint8_t*)&(auxv[x].a_val), intSize);
1005 }
1006 //Write out the terminating zeroed auxilliary vector
1007 const uint64_t zero = 0;
1008 initVirtMem.writeBlob(auxv_array_base + auxv.size() * 2 * intSize,
1009 (uint8_t*)&zero, intSize);
1010 initVirtMem.writeBlob(auxv_array_base + (auxv.size() * 2 + 1) * intSize,
1011 (uint8_t*)&zero, intSize);
1012
1013 initVirtMem.writeString(aux_data_base, platform.c_str());
1014
1015 copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
1016 copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
1017
1018 initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
1019
1020 ThreadContext *tc = system->getThreadContext(contextIds[0]);
1021 //Set the stack pointer register
1022 tc->setIntReg(StackPointerReg, stack_min);
1023
1024 // There doesn't need to be any segment base added in since we're dealing
1025 // with the flat segmentation model.
1026 tc->pcState(getStartPC());
1027
1028 //Align the "stack_min" to a page boundary.
1029 stack_min = roundDown(stack_min, pageSize);
1030
1031// num_processes++;
1032}
1033
1034void
1037X86_64LiveProcess::argsInit(int intSize, int pageSize)
1035X86_64Process::argsInit(int intSize, int pageSize)
1038{
1039 std::vector<AuxVector<uint64_t> > extraAuxvs;
1040 extraAuxvs.push_back(AuxVector<uint64_t>(M5_AT_SYSINFO_EHDR,
1041 vsyscallPage.base));
1036{
1037 std::vector<AuxVector<uint64_t> > extraAuxvs;
1038 extraAuxvs.push_back(AuxVector<uint64_t>(M5_AT_SYSINFO_EHDR,
1039 vsyscallPage.base));
1042 X86LiveProcess::argsInit<uint64_t>(pageSize, extraAuxvs);
1040 X86Process::argsInit(pageSize, extraAuxvs);
1043}
1044
1045void
1041}
1042
1043void
1046I386LiveProcess::argsInit(int intSize, int pageSize)
1044I386Process::argsInit(int intSize, int pageSize)
1047{
1048 std::vector<AuxVector<uint32_t> > extraAuxvs;
1049 //Tell the binary where the vsyscall part of the vsyscall page is.
1050 extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO,
1051 vsyscallPage.base + vsyscallPage.vsyscallOffset));
1052 extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO_EHDR,
1053 vsyscallPage.base));
1045{
1046 std::vector<AuxVector<uint32_t> > extraAuxvs;
1047 //Tell the binary where the vsyscall part of the vsyscall page is.
1048 extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO,
1049 vsyscallPage.base + vsyscallPage.vsyscallOffset));
1050 extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO_EHDR,
1051 vsyscallPage.base));
1054 X86LiveProcess::argsInit<uint32_t>(pageSize, extraAuxvs);
1052 X86Process::argsInit(pageSize, extraAuxvs);
1055}
1056
1057void
1053}
1054
1055void
1058X86LiveProcess::setSyscallReturn(ThreadContext *tc, SyscallReturn retval)
1056X86Process::setSyscallReturn(ThreadContext *tc, SyscallReturn retval)
1059{
1060 tc->setIntReg(INTREG_RAX, retval.encodedValue());
1061}
1062
1063X86ISA::IntReg
1057{
1058 tc->setIntReg(INTREG_RAX, retval.encodedValue());
1059}
1060
1061X86ISA::IntReg
1064X86_64LiveProcess::getSyscallArg(ThreadContext *tc, int &i)
1062X86_64Process::getSyscallArg(ThreadContext *tc, int &i)
1065{
1066 assert(i < NumArgumentRegs);
1067 return tc->readIntReg(ArgumentReg[i++]);
1068}
1069
1070void
1063{
1064 assert(i < NumArgumentRegs);
1065 return tc->readIntReg(ArgumentReg[i++]);
1066}
1067
1068void
1071X86_64LiveProcess::setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val)
1069X86_64Process::setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val)
1072{
1073 assert(i < NumArgumentRegs);
1074 return tc->setIntReg(ArgumentReg[i], val);
1075}
1076
1077X86ISA::IntReg
1070{
1071 assert(i < NumArgumentRegs);
1072 return tc->setIntReg(ArgumentReg[i], val);
1073}
1074
1075X86ISA::IntReg
1078I386LiveProcess::getSyscallArg(ThreadContext *tc, int &i)
1076I386Process::getSyscallArg(ThreadContext *tc, int &i)
1079{
1080 assert(i < NumArgumentRegs32);
1081 return tc->readIntReg(ArgumentReg32[i++]);
1082}
1083
1084X86ISA::IntReg
1077{
1078 assert(i < NumArgumentRegs32);
1079 return tc->readIntReg(ArgumentReg32[i++]);
1080}
1081
1082X86ISA::IntReg
1085I386LiveProcess::getSyscallArg(ThreadContext *tc, int &i, int width)
1083I386Process::getSyscallArg(ThreadContext *tc, int &i, int width)
1086{
1087 assert(width == 32 || width == 64);
1088 assert(i < NumArgumentRegs);
1089 uint64_t retVal = tc->readIntReg(ArgumentReg32[i++]) & mask(32);
1090 if (width == 64)
1091 retVal |= ((uint64_t)tc->readIntReg(ArgumentReg[i++]) << 32);
1092 return retVal;
1093}
1094
1095void
1084{
1085 assert(width == 32 || width == 64);
1086 assert(i < NumArgumentRegs);
1087 uint64_t retVal = tc->readIntReg(ArgumentReg32[i++]) & mask(32);
1088 if (width == 64)
1089 retVal |= ((uint64_t)tc->readIntReg(ArgumentReg[i++]) << 32);
1090 return retVal;
1091}
1092
1093void
1096I386LiveProcess::setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val)
1094I386Process::setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val)
1097{
1098 assert(i < NumArgumentRegs);
1099 return tc->setIntReg(ArgumentReg[i], val);
1100}
1095{
1096 assert(i < NumArgumentRegs);
1097 return tc->setIntReg(ArgumentReg[i], val);
1098}