1// Copyright (c) 2007 The Hewlett-Packard Development Company
2// All rights reserved.
3//
4// Redistribution and use of this software in source and binary forms,
5// with or without modification, are permitted provided that the
6// following conditions are met:
7//
8// The software must be used only for Non-Commercial Use which means any
9// use which is NOT directed to receiving any direct monetary
10// compensation for, or commercial advantage from such use. Illustrative
11// examples of non-commercial use are academic research, personal study,
12// teaching, education and corporate research & development.
13// Illustrative examples of commercial use are distributing products for
14// commercial advantage and providing services using the software for
15// commercial advantage.
16//
17// If you wish to use this software or functionality therein that may be
18// covered by patents for commercial use, please contact:
19// Director of Intellectual Property Licensing
20// Office of Strategy and Technology
21// Hewlett-Packard Company
22// 1501 Page Mill Road
23// Palo Alto, California 94304
24//
25// Redistributions of source code must retain the above copyright notice,
26// this list of conditions and the following disclaimer. Redistributions
27// in binary form must reproduce the above copyright notice, this list of
28// conditions and the following disclaimer in the documentation and/or
29// other materials provided with the distribution. Neither the name of
30// the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its
31// contributors may be used to endorse or promote products derived from
32// this software without specific prior written permission. No right of
33// sublicense is granted herewith. Derivatives of the software and
34// output created using the software may be prepared, but only for
35// Non-Commercial Uses. Derivatives of the software may be shared with
36// others provided: (i) the others agree to abide by the list of
37// conditions herein which includes the Non-Commercial Use restrictions;
38// and (ii) such Derivatives of the software include the above copyright
39// notice to acknowledge the contribution from this software where
40// applicable, this list of conditions and the disclaimer below.
41//
42// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
43// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
44// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
45// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
46// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
47// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
48// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
49// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
50// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
51// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
52// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
53//
54// Authors: Gabe Black
55
56//////////////////////////////////////////////////////////////////////////
57//
58// RegOp Microop templates
59//
60//////////////////////////////////////////////////////////////////////////
61
62def template MicroRegOpExecute {{
63 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
64 Trace::InstRecord *traceData) const
65 {
66 Fault fault = NoFault;
67
68 DPRINTF(X86, "The data size is %d\n", dataSize);
69 %(op_decl)s;
70 %(op_rd)s;
71
72 if(%(cond_check)s)
73 {
74 %(code)s;
75 %(flag_code)s;
76 }
77 else
78 {
79 %(else_code)s;
80 }
81
82 //Write the resulting state to the execution context
83 if(fault == NoFault)
84 {
85 %(op_wb)s;
86 }
87 return fault;
88 }
89}};
90
91def template MicroRegOpImmExecute {{
92 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
93 Trace::InstRecord *traceData) const
94 {
95 Fault fault = NoFault;
96
97 %(op_decl)s;
98 %(op_rd)s;
99
100 if(%(cond_check)s)
101 {
102 %(code)s;
103 %(flag_code)s;
104 }
105 else
106 {
107 %(else_code)s;
108 }
109
110 //Write the resulting state to the execution context
111 if(fault == NoFault)
112 {
113 %(op_wb)s;
114 }
115 return fault;
116 }
117}};
118
119def template MicroRegOpDeclare {{
120 class %(class_name)s : public %(base_class)s
121 {
122 protected:
123 void buildMe();
124
125 public:
126 %(class_name)s(ExtMachInst _machInst,
127 const char * instMnem,
128 bool isMicro, bool isDelayed, bool isFirst, bool isLast,
129 RegIndex _src1, RegIndex _src2, RegIndex _dest,
130 uint8_t _dataSize, uint16_t _ext);
131
132 %(class_name)s(ExtMachInst _machInst,
133 const char * instMnem,
134 RegIndex _src1, RegIndex _src2, RegIndex _dest,
135 uint8_t _dataSize, uint16_t _ext);
136
137 %(BasicExecDeclare)s
138 };
139}};
140
141def template MicroRegOpImmDeclare {{
142
143 class %(class_name)s : public %(base_class)s
144 {
145 protected:
146 void buildMe();
147
148 public:
149 %(class_name)s(ExtMachInst _machInst,
150 const char * instMnem,
151 bool isMicro, bool isDelayed, bool isFirst, bool isLast,
152 RegIndex _src1, uint16_t _imm8, RegIndex _dest,
153 uint8_t _dataSize, uint16_t _ext);
154
155 %(class_name)s(ExtMachInst _machInst,
156 const char * instMnem,
157 RegIndex _src1, uint16_t _imm8, RegIndex _dest,
158 uint8_t _dataSize, uint16_t _ext);
159
160 %(BasicExecDeclare)s
161 };
162}};
163
164def template MicroRegOpConstructor {{
165
166 inline void %(class_name)s::buildMe()
167 {
168 %(constructor)s;
169 }
170
171 inline %(class_name)s::%(class_name)s(
172 ExtMachInst machInst, const char * instMnem,
173 RegIndex _src1, RegIndex _src2, RegIndex _dest,
174 uint8_t _dataSize, uint16_t _ext) :
175 %(base_class)s(machInst, "%(mnemonic)s", instMnem,
176 false, false, false, false,
177 _src1, _src2, _dest, _dataSize, _ext,
178 %(op_class)s)
179 {
180 buildMe();
181 }
182
183 inline %(class_name)s::%(class_name)s(
184 ExtMachInst machInst, const char * instMnem,
185 bool isMicro, bool isDelayed, bool isFirst, bool isLast,
186 RegIndex _src1, RegIndex _src2, RegIndex _dest,
187 uint8_t _dataSize, uint16_t _ext) :
188 %(base_class)s(machInst, "%(mnemonic)s", instMnem,
189 isMicro, isDelayed, isFirst, isLast,
190 _src1, _src2, _dest, _dataSize, _ext,
191 %(op_class)s)
192 {
193 buildMe();
194 }
195}};
196
197def template MicroRegOpImmConstructor {{
198
199 inline void %(class_name)s::buildMe()
200 {
201 %(constructor)s;
202 }
203
204 inline %(class_name)s::%(class_name)s(
205 ExtMachInst machInst, const char * instMnem,
206 RegIndex _src1, uint16_t _imm8, RegIndex _dest,
207 uint8_t _dataSize, uint16_t _ext) :
208 %(base_class)s(machInst, "%(mnemonic)s", instMnem,
209 false, false, false, false,
210 _src1, _imm8, _dest, _dataSize, _ext,
211 %(op_class)s)
212 {
213 buildMe();
214 }
215
216 inline %(class_name)s::%(class_name)s(
217 ExtMachInst machInst, const char * instMnem,
218 bool isMicro, bool isDelayed, bool isFirst, bool isLast,
219 RegIndex _src1, uint16_t _imm8, RegIndex _dest,
220 uint8_t _dataSize, uint16_t _ext) :
221 %(base_class)s(machInst, "%(mnemonic)s", instMnem,
222 isMicro, isDelayed, isFirst, isLast,
223 _src1, _imm8, _dest, _dataSize, _ext,
224 %(op_class)s)
225 {
226 buildMe();
227 }
228}};
229
230output header {{
231 void
232 divide(uint64_t dividend, uint64_t divisor,
233 uint64_t &quotient, uint64_t &remainder);
234}};
235
236output decoder {{
237 void
238 divide(uint64_t dividend, uint64_t divisor,
239 uint64_t &quotient, uint64_t &remainder)
240 {
241 //Check for divide by zero.
242 if (divisor == 0)
243 panic("Divide by zero!\\n");
244 //If the divisor is bigger than the dividend, don't do anything.
245 if (divisor <= dividend) {
246 //Shift the divisor so it's msb lines up with the dividend.
247 int dividendMsb = findMsbSet(dividend);
248 int divisorMsb = findMsbSet(divisor);
249 int shift = dividendMsb - divisorMsb;
250 divisor <<= shift;
251 //Compute what we'll add to the quotient if the divisor isn't
252 //now larger than the dividend.
253 uint64_t quotientBit = 1;
254 quotientBit <<= shift;
255 //If we need to step back a bit (no pun intended) because the
256 //divisor got too to large, do that here. This is the "or two"
257 //part of one or two bit division.
258 if (divisor > dividend) {
259 quotientBit >>= 1;
260 divisor >>= 1;
261 }
262 //Decrement the remainder and increment the quotient.
263 quotient += quotientBit;
264 remainder -= divisor;
265 }
266 }
267}};
268
269let {{
270 # Make these empty strings so that concatenating onto
271 # them will always work.
272 header_output = ""
273 decoder_output = ""
274 exec_output = ""
275
276 immTemplates = (
277 MicroRegOpImmDeclare,
278 MicroRegOpImmConstructor,
279 MicroRegOpImmExecute)
280
281 regTemplates = (
282 MicroRegOpDeclare,
283 MicroRegOpConstructor,
284 MicroRegOpExecute)
285
286 class RegOpMeta(type):
287 def buildCppClasses(self, name, Name, suffix, \
288 code, flag_code, cond_check, else_code):
289
290 # Globals to stick the output in
291 global header_output
292 global decoder_output
293 global exec_output
294
295 # Stick all the code together so it can be searched at once
296 allCode = "|".join((code, flag_code, cond_check, else_code))
297
298 # If op2 is used anywhere, make register and immediate versions
299 # of this code.
300 matcher = re.compile("(?<!\\w)(?P<prefix>s?)op2(?P<typeQual>\\.\\w+)?")
301 match = matcher.search(allCode)
302 if match:
303 typeQual = ""
304 if match.group("typeQual"):
305 typeQual = match.group("typeQual")
306 src2_name = "%spsrc2%s" % (match.group("prefix"), typeQual)
307 self.buildCppClasses(name, Name, suffix,
308 matcher.sub(src2_name, code),
309 matcher.sub(src2_name, flag_code),
310 matcher.sub(src2_name, cond_check),
311 matcher.sub(src2_name, else_code))
312 self.buildCppClasses(name + "i", Name, suffix + "Imm",
313 matcher.sub("imm8", code),
314 matcher.sub("imm8", flag_code),
315 matcher.sub("imm8", cond_check),
316 matcher.sub("imm8", else_code))
317 return
318
319 # If there's something optional to do with flags, generate
320 # a version without it and fix up this version to use it.
321 if flag_code != "" or cond_check != "true":
322 self.buildCppClasses(name, Name, suffix,
323 code, "", "true", else_code)
324 suffix = "Flags" + suffix
325
326 # If psrc1 or psrc2 is used, we need to actually insert code to
327 # compute it.
328 matcher = re.compile("(?<!\w)psrc1(?!\w)")
329 if matcher.search(allCode):
330 code = "uint64_t psrc1 = pick(SrcReg1, 0, dataSize);" + code
331 matcher = re.compile("(?<!\w)psrc2(?!\w)")
332 if matcher.search(allCode):
333 code = "uint64_t psrc2 = pick(SrcReg2, 1, dataSize);" + code
334 # Also make available versions which do sign extension
335 matcher = re.compile("(?<!\w)spsrc1(?!\w)")
336 if matcher.search(allCode):
337 code = "int64_t spsrc1 = signedPick(SrcReg1, 0, dataSize);" + code
338 matcher = re.compile("(?<!\w)spsrc2(?!\w)")
339 if matcher.search(allCode):
340 code = "int64_t spsrc2 = signedPick(SrcReg2, 1, dataSize);" + code
341
342 base = "X86ISA::RegOp"
343
344 # If imm8 shows up in the code, use the immediate templates, if
345 # not, hopefully the register ones will be correct.
346 templates = regTemplates
347 matcher = re.compile("(?<!\w)imm8(?!\w)")
348 if matcher.search(allCode):
349 base += "Imm"
350 templates = immTemplates
351
352 # Get everything ready for the substitution
353 iop = InstObjParams(name, Name + suffix, base,
354 {"code" : code,
355 "flag_code" : flag_code,
356 "cond_check" : cond_check,
357 "else_code" : else_code})
358
359 # Generate the actual code (finally!)
360 header_output += templates[0].subst(iop)
361 decoder_output += templates[1].subst(iop)
362 exec_output += templates[2].subst(iop)
363
364
365 def __new__(mcls, Name, bases, dict):
366 abstract = False
367 name = Name.lower()
368 if "abstract" in dict:
369 abstract = dict['abstract']
370 del dict['abstract']
371
372 cls = super(RegOpMeta, mcls).__new__(mcls, Name, bases, dict)
373 if not abstract:
374 cls.className = Name
375 cls.base_mnemonic = name
376 code = cls.code
377 flag_code = cls.flag_code
378 cond_check = cls.cond_check
379 else_code = cls.else_code
380
381 # Set up the C++ classes
382 mcls.buildCppClasses(cls, name, Name, "",
383 code, flag_code, cond_check, else_code)
384
385 # Hook into the microassembler dict
386 global microopClasses
387 microopClasses[name] = cls
388
389 allCode = "|".join((code, flag_code, cond_check, else_code))
390
391 # If op2 is used anywhere, make register and immediate versions
392 # of this code.
393 matcher = re.compile("op2(?P<typeQual>\\.\\w+)?")
394 if matcher.search(allCode):
395 microopClasses[name + 'i'] = cls
396 return cls
397
398
399 class RegOp(X86Microop):
400 __metaclass__ = RegOpMeta
401 # This class itself doesn't act as a microop
402 abstract = True
403
404 # Default template parameter values
405 flag_code = ""
406 cond_check = "true"
407 else_code = ";"
408
409 def __init__(self, dest, src1, op2, flags = None, dataSize = "env.dataSize"):
410 self.dest = dest
411 self.src1 = src1
412 self.op2 = op2
413 self.flags = flags
414 self.dataSize = dataSize
415 if flags is None:
416 self.ext = 0
417 else:
418 if not isinstance(flags, (list, tuple)):
419 raise Exception, "flags must be a list or tuple of flags"
420 self.ext = " | ".join(flags)
421 self.className += "Flags"
422
423 def getAllocator(self, *microFlags):
424 className = self.className
425 if self.mnemonic == self.base_mnemonic + 'i':
426 className += "Imm"
427 allocator = '''new %(class_name)s(machInst, mnemonic
428 %(flags)s, %(src1)s, %(op2)s, %(dest)s,
429 %(dataSize)s, %(ext)s)''' % {
430 "class_name" : className,
431 "flags" : self.microFlagsText(microFlags),
432 "src1" : self.src1, "op2" : self.op2,
433 "dest" : self.dest,
434 "dataSize" : self.dataSize,
435 "ext" : self.ext}
436 return allocator
437
438 class LogicRegOp(RegOp):
439 abstract = True
440 flag_code = '''
441 //Don't have genFlags handle the OF or CF bits
442 uint64_t mask = CFBit | ECFBit | OFBit;
443 ccFlagBits = genFlags(ccFlagBits, ext & ~mask, DestReg, psrc1, op2);
444 //If a logic microop wants to set these, it wants to set them to 0.
445 ccFlagBits &= ~(CFBit & ext);
446 ccFlagBits &= ~(ECFBit & ext);
447 ccFlagBits &= ~(OFBit & ext);
448 '''
449
450 class FlagRegOp(RegOp):
451 abstract = True
452 flag_code = \
453 "ccFlagBits = genFlags(ccFlagBits, ext, DestReg, psrc1, op2);"
454
455 class SubRegOp(RegOp):
456 abstract = True
457 flag_code = \
458 "ccFlagBits = genFlags(ccFlagBits, ext, DestReg, psrc1, ~op2, true);"
459
460 class CondRegOp(RegOp):
461 abstract = True
462 cond_check = "checkCondition(ccFlagBits, ext)"
463
464 class RdRegOp(RegOp):
465 abstract = True
466 def __init__(self, dest, src1=None, dataSize="env.dataSize"):
467 if not src1:
468 src1 = dest
469 super(RdRegOp, self).__init__(dest, src1, "NUM_INTREGS", None, dataSize)
470
471 class WrRegOp(RegOp):
472 abstract = True
473 def __init__(self, src1, src2, flags=None, dataSize="env.dataSize"):
474 super(WrRegOp, self).__init__("NUM_INTREGS", src1, src2, flags, dataSize)
475
476 class Add(FlagRegOp):
477 code = 'DestReg = merge(DestReg, psrc1 + op2, dataSize);'
478
479 class Or(LogicRegOp):
480 code = 'DestReg = merge(DestReg, psrc1 | op2, dataSize);'
481
482 class Adc(FlagRegOp):
483 code = '''
484 CCFlagBits flags = ccFlagBits;
485 DestReg = merge(DestReg, psrc1 + op2 + flags.cf, dataSize);
486 '''
487
488 class Sbb(SubRegOp):
489 code = '''
490 CCFlagBits flags = ccFlagBits;
491 DestReg = merge(DestReg, psrc1 - op2 - flags.cf, dataSize);
492 '''
493
494 class And(LogicRegOp):
495 code = 'DestReg = merge(DestReg, psrc1 & op2, dataSize)'
496
497 class Sub(SubRegOp):
498 code = 'DestReg = merge(DestReg, psrc1 - op2, dataSize)'
499
500 class Xor(LogicRegOp):
501 code = 'DestReg = merge(DestReg, psrc1 ^ op2, dataSize)'
502
503 # Neither of these is quite correct because it assumes that right shifting
504 # a signed or unsigned value does sign or zero extension respectively.
505 # The C standard says that what happens on a right shift with a 1 in the
506 # MSB position is undefined. On x86 and under likely most compilers the
507 # "right thing" happens, but this isn't a guarantee.
508 class Mul1s(WrRegOp):
509 code = '''
510 ProdLow = psrc1 * op2;
511 int halfSize = (dataSize * 8) / 2;
512 int64_t spsrc1_h = spsrc1 >> halfSize;
513 int64_t spsrc1_l = spsrc1 & mask(halfSize);
514 int64_t spsrc2_h = sop2 >> halfSize;
515 int64_t spsrc2_l = sop2 & mask(halfSize);
516 ProdHi = ((spsrc1_l * spsrc2_h + spsrc1_h * spsrc2_l +
517 ((spsrc1_l * spsrc2_l) >> halfSize)) >> halfSize) +
518 spsrc1_h * spsrc2_h;
519 '''
520
521 class Mul1u(WrRegOp):
522 code = '''
523 ProdLow = psrc1 * op2;
524 int halfSize = (dataSize * 8) / 2;
525 uint64_t psrc1_h = psrc1 >> halfSize;
526 uint64_t psrc1_l = psrc1 & mask(halfSize);
527 uint64_t psrc2_h = op2 >> halfSize;
528 uint64_t psrc2_l = op2 & mask(halfSize);
529 ProdHi = ((psrc1_l * psrc2_h + psrc1_h * psrc2_l +
530 ((psrc1_l * psrc2_l) >> halfSize)) >> halfSize) +
531 psrc1_h * psrc2_h;
532 '''
533
534 class Mulel(RdRegOp):
535 code = 'DestReg = merge(SrcReg1, ProdLow, dataSize);'
536
537 class Muleh(RdRegOp):
538 def __init__(self, dest, src1=None, flags=None, dataSize="env.dataSize"):
539 if not src1:
540 src1 = dest
541 super(RdRegOp, self).__init__(dest, src1, "NUM_INTREGS", flags, dataSize)
542 code = 'DestReg = merge(SrcReg1, ProdHi, dataSize);'
543 flag_code = '''
544 if (ProdHi)
545 ccFlagBits = ccFlagBits | (ext & (CFBit | OFBit | ECFBit));
546 else
547 ccFlagBits = ccFlagBits & ~(ext & (CFBit | OFBit | ECFBit));
548 '''
549
550 # One or two bit divide
551 class Div1(WrRegOp):
552 code = '''
553 //These are temporaries so that modifying them later won't make
554 //the ISA parser think they're also sources.
555 uint64_t quotient = 0;
556 uint64_t remainder = psrc1;
557 //Similarly, this is a temporary so changing it doesn't make it
558 //a source.
559 uint64_t divisor = op2;
560 //This is a temporary just for consistency and clarity.
561 uint64_t dividend = remainder;
562 //Do the division.
563 divide(dividend, divisor, quotient, remainder);
564 //Record the final results.
565 Remainder = remainder;
566 Quotient = quotient;
567 Divisor = divisor;
568 '''
569
570 # Step divide
571 class Div2(RegOp):
572 code = '''
573 uint64_t dividend = Remainder;
574 uint64_t divisor = Divisor;
575 uint64_t quotient = Quotient;
576 uint64_t remainder = dividend;
577 int remaining = op2;
578 //If we overshot, do nothing. This lets us unrool division loops a
579 //little.
580 if (remaining) {
581 //Shift in bits from the low order portion of the dividend
582 while(dividend < divisor && remaining) {
583 dividend = (dividend << 1) | bits(SrcReg1, remaining - 1);
584 quotient <<= 1;
585 remaining--;
586 }
587 remainder = dividend;
588 //Do the division.
589 divide(dividend, divisor, quotient, remainder);
590 }
591 //Keep track of how many bits there are still to pull in.
592 DestReg = merge(DestReg, remaining, dataSize);
593 //Record the final results
594 Remainder = remainder;
595 Quotient = quotient;
596 '''
597 flag_code = '''
598 if (DestReg == 0)
599 ccFlagBits = ccFlagBits | (ext & EZFBit);
600 else
601 ccFlagBits = ccFlagBits & ~(ext & EZFBit);
602 '''
603
604 class Divq(RdRegOp):
605 code = 'DestReg = merge(SrcReg1, Quotient, dataSize);'
606
607 class Divr(RdRegOp):
608 code = 'DestReg = merge(SrcReg1, Remainder, dataSize);'
609
610 class Mov(CondRegOp):
611 code = 'DestReg = merge(SrcReg1, op2, dataSize)'
612 else_code = 'DestReg=DestReg;'
613
614 # Shift instructions
615
616 class Sll(RegOp):
617 code = '''
618 uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
619 DestReg = merge(DestReg, psrc1 << shiftAmt, dataSize);
620 '''
621 flag_code = '''
622 // If the shift amount is zero, no flags should be modified.
623 if (shiftAmt) {
624 //Zero out any flags we might modify. This way we only have to
625 //worry about setting them.
626 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
627 int CFBits = 0;
628 //Figure out if we -would- set the CF bits if requested.
629 if (bits(SrcReg1, dataSize * 8 - shiftAmt))
630 CFBits = 1;
631 //If some combination of the CF bits need to be set, set them.
632 if ((ext & (CFBit | ECFBit)) && CFBits)
633 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
634 //Figure out what the OF bit should be.
635 if ((ext & OFBit) && (CFBits ^ bits(DestReg, dataSize * 8 - 1)))
636 ccFlagBits = ccFlagBits | OFBit;
637 //Use the regular mechanisms to calculate the other flags.
638 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
639 DestReg, psrc1, op2);
640 }
641 '''
642
643 class Srl(RegOp):
644 code = '''
645 uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
646 // Because what happens to the bits shift -in- on a right shift
647 // is not defined in the C/C++ standard, we have to mask them out
648 // to be sure they're zero.
649 uint64_t logicalMask = mask(dataSize * 8 - shiftAmt);
650 DestReg = merge(DestReg, (psrc1 >> shiftAmt) & logicalMask, dataSize);
651 '''
652 flag_code = '''
653 // If the shift amount is zero, no flags should be modified.
654 if (shiftAmt) {
655 //Zero out any flags we might modify. This way we only have to
656 //worry about setting them.
657 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
658 //If some combination of the CF bits need to be set, set them.
659 if ((ext & (CFBit | ECFBit)) && bits(SrcReg1, shiftAmt - 1))
660 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
661 //Figure out what the OF bit should be.
662 if ((ext & OFBit) && bits(SrcReg1, dataSize * 8 - 1))
663 ccFlagBits = ccFlagBits | OFBit;
664 //Use the regular mechanisms to calculate the other flags.
665 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
666 DestReg, psrc1, op2);
667 }
668 '''
669
670 class Sra(RegOp):
671 code = '''
672 uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
673 // Because what happens to the bits shift -in- on a right shift
674 // is not defined in the C/C++ standard, we have to sign extend
675 // them manually to be sure.
676 uint64_t arithMask =
677 -bits(psrc1, dataSize * 8 - 1) << (dataSize * 8 - shiftAmt);
678 DestReg = merge(DestReg, (psrc1 >> shiftAmt) | arithMask, dataSize);
679 '''
680 flag_code = '''
681 // If the shift amount is zero, no flags should be modified.
682 if (shiftAmt) {
683 //Zero out any flags we might modify. This way we only have to
684 //worry about setting them.
685 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
686 //If some combination of the CF bits need to be set, set them.
687 if ((ext & (CFBit | ECFBit)) && bits(SrcReg1, shiftAmt - 1))
688 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
689 //Use the regular mechanisms to calculate the other flags.
690 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
691 DestReg, psrc1, op2);
692 }
693 '''
694
695 class Ror(RegOp):
696 code = '''
697 uint8_t shiftAmt =
698 (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
699 if(shiftAmt)
700 {
701 uint64_t top = psrc1 << (dataSize * 8 - shiftAmt);
702 uint64_t bottom = bits(psrc1, dataSize * 8, shiftAmt);
703 DestReg = merge(DestReg, top | bottom, dataSize);
704 }
705 else
706 DestReg = DestReg;
707 '''
708 flag_code = '''
709 // If the shift amount is zero, no flags should be modified.
710 if (shiftAmt) {
711 //Zero out any flags we might modify. This way we only have to
712 //worry about setting them.
713 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
714 //Find the most and second most significant bits of the result.
715 int msb = bits(DestReg, dataSize * 8 - 1);
716 int smsb = bits(DestReg, dataSize * 8 - 2);
717 //If some combination of the CF bits need to be set, set them.
718 if ((ext & (CFBit | ECFBit)) && msb)
719 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
720 //Figure out what the OF bit should be.
721 if ((ext & OFBit) && (msb ^ smsb))
722 ccFlagBits = ccFlagBits | OFBit;
723 //Use the regular mechanisms to calculate the other flags.
724 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
725 DestReg, psrc1, op2);
726 }
727 '''
728
729 class Rcr(RegOp):
730 code = '''
731 uint8_t shiftAmt =
732 (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
733 if(shiftAmt)
734 {
735 CCFlagBits flags = ccFlagBits;
736 uint64_t top = flags.cf << (dataSize * 8 - shiftAmt);
737 if(shiftAmt > 1)
738 top |= psrc1 << (dataSize * 8 - shiftAmt - 1);
739 uint64_t bottom = bits(psrc1, dataSize * 8, shiftAmt);
740 DestReg = merge(DestReg, top | bottom, dataSize);
741 }
742 else
743 DestReg = DestReg;
744 '''
745 flag_code = '''
746 // If the shift amount is zero, no flags should be modified.
747 if (shiftAmt) {
748 //Zero out any flags we might modify. This way we only have to
749 //worry about setting them.
750 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
751 //Figure out what the OF bit should be.
752 if ((ext & OFBit) && ((ccFlagBits & CFBit) ^
753 bits(SrcReg1, dataSize * 8 - 1)))
754 ccFlagBits = ccFlagBits | OFBit;
755 //If some combination of the CF bits need to be set, set them.
756 if ((ext & (CFBit | ECFBit)) && bits(SrcReg1, shiftAmt - 1))
757 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
758 //Use the regular mechanisms to calculate the other flags.
759 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
760 DestReg, psrc1, op2);
761 }
762 '''
763
764 class Rol(RegOp):
765 code = '''
766 uint8_t shiftAmt =
767 (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
768 if(shiftAmt)
769 {
770 uint64_t top = psrc1 << shiftAmt;
771 uint64_t bottom =
772 bits(psrc1, dataSize * 8 - 1, dataSize * 8 - shiftAmt);
773 DestReg = merge(DestReg, top | bottom, dataSize);
774 }
775 else
776 DestReg = DestReg;
777 '''
778 flag_code = '''
779 // If the shift amount is zero, no flags should be modified.
780 if (shiftAmt) {
781 //Zero out any flags we might modify. This way we only have to
782 //worry about setting them.
783 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
784 //The CF bits, if set, would be set to the lsb of the result.
785 int lsb = DestReg & 0x1;
786 int msb = bits(DestReg, dataSize * 8 - 1);
787 //If some combination of the CF bits need to be set, set them.
788 if ((ext & (CFBit | ECFBit)) && lsb)
789 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
790 //Figure out what the OF bit should be.
791 if ((ext & OFBit) && (msb ^ lsb))
792 ccFlagBits = ccFlagBits | OFBit;
793 //Use the regular mechanisms to calculate the other flags.
794 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
795 DestReg, psrc1, op2);
796 }
797 '''
798
799 class Rcl(RegOp):
800 code = '''
801 uint8_t shiftAmt =
802 (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
803 if(shiftAmt)
804 {
805 CCFlagBits flags = ccFlagBits;
806 uint64_t top = psrc1 << shiftAmt;
807 uint64_t bottom = flags.cf << (shiftAmt - 1);
808 if(shiftAmt > 1)
809 bottom |=
810 bits(psrc1, dataSize * 8 - 1,
811 dataSize * 8 - shiftAmt + 1);
812 DestReg = merge(DestReg, top | bottom, dataSize);
813 }
814 else
815 DestReg = DestReg;
816 '''
817 flag_code = '''
818 // If the shift amount is zero, no flags should be modified.
819 if (shiftAmt) {
820 //Zero out any flags we might modify. This way we only have to
821 //worry about setting them.
822 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
823 int msb = bits(DestReg, dataSize * 8 - 1);
824 int CFBits = bits(SrcReg1, dataSize * 8 - shiftAmt);
825 //If some combination of the CF bits need to be set, set them.
826 if ((ext & (CFBit | ECFBit)) && CFBits)
827 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
828 //Figure out what the OF bit should be.
829 if ((ext & OFBit) && (msb ^ CFBits))
830 ccFlagBits = ccFlagBits | OFBit;
831 //Use the regular mechanisms to calculate the other flags.
832 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
833 DestReg, psrc1, op2);
834 }
835 '''
836
837 class Wrip(WrRegOp, CondRegOp):
838 code = 'RIP = psrc1 + sop2 + CSBase'
839 else_code="RIP = RIP;"
840
841 class Br(WrRegOp, CondRegOp):
842 code = 'nuIP = psrc1 + op2;'
843 else_code='nuIP = nuIP;'
844
845 class Wruflags(WrRegOp):
846 code = 'ccFlagBits = psrc1 ^ op2'
847
848 class Rdip(RdRegOp):
849 code = 'DestReg = RIP - CSBase'
850
851 class Ruflags(RdRegOp):
852 code = 'DestReg = ccFlagBits'
853
854 class Ruflag(RegOp):
855 code = '''
856 int flag = bits(ccFlagBits, imm8);
857 DestReg = merge(DestReg, flag, dataSize);
858 ccFlagBits = (flag == 0) ? (ccFlagBits | EZFBit) :
859 (ccFlagBits & ~EZFBit);
860 '''
861 def __init__(self, dest, imm, flags=None, \
862 dataSize="env.dataSize"):
863 super(Ruflag, self).__init__(dest, \
864 "NUM_INTREGS", imm, flags, dataSize)
865
866 class Sext(RegOp):
867 code = '''
868 IntReg val = psrc1;
869 // Mask the bit position so that it wraps.
870 int bitPos = op2 & (dataSize * 8 - 1);
871 int sign_bit = bits(val, bitPos, bitPos);
872 uint64_t maskVal = mask(bitPos+1);
873 val = sign_bit ? (val | ~maskVal) : (val & maskVal);
874 DestReg = merge(DestReg, val, dataSize);
875 '''
876 flag_code = '''
877 if (!sign_bit)
878 ccFlagBits = ccFlagBits &
879 ~(ext & (CFBit | ECFBit | ZFBit | EZFBit));
880 else
881 ccFlagBits = ccFlagBits |
882 (ext & (CFBit | ECFBit | ZFBit | EZFBit));
883 '''
884
885 class Zext(RegOp):
886 code = 'DestReg = bits(psrc1, op2, 0);'
887
888 class Wrcr(RegOp):
889 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"):
890 super(Wrcr, self).__init__(dest, \
891 src1, "NUM_INTREGS", flags, dataSize)
892 code = '''
893 if (dest == 1 || (dest > 4 && dest < 8) || (dest > 8)) {
894 fault = new InvalidOpcode();
895 } else {
896 // There are *s in the line below so it doesn't confuse the
897 // parser. They may be unnecessary.
898 //Mis*cReg old*Val = pick(Cont*rolDest, 0, dat*aSize);
899 MiscReg newVal = psrc1;
900
901 // Check for any modifications that would cause a fault.
902 switch(dest) {
903 case 0:
904 {
905 Efer efer = EferOp;
906 CR0 cr0 = newVal;
907 CR4 oldCr4 = CR4Op;
908 if (bits(newVal, 63, 32) ||
909 (!cr0.pe && cr0.pg) ||
910 (!cr0.cd && cr0.nw) ||
911 (cr0.pg && efer.lme && !oldCr4.pae))
912 fault = new GeneralProtection(0);
913 }
914 break;
915 case 2:
916 break;
917 case 3:
918 break;
919 case 4:
920 {
921 CR4 cr4 = newVal;
922 // PAE can't be disabled in long mode.
923 if (bits(newVal, 63, 11) ||
924 (machInst.mode.mode == LongMode && !cr4.pae))
925 fault = new GeneralProtection(0);
926 }
927 break;
928 case 8:
929 {
930 if (bits(newVal, 63, 4))
931 fault = new GeneralProtection(0);
932 }
933 default:
934 panic("Unrecognized control register %d.\\n", dest);
935 }
936 ControlDest = newVal;
937 }
938 '''
939
940 class Wrbase(RegOp):
940 # Microops for manipulating segmentation registers
941 class SegOp(RegOp):
942 abstract = True
943 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"):
942 super(Wrbase, self).__init__(dest, \
944 super(SegOp, self).__init__(dest, \
945 src1, "NUM_INTREGS", flags, dataSize)
946
947 class Wrbase(SegOp):
948 code = '''
945 SysSegBaseDest = psrc1;
949 SegBaseDest = psrc1;
950 '''
951
948 class Wrlimit(RegOp):
949 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"):
950 super(Wrlimit, self).__init__(dest, \
951 src1, "NUM_INTREGS", flags, dataSize)
952 class Wrlimit(SegOp):
953 code = '''
953 SysSegLimitDest = psrc1;
954 SegLimitDest = psrc1;
955 '''
956
957 class Wrsel(SegOp):
958 code = '''
959 SegSelDest = psrc1;
960 '''
961
962 class Rdbase(SegOp):
963 code = '''
964 DestReg = SegBaseDest;
965 '''
966
967 class Rdlimit(SegOp):
968 code = '''
969 DestReg = SegLimitSrc1;
970 '''
971
972 class Rdsel(SegOp):
973 code = '''
974 DestReg = SegSelSrc1;
975 '''
976
977 class Chks(SegOp):
978 code = '''
979 // The selector is in source 1.
980 SegSelector selector = psrc1;
981
982 // Compute the address of the descriptor and set DestReg to it.
983 if (selector.ti) {
984 // A descriptor in the LDT
985 Addr target = (selector.esi << 3) + LDTRBase;
986 if (!LDTRSel || (selector.esi << 3) + dataSize > LDTRLimit)
987 fault = new GeneralProtection(selector & mask(16));
988 DestReg = target;
989 } else {
990 // A descriptor in the GDT
991 Addr target = (selector.esi << 3) + GDTRBase;
992 if ((selector.esi << 3) + dataSize > GDTRLimit)
993 fault = new GeneralProtection(selector & mask(16));
994 DestReg = target;
995 }
996 '''
997 flag_code = '''
998 // Check for a NULL selector and set ZF,EZF appropriately.
999 ccFlagBits = ccFlagBits & ~(ext & (ZFBit | EZFBit));
1000 if (!selector.esi && !selector.ti)
1001 ccFlagBits = ccFlagBits | (ext & (ZFBit | EZFBit));
1002 '''
1003
1004 class Wrdh(RegOp):
1005 code = '''
1006
1007 '''
1008
1009 class Wrdl(RegOp):
1010 code = '''
1011 SegDescriptor desc = SrcReg1;
1012 SegAttr attr = 0;
1013 Addr base = 0, limit = 0;
1014 attr.dpl = desc.dpl;
1015 attr.defaultSize = desc.d;
1016 if (!desc.p)
1017 panic("Segment not present.\\n");
1018 if (!desc.s)
1019 panic("System segment encountered.\\n");
1020 if (desc.type.codeOrData) {
1021 panic("Code segment encountered with c = %d, r = %d, a = %d.\\n",
1022 desc.type.c, desc.type.r, desc.type.a);
1023 } else {
1024 attr.expandDown = desc.type.e;
1025 attr.readable = 1;
1026 attr.writable = desc.type.w;
1027 base = desc.baseLow | (desc.baseHigh << 24);
1028 limit = desc.limitLow | (desc.limitHigh << 16);
1029 if (desc.g)
1030 limit = (limit << 12) | mask(12);
1031 }
1032 SegBaseDest = base;
1033 SegLimitDest = limit;
1034 SegAttrDest = attr;
1035 '''
1036}};