process.cc (11704:c38fcdaa5fe5) process.cc (11793:ef606668d247)
1/*
2 * Copyright (c) 2014 Advanced Micro Devices, Inc.
3 * Copyright (c) 2007 The Hewlett-Packard Development Company
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Gabe Black
42 * Ali Saidi
43 */
44
1/*
2 * Copyright (c) 2014 Advanced Micro Devices, Inc.
3 * Copyright (c) 2007 The Hewlett-Packard Development Company
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder. You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2003-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Gabe Black
42 * Ali Saidi
43 */
44
45#include "arch/x86/process.hh"
46
47#include "arch/x86/isa_traits.hh"
45#include "arch/x86/regs/misc.hh"
46#include "arch/x86/regs/segment.hh"
48#include "arch/x86/regs/misc.hh"
49#include "arch/x86/regs/segment.hh"
47#include "arch/x86/isa_traits.hh"
48#include "arch/x86/process.hh"
49#include "arch/x86/system.hh"
50#include "arch/x86/types.hh"
51#include "base/loader/elf_object.hh"
52#include "base/loader/object_file.hh"
53#include "base/misc.hh"
54#include "base/trace.hh"
55#include "cpu/thread_context.hh"
56#include "debug/Stack.hh"
57#include "mem/multi_level_page_table.hh"
58#include "mem/page_table.hh"
59#include "sim/process_impl.hh"
60#include "sim/syscall_emul.hh"
61#include "sim/system.hh"
62
63using namespace std;
64using namespace X86ISA;
65
66static const int ArgumentReg[] = {
67 INTREG_RDI,
68 INTREG_RSI,
69 INTREG_RDX,
70 //This argument register is r10 for syscalls and rcx for C.
71 INTREG_R10W,
72 //INTREG_RCX,
73 INTREG_R8W,
74 INTREG_R9W
75};
76
77static const int NumArgumentRegs M5_VAR_USED =
78 sizeof(ArgumentReg) / sizeof(const int);
79
80static const int ArgumentReg32[] = {
81 INTREG_EBX,
82 INTREG_ECX,
83 INTREG_EDX,
84 INTREG_ESI,
85 INTREG_EDI,
86 INTREG_EBP
87};
88
89static const int NumArgumentRegs32 M5_VAR_USED =
90 sizeof(ArgumentReg) / sizeof(const int);
91
92X86LiveProcess::X86LiveProcess(LiveProcessParams * params, ObjectFile *objFile,
93 SyscallDesc *_syscallDescs, int _numSyscallDescs) :
94 LiveProcess(params, objFile), syscallDescs(_syscallDescs),
95 numSyscallDescs(_numSyscallDescs)
96{
97 brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize();
98 brk_point = roundUp(brk_point, PageBytes);
99}
100
101X86_64LiveProcess::X86_64LiveProcess(LiveProcessParams *params,
102 ObjectFile *objFile, SyscallDesc *_syscallDescs,
103 int _numSyscallDescs) :
104 X86LiveProcess(params, objFile, _syscallDescs, _numSyscallDescs)
105{
106
107 vsyscallPage.base = 0xffffffffff600000ULL;
108 vsyscallPage.size = PageBytes;
109 vsyscallPage.vtimeOffset = 0x400;
110 vsyscallPage.vgettimeofdayOffset = 0x0;
111
112 // Set up stack. On X86_64 Linux, stack goes from the top of memory
113 // downward, less the hole for the kernel address space plus one page
114 // for undertermined purposes.
115 stack_base = (Addr)0x7FFFFFFFF000ULL;
116
117 // Set pointer for next thread stack. Reserve 8M for main stack.
118 next_thread_stack_base = stack_base - (8 * 1024 * 1024);
119
120 // "mmap_base" is a function which defines where mmap region starts in
121 // the process address space.
122 // mmap_base: PAGE_ALIGN(TASK_SIZE-MIN_GAP-mmap_rnd())
123 // TASK_SIZE: (1<<47)-PAGE_SIZE
124 // MIN_GAP: 128*1024*1024+stack_maxrandom_size()
125 // We do not use any address space layout randomization in gem5
126 // therefore the random fields become zero; the smallest gap space was
127 // chosen but gap could potentially be much larger.
128 mmap_end = (Addr)0x7FFFF7FFF000ULL;
129}
130
131void
132I386LiveProcess::syscall(int64_t callnum, ThreadContext *tc)
133{
134 TheISA::PCState pc = tc->pcState();
135 Addr eip = pc.pc();
136 if (eip >= vsyscallPage.base &&
137 eip < vsyscallPage.base + vsyscallPage.size) {
138 pc.npc(vsyscallPage.base + vsyscallPage.vsysexitOffset);
139 tc->pcState(pc);
140 }
141 X86LiveProcess::syscall(callnum, tc);
142}
143
144
145I386LiveProcess::I386LiveProcess(LiveProcessParams *params,
146 ObjectFile *objFile, SyscallDesc *_syscallDescs,
147 int _numSyscallDescs) :
148 X86LiveProcess(params, objFile, _syscallDescs, _numSyscallDescs)
149{
150 _gdtStart = ULL(0xffffd000);
151 _gdtSize = PageBytes;
152
153 vsyscallPage.base = 0xffffe000ULL;
154 vsyscallPage.size = PageBytes;
155 vsyscallPage.vsyscallOffset = 0x400;
156 vsyscallPage.vsysexitOffset = 0x410;
157
158 stack_base = _gdtStart;
159
160 // Set pointer for next thread stack. Reserve 8M for main stack.
161 next_thread_stack_base = stack_base - (8 * 1024 * 1024);
162
163 // "mmap_base" is a function which defines where mmap region starts in
164 // the process address space.
165 // mmap_base: PAGE_ALIGN(TASK_SIZE-MIN_GAP-mmap_rnd())
166 // TASK_SIZE: 0xC0000000
167 // MIN_GAP: 128*1024*1024+stack_maxrandom_size()
168 // We do not use any address space layout randomization in gem5
169 // therefore the random fields become zero; the smallest gap space was
170 // chosen but gap could potentially be much larger.
171 mmap_end = (Addr)0xB7FFF000ULL;
172}
173
174SyscallDesc*
175X86LiveProcess::getDesc(int callnum)
176{
177 if (callnum < 0 || callnum >= numSyscallDescs)
178 return NULL;
179 return &syscallDescs[callnum];
180}
181
182void
183X86_64LiveProcess::initState()
184{
185 X86LiveProcess::initState();
186
187 argsInit(sizeof(uint64_t), PageBytes);
188
189 // Set up the vsyscall page for this process.
190 allocateMem(vsyscallPage.base, vsyscallPage.size);
191 uint8_t vtimeBlob[] = {
192 0x48,0xc7,0xc0,0xc9,0x00,0x00,0x00, // mov $0xc9,%rax
193 0x0f,0x05, // syscall
194 0xc3 // retq
195 };
196 initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vtimeOffset,
197 vtimeBlob, sizeof(vtimeBlob));
198
199 uint8_t vgettimeofdayBlob[] = {
200 0x48,0xc7,0xc0,0x60,0x00,0x00,0x00, // mov $0x60,%rax
201 0x0f,0x05, // syscall
202 0xc3 // retq
203 };
204 initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vgettimeofdayOffset,
205 vgettimeofdayBlob, sizeof(vgettimeofdayBlob));
206
207 if (kvmInSE) {
208 PortProxy physProxy = system->physProxy;
209
210 /*
211 * Set up the gdt.
212 */
213 uint8_t numGDTEntries = 0;
214 uint64_t nullDescriptor = 0;
215 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
216 (uint8_t *)(&nullDescriptor), 8);
217 numGDTEntries++;
218
219 SegDescriptor initDesc = 0;
220 initDesc.type.codeOrData = 0; // code or data type
221 initDesc.type.c = 0; // conforming
222 initDesc.type.r = 1; // readable
223 initDesc.dpl = 0; // privilege
224 initDesc.p = 1; // present
225 initDesc.l = 1; // longmode - 64 bit
226 initDesc.d = 0; // operand size
227 initDesc.g = 1; // granularity
228 initDesc.s = 1; // system segment
229 initDesc.limitHigh = 0xFFFF;
230 initDesc.limitLow = 0xF;
231 initDesc.baseHigh = 0x0;
232 initDesc.baseLow = 0x0;
233
234 //64 bit code segment
235 SegDescriptor csLowPLDesc = initDesc;
236 csLowPLDesc.type.codeOrData = 1;
237 csLowPLDesc.dpl = 0;
238 uint64_t csLowPLDescVal = csLowPLDesc;
239 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
240 (uint8_t *)(&csLowPLDescVal), 8);
241
242 numGDTEntries++;
243
244 SegSelector csLowPL = 0;
245 csLowPL.si = numGDTEntries - 1;
246 csLowPL.rpl = 0;
247
248 //64 bit data segment
249 SegDescriptor dsLowPLDesc = initDesc;
250 dsLowPLDesc.type.codeOrData = 0;
251 dsLowPLDesc.dpl = 0;
252 uint64_t dsLowPLDescVal = dsLowPLDesc;
253 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
254 (uint8_t *)(&dsLowPLDescVal), 8);
255
256 numGDTEntries++;
257
258 SegSelector dsLowPL = 0;
259 dsLowPL.si = numGDTEntries - 1;
260 dsLowPL.rpl = 0;
261
262 //64 bit data segment
263 SegDescriptor dsDesc = initDesc;
264 dsDesc.type.codeOrData = 0;
265 dsDesc.dpl = 3;
266 uint64_t dsDescVal = dsDesc;
267 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
268 (uint8_t *)(&dsDescVal), 8);
269
270 numGDTEntries++;
271
272 SegSelector ds = 0;
273 ds.si = numGDTEntries - 1;
274 ds.rpl = 3;
275
276 //64 bit code segment
277 SegDescriptor csDesc = initDesc;
278 csDesc.type.codeOrData = 1;
279 csDesc.dpl = 3;
280 uint64_t csDescVal = csDesc;
281 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
282 (uint8_t *)(&csDescVal), 8);
283
284 numGDTEntries++;
285
286 SegSelector cs = 0;
287 cs.si = numGDTEntries - 1;
288 cs.rpl = 3;
289
290 SegSelector scall = 0;
291 scall.si = csLowPL.si;
292 scall.rpl = 0;
293
294 SegSelector sret = 0;
295 sret.si = dsLowPL.si;
296 sret.rpl = 3;
297
298 /* In long mode the TSS has been extended to 16 Bytes */
299 TSSlow TSSDescLow = 0;
300 TSSDescLow.type = 0xB;
301 TSSDescLow.dpl = 0; // Privelege level 0
302 TSSDescLow.p = 1; // Present
303 TSSDescLow.g = 1; // Page granularity
304 TSSDescLow.limitHigh = 0xF;
305 TSSDescLow.limitLow = 0xFFFF;
306 TSSDescLow.baseLow = bits(TSSVirtAddr, 23, 0);
307 TSSDescLow.baseHigh = bits(TSSVirtAddr, 31, 24);
308
309 TSShigh TSSDescHigh = 0;
310 TSSDescHigh.base = bits(TSSVirtAddr, 63, 32);
311
312 struct TSSDesc {
313 uint64_t low;
314 uint64_t high;
315 } tssDescVal = {TSSDescLow, TSSDescHigh};
316
317 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
318 (uint8_t *)(&tssDescVal), sizeof(tssDescVal));
319
320 numGDTEntries++;
321
322 SegSelector tssSel = 0;
323 tssSel.si = numGDTEntries - 1;
324
325 uint64_t tss_base_addr = (TSSDescHigh.base << 32) |
326 (TSSDescLow.baseHigh << 24) |
327 TSSDescLow.baseLow;
328 uint64_t tss_limit = TSSDescLow.limitLow | (TSSDescLow.limitHigh << 16);
329
330 SegAttr tss_attr = 0;
331
332 tss_attr.type = TSSDescLow.type;
333 tss_attr.dpl = TSSDescLow.dpl;
334 tss_attr.present = TSSDescLow.p;
335 tss_attr.granularity = TSSDescLow.g;
336 tss_attr.unusable = 0;
337
338 for (int i = 0; i < contextIds.size(); i++) {
339 ThreadContext * tc = system->getThreadContext(contextIds[i]);
340
341 tc->setMiscReg(MISCREG_CS, cs);
342 tc->setMiscReg(MISCREG_DS, ds);
343 tc->setMiscReg(MISCREG_ES, ds);
344 tc->setMiscReg(MISCREG_FS, ds);
345 tc->setMiscReg(MISCREG_GS, ds);
346 tc->setMiscReg(MISCREG_SS, ds);
347
348 // LDT
349 tc->setMiscReg(MISCREG_TSL, 0);
350 SegAttr tslAttr = 0;
351 tslAttr.present = 1;
352 tslAttr.type = 2;
353 tc->setMiscReg(MISCREG_TSL_ATTR, tslAttr);
354
355 tc->setMiscReg(MISCREG_TSG_BASE, GDTVirtAddr);
356 tc->setMiscReg(MISCREG_TSG_LIMIT, 8 * numGDTEntries - 1);
357
358 tc->setMiscReg(MISCREG_TR, tssSel);
359 tc->setMiscReg(MISCREG_TR_BASE, tss_base_addr);
360 tc->setMiscReg(MISCREG_TR_EFF_BASE, 0);
361 tc->setMiscReg(MISCREG_TR_LIMIT, tss_limit);
362 tc->setMiscReg(MISCREG_TR_ATTR, tss_attr);
363
364 //Start using longmode segments.
365 installSegDesc(tc, SEGMENT_REG_CS, csDesc, true);
366 installSegDesc(tc, SEGMENT_REG_DS, dsDesc, true);
367 installSegDesc(tc, SEGMENT_REG_ES, dsDesc, true);
368 installSegDesc(tc, SEGMENT_REG_FS, dsDesc, true);
369 installSegDesc(tc, SEGMENT_REG_GS, dsDesc, true);
370 installSegDesc(tc, SEGMENT_REG_SS, dsDesc, true);
371
372 Efer efer = 0;
373 efer.sce = 1; // Enable system call extensions.
374 efer.lme = 1; // Enable long mode.
375 efer.lma = 1; // Activate long mode.
376 efer.nxe = 0; // Enable nx support.
377 efer.svme = 1; // Enable svm support for now.
378 efer.ffxsr = 0; // Turn on fast fxsave and fxrstor.
379 tc->setMiscReg(MISCREG_EFER, efer);
380
381 //Set up the registers that describe the operating mode.
382 CR0 cr0 = 0;
383 cr0.pg = 1; // Turn on paging.
384 cr0.cd = 0; // Don't disable caching.
385 cr0.nw = 0; // This is bit is defined to be ignored.
386 cr0.am = 1; // No alignment checking
387 cr0.wp = 1; // Supervisor mode can write read only pages
388 cr0.ne = 1;
389 cr0.et = 1; // This should always be 1
390 cr0.ts = 0; // We don't do task switching, so causing fp exceptions
391 // would be pointless.
392 cr0.em = 0; // Allow x87 instructions to execute natively.
393 cr0.mp = 1; // This doesn't really matter, but the manual suggests
394 // setting it to one.
395 cr0.pe = 1; // We're definitely in protected mode.
396 tc->setMiscReg(MISCREG_CR0, cr0);
397
398 CR0 cr2 = 0;
399 tc->setMiscReg(MISCREG_CR2, cr2);
400
401 CR3 cr3 = pageTablePhysAddr;
402 tc->setMiscReg(MISCREG_CR3, cr3);
403
404 CR4 cr4 = 0;
405 //Turn on pae.
406 cr4.osxsave = 1; // Enable XSAVE and Proc Extended States
407 cr4.osxmmexcpt = 1; // Operating System Unmasked Exception
408 cr4.osfxsr = 1; // Operating System FXSave/FSRSTOR Support
409 cr4.pce = 0; // Performance-Monitoring Counter Enable
410 cr4.pge = 0; // Page-Global Enable
411 cr4.mce = 0; // Machine Check Enable
412 cr4.pae = 1; // Physical-Address Extension
413 cr4.pse = 0; // Page Size Extensions
414 cr4.de = 0; // Debugging Extensions
415 cr4.tsd = 0; // Time Stamp Disable
416 cr4.pvi = 0; // Protected-Mode Virtual Interrupts
417 cr4.vme = 0; // Virtual-8086 Mode Extensions
418
419 tc->setMiscReg(MISCREG_CR4, cr4);
420
421 CR4 cr8 = 0;
422 tc->setMiscReg(MISCREG_CR8, cr8);
423
424 const Addr PageMapLevel4 = pageTablePhysAddr;
425 //Point to the page tables.
426 tc->setMiscReg(MISCREG_CR3, PageMapLevel4);
427
428 tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
429
430 tc->setMiscReg(MISCREG_APIC_BASE, 0xfee00900);
431
432 tc->setMiscReg(MISCREG_TSG_BASE, GDTVirtAddr);
433 tc->setMiscReg(MISCREG_TSG_LIMIT, 0xffff);
434
435 tc->setMiscReg(MISCREG_IDTR_BASE, IDTVirtAddr);
436 tc->setMiscReg(MISCREG_IDTR_LIMIT, 0xffff);
437
438 /* enabling syscall and sysret */
439 MiscReg star = ((MiscReg)sret << 48) | ((MiscReg)scall << 32);
440 tc->setMiscReg(MISCREG_STAR, star);
441 MiscReg lstar = (MiscReg)syscallCodeVirtAddr;
442 tc->setMiscReg(MISCREG_LSTAR, lstar);
443 MiscReg sfmask = (1 << 8) | (1 << 10); // TF | DF
444 tc->setMiscReg(MISCREG_SF_MASK, sfmask);
445 }
446
447 /* Set up the content of the TSS and write it to physical memory. */
448
449 struct {
450 uint32_t reserved0; // +00h
451 uint32_t RSP0_low; // +04h
452 uint32_t RSP0_high; // +08h
453 uint32_t RSP1_low; // +0Ch
454 uint32_t RSP1_high; // +10h
455 uint32_t RSP2_low; // +14h
456 uint32_t RSP2_high; // +18h
457 uint32_t reserved1; // +1Ch
458 uint32_t reserved2; // +20h
459 uint32_t IST1_low; // +24h
460 uint32_t IST1_high; // +28h
461 uint32_t IST2_low; // +2Ch
462 uint32_t IST2_high; // +30h
463 uint32_t IST3_low; // +34h
464 uint32_t IST3_high; // +38h
465 uint32_t IST4_low; // +3Ch
466 uint32_t IST4_high; // +40h
467 uint32_t IST5_low; // +44h
468 uint32_t IST5_high; // +48h
469 uint32_t IST6_low; // +4Ch
470 uint32_t IST6_high; // +50h
471 uint32_t IST7_low; // +54h
472 uint32_t IST7_high; // +58h
473 uint32_t reserved3; // +5Ch
474 uint32_t reserved4; // +60h
475 uint16_t reserved5; // +64h
476 uint16_t IO_MapBase; // +66h
477 } tss;
478
479 /** setting Interrupt Stack Table */
480 uint64_t IST_start = ISTVirtAddr + PageBytes;
481 tss.IST1_low = IST_start;
482 tss.IST1_high = IST_start >> 32;
483 tss.RSP0_low = tss.IST1_low;
484 tss.RSP0_high = tss.IST1_high;
485 tss.RSP1_low = tss.IST1_low;
486 tss.RSP1_high = tss.IST1_high;
487 tss.RSP2_low = tss.IST1_low;
488 tss.RSP2_high = tss.IST1_high;
489 physProxy.writeBlob(TSSPhysAddr, (uint8_t *)(&tss), sizeof(tss));
490
491 /* Setting IDT gates */
492 GateDescriptorLow PFGateLow = 0;
493 PFGateLow.offsetHigh = bits(PFHandlerVirtAddr, 31, 16);
494 PFGateLow.offsetLow = bits(PFHandlerVirtAddr, 15, 0);
495 PFGateLow.selector = csLowPL;
496 PFGateLow.p = 1;
497 PFGateLow.dpl = 0;
498 PFGateLow.type = 0xe; // gate interrupt type
499 PFGateLow.IST = 0; // setting IST to 0 and using RSP0
500
501 GateDescriptorHigh PFGateHigh = 0;
502 PFGateHigh.offset = bits(PFHandlerVirtAddr, 63, 32);
503
504 struct {
505 uint64_t low;
506 uint64_t high;
507 } PFGate = {PFGateLow, PFGateHigh};
508
509 physProxy.writeBlob(IDTPhysAddr + 0xE0,
510 (uint8_t *)(&PFGate), sizeof(PFGate));
511
512 /* System call handler */
513 uint8_t syscallBlob[] = {
514 // mov %rax, (0xffffc90000005600)
515 0x48, 0xa3, 0x00, 0x60, 0x00,
516 0x00, 0x00, 0xc9, 0xff, 0xff,
517 // sysret
518 0x48, 0x0f, 0x07
519 };
520
521 physProxy.writeBlob(syscallCodePhysAddr,
522 syscallBlob, sizeof(syscallBlob));
523
524 /** Page fault handler */
525 uint8_t faultBlob[] = {
526 // mov %rax, (0xffffc90000005700)
527 0x48, 0xa3, 0x00, 0x61, 0x00,
528 0x00, 0x00, 0xc9, 0xff, 0xff,
529 // add $0x8, %rsp # skip error
530 0x48, 0x83, 0xc4, 0x08,
531 // iretq
532 0x48, 0xcf
533 };
534
535 physProxy.writeBlob(PFHandlerPhysAddr, faultBlob, sizeof(faultBlob));
536
537 MultiLevelPageTable<PageTableOps> *pt =
538 dynamic_cast<MultiLevelPageTable<PageTableOps> *>(pTable);
539
540 /* Syscall handler */
541 pt->map(syscallCodeVirtAddr, syscallCodePhysAddr, PageBytes, false);
542 /* GDT */
543 pt->map(GDTVirtAddr, GDTPhysAddr, PageBytes, false);
544 /* IDT */
545 pt->map(IDTVirtAddr, IDTPhysAddr, PageBytes, false);
546 /* TSS */
547 pt->map(TSSVirtAddr, TSSPhysAddr, PageBytes, false);
548 /* IST */
549 pt->map(ISTVirtAddr, ISTPhysAddr, PageBytes, false);
550 /* PF handler */
551 pt->map(PFHandlerVirtAddr, PFHandlerPhysAddr, PageBytes, false);
552 /* MMIO region for m5ops */
553 pt->map(MMIORegionVirtAddr, MMIORegionPhysAddr, 16*PageBytes, false);
554 } else {
555 for (int i = 0; i < contextIds.size(); i++) {
556 ThreadContext * tc = system->getThreadContext(contextIds[i]);
557
558 SegAttr dataAttr = 0;
559 dataAttr.dpl = 3;
560 dataAttr.unusable = 0;
561 dataAttr.defaultSize = 1;
562 dataAttr.longMode = 1;
563 dataAttr.avl = 0;
564 dataAttr.granularity = 1;
565 dataAttr.present = 1;
566 dataAttr.type = 3;
567 dataAttr.writable = 1;
568 dataAttr.readable = 1;
569 dataAttr.expandDown = 0;
570 dataAttr.system = 1;
571
572 //Initialize the segment registers.
573 for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
574 tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
575 tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
576 tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
577 }
578
579 SegAttr csAttr = 0;
580 csAttr.dpl = 3;
581 csAttr.unusable = 0;
582 csAttr.defaultSize = 0;
583 csAttr.longMode = 1;
584 csAttr.avl = 0;
585 csAttr.granularity = 1;
586 csAttr.present = 1;
587 csAttr.type = 10;
588 csAttr.writable = 0;
589 csAttr.readable = 1;
590 csAttr.expandDown = 0;
591 csAttr.system = 1;
592
593 tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
594
595 Efer efer = 0;
596 efer.sce = 1; // Enable system call extensions.
597 efer.lme = 1; // Enable long mode.
598 efer.lma = 1; // Activate long mode.
599 efer.nxe = 1; // Enable nx support.
600 efer.svme = 0; // Disable svm support for now. It isn't implemented.
601 efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
602 tc->setMiscReg(MISCREG_EFER, efer);
603
604 //Set up the registers that describe the operating mode.
605 CR0 cr0 = 0;
606 cr0.pg = 1; // Turn on paging.
607 cr0.cd = 0; // Don't disable caching.
608 cr0.nw = 0; // This is bit is defined to be ignored.
609 cr0.am = 0; // No alignment checking
610 cr0.wp = 0; // Supervisor mode can write read only pages
611 cr0.ne = 1;
612 cr0.et = 1; // This should always be 1
613 cr0.ts = 0; // We don't do task switching, so causing fp exceptions
614 // would be pointless.
615 cr0.em = 0; // Allow x87 instructions to execute natively.
616 cr0.mp = 1; // This doesn't really matter, but the manual suggests
617 // setting it to one.
618 cr0.pe = 1; // We're definitely in protected mode.
619 tc->setMiscReg(MISCREG_CR0, cr0);
620
621 tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
622 }
623 }
624}
625
626void
627I386LiveProcess::initState()
628{
629 X86LiveProcess::initState();
630
631 argsInit(sizeof(uint32_t), PageBytes);
632
633 /*
634 * Set up a GDT for this process. The whole GDT wouldn't really be for
635 * this process, but the only parts we care about are.
636 */
637 allocateMem(_gdtStart, _gdtSize);
638 uint64_t zero = 0;
639 assert(_gdtSize % sizeof(zero) == 0);
640 for (Addr gdtCurrent = _gdtStart;
641 gdtCurrent < _gdtStart + _gdtSize; gdtCurrent += sizeof(zero)) {
642 initVirtMem.write(gdtCurrent, zero);
643 }
644
645 // Set up the vsyscall page for this process.
646 allocateMem(vsyscallPage.base, vsyscallPage.size);
647 uint8_t vsyscallBlob[] = {
648 0x51, // push %ecx
649 0x52, // push %edp
650 0x55, // push %ebp
651 0x89, 0xe5, // mov %esp, %ebp
652 0x0f, 0x34 // sysenter
653 };
654 initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vsyscallOffset,
655 vsyscallBlob, sizeof(vsyscallBlob));
656
657 uint8_t vsysexitBlob[] = {
658 0x5d, // pop %ebp
659 0x5a, // pop %edx
660 0x59, // pop %ecx
661 0xc3 // ret
662 };
663 initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vsysexitOffset,
664 vsysexitBlob, sizeof(vsysexitBlob));
665
666 for (int i = 0; i < contextIds.size(); i++) {
667 ThreadContext * tc = system->getThreadContext(contextIds[i]);
668
669 SegAttr dataAttr = 0;
670 dataAttr.dpl = 3;
671 dataAttr.unusable = 0;
672 dataAttr.defaultSize = 1;
673 dataAttr.longMode = 0;
674 dataAttr.avl = 0;
675 dataAttr.granularity = 1;
676 dataAttr.present = 1;
677 dataAttr.type = 3;
678 dataAttr.writable = 1;
679 dataAttr.readable = 1;
680 dataAttr.expandDown = 0;
681 dataAttr.system = 1;
682
683 //Initialize the segment registers.
684 for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
685 tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
686 tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
687 tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
688 tc->setMiscRegNoEffect(MISCREG_SEG_SEL(seg), 0xB);
689 tc->setMiscRegNoEffect(MISCREG_SEG_LIMIT(seg), (uint32_t)(-1));
690 }
691
692 SegAttr csAttr = 0;
693 csAttr.dpl = 3;
694 csAttr.unusable = 0;
695 csAttr.defaultSize = 1;
696 csAttr.longMode = 0;
697 csAttr.avl = 0;
698 csAttr.granularity = 1;
699 csAttr.present = 1;
700 csAttr.type = 0xa;
701 csAttr.writable = 0;
702 csAttr.readable = 1;
703 csAttr.expandDown = 0;
704 csAttr.system = 1;
705
706 tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
707
708 tc->setMiscRegNoEffect(MISCREG_TSG_BASE, _gdtStart);
709 tc->setMiscRegNoEffect(MISCREG_TSG_EFF_BASE, _gdtStart);
710 tc->setMiscRegNoEffect(MISCREG_TSG_LIMIT, _gdtStart + _gdtSize - 1);
711
712 // Set the LDT selector to 0 to deactivate it.
713 tc->setMiscRegNoEffect(MISCREG_TSL, 0);
714
715 Efer efer = 0;
716 efer.sce = 1; // Enable system call extensions.
717 efer.lme = 1; // Enable long mode.
718 efer.lma = 0; // Deactivate long mode.
719 efer.nxe = 1; // Enable nx support.
720 efer.svme = 0; // Disable svm support for now. It isn't implemented.
721 efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
722 tc->setMiscReg(MISCREG_EFER, efer);
723
724 //Set up the registers that describe the operating mode.
725 CR0 cr0 = 0;
726 cr0.pg = 1; // Turn on paging.
727 cr0.cd = 0; // Don't disable caching.
728 cr0.nw = 0; // This is bit is defined to be ignored.
729 cr0.am = 0; // No alignment checking
730 cr0.wp = 0; // Supervisor mode can write read only pages
731 cr0.ne = 1;
732 cr0.et = 1; // This should always be 1
733 cr0.ts = 0; // We don't do task switching, so causing fp exceptions
734 // would be pointless.
735 cr0.em = 0; // Allow x87 instructions to execute natively.
736 cr0.mp = 1; // This doesn't really matter, but the manual suggests
737 // setting it to one.
738 cr0.pe = 1; // We're definitely in protected mode.
739 tc->setMiscReg(MISCREG_CR0, cr0);
740
741 tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
742 }
743}
744
745template<class IntType>
746void
747X86LiveProcess::argsInit(int pageSize,
748 std::vector<AuxVector<IntType> > extraAuxvs)
749{
750 int intSize = sizeof(IntType);
751
752 typedef AuxVector<IntType> auxv_t;
753 std::vector<auxv_t> auxv = extraAuxvs;
754
755 string filename;
756 if (argv.size() < 1)
757 filename = "";
758 else
759 filename = argv[0];
760
761 //We want 16 byte alignment
762 uint64_t align = 16;
763
764 // Patch the ld_bias for dynamic executables.
765 updateBias();
766
767 // load object file into target memory
768 objFile->loadSections(initVirtMem);
769
770 enum X86CpuFeature {
771 X86_OnboardFPU = 1 << 0,
772 X86_VirtualModeExtensions = 1 << 1,
773 X86_DebuggingExtensions = 1 << 2,
774 X86_PageSizeExtensions = 1 << 3,
775
776 X86_TimeStampCounter = 1 << 4,
777 X86_ModelSpecificRegisters = 1 << 5,
778 X86_PhysicalAddressExtensions = 1 << 6,
779 X86_MachineCheckExtensions = 1 << 7,
780
781 X86_CMPXCHG8Instruction = 1 << 8,
782 X86_OnboardAPIC = 1 << 9,
783 X86_SYSENTER_SYSEXIT = 1 << 11,
784
785 X86_MemoryTypeRangeRegisters = 1 << 12,
786 X86_PageGlobalEnable = 1 << 13,
787 X86_MachineCheckArchitecture = 1 << 14,
788 X86_CMOVInstruction = 1 << 15,
789
790 X86_PageAttributeTable = 1 << 16,
791 X86_36BitPSEs = 1 << 17,
792 X86_ProcessorSerialNumber = 1 << 18,
793 X86_CLFLUSHInstruction = 1 << 19,
794
795 X86_DebugTraceStore = 1 << 21,
796 X86_ACPIViaMSR = 1 << 22,
797 X86_MultimediaExtensions = 1 << 23,
798
799 X86_FXSAVE_FXRSTOR = 1 << 24,
800 X86_StreamingSIMDExtensions = 1 << 25,
801 X86_StreamingSIMDExtensions2 = 1 << 26,
802 X86_CPUSelfSnoop = 1 << 27,
803
804 X86_HyperThreading = 1 << 28,
805 X86_AutomaticClockControl = 1 << 29,
806 X86_IA64Processor = 1 << 30
807 };
808
809 // Setup the auxiliary vectors. These will already have endian
810 // conversion. Auxiliary vectors are loaded only for elf formatted
811 // executables; the auxv is responsible for passing information from
812 // the OS to the interpreter.
813 ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
814 if (elfObject) {
815 uint64_t features =
816 X86_OnboardFPU |
817 X86_VirtualModeExtensions |
818 X86_DebuggingExtensions |
819 X86_PageSizeExtensions |
820 X86_TimeStampCounter |
821 X86_ModelSpecificRegisters |
822 X86_PhysicalAddressExtensions |
823 X86_MachineCheckExtensions |
824 X86_CMPXCHG8Instruction |
825 X86_OnboardAPIC |
826 X86_SYSENTER_SYSEXIT |
827 X86_MemoryTypeRangeRegisters |
828 X86_PageGlobalEnable |
829 X86_MachineCheckArchitecture |
830 X86_CMOVInstruction |
831 X86_PageAttributeTable |
832 X86_36BitPSEs |
833// X86_ProcessorSerialNumber |
834 X86_CLFLUSHInstruction |
835// X86_DebugTraceStore |
836// X86_ACPIViaMSR |
837 X86_MultimediaExtensions |
838 X86_FXSAVE_FXRSTOR |
839 X86_StreamingSIMDExtensions |
840 X86_StreamingSIMDExtensions2 |
841// X86_CPUSelfSnoop |
842// X86_HyperThreading |
843// X86_AutomaticClockControl |
844// X86_IA64Processor |
845 0;
846
847 //Bits which describe the system hardware capabilities
848 //XXX Figure out what these should be
849 auxv.push_back(auxv_t(M5_AT_HWCAP, features));
850 //The system page size
851 auxv.push_back(auxv_t(M5_AT_PAGESZ, X86ISA::PageBytes));
852 //Frequency at which times() increments
853 //Defined to be 100 in the kernel source.
854 auxv.push_back(auxv_t(M5_AT_CLKTCK, 100));
855 // This is the virtual address of the program header tables if they
856 // appear in the executable image.
857 auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
858 // This is the size of a program header entry from the elf file.
859 auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
860 // This is the number of program headers from the original elf file.
861 auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
862 // This is the base address of the ELF interpreter; it should be
863 // zero for static executables or contain the base address for
864 // dynamic executables.
865 auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
866 //XXX Figure out what this should be.
867 auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
868 //The entry point to the program
869 auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
870 //Different user and group IDs
871 auxv.push_back(auxv_t(M5_AT_UID, uid()));
872 auxv.push_back(auxv_t(M5_AT_EUID, euid()));
873 auxv.push_back(auxv_t(M5_AT_GID, gid()));
874 auxv.push_back(auxv_t(M5_AT_EGID, egid()));
875 //Whether to enable "secure mode" in the executable
876 auxv.push_back(auxv_t(M5_AT_SECURE, 0));
877 //The address of 16 "random" bytes.
878 auxv.push_back(auxv_t(M5_AT_RANDOM, 0));
879 //The name of the program
880 auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
881 //The platform string
882 auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
883 }
884
885 //Figure out how big the initial stack needs to be
886
887 // A sentry NULL void pointer at the top of the stack.
888 int sentry_size = intSize;
889
890 //This is the name of the file which is present on the initial stack
891 //It's purpose is to let the user space linker examine the original file.
892 int file_name_size = filename.size() + 1;
893
894 const int numRandomBytes = 16;
895 int aux_data_size = numRandomBytes;
896
897 string platform = "x86_64";
898 aux_data_size += platform.size() + 1;
899
900 int env_data_size = 0;
901 for (int i = 0; i < envp.size(); ++i)
902 env_data_size += envp[i].size() + 1;
903 int arg_data_size = 0;
904 for (int i = 0; i < argv.size(); ++i)
905 arg_data_size += argv[i].size() + 1;
906
907 //The info_block needs to be padded so it's size is a multiple of the
908 //alignment mask. Also, it appears that there needs to be at least some
909 //padding, so if the size is already a multiple, we need to increase it
910 //anyway.
911 int base_info_block_size =
912 sentry_size + file_name_size + env_data_size + arg_data_size;
913
914 int info_block_size = roundUp(base_info_block_size, align);
915
916 int info_block_padding = info_block_size - base_info_block_size;
917
918 //Each auxilliary vector is two 8 byte words
919 int aux_array_size = intSize * 2 * (auxv.size() + 1);
920
921 int envp_array_size = intSize * (envp.size() + 1);
922 int argv_array_size = intSize * (argv.size() + 1);
923
924 int argc_size = intSize;
925
926 //Figure out the size of the contents of the actual initial frame
927 int frame_size =
928 aux_array_size +
929 envp_array_size +
930 argv_array_size +
931 argc_size;
932
933 //There needs to be padding after the auxiliary vector data so that the
934 //very bottom of the stack is aligned properly.
935 int partial_size = frame_size + aux_data_size;
936 int aligned_partial_size = roundUp(partial_size, align);
937 int aux_padding = aligned_partial_size - partial_size;
938
939 int space_needed =
940 info_block_size +
941 aux_data_size +
942 aux_padding +
943 frame_size;
944
945 stack_min = stack_base - space_needed;
946 stack_min = roundDown(stack_min, align);
947 stack_size = roundUp(stack_base - stack_min, pageSize);
948
949 // map memory
950 Addr stack_end = roundDown(stack_base - stack_size, pageSize);
951
952 DPRINTF(Stack, "Mapping the stack: 0x%x %dB\n", stack_end, stack_size);
953 allocateMem(stack_end, stack_size);
954
955 // map out initial stack contents
956 IntType sentry_base = stack_base - sentry_size;
957 IntType file_name_base = sentry_base - file_name_size;
958 IntType env_data_base = file_name_base - env_data_size;
959 IntType arg_data_base = env_data_base - arg_data_size;
960 IntType aux_data_base = arg_data_base - info_block_padding - aux_data_size;
961 IntType auxv_array_base = aux_data_base - aux_array_size - aux_padding;
962 IntType envp_array_base = auxv_array_base - envp_array_size;
963 IntType argv_array_base = envp_array_base - argv_array_size;
964 IntType argc_base = argv_array_base - argc_size;
965
966 DPRINTF(Stack, "The addresses of items on the initial stack:\n");
967 DPRINTF(Stack, "0x%x - file name\n", file_name_base);
968 DPRINTF(Stack, "0x%x - env data\n", env_data_base);
969 DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
970 DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
971 DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
972 DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
973 DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
974 DPRINTF(Stack, "0x%x - argc \n", argc_base);
975 DPRINTF(Stack, "0x%x - stack min\n", stack_min);
976
977 // write contents to stack
978
979 // figure out argc
980 IntType argc = argv.size();
981 IntType guestArgc = X86ISA::htog(argc);
982
983 //Write out the sentry void *
984 IntType sentry_NULL = 0;
985 initVirtMem.writeBlob(sentry_base,
986 (uint8_t*)&sentry_NULL, sentry_size);
987
988 //Write the file name
989 initVirtMem.writeString(file_name_base, filename.c_str());
990
991 //Fix up the aux vectors which point to data
992 assert(auxv[auxv.size() - 3].a_type == M5_AT_RANDOM);
993 auxv[auxv.size() - 3].a_val = aux_data_base;
994 assert(auxv[auxv.size() - 2].a_type == M5_AT_EXECFN);
995 auxv[auxv.size() - 2].a_val = argv_array_base;
996 assert(auxv[auxv.size() - 1].a_type == M5_AT_PLATFORM);
997 auxv[auxv.size() - 1].a_val = aux_data_base + numRandomBytes;
998
999 //Copy the aux stuff
1000 for (int x = 0; x < auxv.size(); x++) {
1001 initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
1002 (uint8_t*)&(auxv[x].a_type), intSize);
1003 initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
1004 (uint8_t*)&(auxv[x].a_val), intSize);
1005 }
1006 //Write out the terminating zeroed auxilliary vector
1007 const uint64_t zero = 0;
1008 initVirtMem.writeBlob(auxv_array_base + auxv.size() * 2 * intSize,
1009 (uint8_t*)&zero, intSize);
1010 initVirtMem.writeBlob(auxv_array_base + (auxv.size() * 2 + 1) * intSize,
1011 (uint8_t*)&zero, intSize);
1012
1013 initVirtMem.writeString(aux_data_base, platform.c_str());
1014
1015 copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
1016 copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
1017
1018 initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
1019
1020 ThreadContext *tc = system->getThreadContext(contextIds[0]);
1021 //Set the stack pointer register
1022 tc->setIntReg(StackPointerReg, stack_min);
1023
1024 // There doesn't need to be any segment base added in since we're dealing
1025 // with the flat segmentation model.
1026 tc->pcState(getStartPC());
1027
1028 //Align the "stack_min" to a page boundary.
1029 stack_min = roundDown(stack_min, pageSize);
1030
1031// num_processes++;
1032}
1033
1034void
1035X86_64LiveProcess::argsInit(int intSize, int pageSize)
1036{
1037 std::vector<AuxVector<uint64_t> > extraAuxvs;
1038 extraAuxvs.push_back(AuxVector<uint64_t>(M5_AT_SYSINFO_EHDR,
1039 vsyscallPage.base));
1040 X86LiveProcess::argsInit<uint64_t>(pageSize, extraAuxvs);
1041}
1042
1043void
1044I386LiveProcess::argsInit(int intSize, int pageSize)
1045{
1046 std::vector<AuxVector<uint32_t> > extraAuxvs;
1047 //Tell the binary where the vsyscall part of the vsyscall page is.
1048 extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO,
1049 vsyscallPage.base + vsyscallPage.vsyscallOffset));
1050 extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO_EHDR,
1051 vsyscallPage.base));
1052 X86LiveProcess::argsInit<uint32_t>(pageSize, extraAuxvs);
1053}
1054
1055void
1056X86LiveProcess::setSyscallReturn(ThreadContext *tc, SyscallReturn retval)
1057{
1058 tc->setIntReg(INTREG_RAX, retval.encodedValue());
1059}
1060
1061X86ISA::IntReg
1062X86_64LiveProcess::getSyscallArg(ThreadContext *tc, int &i)
1063{
1064 assert(i < NumArgumentRegs);
1065 return tc->readIntReg(ArgumentReg[i++]);
1066}
1067
1068void
1069X86_64LiveProcess::setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val)
1070{
1071 assert(i < NumArgumentRegs);
1072 return tc->setIntReg(ArgumentReg[i], val);
1073}
1074
1075X86ISA::IntReg
1076I386LiveProcess::getSyscallArg(ThreadContext *tc, int &i)
1077{
1078 assert(i < NumArgumentRegs32);
1079 return tc->readIntReg(ArgumentReg32[i++]);
1080}
1081
1082X86ISA::IntReg
1083I386LiveProcess::getSyscallArg(ThreadContext *tc, int &i, int width)
1084{
1085 assert(width == 32 || width == 64);
1086 assert(i < NumArgumentRegs);
1087 uint64_t retVal = tc->readIntReg(ArgumentReg32[i++]) & mask(32);
1088 if (width == 64)
1089 retVal |= ((uint64_t)tc->readIntReg(ArgumentReg[i++]) << 32);
1090 return retVal;
1091}
1092
1093void
1094I386LiveProcess::setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val)
1095{
1096 assert(i < NumArgumentRegs);
1097 return tc->setIntReg(ArgumentReg[i], val);
1098}
50#include "arch/x86/system.hh"
51#include "arch/x86/types.hh"
52#include "base/loader/elf_object.hh"
53#include "base/loader/object_file.hh"
54#include "base/misc.hh"
55#include "base/trace.hh"
56#include "cpu/thread_context.hh"
57#include "debug/Stack.hh"
58#include "mem/multi_level_page_table.hh"
59#include "mem/page_table.hh"
60#include "sim/process_impl.hh"
61#include "sim/syscall_emul.hh"
62#include "sim/system.hh"
63
64using namespace std;
65using namespace X86ISA;
66
67static const int ArgumentReg[] = {
68 INTREG_RDI,
69 INTREG_RSI,
70 INTREG_RDX,
71 //This argument register is r10 for syscalls and rcx for C.
72 INTREG_R10W,
73 //INTREG_RCX,
74 INTREG_R8W,
75 INTREG_R9W
76};
77
78static const int NumArgumentRegs M5_VAR_USED =
79 sizeof(ArgumentReg) / sizeof(const int);
80
81static const int ArgumentReg32[] = {
82 INTREG_EBX,
83 INTREG_ECX,
84 INTREG_EDX,
85 INTREG_ESI,
86 INTREG_EDI,
87 INTREG_EBP
88};
89
90static const int NumArgumentRegs32 M5_VAR_USED =
91 sizeof(ArgumentReg) / sizeof(const int);
92
93X86LiveProcess::X86LiveProcess(LiveProcessParams * params, ObjectFile *objFile,
94 SyscallDesc *_syscallDescs, int _numSyscallDescs) :
95 LiveProcess(params, objFile), syscallDescs(_syscallDescs),
96 numSyscallDescs(_numSyscallDescs)
97{
98 brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize();
99 brk_point = roundUp(brk_point, PageBytes);
100}
101
102X86_64LiveProcess::X86_64LiveProcess(LiveProcessParams *params,
103 ObjectFile *objFile, SyscallDesc *_syscallDescs,
104 int _numSyscallDescs) :
105 X86LiveProcess(params, objFile, _syscallDescs, _numSyscallDescs)
106{
107
108 vsyscallPage.base = 0xffffffffff600000ULL;
109 vsyscallPage.size = PageBytes;
110 vsyscallPage.vtimeOffset = 0x400;
111 vsyscallPage.vgettimeofdayOffset = 0x0;
112
113 // Set up stack. On X86_64 Linux, stack goes from the top of memory
114 // downward, less the hole for the kernel address space plus one page
115 // for undertermined purposes.
116 stack_base = (Addr)0x7FFFFFFFF000ULL;
117
118 // Set pointer for next thread stack. Reserve 8M for main stack.
119 next_thread_stack_base = stack_base - (8 * 1024 * 1024);
120
121 // "mmap_base" is a function which defines where mmap region starts in
122 // the process address space.
123 // mmap_base: PAGE_ALIGN(TASK_SIZE-MIN_GAP-mmap_rnd())
124 // TASK_SIZE: (1<<47)-PAGE_SIZE
125 // MIN_GAP: 128*1024*1024+stack_maxrandom_size()
126 // We do not use any address space layout randomization in gem5
127 // therefore the random fields become zero; the smallest gap space was
128 // chosen but gap could potentially be much larger.
129 mmap_end = (Addr)0x7FFFF7FFF000ULL;
130}
131
132void
133I386LiveProcess::syscall(int64_t callnum, ThreadContext *tc)
134{
135 TheISA::PCState pc = tc->pcState();
136 Addr eip = pc.pc();
137 if (eip >= vsyscallPage.base &&
138 eip < vsyscallPage.base + vsyscallPage.size) {
139 pc.npc(vsyscallPage.base + vsyscallPage.vsysexitOffset);
140 tc->pcState(pc);
141 }
142 X86LiveProcess::syscall(callnum, tc);
143}
144
145
146I386LiveProcess::I386LiveProcess(LiveProcessParams *params,
147 ObjectFile *objFile, SyscallDesc *_syscallDescs,
148 int _numSyscallDescs) :
149 X86LiveProcess(params, objFile, _syscallDescs, _numSyscallDescs)
150{
151 _gdtStart = ULL(0xffffd000);
152 _gdtSize = PageBytes;
153
154 vsyscallPage.base = 0xffffe000ULL;
155 vsyscallPage.size = PageBytes;
156 vsyscallPage.vsyscallOffset = 0x400;
157 vsyscallPage.vsysexitOffset = 0x410;
158
159 stack_base = _gdtStart;
160
161 // Set pointer for next thread stack. Reserve 8M for main stack.
162 next_thread_stack_base = stack_base - (8 * 1024 * 1024);
163
164 // "mmap_base" is a function which defines where mmap region starts in
165 // the process address space.
166 // mmap_base: PAGE_ALIGN(TASK_SIZE-MIN_GAP-mmap_rnd())
167 // TASK_SIZE: 0xC0000000
168 // MIN_GAP: 128*1024*1024+stack_maxrandom_size()
169 // We do not use any address space layout randomization in gem5
170 // therefore the random fields become zero; the smallest gap space was
171 // chosen but gap could potentially be much larger.
172 mmap_end = (Addr)0xB7FFF000ULL;
173}
174
175SyscallDesc*
176X86LiveProcess::getDesc(int callnum)
177{
178 if (callnum < 0 || callnum >= numSyscallDescs)
179 return NULL;
180 return &syscallDescs[callnum];
181}
182
183void
184X86_64LiveProcess::initState()
185{
186 X86LiveProcess::initState();
187
188 argsInit(sizeof(uint64_t), PageBytes);
189
190 // Set up the vsyscall page for this process.
191 allocateMem(vsyscallPage.base, vsyscallPage.size);
192 uint8_t vtimeBlob[] = {
193 0x48,0xc7,0xc0,0xc9,0x00,0x00,0x00, // mov $0xc9,%rax
194 0x0f,0x05, // syscall
195 0xc3 // retq
196 };
197 initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vtimeOffset,
198 vtimeBlob, sizeof(vtimeBlob));
199
200 uint8_t vgettimeofdayBlob[] = {
201 0x48,0xc7,0xc0,0x60,0x00,0x00,0x00, // mov $0x60,%rax
202 0x0f,0x05, // syscall
203 0xc3 // retq
204 };
205 initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vgettimeofdayOffset,
206 vgettimeofdayBlob, sizeof(vgettimeofdayBlob));
207
208 if (kvmInSE) {
209 PortProxy physProxy = system->physProxy;
210
211 /*
212 * Set up the gdt.
213 */
214 uint8_t numGDTEntries = 0;
215 uint64_t nullDescriptor = 0;
216 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
217 (uint8_t *)(&nullDescriptor), 8);
218 numGDTEntries++;
219
220 SegDescriptor initDesc = 0;
221 initDesc.type.codeOrData = 0; // code or data type
222 initDesc.type.c = 0; // conforming
223 initDesc.type.r = 1; // readable
224 initDesc.dpl = 0; // privilege
225 initDesc.p = 1; // present
226 initDesc.l = 1; // longmode - 64 bit
227 initDesc.d = 0; // operand size
228 initDesc.g = 1; // granularity
229 initDesc.s = 1; // system segment
230 initDesc.limitHigh = 0xFFFF;
231 initDesc.limitLow = 0xF;
232 initDesc.baseHigh = 0x0;
233 initDesc.baseLow = 0x0;
234
235 //64 bit code segment
236 SegDescriptor csLowPLDesc = initDesc;
237 csLowPLDesc.type.codeOrData = 1;
238 csLowPLDesc.dpl = 0;
239 uint64_t csLowPLDescVal = csLowPLDesc;
240 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
241 (uint8_t *)(&csLowPLDescVal), 8);
242
243 numGDTEntries++;
244
245 SegSelector csLowPL = 0;
246 csLowPL.si = numGDTEntries - 1;
247 csLowPL.rpl = 0;
248
249 //64 bit data segment
250 SegDescriptor dsLowPLDesc = initDesc;
251 dsLowPLDesc.type.codeOrData = 0;
252 dsLowPLDesc.dpl = 0;
253 uint64_t dsLowPLDescVal = dsLowPLDesc;
254 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
255 (uint8_t *)(&dsLowPLDescVal), 8);
256
257 numGDTEntries++;
258
259 SegSelector dsLowPL = 0;
260 dsLowPL.si = numGDTEntries - 1;
261 dsLowPL.rpl = 0;
262
263 //64 bit data segment
264 SegDescriptor dsDesc = initDesc;
265 dsDesc.type.codeOrData = 0;
266 dsDesc.dpl = 3;
267 uint64_t dsDescVal = dsDesc;
268 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
269 (uint8_t *)(&dsDescVal), 8);
270
271 numGDTEntries++;
272
273 SegSelector ds = 0;
274 ds.si = numGDTEntries - 1;
275 ds.rpl = 3;
276
277 //64 bit code segment
278 SegDescriptor csDesc = initDesc;
279 csDesc.type.codeOrData = 1;
280 csDesc.dpl = 3;
281 uint64_t csDescVal = csDesc;
282 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
283 (uint8_t *)(&csDescVal), 8);
284
285 numGDTEntries++;
286
287 SegSelector cs = 0;
288 cs.si = numGDTEntries - 1;
289 cs.rpl = 3;
290
291 SegSelector scall = 0;
292 scall.si = csLowPL.si;
293 scall.rpl = 0;
294
295 SegSelector sret = 0;
296 sret.si = dsLowPL.si;
297 sret.rpl = 3;
298
299 /* In long mode the TSS has been extended to 16 Bytes */
300 TSSlow TSSDescLow = 0;
301 TSSDescLow.type = 0xB;
302 TSSDescLow.dpl = 0; // Privelege level 0
303 TSSDescLow.p = 1; // Present
304 TSSDescLow.g = 1; // Page granularity
305 TSSDescLow.limitHigh = 0xF;
306 TSSDescLow.limitLow = 0xFFFF;
307 TSSDescLow.baseLow = bits(TSSVirtAddr, 23, 0);
308 TSSDescLow.baseHigh = bits(TSSVirtAddr, 31, 24);
309
310 TSShigh TSSDescHigh = 0;
311 TSSDescHigh.base = bits(TSSVirtAddr, 63, 32);
312
313 struct TSSDesc {
314 uint64_t low;
315 uint64_t high;
316 } tssDescVal = {TSSDescLow, TSSDescHigh};
317
318 physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
319 (uint8_t *)(&tssDescVal), sizeof(tssDescVal));
320
321 numGDTEntries++;
322
323 SegSelector tssSel = 0;
324 tssSel.si = numGDTEntries - 1;
325
326 uint64_t tss_base_addr = (TSSDescHigh.base << 32) |
327 (TSSDescLow.baseHigh << 24) |
328 TSSDescLow.baseLow;
329 uint64_t tss_limit = TSSDescLow.limitLow | (TSSDescLow.limitHigh << 16);
330
331 SegAttr tss_attr = 0;
332
333 tss_attr.type = TSSDescLow.type;
334 tss_attr.dpl = TSSDescLow.dpl;
335 tss_attr.present = TSSDescLow.p;
336 tss_attr.granularity = TSSDescLow.g;
337 tss_attr.unusable = 0;
338
339 for (int i = 0; i < contextIds.size(); i++) {
340 ThreadContext * tc = system->getThreadContext(contextIds[i]);
341
342 tc->setMiscReg(MISCREG_CS, cs);
343 tc->setMiscReg(MISCREG_DS, ds);
344 tc->setMiscReg(MISCREG_ES, ds);
345 tc->setMiscReg(MISCREG_FS, ds);
346 tc->setMiscReg(MISCREG_GS, ds);
347 tc->setMiscReg(MISCREG_SS, ds);
348
349 // LDT
350 tc->setMiscReg(MISCREG_TSL, 0);
351 SegAttr tslAttr = 0;
352 tslAttr.present = 1;
353 tslAttr.type = 2;
354 tc->setMiscReg(MISCREG_TSL_ATTR, tslAttr);
355
356 tc->setMiscReg(MISCREG_TSG_BASE, GDTVirtAddr);
357 tc->setMiscReg(MISCREG_TSG_LIMIT, 8 * numGDTEntries - 1);
358
359 tc->setMiscReg(MISCREG_TR, tssSel);
360 tc->setMiscReg(MISCREG_TR_BASE, tss_base_addr);
361 tc->setMiscReg(MISCREG_TR_EFF_BASE, 0);
362 tc->setMiscReg(MISCREG_TR_LIMIT, tss_limit);
363 tc->setMiscReg(MISCREG_TR_ATTR, tss_attr);
364
365 //Start using longmode segments.
366 installSegDesc(tc, SEGMENT_REG_CS, csDesc, true);
367 installSegDesc(tc, SEGMENT_REG_DS, dsDesc, true);
368 installSegDesc(tc, SEGMENT_REG_ES, dsDesc, true);
369 installSegDesc(tc, SEGMENT_REG_FS, dsDesc, true);
370 installSegDesc(tc, SEGMENT_REG_GS, dsDesc, true);
371 installSegDesc(tc, SEGMENT_REG_SS, dsDesc, true);
372
373 Efer efer = 0;
374 efer.sce = 1; // Enable system call extensions.
375 efer.lme = 1; // Enable long mode.
376 efer.lma = 1; // Activate long mode.
377 efer.nxe = 0; // Enable nx support.
378 efer.svme = 1; // Enable svm support for now.
379 efer.ffxsr = 0; // Turn on fast fxsave and fxrstor.
380 tc->setMiscReg(MISCREG_EFER, efer);
381
382 //Set up the registers that describe the operating mode.
383 CR0 cr0 = 0;
384 cr0.pg = 1; // Turn on paging.
385 cr0.cd = 0; // Don't disable caching.
386 cr0.nw = 0; // This is bit is defined to be ignored.
387 cr0.am = 1; // No alignment checking
388 cr0.wp = 1; // Supervisor mode can write read only pages
389 cr0.ne = 1;
390 cr0.et = 1; // This should always be 1
391 cr0.ts = 0; // We don't do task switching, so causing fp exceptions
392 // would be pointless.
393 cr0.em = 0; // Allow x87 instructions to execute natively.
394 cr0.mp = 1; // This doesn't really matter, but the manual suggests
395 // setting it to one.
396 cr0.pe = 1; // We're definitely in protected mode.
397 tc->setMiscReg(MISCREG_CR0, cr0);
398
399 CR0 cr2 = 0;
400 tc->setMiscReg(MISCREG_CR2, cr2);
401
402 CR3 cr3 = pageTablePhysAddr;
403 tc->setMiscReg(MISCREG_CR3, cr3);
404
405 CR4 cr4 = 0;
406 //Turn on pae.
407 cr4.osxsave = 1; // Enable XSAVE and Proc Extended States
408 cr4.osxmmexcpt = 1; // Operating System Unmasked Exception
409 cr4.osfxsr = 1; // Operating System FXSave/FSRSTOR Support
410 cr4.pce = 0; // Performance-Monitoring Counter Enable
411 cr4.pge = 0; // Page-Global Enable
412 cr4.mce = 0; // Machine Check Enable
413 cr4.pae = 1; // Physical-Address Extension
414 cr4.pse = 0; // Page Size Extensions
415 cr4.de = 0; // Debugging Extensions
416 cr4.tsd = 0; // Time Stamp Disable
417 cr4.pvi = 0; // Protected-Mode Virtual Interrupts
418 cr4.vme = 0; // Virtual-8086 Mode Extensions
419
420 tc->setMiscReg(MISCREG_CR4, cr4);
421
422 CR4 cr8 = 0;
423 tc->setMiscReg(MISCREG_CR8, cr8);
424
425 const Addr PageMapLevel4 = pageTablePhysAddr;
426 //Point to the page tables.
427 tc->setMiscReg(MISCREG_CR3, PageMapLevel4);
428
429 tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
430
431 tc->setMiscReg(MISCREG_APIC_BASE, 0xfee00900);
432
433 tc->setMiscReg(MISCREG_TSG_BASE, GDTVirtAddr);
434 tc->setMiscReg(MISCREG_TSG_LIMIT, 0xffff);
435
436 tc->setMiscReg(MISCREG_IDTR_BASE, IDTVirtAddr);
437 tc->setMiscReg(MISCREG_IDTR_LIMIT, 0xffff);
438
439 /* enabling syscall and sysret */
440 MiscReg star = ((MiscReg)sret << 48) | ((MiscReg)scall << 32);
441 tc->setMiscReg(MISCREG_STAR, star);
442 MiscReg lstar = (MiscReg)syscallCodeVirtAddr;
443 tc->setMiscReg(MISCREG_LSTAR, lstar);
444 MiscReg sfmask = (1 << 8) | (1 << 10); // TF | DF
445 tc->setMiscReg(MISCREG_SF_MASK, sfmask);
446 }
447
448 /* Set up the content of the TSS and write it to physical memory. */
449
450 struct {
451 uint32_t reserved0; // +00h
452 uint32_t RSP0_low; // +04h
453 uint32_t RSP0_high; // +08h
454 uint32_t RSP1_low; // +0Ch
455 uint32_t RSP1_high; // +10h
456 uint32_t RSP2_low; // +14h
457 uint32_t RSP2_high; // +18h
458 uint32_t reserved1; // +1Ch
459 uint32_t reserved2; // +20h
460 uint32_t IST1_low; // +24h
461 uint32_t IST1_high; // +28h
462 uint32_t IST2_low; // +2Ch
463 uint32_t IST2_high; // +30h
464 uint32_t IST3_low; // +34h
465 uint32_t IST3_high; // +38h
466 uint32_t IST4_low; // +3Ch
467 uint32_t IST4_high; // +40h
468 uint32_t IST5_low; // +44h
469 uint32_t IST5_high; // +48h
470 uint32_t IST6_low; // +4Ch
471 uint32_t IST6_high; // +50h
472 uint32_t IST7_low; // +54h
473 uint32_t IST7_high; // +58h
474 uint32_t reserved3; // +5Ch
475 uint32_t reserved4; // +60h
476 uint16_t reserved5; // +64h
477 uint16_t IO_MapBase; // +66h
478 } tss;
479
480 /** setting Interrupt Stack Table */
481 uint64_t IST_start = ISTVirtAddr + PageBytes;
482 tss.IST1_low = IST_start;
483 tss.IST1_high = IST_start >> 32;
484 tss.RSP0_low = tss.IST1_low;
485 tss.RSP0_high = tss.IST1_high;
486 tss.RSP1_low = tss.IST1_low;
487 tss.RSP1_high = tss.IST1_high;
488 tss.RSP2_low = tss.IST1_low;
489 tss.RSP2_high = tss.IST1_high;
490 physProxy.writeBlob(TSSPhysAddr, (uint8_t *)(&tss), sizeof(tss));
491
492 /* Setting IDT gates */
493 GateDescriptorLow PFGateLow = 0;
494 PFGateLow.offsetHigh = bits(PFHandlerVirtAddr, 31, 16);
495 PFGateLow.offsetLow = bits(PFHandlerVirtAddr, 15, 0);
496 PFGateLow.selector = csLowPL;
497 PFGateLow.p = 1;
498 PFGateLow.dpl = 0;
499 PFGateLow.type = 0xe; // gate interrupt type
500 PFGateLow.IST = 0; // setting IST to 0 and using RSP0
501
502 GateDescriptorHigh PFGateHigh = 0;
503 PFGateHigh.offset = bits(PFHandlerVirtAddr, 63, 32);
504
505 struct {
506 uint64_t low;
507 uint64_t high;
508 } PFGate = {PFGateLow, PFGateHigh};
509
510 physProxy.writeBlob(IDTPhysAddr + 0xE0,
511 (uint8_t *)(&PFGate), sizeof(PFGate));
512
513 /* System call handler */
514 uint8_t syscallBlob[] = {
515 // mov %rax, (0xffffc90000005600)
516 0x48, 0xa3, 0x00, 0x60, 0x00,
517 0x00, 0x00, 0xc9, 0xff, 0xff,
518 // sysret
519 0x48, 0x0f, 0x07
520 };
521
522 physProxy.writeBlob(syscallCodePhysAddr,
523 syscallBlob, sizeof(syscallBlob));
524
525 /** Page fault handler */
526 uint8_t faultBlob[] = {
527 // mov %rax, (0xffffc90000005700)
528 0x48, 0xa3, 0x00, 0x61, 0x00,
529 0x00, 0x00, 0xc9, 0xff, 0xff,
530 // add $0x8, %rsp # skip error
531 0x48, 0x83, 0xc4, 0x08,
532 // iretq
533 0x48, 0xcf
534 };
535
536 physProxy.writeBlob(PFHandlerPhysAddr, faultBlob, sizeof(faultBlob));
537
538 MultiLevelPageTable<PageTableOps> *pt =
539 dynamic_cast<MultiLevelPageTable<PageTableOps> *>(pTable);
540
541 /* Syscall handler */
542 pt->map(syscallCodeVirtAddr, syscallCodePhysAddr, PageBytes, false);
543 /* GDT */
544 pt->map(GDTVirtAddr, GDTPhysAddr, PageBytes, false);
545 /* IDT */
546 pt->map(IDTVirtAddr, IDTPhysAddr, PageBytes, false);
547 /* TSS */
548 pt->map(TSSVirtAddr, TSSPhysAddr, PageBytes, false);
549 /* IST */
550 pt->map(ISTVirtAddr, ISTPhysAddr, PageBytes, false);
551 /* PF handler */
552 pt->map(PFHandlerVirtAddr, PFHandlerPhysAddr, PageBytes, false);
553 /* MMIO region for m5ops */
554 pt->map(MMIORegionVirtAddr, MMIORegionPhysAddr, 16*PageBytes, false);
555 } else {
556 for (int i = 0; i < contextIds.size(); i++) {
557 ThreadContext * tc = system->getThreadContext(contextIds[i]);
558
559 SegAttr dataAttr = 0;
560 dataAttr.dpl = 3;
561 dataAttr.unusable = 0;
562 dataAttr.defaultSize = 1;
563 dataAttr.longMode = 1;
564 dataAttr.avl = 0;
565 dataAttr.granularity = 1;
566 dataAttr.present = 1;
567 dataAttr.type = 3;
568 dataAttr.writable = 1;
569 dataAttr.readable = 1;
570 dataAttr.expandDown = 0;
571 dataAttr.system = 1;
572
573 //Initialize the segment registers.
574 for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
575 tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
576 tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
577 tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
578 }
579
580 SegAttr csAttr = 0;
581 csAttr.dpl = 3;
582 csAttr.unusable = 0;
583 csAttr.defaultSize = 0;
584 csAttr.longMode = 1;
585 csAttr.avl = 0;
586 csAttr.granularity = 1;
587 csAttr.present = 1;
588 csAttr.type = 10;
589 csAttr.writable = 0;
590 csAttr.readable = 1;
591 csAttr.expandDown = 0;
592 csAttr.system = 1;
593
594 tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
595
596 Efer efer = 0;
597 efer.sce = 1; // Enable system call extensions.
598 efer.lme = 1; // Enable long mode.
599 efer.lma = 1; // Activate long mode.
600 efer.nxe = 1; // Enable nx support.
601 efer.svme = 0; // Disable svm support for now. It isn't implemented.
602 efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
603 tc->setMiscReg(MISCREG_EFER, efer);
604
605 //Set up the registers that describe the operating mode.
606 CR0 cr0 = 0;
607 cr0.pg = 1; // Turn on paging.
608 cr0.cd = 0; // Don't disable caching.
609 cr0.nw = 0; // This is bit is defined to be ignored.
610 cr0.am = 0; // No alignment checking
611 cr0.wp = 0; // Supervisor mode can write read only pages
612 cr0.ne = 1;
613 cr0.et = 1; // This should always be 1
614 cr0.ts = 0; // We don't do task switching, so causing fp exceptions
615 // would be pointless.
616 cr0.em = 0; // Allow x87 instructions to execute natively.
617 cr0.mp = 1; // This doesn't really matter, but the manual suggests
618 // setting it to one.
619 cr0.pe = 1; // We're definitely in protected mode.
620 tc->setMiscReg(MISCREG_CR0, cr0);
621
622 tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
623 }
624 }
625}
626
627void
628I386LiveProcess::initState()
629{
630 X86LiveProcess::initState();
631
632 argsInit(sizeof(uint32_t), PageBytes);
633
634 /*
635 * Set up a GDT for this process. The whole GDT wouldn't really be for
636 * this process, but the only parts we care about are.
637 */
638 allocateMem(_gdtStart, _gdtSize);
639 uint64_t zero = 0;
640 assert(_gdtSize % sizeof(zero) == 0);
641 for (Addr gdtCurrent = _gdtStart;
642 gdtCurrent < _gdtStart + _gdtSize; gdtCurrent += sizeof(zero)) {
643 initVirtMem.write(gdtCurrent, zero);
644 }
645
646 // Set up the vsyscall page for this process.
647 allocateMem(vsyscallPage.base, vsyscallPage.size);
648 uint8_t vsyscallBlob[] = {
649 0x51, // push %ecx
650 0x52, // push %edp
651 0x55, // push %ebp
652 0x89, 0xe5, // mov %esp, %ebp
653 0x0f, 0x34 // sysenter
654 };
655 initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vsyscallOffset,
656 vsyscallBlob, sizeof(vsyscallBlob));
657
658 uint8_t vsysexitBlob[] = {
659 0x5d, // pop %ebp
660 0x5a, // pop %edx
661 0x59, // pop %ecx
662 0xc3 // ret
663 };
664 initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vsysexitOffset,
665 vsysexitBlob, sizeof(vsysexitBlob));
666
667 for (int i = 0; i < contextIds.size(); i++) {
668 ThreadContext * tc = system->getThreadContext(contextIds[i]);
669
670 SegAttr dataAttr = 0;
671 dataAttr.dpl = 3;
672 dataAttr.unusable = 0;
673 dataAttr.defaultSize = 1;
674 dataAttr.longMode = 0;
675 dataAttr.avl = 0;
676 dataAttr.granularity = 1;
677 dataAttr.present = 1;
678 dataAttr.type = 3;
679 dataAttr.writable = 1;
680 dataAttr.readable = 1;
681 dataAttr.expandDown = 0;
682 dataAttr.system = 1;
683
684 //Initialize the segment registers.
685 for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
686 tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
687 tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
688 tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
689 tc->setMiscRegNoEffect(MISCREG_SEG_SEL(seg), 0xB);
690 tc->setMiscRegNoEffect(MISCREG_SEG_LIMIT(seg), (uint32_t)(-1));
691 }
692
693 SegAttr csAttr = 0;
694 csAttr.dpl = 3;
695 csAttr.unusable = 0;
696 csAttr.defaultSize = 1;
697 csAttr.longMode = 0;
698 csAttr.avl = 0;
699 csAttr.granularity = 1;
700 csAttr.present = 1;
701 csAttr.type = 0xa;
702 csAttr.writable = 0;
703 csAttr.readable = 1;
704 csAttr.expandDown = 0;
705 csAttr.system = 1;
706
707 tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
708
709 tc->setMiscRegNoEffect(MISCREG_TSG_BASE, _gdtStart);
710 tc->setMiscRegNoEffect(MISCREG_TSG_EFF_BASE, _gdtStart);
711 tc->setMiscRegNoEffect(MISCREG_TSG_LIMIT, _gdtStart + _gdtSize - 1);
712
713 // Set the LDT selector to 0 to deactivate it.
714 tc->setMiscRegNoEffect(MISCREG_TSL, 0);
715
716 Efer efer = 0;
717 efer.sce = 1; // Enable system call extensions.
718 efer.lme = 1; // Enable long mode.
719 efer.lma = 0; // Deactivate long mode.
720 efer.nxe = 1; // Enable nx support.
721 efer.svme = 0; // Disable svm support for now. It isn't implemented.
722 efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
723 tc->setMiscReg(MISCREG_EFER, efer);
724
725 //Set up the registers that describe the operating mode.
726 CR0 cr0 = 0;
727 cr0.pg = 1; // Turn on paging.
728 cr0.cd = 0; // Don't disable caching.
729 cr0.nw = 0; // This is bit is defined to be ignored.
730 cr0.am = 0; // No alignment checking
731 cr0.wp = 0; // Supervisor mode can write read only pages
732 cr0.ne = 1;
733 cr0.et = 1; // This should always be 1
734 cr0.ts = 0; // We don't do task switching, so causing fp exceptions
735 // would be pointless.
736 cr0.em = 0; // Allow x87 instructions to execute natively.
737 cr0.mp = 1; // This doesn't really matter, but the manual suggests
738 // setting it to one.
739 cr0.pe = 1; // We're definitely in protected mode.
740 tc->setMiscReg(MISCREG_CR0, cr0);
741
742 tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
743 }
744}
745
746template<class IntType>
747void
748X86LiveProcess::argsInit(int pageSize,
749 std::vector<AuxVector<IntType> > extraAuxvs)
750{
751 int intSize = sizeof(IntType);
752
753 typedef AuxVector<IntType> auxv_t;
754 std::vector<auxv_t> auxv = extraAuxvs;
755
756 string filename;
757 if (argv.size() < 1)
758 filename = "";
759 else
760 filename = argv[0];
761
762 //We want 16 byte alignment
763 uint64_t align = 16;
764
765 // Patch the ld_bias for dynamic executables.
766 updateBias();
767
768 // load object file into target memory
769 objFile->loadSections(initVirtMem);
770
771 enum X86CpuFeature {
772 X86_OnboardFPU = 1 << 0,
773 X86_VirtualModeExtensions = 1 << 1,
774 X86_DebuggingExtensions = 1 << 2,
775 X86_PageSizeExtensions = 1 << 3,
776
777 X86_TimeStampCounter = 1 << 4,
778 X86_ModelSpecificRegisters = 1 << 5,
779 X86_PhysicalAddressExtensions = 1 << 6,
780 X86_MachineCheckExtensions = 1 << 7,
781
782 X86_CMPXCHG8Instruction = 1 << 8,
783 X86_OnboardAPIC = 1 << 9,
784 X86_SYSENTER_SYSEXIT = 1 << 11,
785
786 X86_MemoryTypeRangeRegisters = 1 << 12,
787 X86_PageGlobalEnable = 1 << 13,
788 X86_MachineCheckArchitecture = 1 << 14,
789 X86_CMOVInstruction = 1 << 15,
790
791 X86_PageAttributeTable = 1 << 16,
792 X86_36BitPSEs = 1 << 17,
793 X86_ProcessorSerialNumber = 1 << 18,
794 X86_CLFLUSHInstruction = 1 << 19,
795
796 X86_DebugTraceStore = 1 << 21,
797 X86_ACPIViaMSR = 1 << 22,
798 X86_MultimediaExtensions = 1 << 23,
799
800 X86_FXSAVE_FXRSTOR = 1 << 24,
801 X86_StreamingSIMDExtensions = 1 << 25,
802 X86_StreamingSIMDExtensions2 = 1 << 26,
803 X86_CPUSelfSnoop = 1 << 27,
804
805 X86_HyperThreading = 1 << 28,
806 X86_AutomaticClockControl = 1 << 29,
807 X86_IA64Processor = 1 << 30
808 };
809
810 // Setup the auxiliary vectors. These will already have endian
811 // conversion. Auxiliary vectors are loaded only for elf formatted
812 // executables; the auxv is responsible for passing information from
813 // the OS to the interpreter.
814 ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
815 if (elfObject) {
816 uint64_t features =
817 X86_OnboardFPU |
818 X86_VirtualModeExtensions |
819 X86_DebuggingExtensions |
820 X86_PageSizeExtensions |
821 X86_TimeStampCounter |
822 X86_ModelSpecificRegisters |
823 X86_PhysicalAddressExtensions |
824 X86_MachineCheckExtensions |
825 X86_CMPXCHG8Instruction |
826 X86_OnboardAPIC |
827 X86_SYSENTER_SYSEXIT |
828 X86_MemoryTypeRangeRegisters |
829 X86_PageGlobalEnable |
830 X86_MachineCheckArchitecture |
831 X86_CMOVInstruction |
832 X86_PageAttributeTable |
833 X86_36BitPSEs |
834// X86_ProcessorSerialNumber |
835 X86_CLFLUSHInstruction |
836// X86_DebugTraceStore |
837// X86_ACPIViaMSR |
838 X86_MultimediaExtensions |
839 X86_FXSAVE_FXRSTOR |
840 X86_StreamingSIMDExtensions |
841 X86_StreamingSIMDExtensions2 |
842// X86_CPUSelfSnoop |
843// X86_HyperThreading |
844// X86_AutomaticClockControl |
845// X86_IA64Processor |
846 0;
847
848 //Bits which describe the system hardware capabilities
849 //XXX Figure out what these should be
850 auxv.push_back(auxv_t(M5_AT_HWCAP, features));
851 //The system page size
852 auxv.push_back(auxv_t(M5_AT_PAGESZ, X86ISA::PageBytes));
853 //Frequency at which times() increments
854 //Defined to be 100 in the kernel source.
855 auxv.push_back(auxv_t(M5_AT_CLKTCK, 100));
856 // This is the virtual address of the program header tables if they
857 // appear in the executable image.
858 auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
859 // This is the size of a program header entry from the elf file.
860 auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
861 // This is the number of program headers from the original elf file.
862 auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
863 // This is the base address of the ELF interpreter; it should be
864 // zero for static executables or contain the base address for
865 // dynamic executables.
866 auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
867 //XXX Figure out what this should be.
868 auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
869 //The entry point to the program
870 auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
871 //Different user and group IDs
872 auxv.push_back(auxv_t(M5_AT_UID, uid()));
873 auxv.push_back(auxv_t(M5_AT_EUID, euid()));
874 auxv.push_back(auxv_t(M5_AT_GID, gid()));
875 auxv.push_back(auxv_t(M5_AT_EGID, egid()));
876 //Whether to enable "secure mode" in the executable
877 auxv.push_back(auxv_t(M5_AT_SECURE, 0));
878 //The address of 16 "random" bytes.
879 auxv.push_back(auxv_t(M5_AT_RANDOM, 0));
880 //The name of the program
881 auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
882 //The platform string
883 auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
884 }
885
886 //Figure out how big the initial stack needs to be
887
888 // A sentry NULL void pointer at the top of the stack.
889 int sentry_size = intSize;
890
891 //This is the name of the file which is present on the initial stack
892 //It's purpose is to let the user space linker examine the original file.
893 int file_name_size = filename.size() + 1;
894
895 const int numRandomBytes = 16;
896 int aux_data_size = numRandomBytes;
897
898 string platform = "x86_64";
899 aux_data_size += platform.size() + 1;
900
901 int env_data_size = 0;
902 for (int i = 0; i < envp.size(); ++i)
903 env_data_size += envp[i].size() + 1;
904 int arg_data_size = 0;
905 for (int i = 0; i < argv.size(); ++i)
906 arg_data_size += argv[i].size() + 1;
907
908 //The info_block needs to be padded so it's size is a multiple of the
909 //alignment mask. Also, it appears that there needs to be at least some
910 //padding, so if the size is already a multiple, we need to increase it
911 //anyway.
912 int base_info_block_size =
913 sentry_size + file_name_size + env_data_size + arg_data_size;
914
915 int info_block_size = roundUp(base_info_block_size, align);
916
917 int info_block_padding = info_block_size - base_info_block_size;
918
919 //Each auxilliary vector is two 8 byte words
920 int aux_array_size = intSize * 2 * (auxv.size() + 1);
921
922 int envp_array_size = intSize * (envp.size() + 1);
923 int argv_array_size = intSize * (argv.size() + 1);
924
925 int argc_size = intSize;
926
927 //Figure out the size of the contents of the actual initial frame
928 int frame_size =
929 aux_array_size +
930 envp_array_size +
931 argv_array_size +
932 argc_size;
933
934 //There needs to be padding after the auxiliary vector data so that the
935 //very bottom of the stack is aligned properly.
936 int partial_size = frame_size + aux_data_size;
937 int aligned_partial_size = roundUp(partial_size, align);
938 int aux_padding = aligned_partial_size - partial_size;
939
940 int space_needed =
941 info_block_size +
942 aux_data_size +
943 aux_padding +
944 frame_size;
945
946 stack_min = stack_base - space_needed;
947 stack_min = roundDown(stack_min, align);
948 stack_size = roundUp(stack_base - stack_min, pageSize);
949
950 // map memory
951 Addr stack_end = roundDown(stack_base - stack_size, pageSize);
952
953 DPRINTF(Stack, "Mapping the stack: 0x%x %dB\n", stack_end, stack_size);
954 allocateMem(stack_end, stack_size);
955
956 // map out initial stack contents
957 IntType sentry_base = stack_base - sentry_size;
958 IntType file_name_base = sentry_base - file_name_size;
959 IntType env_data_base = file_name_base - env_data_size;
960 IntType arg_data_base = env_data_base - arg_data_size;
961 IntType aux_data_base = arg_data_base - info_block_padding - aux_data_size;
962 IntType auxv_array_base = aux_data_base - aux_array_size - aux_padding;
963 IntType envp_array_base = auxv_array_base - envp_array_size;
964 IntType argv_array_base = envp_array_base - argv_array_size;
965 IntType argc_base = argv_array_base - argc_size;
966
967 DPRINTF(Stack, "The addresses of items on the initial stack:\n");
968 DPRINTF(Stack, "0x%x - file name\n", file_name_base);
969 DPRINTF(Stack, "0x%x - env data\n", env_data_base);
970 DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
971 DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
972 DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
973 DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
974 DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
975 DPRINTF(Stack, "0x%x - argc \n", argc_base);
976 DPRINTF(Stack, "0x%x - stack min\n", stack_min);
977
978 // write contents to stack
979
980 // figure out argc
981 IntType argc = argv.size();
982 IntType guestArgc = X86ISA::htog(argc);
983
984 //Write out the sentry void *
985 IntType sentry_NULL = 0;
986 initVirtMem.writeBlob(sentry_base,
987 (uint8_t*)&sentry_NULL, sentry_size);
988
989 //Write the file name
990 initVirtMem.writeString(file_name_base, filename.c_str());
991
992 //Fix up the aux vectors which point to data
993 assert(auxv[auxv.size() - 3].a_type == M5_AT_RANDOM);
994 auxv[auxv.size() - 3].a_val = aux_data_base;
995 assert(auxv[auxv.size() - 2].a_type == M5_AT_EXECFN);
996 auxv[auxv.size() - 2].a_val = argv_array_base;
997 assert(auxv[auxv.size() - 1].a_type == M5_AT_PLATFORM);
998 auxv[auxv.size() - 1].a_val = aux_data_base + numRandomBytes;
999
1000 //Copy the aux stuff
1001 for (int x = 0; x < auxv.size(); x++) {
1002 initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
1003 (uint8_t*)&(auxv[x].a_type), intSize);
1004 initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
1005 (uint8_t*)&(auxv[x].a_val), intSize);
1006 }
1007 //Write out the terminating zeroed auxilliary vector
1008 const uint64_t zero = 0;
1009 initVirtMem.writeBlob(auxv_array_base + auxv.size() * 2 * intSize,
1010 (uint8_t*)&zero, intSize);
1011 initVirtMem.writeBlob(auxv_array_base + (auxv.size() * 2 + 1) * intSize,
1012 (uint8_t*)&zero, intSize);
1013
1014 initVirtMem.writeString(aux_data_base, platform.c_str());
1015
1016 copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
1017 copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
1018
1019 initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
1020
1021 ThreadContext *tc = system->getThreadContext(contextIds[0]);
1022 //Set the stack pointer register
1023 tc->setIntReg(StackPointerReg, stack_min);
1024
1025 // There doesn't need to be any segment base added in since we're dealing
1026 // with the flat segmentation model.
1027 tc->pcState(getStartPC());
1028
1029 //Align the "stack_min" to a page boundary.
1030 stack_min = roundDown(stack_min, pageSize);
1031
1032// num_processes++;
1033}
1034
1035void
1036X86_64LiveProcess::argsInit(int intSize, int pageSize)
1037{
1038 std::vector<AuxVector<uint64_t> > extraAuxvs;
1039 extraAuxvs.push_back(AuxVector<uint64_t>(M5_AT_SYSINFO_EHDR,
1040 vsyscallPage.base));
1041 X86LiveProcess::argsInit<uint64_t>(pageSize, extraAuxvs);
1042}
1043
1044void
1045I386LiveProcess::argsInit(int intSize, int pageSize)
1046{
1047 std::vector<AuxVector<uint32_t> > extraAuxvs;
1048 //Tell the binary where the vsyscall part of the vsyscall page is.
1049 extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO,
1050 vsyscallPage.base + vsyscallPage.vsyscallOffset));
1051 extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO_EHDR,
1052 vsyscallPage.base));
1053 X86LiveProcess::argsInit<uint32_t>(pageSize, extraAuxvs);
1054}
1055
1056void
1057X86LiveProcess::setSyscallReturn(ThreadContext *tc, SyscallReturn retval)
1058{
1059 tc->setIntReg(INTREG_RAX, retval.encodedValue());
1060}
1061
1062X86ISA::IntReg
1063X86_64LiveProcess::getSyscallArg(ThreadContext *tc, int &i)
1064{
1065 assert(i < NumArgumentRegs);
1066 return tc->readIntReg(ArgumentReg[i++]);
1067}
1068
1069void
1070X86_64LiveProcess::setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val)
1071{
1072 assert(i < NumArgumentRegs);
1073 return tc->setIntReg(ArgumentReg[i], val);
1074}
1075
1076X86ISA::IntReg
1077I386LiveProcess::getSyscallArg(ThreadContext *tc, int &i)
1078{
1079 assert(i < NumArgumentRegs32);
1080 return tc->readIntReg(ArgumentReg32[i++]);
1081}
1082
1083X86ISA::IntReg
1084I386LiveProcess::getSyscallArg(ThreadContext *tc, int &i, int width)
1085{
1086 assert(width == 32 || width == 64);
1087 assert(i < NumArgumentRegs);
1088 uint64_t retVal = tc->readIntReg(ArgumentReg32[i++]) & mask(32);
1089 if (width == 64)
1090 retVal |= ((uint64_t)tc->readIntReg(ArgumentReg[i++]) << 32);
1091 return retVal;
1092}
1093
1094void
1095I386LiveProcess::setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val)
1096{
1097 assert(i < NumArgumentRegs);
1098 return tc->setIntReg(ArgumentReg[i], val);
1099}