regop.isa (6464:2529aeaf1a1c) regop.isa (6479:b9ab1b56391b)
1// Copyright (c) 2007-2008 The Hewlett-Packard Development Company
2// All rights reserved.
3//
4// Redistribution and use of this software in source and binary forms,
5// with or without modification, are permitted provided that the
6// following conditions are met:
7//
8// The software must be used only for Non-Commercial Use which means any
9// use which is NOT directed to receiving any direct monetary
10// compensation for, or commercial advantage from such use. Illustrative
11// examples of non-commercial use are academic research, personal study,
12// teaching, education and corporate research & development.
13// Illustrative examples of commercial use are distributing products for
14// commercial advantage and providing services using the software for
15// commercial advantage.
16//
17// If you wish to use this software or functionality therein that may be
18// covered by patents for commercial use, please contact:
19// Director of Intellectual Property Licensing
20// Office of Strategy and Technology
21// Hewlett-Packard Company
22// 1501 Page Mill Road
23// Palo Alto, California 94304
24//
25// Redistributions of source code must retain the above copyright notice,
26// this list of conditions and the following disclaimer. Redistributions
27// in binary form must reproduce the above copyright notice, this list of
28// conditions and the following disclaimer in the documentation and/or
29// other materials provided with the distribution. Neither the name of
30// the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its
31// contributors may be used to endorse or promote products derived from
32// this software without specific prior written permission. No right of
33// sublicense is granted herewith. Derivatives of the software and
34// output created using the software may be prepared, but only for
35// Non-Commercial Uses. Derivatives of the software may be shared with
36// others provided: (i) the others agree to abide by the list of
37// conditions herein which includes the Non-Commercial Use restrictions;
38// and (ii) such Derivatives of the software include the above copyright
39// notice to acknowledge the contribution from this software where
40// applicable, this list of conditions and the disclaimer below.
41//
42// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
43// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
44// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
45// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
46// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
47// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
48// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
49// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
50// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
51// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
52// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
53//
54// Authors: Gabe Black
55
56//////////////////////////////////////////////////////////////////////////
57//
58// RegOp Microop templates
59//
60//////////////////////////////////////////////////////////////////////////
61
62def template MicroRegOpExecute {{
63 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
64 Trace::InstRecord *traceData) const
65 {
66 Fault fault = NoFault;
67
68 DPRINTF(X86, "The data size is %d\n", dataSize);
69 %(op_decl)s;
70 %(op_rd)s;
71
72 if(%(cond_check)s)
73 {
74 %(code)s;
75 %(flag_code)s;
76 }
77 else
78 {
79 %(else_code)s;
80 }
81
82 //Write the resulting state to the execution context
83 if(fault == NoFault)
84 {
85 %(op_wb)s;
86 }
87 return fault;
88 }
89}};
90
91def template MicroRegOpImmExecute {{
92 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
93 Trace::InstRecord *traceData) const
94 {
95 Fault fault = NoFault;
96
97 %(op_decl)s;
98 %(op_rd)s;
99
100 if(%(cond_check)s)
101 {
102 %(code)s;
103 %(flag_code)s;
104 }
105 else
106 {
107 %(else_code)s;
108 }
109
110 //Write the resulting state to the execution context
111 if(fault == NoFault)
112 {
113 %(op_wb)s;
114 }
115 return fault;
116 }
117}};
118
119def template MicroRegOpDeclare {{
120 class %(class_name)s : public %(base_class)s
121 {
122 protected:
123 void buildMe();
124
125 public:
126 %(class_name)s(ExtMachInst _machInst,
127 const char * instMnem,
128 bool isMicro, bool isDelayed, bool isFirst, bool isLast,
129 InstRegIndex _src1, InstRegIndex _src2, InstRegIndex _dest,
130 uint8_t _dataSize, uint16_t _ext);
131
132 %(class_name)s(ExtMachInst _machInst,
133 const char * instMnem,
134 InstRegIndex _src1, InstRegIndex _src2, InstRegIndex _dest,
135 uint8_t _dataSize, uint16_t _ext);
136
137 %(BasicExecDeclare)s
138 };
139}};
140
141def template MicroRegOpImmDeclare {{
142
143 class %(class_name)s : public %(base_class)s
144 {
145 protected:
146 void buildMe();
147
148 public:
149 %(class_name)s(ExtMachInst _machInst,
150 const char * instMnem,
151 bool isMicro, bool isDelayed, bool isFirst, bool isLast,
152 InstRegIndex _src1, uint16_t _imm8, InstRegIndex _dest,
153 uint8_t _dataSize, uint16_t _ext);
154
155 %(class_name)s(ExtMachInst _machInst,
156 const char * instMnem,
157 InstRegIndex _src1, uint16_t _imm8, InstRegIndex _dest,
158 uint8_t _dataSize, uint16_t _ext);
159
160 %(BasicExecDeclare)s
161 };
162}};
163
164def template MicroRegOpConstructor {{
165
166 inline void %(class_name)s::buildMe()
167 {
168 %(constructor)s;
169 }
170
171 inline %(class_name)s::%(class_name)s(
172 ExtMachInst machInst, const char * instMnem,
173 InstRegIndex _src1, InstRegIndex _src2, InstRegIndex _dest,
174 uint8_t _dataSize, uint16_t _ext) :
175 %(base_class)s(machInst, "%(mnemonic)s", instMnem,
176 false, false, false, false,
177 _src1, _src2, _dest, _dataSize, _ext,
178 %(op_class)s)
179 {
180 buildMe();
181 }
182
183 inline %(class_name)s::%(class_name)s(
184 ExtMachInst machInst, const char * instMnem,
185 bool isMicro, bool isDelayed, bool isFirst, bool isLast,
186 InstRegIndex _src1, InstRegIndex _src2, InstRegIndex _dest,
187 uint8_t _dataSize, uint16_t _ext) :
188 %(base_class)s(machInst, "%(mnemonic)s", instMnem,
189 isMicro, isDelayed, isFirst, isLast,
190 _src1, _src2, _dest, _dataSize, _ext,
191 %(op_class)s)
192 {
193 buildMe();
194 }
195}};
196
197def template MicroRegOpImmConstructor {{
198
199 inline void %(class_name)s::buildMe()
200 {
201 %(constructor)s;
202 }
203
204 inline %(class_name)s::%(class_name)s(
205 ExtMachInst machInst, const char * instMnem,
206 InstRegIndex _src1, uint16_t _imm8, InstRegIndex _dest,
207 uint8_t _dataSize, uint16_t _ext) :
208 %(base_class)s(machInst, "%(mnemonic)s", instMnem,
209 false, false, false, false,
210 _src1, _imm8, _dest, _dataSize, _ext,
211 %(op_class)s)
212 {
213 buildMe();
214 }
215
216 inline %(class_name)s::%(class_name)s(
217 ExtMachInst machInst, const char * instMnem,
218 bool isMicro, bool isDelayed, bool isFirst, bool isLast,
219 InstRegIndex _src1, uint16_t _imm8, InstRegIndex _dest,
220 uint8_t _dataSize, uint16_t _ext) :
221 %(base_class)s(machInst, "%(mnemonic)s", instMnem,
222 isMicro, isDelayed, isFirst, isLast,
223 _src1, _imm8, _dest, _dataSize, _ext,
224 %(op_class)s)
225 {
226 buildMe();
227 }
228}};
229
230output header {{
231 void
232 divide(uint64_t dividend, uint64_t divisor,
233 uint64_t &quotient, uint64_t &remainder);
234
235 enum SegmentSelectorCheck {
236 SegNoCheck, SegCSCheck, SegCallGateCheck, SegIntGateCheck,
237 SegSoftIntGateCheck, SegSSCheck, SegIretCheck, SegIntCSCheck,
238 SegTRCheck, SegTSSCheck, SegInGDTCheck, SegLDTCheck
239 };
240
241 enum LongModeDescriptorType {
242 LDT64 = 2,
243 AvailableTSS64 = 9,
244 BusyTSS64 = 0xb,
245 CallGate64 = 0xc,
246 IntGate64 = 0xe,
247 TrapGate64 = 0xf
248 };
249}};
250
251output decoder {{
252 void
253 divide(uint64_t dividend, uint64_t divisor,
254 uint64_t &quotient, uint64_t &remainder)
255 {
256 //Check for divide by zero.
257 if (divisor == 0)
258 panic("Divide by zero!\\n");
259 //If the divisor is bigger than the dividend, don't do anything.
260 if (divisor <= dividend) {
261 //Shift the divisor so it's msb lines up with the dividend.
262 int dividendMsb = findMsbSet(dividend);
263 int divisorMsb = findMsbSet(divisor);
264 int shift = dividendMsb - divisorMsb;
265 divisor <<= shift;
266 //Compute what we'll add to the quotient if the divisor isn't
267 //now larger than the dividend.
268 uint64_t quotientBit = 1;
269 quotientBit <<= shift;
270 //If we need to step back a bit (no pun intended) because the
271 //divisor got too to large, do that here. This is the "or two"
272 //part of one or two bit division.
273 if (divisor > dividend) {
274 quotientBit >>= 1;
275 divisor >>= 1;
276 }
277 //Decrement the remainder and increment the quotient.
278 quotient += quotientBit;
279 remainder -= divisor;
280 }
281 }
282}};
283
284let {{
285 # Make these empty strings so that concatenating onto
286 # them will always work.
287 header_output = ""
288 decoder_output = ""
289 exec_output = ""
290
291 immTemplates = (
292 MicroRegOpImmDeclare,
293 MicroRegOpImmConstructor,
294 MicroRegOpImmExecute)
295
296 regTemplates = (
297 MicroRegOpDeclare,
298 MicroRegOpConstructor,
299 MicroRegOpExecute)
300
301 class RegOpMeta(type):
302 def buildCppClasses(self, name, Name, suffix, \
303 code, flag_code, cond_check, else_code):
304
305 # Globals to stick the output in
306 global header_output
307 global decoder_output
308 global exec_output
309
310 # Stick all the code together so it can be searched at once
311 allCode = "|".join((code, flag_code, cond_check, else_code))
312
313 # If op2 is used anywhere, make register and immediate versions
314 # of this code.
315 matcher = re.compile("(?<!\\w)(?P<prefix>s?)op2(?P<typeQual>\\.\\w+)?")
316 match = matcher.search(allCode)
317 if match:
318 typeQual = ""
319 if match.group("typeQual"):
320 typeQual = match.group("typeQual")
321 src2_name = "%spsrc2%s" % (match.group("prefix"), typeQual)
322 self.buildCppClasses(name, Name, suffix,
323 matcher.sub(src2_name, code),
324 matcher.sub(src2_name, flag_code),
325 matcher.sub(src2_name, cond_check),
326 matcher.sub(src2_name, else_code))
327 self.buildCppClasses(name + "i", Name, suffix + "Imm",
328 matcher.sub("imm8", code),
329 matcher.sub("imm8", flag_code),
330 matcher.sub("imm8", cond_check),
331 matcher.sub("imm8", else_code))
332 return
333
334 # If there's something optional to do with flags, generate
335 # a version without it and fix up this version to use it.
336 if flag_code != "" or cond_check != "true":
337 self.buildCppClasses(name, Name, suffix,
338 code, "", "true", else_code)
339 suffix = "Flags" + suffix
340
341 # If psrc1 or psrc2 is used, we need to actually insert code to
342 # compute it.
343 matcher = re.compile("(?<!\w)psrc1(?!\w)")
344 if matcher.search(allCode):
345 code = "uint64_t psrc1 = pick(SrcReg1, 0, dataSize);" + code
346 matcher = re.compile("(?<!\w)psrc2(?!\w)")
347 if matcher.search(allCode):
348 code = "uint64_t psrc2 = pick(SrcReg2, 1, dataSize);" + code
349 # Also make available versions which do sign extension
350 matcher = re.compile("(?<!\w)spsrc1(?!\w)")
351 if matcher.search(allCode):
352 code = "int64_t spsrc1 = signedPick(SrcReg1, 0, dataSize);" + code
353 matcher = re.compile("(?<!\w)spsrc2(?!\w)")
354 if matcher.search(allCode):
355 code = "int64_t spsrc2 = signedPick(SrcReg2, 1, dataSize);" + code
356
357 base = "X86ISA::RegOp"
358
359 # If imm8 shows up in the code, use the immediate templates, if
360 # not, hopefully the register ones will be correct.
361 templates = regTemplates
362 matcher = re.compile("(?<!\w)imm8(?!\w)")
363 if matcher.search(allCode):
364 base += "Imm"
365 templates = immTemplates
366
367 # Get everything ready for the substitution
368 iop = InstObjParams(name, Name + suffix, base,
369 {"code" : code,
370 "flag_code" : flag_code,
371 "cond_check" : cond_check,
372 "else_code" : else_code})
373
374 # Generate the actual code (finally!)
375 header_output += templates[0].subst(iop)
376 decoder_output += templates[1].subst(iop)
377 exec_output += templates[2].subst(iop)
378
379
380 def __new__(mcls, Name, bases, dict):
381 abstract = False
382 name = Name.lower()
383 if "abstract" in dict:
384 abstract = dict['abstract']
385 del dict['abstract']
386
387 cls = super(RegOpMeta, mcls).__new__(mcls, Name, bases, dict)
388 if not abstract:
389 cls.className = Name
390 cls.base_mnemonic = name
391 code = cls.code
392 flag_code = cls.flag_code
393 cond_check = cls.cond_check
394 else_code = cls.else_code
395
396 # Set up the C++ classes
397 mcls.buildCppClasses(cls, name, Name, "",
398 code, flag_code, cond_check, else_code)
399
400 # Hook into the microassembler dict
401 global microopClasses
402 microopClasses[name] = cls
403
404 allCode = "|".join((code, flag_code, cond_check, else_code))
405
406 # If op2 is used anywhere, make register and immediate versions
407 # of this code.
408 matcher = re.compile("op2(?P<typeQual>\\.\\w+)?")
409 if matcher.search(allCode):
410 microopClasses[name + 'i'] = cls
411 return cls
412
413
414 class RegOp(X86Microop):
415 __metaclass__ = RegOpMeta
416 # This class itself doesn't act as a microop
417 abstract = True
418
419 # Default template parameter values
420 flag_code = ""
421 cond_check = "true"
422 else_code = ";"
423
424 def __init__(self, dest, src1, op2, flags = None, dataSize = "env.dataSize"):
425 self.dest = dest
426 self.src1 = src1
427 self.op2 = op2
428 self.flags = flags
429 self.dataSize = dataSize
430 if flags is None:
431 self.ext = 0
432 else:
433 if not isinstance(flags, (list, tuple)):
434 raise Exception, "flags must be a list or tuple of flags"
435 self.ext = " | ".join(flags)
436 self.className += "Flags"
437
438 def getAllocator(self, *microFlags):
439 className = self.className
440 if self.mnemonic == self.base_mnemonic + 'i':
441 className += "Imm"
442 allocator = '''new %(class_name)s(machInst, macrocodeBlock
443 %(flags)s, %(src1)s, %(op2)s, %(dest)s,
444 %(dataSize)s, %(ext)s)''' % {
445 "class_name" : className,
446 "flags" : self.microFlagsText(microFlags),
447 "src1" : self.src1, "op2" : self.op2,
448 "dest" : self.dest,
449 "dataSize" : self.dataSize,
450 "ext" : self.ext}
451 return allocator
452
453 class LogicRegOp(RegOp):
454 abstract = True
455 flag_code = '''
456 //Don't have genFlags handle the OF or CF bits
457 uint64_t mask = CFBit | ECFBit | OFBit;
458 ccFlagBits = genFlags(ccFlagBits, ext & ~mask, DestReg, psrc1, op2);
459 //If a logic microop wants to set these, it wants to set them to 0.
460 ccFlagBits &= ~(CFBit & ext);
461 ccFlagBits &= ~(ECFBit & ext);
462 ccFlagBits &= ~(OFBit & ext);
463 '''
464
465 class FlagRegOp(RegOp):
466 abstract = True
467 flag_code = \
468 "ccFlagBits = genFlags(ccFlagBits, ext, DestReg, psrc1, op2);"
469
470 class SubRegOp(RegOp):
471 abstract = True
472 flag_code = \
473 "ccFlagBits = genFlags(ccFlagBits, ext, DestReg, psrc1, ~op2, true);"
474
475 class CondRegOp(RegOp):
476 abstract = True
477 cond_check = "checkCondition(ccFlagBits, ext)"
478
479 class RdRegOp(RegOp):
480 abstract = True
481 def __init__(self, dest, src1=None, dataSize="env.dataSize"):
482 if not src1:
483 src1 = dest
484 super(RdRegOp, self).__init__(dest, src1, \
485 "InstRegIndex(NUM_INTREGS)", None, dataSize)
486
487 class WrRegOp(RegOp):
488 abstract = True
489 def __init__(self, src1, src2, flags=None, dataSize="env.dataSize"):
490 super(WrRegOp, self).__init__("InstRegIndex(NUM_INTREGS)", \
491 src1, src2, flags, dataSize)
492
493 class Add(FlagRegOp):
494 code = 'DestReg = merge(DestReg, psrc1 + op2, dataSize);'
495
496 class Or(LogicRegOp):
497 code = 'DestReg = merge(DestReg, psrc1 | op2, dataSize);'
498
499 class Adc(FlagRegOp):
500 code = '''
501 CCFlagBits flags = ccFlagBits;
502 DestReg = merge(DestReg, psrc1 + op2 + flags.cf, dataSize);
503 '''
504
505 class Sbb(SubRegOp):
506 code = '''
507 CCFlagBits flags = ccFlagBits;
508 DestReg = merge(DestReg, psrc1 - op2 - flags.cf, dataSize);
509 '''
510
511 class And(LogicRegOp):
512 code = 'DestReg = merge(DestReg, psrc1 & op2, dataSize)'
513
514 class Sub(SubRegOp):
515 code = 'DestReg = merge(DestReg, psrc1 - op2, dataSize)'
516
517 class Xor(LogicRegOp):
518 code = 'DestReg = merge(DestReg, psrc1 ^ op2, dataSize)'
519
520 class Mul1s(WrRegOp):
521 code = '''
522 ProdLow = psrc1 * op2;
523 int halfSize = (dataSize * 8) / 2;
524 uint64_t shifter = (1ULL << halfSize);
525 uint64_t hiResult;
526 uint64_t psrc1_h = psrc1 / shifter;
527 uint64_t psrc1_l = psrc1 & mask(halfSize);
528 uint64_t psrc2_h = (op2 / shifter) & mask(halfSize);
529 uint64_t psrc2_l = op2 & mask(halfSize);
530 hiResult = ((psrc1_l * psrc2_h + psrc1_h * psrc2_l +
531 ((psrc1_l * psrc2_l) / shifter)) /shifter) +
532 psrc1_h * psrc2_h;
533 if (bits(psrc1, dataSize * 8 - 1))
534 hiResult -= op2;
535 if (bits(op2, dataSize * 8 - 1))
536 hiResult -= psrc1;
537 ProdHi = hiResult;
538 '''
539 flag_code = '''
540 if ((-ProdHi & mask(dataSize * 8)) !=
541 bits(ProdLow, dataSize * 8 - 1)) {
542 ccFlagBits = ccFlagBits | (ext & (CFBit | OFBit | ECFBit));
543 } else {
544 ccFlagBits = ccFlagBits & ~(ext & (CFBit | OFBit | ECFBit));
545 }
546 '''
547
548 class Mul1u(WrRegOp):
549 code = '''
550 ProdLow = psrc1 * op2;
551 int halfSize = (dataSize * 8) / 2;
552 uint64_t shifter = (1ULL << halfSize);
553 uint64_t psrc1_h = psrc1 / shifter;
554 uint64_t psrc1_l = psrc1 & mask(halfSize);
555 uint64_t psrc2_h = (op2 / shifter) & mask(halfSize);
556 uint64_t psrc2_l = op2 & mask(halfSize);
557 ProdHi = ((psrc1_l * psrc2_h + psrc1_h * psrc2_l +
558 ((psrc1_l * psrc2_l) / shifter)) / shifter) +
559 psrc1_h * psrc2_h;
560 '''
561 flag_code = '''
562 if (ProdHi) {
563 ccFlagBits = ccFlagBits | (ext & (CFBit | OFBit | ECFBit));
564 } else {
565 ccFlagBits = ccFlagBits & ~(ext & (CFBit | OFBit | ECFBit));
566 }
567 '''
568
569 class Mulel(RdRegOp):
570 code = 'DestReg = merge(SrcReg1, ProdLow, dataSize);'
571
572 class Muleh(RdRegOp):
573 def __init__(self, dest, src1=None, flags=None, dataSize="env.dataSize"):
574 if not src1:
575 src1 = dest
576 super(RdRegOp, self).__init__(dest, src1, \
577 "InstRegIndex(NUM_INTREGS)", flags, dataSize)
578 code = 'DestReg = merge(SrcReg1, ProdHi, dataSize);'
579
580 # One or two bit divide
581 class Div1(WrRegOp):
582 code = '''
583 //These are temporaries so that modifying them later won't make
584 //the ISA parser think they're also sources.
585 uint64_t quotient = 0;
586 uint64_t remainder = psrc1;
587 //Similarly, this is a temporary so changing it doesn't make it
588 //a source.
589 uint64_t divisor = op2;
590 //This is a temporary just for consistency and clarity.
591 uint64_t dividend = remainder;
592 //Do the division.
593 divide(dividend, divisor, quotient, remainder);
594 //Record the final results.
595 Remainder = remainder;
596 Quotient = quotient;
597 Divisor = divisor;
598 '''
599
600 # Step divide
601 class Div2(RegOp):
602 code = '''
603 uint64_t dividend = Remainder;
604 uint64_t divisor = Divisor;
605 uint64_t quotient = Quotient;
606 uint64_t remainder = dividend;
607 int remaining = op2;
608 //If we overshot, do nothing. This lets us unrool division loops a
609 //little.
610 if (remaining) {
611 //Shift in bits from the low order portion of the dividend
612 while(dividend < divisor && remaining) {
613 dividend = (dividend << 1) | bits(SrcReg1, remaining - 1);
614 quotient <<= 1;
615 remaining--;
616 }
617 remainder = dividend;
618 //Do the division.
619 divide(dividend, divisor, quotient, remainder);
620 }
621 //Keep track of how many bits there are still to pull in.
622 DestReg = merge(DestReg, remaining, dataSize);
623 //Record the final results
624 Remainder = remainder;
625 Quotient = quotient;
626 '''
627 flag_code = '''
628 if (DestReg == 0)
629 ccFlagBits = ccFlagBits | (ext & EZFBit);
630 else
631 ccFlagBits = ccFlagBits & ~(ext & EZFBit);
632 '''
633
634 class Divq(RdRegOp):
635 code = 'DestReg = merge(SrcReg1, Quotient, dataSize);'
636
637 class Divr(RdRegOp):
638 code = 'DestReg = merge(SrcReg1, Remainder, dataSize);'
639
640 class Mov(CondRegOp):
641 code = 'DestReg = merge(SrcReg1, op2, dataSize)'
642 else_code = 'DestReg = merge(DestReg, DestReg, dataSize);'
643
644 # Shift instructions
645
646 class Sll(RegOp):
647 code = '''
648 uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
649 DestReg = merge(DestReg, psrc1 << shiftAmt, dataSize);
650 '''
651 flag_code = '''
652 // If the shift amount is zero, no flags should be modified.
653 if (shiftAmt) {
654 //Zero out any flags we might modify. This way we only have to
655 //worry about setting them.
656 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
657 int CFBits = 0;
658 //Figure out if we -would- set the CF bits if requested.
659 if (shiftAmt <= dataSize * 8 &&
660 bits(SrcReg1, dataSize * 8 - shiftAmt)) {
661 CFBits = 1;
662 }
663 //If some combination of the CF bits need to be set, set them.
664 if ((ext & (CFBit | ECFBit)) && CFBits)
665 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
666 //Figure out what the OF bit should be.
667 if ((ext & OFBit) && (CFBits ^ bits(DestReg, dataSize * 8 - 1)))
668 ccFlagBits = ccFlagBits | OFBit;
669 //Use the regular mechanisms to calculate the other flags.
670 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
671 DestReg, psrc1, op2);
672 }
673 '''
674
675 class Srl(RegOp):
676 code = '''
677 uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
678 // Because what happens to the bits shift -in- on a right shift
679 // is not defined in the C/C++ standard, we have to mask them out
680 // to be sure they're zero.
681 uint64_t logicalMask = mask(dataSize * 8 - shiftAmt);
682 DestReg = merge(DestReg, (psrc1 >> shiftAmt) & logicalMask, dataSize);
683 '''
684 flag_code = '''
685 // If the shift amount is zero, no flags should be modified.
686 if (shiftAmt) {
687 //Zero out any flags we might modify. This way we only have to
688 //worry about setting them.
689 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
690 //If some combination of the CF bits need to be set, set them.
691 if ((ext & (CFBit | ECFBit)) &&
692 shiftAmt <= dataSize * 8 &&
693 bits(SrcReg1, shiftAmt - 1)) {
694 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
695 }
696 //Figure out what the OF bit should be.
697 if ((ext & OFBit) && bits(SrcReg1, dataSize * 8 - 1))
698 ccFlagBits = ccFlagBits | OFBit;
699 //Use the regular mechanisms to calculate the other flags.
700 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
701 DestReg, psrc1, op2);
702 }
703 '''
704
705 class Sra(RegOp):
706 code = '''
707 uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
708 // Because what happens to the bits shift -in- on a right shift
709 // is not defined in the C/C++ standard, we have to sign extend
710 // them manually to be sure.
711 uint64_t arithMask = (shiftAmt == 0) ? 0 :
712 -bits(psrc1, dataSize * 8 - 1) << (dataSize * 8 - shiftAmt);
713 DestReg = merge(DestReg, (psrc1 >> shiftAmt) | arithMask, dataSize);
714 '''
715 flag_code = '''
716 // If the shift amount is zero, no flags should be modified.
717 if (shiftAmt) {
718 //Zero out any flags we might modify. This way we only have to
719 //worry about setting them.
720 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
721 //If some combination of the CF bits need to be set, set them.
722 uint8_t effectiveShift =
723 (shiftAmt <= dataSize * 8) ? shiftAmt : (dataSize * 8);
724 if ((ext & (CFBit | ECFBit)) &&
725 bits(SrcReg1, effectiveShift - 1)) {
726 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
727 }
728 //Use the regular mechanisms to calculate the other flags.
729 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
730 DestReg, psrc1, op2);
731 }
732 '''
733
734 class Ror(RegOp):
735 code = '''
736 uint8_t shiftAmt =
737 (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
738 uint8_t realShiftAmt = shiftAmt % (dataSize * 8);
739 if(realShiftAmt)
740 {
741 uint64_t top = psrc1 << (dataSize * 8 - realShiftAmt);
742 uint64_t bottom = bits(psrc1, dataSize * 8, realShiftAmt);
743 DestReg = merge(DestReg, top | bottom, dataSize);
744 }
745 else
746 DestReg = merge(DestReg, DestReg, dataSize);
747 '''
748 flag_code = '''
749 // If the shift amount is zero, no flags should be modified.
750 if (shiftAmt) {
751 //Zero out any flags we might modify. This way we only have to
752 //worry about setting them.
753 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
754 //Find the most and second most significant bits of the result.
755 int msb = bits(DestReg, dataSize * 8 - 1);
756 int smsb = bits(DestReg, dataSize * 8 - 2);
757 //If some combination of the CF bits need to be set, set them.
758 if ((ext & (CFBit | ECFBit)) && msb)
759 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
760 //Figure out what the OF bit should be.
761 if ((ext & OFBit) && (msb ^ smsb))
762 ccFlagBits = ccFlagBits | OFBit;
763 //Use the regular mechanisms to calculate the other flags.
764 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
765 DestReg, psrc1, op2);
766 }
767 '''
768
769 class Rcr(RegOp):
770 code = '''
771 uint8_t shiftAmt =
772 (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
773 uint8_t realShiftAmt = shiftAmt % (dataSize * 8 + 1);
774 if(realShiftAmt)
775 {
776 CCFlagBits flags = ccFlagBits;
777 uint64_t top = flags.cf << (dataSize * 8 - realShiftAmt);
778 if (realShiftAmt > 1)
779 top |= psrc1 << (dataSize * 8 - realShiftAmt + 1);
780 uint64_t bottom = bits(psrc1, dataSize * 8 - 1, realShiftAmt);
781 DestReg = merge(DestReg, top | bottom, dataSize);
782 }
783 else
784 DestReg = merge(DestReg, DestReg, dataSize);
785 '''
786 flag_code = '''
787 // If the shift amount is zero, no flags should be modified.
788 if (shiftAmt) {
789 int origCFBit = (ccFlagBits & CFBit) ? 1 : 0;
790 //Zero out any flags we might modify. This way we only have to
791 //worry about setting them.
792 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
793 //Figure out what the OF bit should be.
794 if ((ext & OFBit) && (origCFBit ^
795 bits(SrcReg1, dataSize * 8 - 1))) {
796 ccFlagBits = ccFlagBits | OFBit;
797 }
798 //If some combination of the CF bits need to be set, set them.
799 if ((ext & (CFBit | ECFBit)) &&
800 (realShiftAmt == 0) ? origCFBit :
801 bits(SrcReg1, realShiftAmt - 1)) {
802 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
803 }
804 //Use the regular mechanisms to calculate the other flags.
805 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
806 DestReg, psrc1, op2);
807 }
808 '''
809
810 class Rol(RegOp):
811 code = '''
812 uint8_t shiftAmt =
813 (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
814 uint8_t realShiftAmt = shiftAmt % (dataSize * 8);
815 if(realShiftAmt)
816 {
817 uint64_t top = psrc1 << realShiftAmt;
818 uint64_t bottom =
819 bits(psrc1, dataSize * 8 - 1, dataSize * 8 - realShiftAmt);
820 DestReg = merge(DestReg, top | bottom, dataSize);
821 }
822 else
823 DestReg = merge(DestReg, DestReg, dataSize);
824 '''
825 flag_code = '''
826 // If the shift amount is zero, no flags should be modified.
827 if (shiftAmt) {
828 //Zero out any flags we might modify. This way we only have to
829 //worry about setting them.
830 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
831 //The CF bits, if set, would be set to the lsb of the result.
832 int lsb = DestReg & 0x1;
833 int msb = bits(DestReg, dataSize * 8 - 1);
834 //If some combination of the CF bits need to be set, set them.
835 if ((ext & (CFBit | ECFBit)) && lsb)
836 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
837 //Figure out what the OF bit should be.
838 if ((ext & OFBit) && (msb ^ lsb))
839 ccFlagBits = ccFlagBits | OFBit;
840 //Use the regular mechanisms to calculate the other flags.
841 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
842 DestReg, psrc1, op2);
843 }
844 '''
845
846 class Rcl(RegOp):
847 code = '''
848 uint8_t shiftAmt =
849 (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
850 uint8_t realShiftAmt = shiftAmt % (dataSize * 8 + 1);
851 if(realShiftAmt)
852 {
853 CCFlagBits flags = ccFlagBits;
854 uint64_t top = psrc1 << realShiftAmt;
855 uint64_t bottom = flags.cf << (realShiftAmt - 1);
856 if(shiftAmt > 1)
857 bottom |=
858 bits(psrc1, dataSize * 8 - 1,
859 dataSize * 8 - realShiftAmt + 1);
860 DestReg = merge(DestReg, top | bottom, dataSize);
861 }
862 else
863 DestReg = merge(DestReg, DestReg, dataSize);
864 '''
865 flag_code = '''
866 // If the shift amount is zero, no flags should be modified.
867 if (shiftAmt) {
868 int origCFBit = (ccFlagBits & CFBit) ? 1 : 0;
869 //Zero out any flags we might modify. This way we only have to
870 //worry about setting them.
871 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
872 int msb = bits(DestReg, dataSize * 8 - 1);
873 int CFBits = bits(SrcReg1, dataSize * 8 - realShiftAmt);
874 //If some combination of the CF bits need to be set, set them.
875 if ((ext & (CFBit | ECFBit)) &&
876 (realShiftAmt == 0) ? origCFBit : CFBits)
877 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
878 //Figure out what the OF bit should be.
879 if ((ext & OFBit) && (msb ^ CFBits))
880 ccFlagBits = ccFlagBits | OFBit;
881 //Use the regular mechanisms to calculate the other flags.
882 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
883 DestReg, psrc1, op2);
884 }
885 '''
886
1// Copyright (c) 2007-2008 The Hewlett-Packard Development Company
2// All rights reserved.
3//
4// Redistribution and use of this software in source and binary forms,
5// with or without modification, are permitted provided that the
6// following conditions are met:
7//
8// The software must be used only for Non-Commercial Use which means any
9// use which is NOT directed to receiving any direct monetary
10// compensation for, or commercial advantage from such use. Illustrative
11// examples of non-commercial use are academic research, personal study,
12// teaching, education and corporate research & development.
13// Illustrative examples of commercial use are distributing products for
14// commercial advantage and providing services using the software for
15// commercial advantage.
16//
17// If you wish to use this software or functionality therein that may be
18// covered by patents for commercial use, please contact:
19// Director of Intellectual Property Licensing
20// Office of Strategy and Technology
21// Hewlett-Packard Company
22// 1501 Page Mill Road
23// Palo Alto, California 94304
24//
25// Redistributions of source code must retain the above copyright notice,
26// this list of conditions and the following disclaimer. Redistributions
27// in binary form must reproduce the above copyright notice, this list of
28// conditions and the following disclaimer in the documentation and/or
29// other materials provided with the distribution. Neither the name of
30// the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its
31// contributors may be used to endorse or promote products derived from
32// this software without specific prior written permission. No right of
33// sublicense is granted herewith. Derivatives of the software and
34// output created using the software may be prepared, but only for
35// Non-Commercial Uses. Derivatives of the software may be shared with
36// others provided: (i) the others agree to abide by the list of
37// conditions herein which includes the Non-Commercial Use restrictions;
38// and (ii) such Derivatives of the software include the above copyright
39// notice to acknowledge the contribution from this software where
40// applicable, this list of conditions and the disclaimer below.
41//
42// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
43// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
44// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
45// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
46// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
47// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
48// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
49// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
50// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
51// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
52// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
53//
54// Authors: Gabe Black
55
56//////////////////////////////////////////////////////////////////////////
57//
58// RegOp Microop templates
59//
60//////////////////////////////////////////////////////////////////////////
61
62def template MicroRegOpExecute {{
63 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
64 Trace::InstRecord *traceData) const
65 {
66 Fault fault = NoFault;
67
68 DPRINTF(X86, "The data size is %d\n", dataSize);
69 %(op_decl)s;
70 %(op_rd)s;
71
72 if(%(cond_check)s)
73 {
74 %(code)s;
75 %(flag_code)s;
76 }
77 else
78 {
79 %(else_code)s;
80 }
81
82 //Write the resulting state to the execution context
83 if(fault == NoFault)
84 {
85 %(op_wb)s;
86 }
87 return fault;
88 }
89}};
90
91def template MicroRegOpImmExecute {{
92 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
93 Trace::InstRecord *traceData) const
94 {
95 Fault fault = NoFault;
96
97 %(op_decl)s;
98 %(op_rd)s;
99
100 if(%(cond_check)s)
101 {
102 %(code)s;
103 %(flag_code)s;
104 }
105 else
106 {
107 %(else_code)s;
108 }
109
110 //Write the resulting state to the execution context
111 if(fault == NoFault)
112 {
113 %(op_wb)s;
114 }
115 return fault;
116 }
117}};
118
119def template MicroRegOpDeclare {{
120 class %(class_name)s : public %(base_class)s
121 {
122 protected:
123 void buildMe();
124
125 public:
126 %(class_name)s(ExtMachInst _machInst,
127 const char * instMnem,
128 bool isMicro, bool isDelayed, bool isFirst, bool isLast,
129 InstRegIndex _src1, InstRegIndex _src2, InstRegIndex _dest,
130 uint8_t _dataSize, uint16_t _ext);
131
132 %(class_name)s(ExtMachInst _machInst,
133 const char * instMnem,
134 InstRegIndex _src1, InstRegIndex _src2, InstRegIndex _dest,
135 uint8_t _dataSize, uint16_t _ext);
136
137 %(BasicExecDeclare)s
138 };
139}};
140
141def template MicroRegOpImmDeclare {{
142
143 class %(class_name)s : public %(base_class)s
144 {
145 protected:
146 void buildMe();
147
148 public:
149 %(class_name)s(ExtMachInst _machInst,
150 const char * instMnem,
151 bool isMicro, bool isDelayed, bool isFirst, bool isLast,
152 InstRegIndex _src1, uint16_t _imm8, InstRegIndex _dest,
153 uint8_t _dataSize, uint16_t _ext);
154
155 %(class_name)s(ExtMachInst _machInst,
156 const char * instMnem,
157 InstRegIndex _src1, uint16_t _imm8, InstRegIndex _dest,
158 uint8_t _dataSize, uint16_t _ext);
159
160 %(BasicExecDeclare)s
161 };
162}};
163
164def template MicroRegOpConstructor {{
165
166 inline void %(class_name)s::buildMe()
167 {
168 %(constructor)s;
169 }
170
171 inline %(class_name)s::%(class_name)s(
172 ExtMachInst machInst, const char * instMnem,
173 InstRegIndex _src1, InstRegIndex _src2, InstRegIndex _dest,
174 uint8_t _dataSize, uint16_t _ext) :
175 %(base_class)s(machInst, "%(mnemonic)s", instMnem,
176 false, false, false, false,
177 _src1, _src2, _dest, _dataSize, _ext,
178 %(op_class)s)
179 {
180 buildMe();
181 }
182
183 inline %(class_name)s::%(class_name)s(
184 ExtMachInst machInst, const char * instMnem,
185 bool isMicro, bool isDelayed, bool isFirst, bool isLast,
186 InstRegIndex _src1, InstRegIndex _src2, InstRegIndex _dest,
187 uint8_t _dataSize, uint16_t _ext) :
188 %(base_class)s(machInst, "%(mnemonic)s", instMnem,
189 isMicro, isDelayed, isFirst, isLast,
190 _src1, _src2, _dest, _dataSize, _ext,
191 %(op_class)s)
192 {
193 buildMe();
194 }
195}};
196
197def template MicroRegOpImmConstructor {{
198
199 inline void %(class_name)s::buildMe()
200 {
201 %(constructor)s;
202 }
203
204 inline %(class_name)s::%(class_name)s(
205 ExtMachInst machInst, const char * instMnem,
206 InstRegIndex _src1, uint16_t _imm8, InstRegIndex _dest,
207 uint8_t _dataSize, uint16_t _ext) :
208 %(base_class)s(machInst, "%(mnemonic)s", instMnem,
209 false, false, false, false,
210 _src1, _imm8, _dest, _dataSize, _ext,
211 %(op_class)s)
212 {
213 buildMe();
214 }
215
216 inline %(class_name)s::%(class_name)s(
217 ExtMachInst machInst, const char * instMnem,
218 bool isMicro, bool isDelayed, bool isFirst, bool isLast,
219 InstRegIndex _src1, uint16_t _imm8, InstRegIndex _dest,
220 uint8_t _dataSize, uint16_t _ext) :
221 %(base_class)s(machInst, "%(mnemonic)s", instMnem,
222 isMicro, isDelayed, isFirst, isLast,
223 _src1, _imm8, _dest, _dataSize, _ext,
224 %(op_class)s)
225 {
226 buildMe();
227 }
228}};
229
230output header {{
231 void
232 divide(uint64_t dividend, uint64_t divisor,
233 uint64_t &quotient, uint64_t &remainder);
234
235 enum SegmentSelectorCheck {
236 SegNoCheck, SegCSCheck, SegCallGateCheck, SegIntGateCheck,
237 SegSoftIntGateCheck, SegSSCheck, SegIretCheck, SegIntCSCheck,
238 SegTRCheck, SegTSSCheck, SegInGDTCheck, SegLDTCheck
239 };
240
241 enum LongModeDescriptorType {
242 LDT64 = 2,
243 AvailableTSS64 = 9,
244 BusyTSS64 = 0xb,
245 CallGate64 = 0xc,
246 IntGate64 = 0xe,
247 TrapGate64 = 0xf
248 };
249}};
250
251output decoder {{
252 void
253 divide(uint64_t dividend, uint64_t divisor,
254 uint64_t &quotient, uint64_t &remainder)
255 {
256 //Check for divide by zero.
257 if (divisor == 0)
258 panic("Divide by zero!\\n");
259 //If the divisor is bigger than the dividend, don't do anything.
260 if (divisor <= dividend) {
261 //Shift the divisor so it's msb lines up with the dividend.
262 int dividendMsb = findMsbSet(dividend);
263 int divisorMsb = findMsbSet(divisor);
264 int shift = dividendMsb - divisorMsb;
265 divisor <<= shift;
266 //Compute what we'll add to the quotient if the divisor isn't
267 //now larger than the dividend.
268 uint64_t quotientBit = 1;
269 quotientBit <<= shift;
270 //If we need to step back a bit (no pun intended) because the
271 //divisor got too to large, do that here. This is the "or two"
272 //part of one or two bit division.
273 if (divisor > dividend) {
274 quotientBit >>= 1;
275 divisor >>= 1;
276 }
277 //Decrement the remainder and increment the quotient.
278 quotient += quotientBit;
279 remainder -= divisor;
280 }
281 }
282}};
283
284let {{
285 # Make these empty strings so that concatenating onto
286 # them will always work.
287 header_output = ""
288 decoder_output = ""
289 exec_output = ""
290
291 immTemplates = (
292 MicroRegOpImmDeclare,
293 MicroRegOpImmConstructor,
294 MicroRegOpImmExecute)
295
296 regTemplates = (
297 MicroRegOpDeclare,
298 MicroRegOpConstructor,
299 MicroRegOpExecute)
300
301 class RegOpMeta(type):
302 def buildCppClasses(self, name, Name, suffix, \
303 code, flag_code, cond_check, else_code):
304
305 # Globals to stick the output in
306 global header_output
307 global decoder_output
308 global exec_output
309
310 # Stick all the code together so it can be searched at once
311 allCode = "|".join((code, flag_code, cond_check, else_code))
312
313 # If op2 is used anywhere, make register and immediate versions
314 # of this code.
315 matcher = re.compile("(?<!\\w)(?P<prefix>s?)op2(?P<typeQual>\\.\\w+)?")
316 match = matcher.search(allCode)
317 if match:
318 typeQual = ""
319 if match.group("typeQual"):
320 typeQual = match.group("typeQual")
321 src2_name = "%spsrc2%s" % (match.group("prefix"), typeQual)
322 self.buildCppClasses(name, Name, suffix,
323 matcher.sub(src2_name, code),
324 matcher.sub(src2_name, flag_code),
325 matcher.sub(src2_name, cond_check),
326 matcher.sub(src2_name, else_code))
327 self.buildCppClasses(name + "i", Name, suffix + "Imm",
328 matcher.sub("imm8", code),
329 matcher.sub("imm8", flag_code),
330 matcher.sub("imm8", cond_check),
331 matcher.sub("imm8", else_code))
332 return
333
334 # If there's something optional to do with flags, generate
335 # a version without it and fix up this version to use it.
336 if flag_code != "" or cond_check != "true":
337 self.buildCppClasses(name, Name, suffix,
338 code, "", "true", else_code)
339 suffix = "Flags" + suffix
340
341 # If psrc1 or psrc2 is used, we need to actually insert code to
342 # compute it.
343 matcher = re.compile("(?<!\w)psrc1(?!\w)")
344 if matcher.search(allCode):
345 code = "uint64_t psrc1 = pick(SrcReg1, 0, dataSize);" + code
346 matcher = re.compile("(?<!\w)psrc2(?!\w)")
347 if matcher.search(allCode):
348 code = "uint64_t psrc2 = pick(SrcReg2, 1, dataSize);" + code
349 # Also make available versions which do sign extension
350 matcher = re.compile("(?<!\w)spsrc1(?!\w)")
351 if matcher.search(allCode):
352 code = "int64_t spsrc1 = signedPick(SrcReg1, 0, dataSize);" + code
353 matcher = re.compile("(?<!\w)spsrc2(?!\w)")
354 if matcher.search(allCode):
355 code = "int64_t spsrc2 = signedPick(SrcReg2, 1, dataSize);" + code
356
357 base = "X86ISA::RegOp"
358
359 # If imm8 shows up in the code, use the immediate templates, if
360 # not, hopefully the register ones will be correct.
361 templates = regTemplates
362 matcher = re.compile("(?<!\w)imm8(?!\w)")
363 if matcher.search(allCode):
364 base += "Imm"
365 templates = immTemplates
366
367 # Get everything ready for the substitution
368 iop = InstObjParams(name, Name + suffix, base,
369 {"code" : code,
370 "flag_code" : flag_code,
371 "cond_check" : cond_check,
372 "else_code" : else_code})
373
374 # Generate the actual code (finally!)
375 header_output += templates[0].subst(iop)
376 decoder_output += templates[1].subst(iop)
377 exec_output += templates[2].subst(iop)
378
379
380 def __new__(mcls, Name, bases, dict):
381 abstract = False
382 name = Name.lower()
383 if "abstract" in dict:
384 abstract = dict['abstract']
385 del dict['abstract']
386
387 cls = super(RegOpMeta, mcls).__new__(mcls, Name, bases, dict)
388 if not abstract:
389 cls.className = Name
390 cls.base_mnemonic = name
391 code = cls.code
392 flag_code = cls.flag_code
393 cond_check = cls.cond_check
394 else_code = cls.else_code
395
396 # Set up the C++ classes
397 mcls.buildCppClasses(cls, name, Name, "",
398 code, flag_code, cond_check, else_code)
399
400 # Hook into the microassembler dict
401 global microopClasses
402 microopClasses[name] = cls
403
404 allCode = "|".join((code, flag_code, cond_check, else_code))
405
406 # If op2 is used anywhere, make register and immediate versions
407 # of this code.
408 matcher = re.compile("op2(?P<typeQual>\\.\\w+)?")
409 if matcher.search(allCode):
410 microopClasses[name + 'i'] = cls
411 return cls
412
413
414 class RegOp(X86Microop):
415 __metaclass__ = RegOpMeta
416 # This class itself doesn't act as a microop
417 abstract = True
418
419 # Default template parameter values
420 flag_code = ""
421 cond_check = "true"
422 else_code = ";"
423
424 def __init__(self, dest, src1, op2, flags = None, dataSize = "env.dataSize"):
425 self.dest = dest
426 self.src1 = src1
427 self.op2 = op2
428 self.flags = flags
429 self.dataSize = dataSize
430 if flags is None:
431 self.ext = 0
432 else:
433 if not isinstance(flags, (list, tuple)):
434 raise Exception, "flags must be a list or tuple of flags"
435 self.ext = " | ".join(flags)
436 self.className += "Flags"
437
438 def getAllocator(self, *microFlags):
439 className = self.className
440 if self.mnemonic == self.base_mnemonic + 'i':
441 className += "Imm"
442 allocator = '''new %(class_name)s(machInst, macrocodeBlock
443 %(flags)s, %(src1)s, %(op2)s, %(dest)s,
444 %(dataSize)s, %(ext)s)''' % {
445 "class_name" : className,
446 "flags" : self.microFlagsText(microFlags),
447 "src1" : self.src1, "op2" : self.op2,
448 "dest" : self.dest,
449 "dataSize" : self.dataSize,
450 "ext" : self.ext}
451 return allocator
452
453 class LogicRegOp(RegOp):
454 abstract = True
455 flag_code = '''
456 //Don't have genFlags handle the OF or CF bits
457 uint64_t mask = CFBit | ECFBit | OFBit;
458 ccFlagBits = genFlags(ccFlagBits, ext & ~mask, DestReg, psrc1, op2);
459 //If a logic microop wants to set these, it wants to set them to 0.
460 ccFlagBits &= ~(CFBit & ext);
461 ccFlagBits &= ~(ECFBit & ext);
462 ccFlagBits &= ~(OFBit & ext);
463 '''
464
465 class FlagRegOp(RegOp):
466 abstract = True
467 flag_code = \
468 "ccFlagBits = genFlags(ccFlagBits, ext, DestReg, psrc1, op2);"
469
470 class SubRegOp(RegOp):
471 abstract = True
472 flag_code = \
473 "ccFlagBits = genFlags(ccFlagBits, ext, DestReg, psrc1, ~op2, true);"
474
475 class CondRegOp(RegOp):
476 abstract = True
477 cond_check = "checkCondition(ccFlagBits, ext)"
478
479 class RdRegOp(RegOp):
480 abstract = True
481 def __init__(self, dest, src1=None, dataSize="env.dataSize"):
482 if not src1:
483 src1 = dest
484 super(RdRegOp, self).__init__(dest, src1, \
485 "InstRegIndex(NUM_INTREGS)", None, dataSize)
486
487 class WrRegOp(RegOp):
488 abstract = True
489 def __init__(self, src1, src2, flags=None, dataSize="env.dataSize"):
490 super(WrRegOp, self).__init__("InstRegIndex(NUM_INTREGS)", \
491 src1, src2, flags, dataSize)
492
493 class Add(FlagRegOp):
494 code = 'DestReg = merge(DestReg, psrc1 + op2, dataSize);'
495
496 class Or(LogicRegOp):
497 code = 'DestReg = merge(DestReg, psrc1 | op2, dataSize);'
498
499 class Adc(FlagRegOp):
500 code = '''
501 CCFlagBits flags = ccFlagBits;
502 DestReg = merge(DestReg, psrc1 + op2 + flags.cf, dataSize);
503 '''
504
505 class Sbb(SubRegOp):
506 code = '''
507 CCFlagBits flags = ccFlagBits;
508 DestReg = merge(DestReg, psrc1 - op2 - flags.cf, dataSize);
509 '''
510
511 class And(LogicRegOp):
512 code = 'DestReg = merge(DestReg, psrc1 & op2, dataSize)'
513
514 class Sub(SubRegOp):
515 code = 'DestReg = merge(DestReg, psrc1 - op2, dataSize)'
516
517 class Xor(LogicRegOp):
518 code = 'DestReg = merge(DestReg, psrc1 ^ op2, dataSize)'
519
520 class Mul1s(WrRegOp):
521 code = '''
522 ProdLow = psrc1 * op2;
523 int halfSize = (dataSize * 8) / 2;
524 uint64_t shifter = (1ULL << halfSize);
525 uint64_t hiResult;
526 uint64_t psrc1_h = psrc1 / shifter;
527 uint64_t psrc1_l = psrc1 & mask(halfSize);
528 uint64_t psrc2_h = (op2 / shifter) & mask(halfSize);
529 uint64_t psrc2_l = op2 & mask(halfSize);
530 hiResult = ((psrc1_l * psrc2_h + psrc1_h * psrc2_l +
531 ((psrc1_l * psrc2_l) / shifter)) /shifter) +
532 psrc1_h * psrc2_h;
533 if (bits(psrc1, dataSize * 8 - 1))
534 hiResult -= op2;
535 if (bits(op2, dataSize * 8 - 1))
536 hiResult -= psrc1;
537 ProdHi = hiResult;
538 '''
539 flag_code = '''
540 if ((-ProdHi & mask(dataSize * 8)) !=
541 bits(ProdLow, dataSize * 8 - 1)) {
542 ccFlagBits = ccFlagBits | (ext & (CFBit | OFBit | ECFBit));
543 } else {
544 ccFlagBits = ccFlagBits & ~(ext & (CFBit | OFBit | ECFBit));
545 }
546 '''
547
548 class Mul1u(WrRegOp):
549 code = '''
550 ProdLow = psrc1 * op2;
551 int halfSize = (dataSize * 8) / 2;
552 uint64_t shifter = (1ULL << halfSize);
553 uint64_t psrc1_h = psrc1 / shifter;
554 uint64_t psrc1_l = psrc1 & mask(halfSize);
555 uint64_t psrc2_h = (op2 / shifter) & mask(halfSize);
556 uint64_t psrc2_l = op2 & mask(halfSize);
557 ProdHi = ((psrc1_l * psrc2_h + psrc1_h * psrc2_l +
558 ((psrc1_l * psrc2_l) / shifter)) / shifter) +
559 psrc1_h * psrc2_h;
560 '''
561 flag_code = '''
562 if (ProdHi) {
563 ccFlagBits = ccFlagBits | (ext & (CFBit | OFBit | ECFBit));
564 } else {
565 ccFlagBits = ccFlagBits & ~(ext & (CFBit | OFBit | ECFBit));
566 }
567 '''
568
569 class Mulel(RdRegOp):
570 code = 'DestReg = merge(SrcReg1, ProdLow, dataSize);'
571
572 class Muleh(RdRegOp):
573 def __init__(self, dest, src1=None, flags=None, dataSize="env.dataSize"):
574 if not src1:
575 src1 = dest
576 super(RdRegOp, self).__init__(dest, src1, \
577 "InstRegIndex(NUM_INTREGS)", flags, dataSize)
578 code = 'DestReg = merge(SrcReg1, ProdHi, dataSize);'
579
580 # One or two bit divide
581 class Div1(WrRegOp):
582 code = '''
583 //These are temporaries so that modifying them later won't make
584 //the ISA parser think they're also sources.
585 uint64_t quotient = 0;
586 uint64_t remainder = psrc1;
587 //Similarly, this is a temporary so changing it doesn't make it
588 //a source.
589 uint64_t divisor = op2;
590 //This is a temporary just for consistency and clarity.
591 uint64_t dividend = remainder;
592 //Do the division.
593 divide(dividend, divisor, quotient, remainder);
594 //Record the final results.
595 Remainder = remainder;
596 Quotient = quotient;
597 Divisor = divisor;
598 '''
599
600 # Step divide
601 class Div2(RegOp):
602 code = '''
603 uint64_t dividend = Remainder;
604 uint64_t divisor = Divisor;
605 uint64_t quotient = Quotient;
606 uint64_t remainder = dividend;
607 int remaining = op2;
608 //If we overshot, do nothing. This lets us unrool division loops a
609 //little.
610 if (remaining) {
611 //Shift in bits from the low order portion of the dividend
612 while(dividend < divisor && remaining) {
613 dividend = (dividend << 1) | bits(SrcReg1, remaining - 1);
614 quotient <<= 1;
615 remaining--;
616 }
617 remainder = dividend;
618 //Do the division.
619 divide(dividend, divisor, quotient, remainder);
620 }
621 //Keep track of how many bits there are still to pull in.
622 DestReg = merge(DestReg, remaining, dataSize);
623 //Record the final results
624 Remainder = remainder;
625 Quotient = quotient;
626 '''
627 flag_code = '''
628 if (DestReg == 0)
629 ccFlagBits = ccFlagBits | (ext & EZFBit);
630 else
631 ccFlagBits = ccFlagBits & ~(ext & EZFBit);
632 '''
633
634 class Divq(RdRegOp):
635 code = 'DestReg = merge(SrcReg1, Quotient, dataSize);'
636
637 class Divr(RdRegOp):
638 code = 'DestReg = merge(SrcReg1, Remainder, dataSize);'
639
640 class Mov(CondRegOp):
641 code = 'DestReg = merge(SrcReg1, op2, dataSize)'
642 else_code = 'DestReg = merge(DestReg, DestReg, dataSize);'
643
644 # Shift instructions
645
646 class Sll(RegOp):
647 code = '''
648 uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
649 DestReg = merge(DestReg, psrc1 << shiftAmt, dataSize);
650 '''
651 flag_code = '''
652 // If the shift amount is zero, no flags should be modified.
653 if (shiftAmt) {
654 //Zero out any flags we might modify. This way we only have to
655 //worry about setting them.
656 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
657 int CFBits = 0;
658 //Figure out if we -would- set the CF bits if requested.
659 if (shiftAmt <= dataSize * 8 &&
660 bits(SrcReg1, dataSize * 8 - shiftAmt)) {
661 CFBits = 1;
662 }
663 //If some combination of the CF bits need to be set, set them.
664 if ((ext & (CFBit | ECFBit)) && CFBits)
665 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
666 //Figure out what the OF bit should be.
667 if ((ext & OFBit) && (CFBits ^ bits(DestReg, dataSize * 8 - 1)))
668 ccFlagBits = ccFlagBits | OFBit;
669 //Use the regular mechanisms to calculate the other flags.
670 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
671 DestReg, psrc1, op2);
672 }
673 '''
674
675 class Srl(RegOp):
676 code = '''
677 uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
678 // Because what happens to the bits shift -in- on a right shift
679 // is not defined in the C/C++ standard, we have to mask them out
680 // to be sure they're zero.
681 uint64_t logicalMask = mask(dataSize * 8 - shiftAmt);
682 DestReg = merge(DestReg, (psrc1 >> shiftAmt) & logicalMask, dataSize);
683 '''
684 flag_code = '''
685 // If the shift amount is zero, no flags should be modified.
686 if (shiftAmt) {
687 //Zero out any flags we might modify. This way we only have to
688 //worry about setting them.
689 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
690 //If some combination of the CF bits need to be set, set them.
691 if ((ext & (CFBit | ECFBit)) &&
692 shiftAmt <= dataSize * 8 &&
693 bits(SrcReg1, shiftAmt - 1)) {
694 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
695 }
696 //Figure out what the OF bit should be.
697 if ((ext & OFBit) && bits(SrcReg1, dataSize * 8 - 1))
698 ccFlagBits = ccFlagBits | OFBit;
699 //Use the regular mechanisms to calculate the other flags.
700 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
701 DestReg, psrc1, op2);
702 }
703 '''
704
705 class Sra(RegOp):
706 code = '''
707 uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
708 // Because what happens to the bits shift -in- on a right shift
709 // is not defined in the C/C++ standard, we have to sign extend
710 // them manually to be sure.
711 uint64_t arithMask = (shiftAmt == 0) ? 0 :
712 -bits(psrc1, dataSize * 8 - 1) << (dataSize * 8 - shiftAmt);
713 DestReg = merge(DestReg, (psrc1 >> shiftAmt) | arithMask, dataSize);
714 '''
715 flag_code = '''
716 // If the shift amount is zero, no flags should be modified.
717 if (shiftAmt) {
718 //Zero out any flags we might modify. This way we only have to
719 //worry about setting them.
720 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
721 //If some combination of the CF bits need to be set, set them.
722 uint8_t effectiveShift =
723 (shiftAmt <= dataSize * 8) ? shiftAmt : (dataSize * 8);
724 if ((ext & (CFBit | ECFBit)) &&
725 bits(SrcReg1, effectiveShift - 1)) {
726 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
727 }
728 //Use the regular mechanisms to calculate the other flags.
729 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
730 DestReg, psrc1, op2);
731 }
732 '''
733
734 class Ror(RegOp):
735 code = '''
736 uint8_t shiftAmt =
737 (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
738 uint8_t realShiftAmt = shiftAmt % (dataSize * 8);
739 if(realShiftAmt)
740 {
741 uint64_t top = psrc1 << (dataSize * 8 - realShiftAmt);
742 uint64_t bottom = bits(psrc1, dataSize * 8, realShiftAmt);
743 DestReg = merge(DestReg, top | bottom, dataSize);
744 }
745 else
746 DestReg = merge(DestReg, DestReg, dataSize);
747 '''
748 flag_code = '''
749 // If the shift amount is zero, no flags should be modified.
750 if (shiftAmt) {
751 //Zero out any flags we might modify. This way we only have to
752 //worry about setting them.
753 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
754 //Find the most and second most significant bits of the result.
755 int msb = bits(DestReg, dataSize * 8 - 1);
756 int smsb = bits(DestReg, dataSize * 8 - 2);
757 //If some combination of the CF bits need to be set, set them.
758 if ((ext & (CFBit | ECFBit)) && msb)
759 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
760 //Figure out what the OF bit should be.
761 if ((ext & OFBit) && (msb ^ smsb))
762 ccFlagBits = ccFlagBits | OFBit;
763 //Use the regular mechanisms to calculate the other flags.
764 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
765 DestReg, psrc1, op2);
766 }
767 '''
768
769 class Rcr(RegOp):
770 code = '''
771 uint8_t shiftAmt =
772 (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
773 uint8_t realShiftAmt = shiftAmt % (dataSize * 8 + 1);
774 if(realShiftAmt)
775 {
776 CCFlagBits flags = ccFlagBits;
777 uint64_t top = flags.cf << (dataSize * 8 - realShiftAmt);
778 if (realShiftAmt > 1)
779 top |= psrc1 << (dataSize * 8 - realShiftAmt + 1);
780 uint64_t bottom = bits(psrc1, dataSize * 8 - 1, realShiftAmt);
781 DestReg = merge(DestReg, top | bottom, dataSize);
782 }
783 else
784 DestReg = merge(DestReg, DestReg, dataSize);
785 '''
786 flag_code = '''
787 // If the shift amount is zero, no flags should be modified.
788 if (shiftAmt) {
789 int origCFBit = (ccFlagBits & CFBit) ? 1 : 0;
790 //Zero out any flags we might modify. This way we only have to
791 //worry about setting them.
792 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
793 //Figure out what the OF bit should be.
794 if ((ext & OFBit) && (origCFBit ^
795 bits(SrcReg1, dataSize * 8 - 1))) {
796 ccFlagBits = ccFlagBits | OFBit;
797 }
798 //If some combination of the CF bits need to be set, set them.
799 if ((ext & (CFBit | ECFBit)) &&
800 (realShiftAmt == 0) ? origCFBit :
801 bits(SrcReg1, realShiftAmt - 1)) {
802 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
803 }
804 //Use the regular mechanisms to calculate the other flags.
805 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
806 DestReg, psrc1, op2);
807 }
808 '''
809
810 class Rol(RegOp):
811 code = '''
812 uint8_t shiftAmt =
813 (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
814 uint8_t realShiftAmt = shiftAmt % (dataSize * 8);
815 if(realShiftAmt)
816 {
817 uint64_t top = psrc1 << realShiftAmt;
818 uint64_t bottom =
819 bits(psrc1, dataSize * 8 - 1, dataSize * 8 - realShiftAmt);
820 DestReg = merge(DestReg, top | bottom, dataSize);
821 }
822 else
823 DestReg = merge(DestReg, DestReg, dataSize);
824 '''
825 flag_code = '''
826 // If the shift amount is zero, no flags should be modified.
827 if (shiftAmt) {
828 //Zero out any flags we might modify. This way we only have to
829 //worry about setting them.
830 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
831 //The CF bits, if set, would be set to the lsb of the result.
832 int lsb = DestReg & 0x1;
833 int msb = bits(DestReg, dataSize * 8 - 1);
834 //If some combination of the CF bits need to be set, set them.
835 if ((ext & (CFBit | ECFBit)) && lsb)
836 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
837 //Figure out what the OF bit should be.
838 if ((ext & OFBit) && (msb ^ lsb))
839 ccFlagBits = ccFlagBits | OFBit;
840 //Use the regular mechanisms to calculate the other flags.
841 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
842 DestReg, psrc1, op2);
843 }
844 '''
845
846 class Rcl(RegOp):
847 code = '''
848 uint8_t shiftAmt =
849 (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
850 uint8_t realShiftAmt = shiftAmt % (dataSize * 8 + 1);
851 if(realShiftAmt)
852 {
853 CCFlagBits flags = ccFlagBits;
854 uint64_t top = psrc1 << realShiftAmt;
855 uint64_t bottom = flags.cf << (realShiftAmt - 1);
856 if(shiftAmt > 1)
857 bottom |=
858 bits(psrc1, dataSize * 8 - 1,
859 dataSize * 8 - realShiftAmt + 1);
860 DestReg = merge(DestReg, top | bottom, dataSize);
861 }
862 else
863 DestReg = merge(DestReg, DestReg, dataSize);
864 '''
865 flag_code = '''
866 // If the shift amount is zero, no flags should be modified.
867 if (shiftAmt) {
868 int origCFBit = (ccFlagBits & CFBit) ? 1 : 0;
869 //Zero out any flags we might modify. This way we only have to
870 //worry about setting them.
871 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
872 int msb = bits(DestReg, dataSize * 8 - 1);
873 int CFBits = bits(SrcReg1, dataSize * 8 - realShiftAmt);
874 //If some combination of the CF bits need to be set, set them.
875 if ((ext & (CFBit | ECFBit)) &&
876 (realShiftAmt == 0) ? origCFBit : CFBits)
877 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
878 //Figure out what the OF bit should be.
879 if ((ext & OFBit) && (msb ^ CFBits))
880 ccFlagBits = ccFlagBits | OFBit;
881 //Use the regular mechanisms to calculate the other flags.
882 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
883 DestReg, psrc1, op2);
884 }
885 '''
886
887 class Sld(RegOp):
888 code = '''
889 uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
890 uint8_t dataBits = dataSize * 8;
891 uint8_t realShiftAmt = shiftAmt % (2 * dataBits);
892 uint64_t result;
893 if (realShiftAmt == 0) {
894 result = psrc1;
895 } else if (realShiftAmt < dataBits) {
896 result = (psrc1 << realShiftAmt) |
897 (DoubleBits >> (dataBits - realShiftAmt));
898 } else {
899 result = (DoubleBits << (realShiftAmt - dataBits)) |
900 (psrc1 >> (2 * dataBits - realShiftAmt));
901 }
902 DestReg = merge(DestReg, result, dataSize);
903 '''
904 flag_code = '''
905 // If the shift amount is zero, no flags should be modified.
906 if (shiftAmt) {
907 //Zero out any flags we might modify. This way we only have to
908 //worry about setting them.
909 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
910 int CFBits = 0;
911 //Figure out if we -would- set the CF bits if requested.
912 if ((realShiftAmt == 0 &&
913 bits(DoubleBits, 0)) ||
914 (realShiftAmt <= dataBits &&
915 bits(SrcReg1, dataBits - realShiftAmt)) ||
916 (realShiftAmt > dataBits &&
917 bits(DoubleBits, 2 * dataBits - realShiftAmt))) {
918 CFBits = 1;
919 }
920 //If some combination of the CF bits need to be set, set them.
921 if ((ext & (CFBit | ECFBit)) && CFBits)
922 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
923 //Figure out what the OF bit should be.
924 if ((ext & OFBit) && (bits(SrcReg1, dataBits - 1) ^
925 bits(result, dataBits - 1)))
926 ccFlagBits = ccFlagBits | OFBit;
927 //Use the regular mechanisms to calculate the other flags.
928 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
929 DestReg, psrc1, op2);
930 }
931 '''
932
933 class Srd(RegOp):
934 code = '''
935 uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
936 uint8_t dataBits = dataSize * 8;
937 uint8_t realShiftAmt = shiftAmt % (2 * dataBits);
938 uint64_t result;
939 if (realShiftAmt == 0) {
940 result = psrc1;
941 } else if (realShiftAmt < dataBits) {
942 // Because what happens to the bits shift -in- on a right
943 // shift is not defined in the C/C++ standard, we have to
944 // mask them out to be sure they're zero.
945 uint64_t logicalMask = mask(dataBits - realShiftAmt);
946 result = ((psrc1 >> realShiftAmt) & logicalMask) |
947 (DoubleBits << (dataBits - realShiftAmt));
948 } else {
949 uint64_t logicalMask = mask(2 * dataBits - realShiftAmt);
950 result = ((DoubleBits >> (realShiftAmt - dataBits)) &
951 logicalMask) |
952 (psrc1 << (2 * dataBits - realShiftAmt));
953 }
954 DestReg = merge(DestReg, result, dataSize);
955 '''
956 flag_code = '''
957 // If the shift amount is zero, no flags should be modified.
958 if (shiftAmt) {
959 //Zero out any flags we might modify. This way we only have to
960 //worry about setting them.
961 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
962 int CFBits = 0;
963 //If some combination of the CF bits need to be set, set them.
964 if ((realShiftAmt == 0 &&
965 bits(DoubleBits, dataBits - 1)) ||
966 (realShiftAmt <= dataBits &&
967 bits(SrcReg1, realShiftAmt - 1)) ||
968 (realShiftAmt > dataBits &&
969 bits(DoubleBits, realShiftAmt - dataBits - 1))) {
970 CFBits = 1;
971 }
972 //If some combination of the CF bits need to be set, set them.
973 if ((ext & (CFBit | ECFBit)) && CFBits)
974 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
975 //Figure out what the OF bit should be.
976 if ((ext & OFBit) && (bits(SrcReg1, dataBits - 1) ^
977 bits(result, dataBits - 1)))
978 ccFlagBits = ccFlagBits | OFBit;
979 //Use the regular mechanisms to calculate the other flags.
980 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
981 DestReg, psrc1, op2);
982 }
983 '''
984
985 class Mdb(WrRegOp):
986 code = 'DoubleBits = psrc1 ^ op2;'
987
887 class Wrip(WrRegOp, CondRegOp):
888 code = 'RIP = psrc1 + sop2 + CSBase'
889 else_code="RIP = RIP;"
890
891 class Wruflags(WrRegOp):
892 code = 'ccFlagBits = psrc1 ^ op2'
893
894 class Wrflags(WrRegOp):
895 code = '''
896 MiscReg newFlags = psrc1 ^ op2;
897 MiscReg userFlagMask = 0xDD5;
898 // Get only the user flags
899 ccFlagBits = newFlags & userFlagMask;
900 // Get everything else
901 nccFlagBits = newFlags & ~userFlagMask;
902 '''
903
904 class Rdip(RdRegOp):
905 code = 'DestReg = RIP - CSBase'
906
907 class Ruflags(RdRegOp):
908 code = 'DestReg = ccFlagBits'
909
910 class Rflags(RdRegOp):
911 code = 'DestReg = ccFlagBits | nccFlagBits'
912
913 class Ruflag(RegOp):
914 code = '''
915 int flag = bits(ccFlagBits, imm8);
916 DestReg = merge(DestReg, flag, dataSize);
917 ccFlagBits = (flag == 0) ? (ccFlagBits | EZFBit) :
918 (ccFlagBits & ~EZFBit);
919 '''
920 def __init__(self, dest, imm, flags=None, \
921 dataSize="env.dataSize"):
922 super(Ruflag, self).__init__(dest, \
923 "InstRegIndex(NUM_INTREGS)", imm, flags, dataSize)
924
925 class Rflag(RegOp):
926 code = '''
927 MiscReg flagMask = 0x3F7FDD5;
928 MiscReg flags = (nccFlagBits | ccFlagBits) & flagMask;
929 int flag = bits(flags, imm8);
930 DestReg = merge(DestReg, flag, dataSize);
931 ccFlagBits = (flag == 0) ? (ccFlagBits | EZFBit) :
932 (ccFlagBits & ~EZFBit);
933 '''
934 def __init__(self, dest, imm, flags=None, \
935 dataSize="env.dataSize"):
936 super(Rflag, self).__init__(dest, \
937 "InstRegIndex(NUM_INTREGS)", imm, flags, dataSize)
938
939 class Sext(RegOp):
940 code = '''
941 IntReg val = psrc1;
942 // Mask the bit position so that it wraps.
943 int bitPos = op2 & (dataSize * 8 - 1);
944 int sign_bit = bits(val, bitPos, bitPos);
945 uint64_t maskVal = mask(bitPos+1);
946 val = sign_bit ? (val | ~maskVal) : (val & maskVal);
947 DestReg = merge(DestReg, val, dataSize);
948 '''
949 flag_code = '''
950 if (!sign_bit)
951 ccFlagBits = ccFlagBits &
952 ~(ext & (CFBit | ECFBit | ZFBit | EZFBit));
953 else
954 ccFlagBits = ccFlagBits |
955 (ext & (CFBit | ECFBit | ZFBit | EZFBit));
956 '''
957
958 class Zext(RegOp):
959 code = 'DestReg = merge(DestReg, bits(psrc1, op2, 0), dataSize);'
960
961 class Rddr(RegOp):
962 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"):
963 super(Rddr, self).__init__(dest, \
964 src1, "InstRegIndex(NUM_INTREGS)", flags, dataSize)
965 code = '''
966 CR4 cr4 = CR4Op;
967 DR7 dr7 = DR7Op;
968 if ((cr4.de == 1 && (src1 == 4 || src1 == 5)) || src1 >= 8) {
969 fault = new InvalidOpcode();
970 } else if (dr7.gd) {
971 fault = new DebugException();
972 } else {
973 DestReg = merge(DestReg, DebugSrc1, dataSize);
974 }
975 '''
976
977 class Wrdr(RegOp):
978 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"):
979 super(Wrdr, self).__init__(dest, \
980 src1, "InstRegIndex(NUM_INTREGS)", flags, dataSize)
981 code = '''
982 CR4 cr4 = CR4Op;
983 DR7 dr7 = DR7Op;
984 if ((cr4.de == 1 && (dest == 4 || dest == 5)) || dest >= 8) {
985 fault = new InvalidOpcode();
986 } else if ((dest == 6 || dest == 7) && bits(psrc1, 63, 32) &&
987 machInst.mode.mode == LongMode) {
988 fault = new GeneralProtection(0);
989 } else if (dr7.gd) {
990 fault = new DebugException();
991 } else {
992 DebugDest = psrc1;
993 }
994 '''
995
996 class Rdcr(RegOp):
997 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"):
998 super(Rdcr, self).__init__(dest, \
999 src1, "InstRegIndex(NUM_INTREGS)", flags, dataSize)
1000 code = '''
1001 if (src1 == 1 || (src1 > 4 && src1 < 8) || (src1 > 8)) {
1002 fault = new InvalidOpcode();
1003 } else {
1004 DestReg = merge(DestReg, ControlSrc1, dataSize);
1005 }
1006 '''
1007
1008 class Wrcr(RegOp):
1009 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"):
1010 super(Wrcr, self).__init__(dest, \
1011 src1, "InstRegIndex(NUM_INTREGS)", flags, dataSize)
1012 code = '''
1013 if (dest == 1 || (dest > 4 && dest < 8) || (dest > 8)) {
1014 fault = new InvalidOpcode();
1015 } else {
1016 // There are *s in the line below so it doesn't confuse the
1017 // parser. They may be unnecessary.
1018 //Mis*cReg old*Val = pick(Cont*rolDest, 0, dat*aSize);
1019 MiscReg newVal = psrc1;
1020
1021 // Check for any modifications that would cause a fault.
1022 switch(dest) {
1023 case 0:
1024 {
1025 Efer efer = EferOp;
1026 CR0 cr0 = newVal;
1027 CR4 oldCr4 = CR4Op;
1028 if (bits(newVal, 63, 32) ||
1029 (!cr0.pe && cr0.pg) ||
1030 (!cr0.cd && cr0.nw) ||
1031 (cr0.pg && efer.lme && !oldCr4.pae))
1032 fault = new GeneralProtection(0);
1033 }
1034 break;
1035 case 2:
1036 break;
1037 case 3:
1038 break;
1039 case 4:
1040 {
1041 CR4 cr4 = newVal;
1042 // PAE can't be disabled in long mode.
1043 if (bits(newVal, 63, 11) ||
1044 (machInst.mode.mode == LongMode && !cr4.pae))
1045 fault = new GeneralProtection(0);
1046 }
1047 break;
1048 case 8:
1049 {
1050 if (bits(newVal, 63, 4))
1051 fault = new GeneralProtection(0);
1052 }
1053 default:
1054 panic("Unrecognized control register %d.\\n", dest);
1055 }
1056 ControlDest = newVal;
1057 }
1058 '''
1059
1060 # Microops for manipulating segmentation registers
1061 class SegOp(CondRegOp):
1062 abstract = True
1063 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"):
1064 super(SegOp, self).__init__(dest, \
1065 src1, "InstRegIndex(NUM_INTREGS)", flags, dataSize)
1066
1067 class Wrbase(SegOp):
1068 code = '''
1069 SegBaseDest = psrc1;
1070 '''
1071
1072 class Wrlimit(SegOp):
1073 code = '''
1074 SegLimitDest = psrc1;
1075 '''
1076
1077 class Wrsel(SegOp):
1078 code = '''
1079 SegSelDest = psrc1;
1080 '''
1081
1082 class WrAttr(SegOp):
1083 code = '''
1084 SegAttrDest = psrc1;
1085 '''
1086
1087 class Rdbase(SegOp):
1088 code = '''
1089 DestReg = merge(DestReg, SegBaseSrc1, dataSize);
1090 '''
1091
1092 class Rdlimit(SegOp):
1093 code = '''
1094 DestReg = merge(DestReg, SegLimitSrc1, dataSize);
1095 '''
1096
1097 class RdAttr(SegOp):
1098 code = '''
1099 DestReg = merge(DestReg, SegAttrSrc1, dataSize);
1100 '''
1101
1102 class Rdsel(SegOp):
1103 code = '''
1104 DestReg = merge(DestReg, SegSelSrc1, dataSize);
1105 '''
1106
1107 class Rdval(RegOp):
1108 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"):
1109 super(Rdval, self).__init__(dest, src1, \
1110 "InstRegIndex(NUM_INTREGS)", flags, dataSize)
1111 code = '''
1112 DestReg = MiscRegSrc1;
1113 '''
1114
1115 class Wrval(RegOp):
1116 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"):
1117 super(Wrval, self).__init__(dest, src1, \
1118 "InstRegIndex(NUM_INTREGS)", flags, dataSize)
1119 code = '''
1120 MiscRegDest = SrcReg1;
1121 '''
1122
1123 class Chks(RegOp):
1124 def __init__(self, dest, src1, src2=0,
1125 flags=None, dataSize="env.dataSize"):
1126 super(Chks, self).__init__(dest,
1127 src1, src2, flags, dataSize)
1128 code = '''
1129 // The selector is in source 1 and can be at most 16 bits.
1130 SegSelector selector = DestReg;
1131 SegDescriptor desc = SrcReg1;
1132 HandyM5Reg m5reg = M5Reg;
1133
1134 switch (imm8)
1135 {
1136 case SegNoCheck:
1137 break;
1138 case SegCSCheck:
1139 // Make sure it's the right type
1140 if (desc.s == 0 || desc.type.codeOrData != 1) {
1141 fault = new GeneralProtection(0);
1142 } else if (m5reg.cpl != desc.dpl) {
1143 fault = new GeneralProtection(0);
1144 }
1145 break;
1146 case SegCallGateCheck:
1147 panic("CS checks for far calls/jumps through call gates"
1148 "not implemented.\\n");
1149 break;
1150 case SegSoftIntGateCheck:
1151 // Check permissions.
1152 if (desc.dpl < m5reg.cpl) {
1153 fault = new GeneralProtection(selector);
1154 break;
1155 }
1156 // Fall through on purpose
1157 case SegIntGateCheck:
1158 // Make sure the gate's the right type.
1159 if ((m5reg.mode == LongMode && (desc.type & 0xe) != 0xe) ||
1160 ((desc.type & 0x6) != 0x6)) {
1161 fault = new GeneralProtection(0);
1162 }
1163 break;
1164 case SegSSCheck:
1165 if (selector.si || selector.ti) {
1166 if (!desc.p) {
1167 fault = new StackFault(selector);
1168 }
1169 } else {
1170 if ((m5reg.submode != SixtyFourBitMode ||
1171 m5reg.cpl == 3) ||
1172 !(desc.s == 1 &&
1173 desc.type.codeOrData == 0 && desc.type.w) ||
1174 (desc.dpl != m5reg.cpl) ||
1175 (selector.rpl != m5reg.cpl)) {
1176 fault = new GeneralProtection(selector);
1177 }
1178 }
1179 break;
1180 case SegIretCheck:
1181 {
1182 if ((!selector.si && !selector.ti) ||
1183 (selector.rpl < m5reg.cpl) ||
1184 !(desc.s == 1 && desc.type.codeOrData == 1) ||
1185 (!desc.type.c && desc.dpl != selector.rpl) ||
1186 (desc.type.c && desc.dpl > selector.rpl)) {
1187 fault = new GeneralProtection(selector);
1188 } else if (!desc.p) {
1189 fault = new SegmentNotPresent(selector);
1190 }
1191 break;
1192 }
1193 case SegIntCSCheck:
1194 if (m5reg.mode == LongMode) {
1195 if (desc.l != 1 || desc.d != 0) {
1196 fault = new GeneralProtection(selector);
1197 }
1198 } else {
1199 panic("Interrupt CS checks not implemented "
1200 "in legacy mode.\\n");
1201 }
1202 break;
1203 case SegTRCheck:
1204 if (!selector.si || selector.ti) {
1205 fault = new GeneralProtection(selector);
1206 }
1207 break;
1208 case SegTSSCheck:
1209 if (!desc.p) {
1210 fault = new SegmentNotPresent(selector);
1211 } else if (!(desc.type == 0x9 ||
1212 (desc.type == 1 &&
1213 m5reg.mode != LongMode))) {
1214 fault = new GeneralProtection(selector);
1215 }
1216 break;
1217 case SegInGDTCheck:
1218 if (selector.ti) {
1219 fault = new GeneralProtection(selector);
1220 }
1221 break;
1222 case SegLDTCheck:
1223 if (!desc.p) {
1224 fault = new SegmentNotPresent(selector);
1225 } else if (desc.type != 0x2) {
1226 fault = new GeneralProtection(selector);
1227 }
1228 break;
1229 default:
1230 panic("Undefined segment check type.\\n");
1231 }
1232 '''
1233 flag_code = '''
1234 // Check for a NULL selector and set ZF,EZF appropriately.
1235 ccFlagBits = ccFlagBits & ~(ext & (ZFBit | EZFBit));
1236 if (!selector.si && !selector.ti)
1237 ccFlagBits = ccFlagBits | (ext & (ZFBit | EZFBit));
1238 '''
1239
1240 class Wrdh(RegOp):
1241 code = '''
1242 SegDescriptor desc = SrcReg1;
1243
1244 uint64_t target = bits(SrcReg2, 31, 0) << 32;
1245 switch(desc.type) {
1246 case LDT64:
1247 case AvailableTSS64:
1248 case BusyTSS64:
1249 replaceBits(target, 23, 0, desc.baseLow);
1250 replaceBits(target, 31, 24, desc.baseHigh);
1251 break;
1252 case CallGate64:
1253 case IntGate64:
1254 case TrapGate64:
1255 replaceBits(target, 15, 0, bits(desc, 15, 0));
1256 replaceBits(target, 31, 16, bits(desc, 63, 48));
1257 break;
1258 default:
1259 panic("Wrdh used with wrong descriptor type!\\n");
1260 }
1261 DestReg = target;
1262 '''
1263
1264 class Wrtsc(WrRegOp):
1265 code = '''
1266 TscOp = psrc1;
1267 '''
1268
1269 class Rdtsc(RdRegOp):
1270 code = '''
1271 DestReg = TscOp;
1272 '''
1273
1274 class Rdm5reg(RdRegOp):
1275 code = '''
1276 DestReg = M5Reg;
1277 '''
1278
1279 class Wrdl(RegOp):
1280 code = '''
1281 SegDescriptor desc = SrcReg1;
1282 SegSelector selector = SrcReg2;
1283 if (selector.si || selector.ti) {
1284 if (!desc.p)
1285 panic("Segment not present.\\n");
1286 SegAttr attr = 0;
1287 attr.dpl = desc.dpl;
1288 attr.unusable = 0;
1289 attr.defaultSize = desc.d;
1290 attr.longMode = desc.l;
1291 attr.avl = desc.avl;
1292 attr.granularity = desc.g;
1293 attr.present = desc.p;
1294 attr.system = desc.s;
1295 attr.type = desc.type;
1296 if (!desc.s) {
1297 // The expand down bit happens to be set for gates.
1298 if (desc.type.e) {
1299 panic("Gate descriptor encountered.\\n");
1300 }
1301 attr.readable = 1;
1302 attr.writable = 1;
1303 attr.expandDown = 0;
1304 } else {
1305 if (desc.type.codeOrData) {
1306 attr.expandDown = 0;
1307 attr.readable = desc.type.r;
1308 attr.writable = 0;
1309 } else {
1310 attr.expandDown = desc.type.e;
1311 attr.readable = 1;
1312 attr.writable = desc.type.w;
1313 }
1314 }
1315 Addr base = desc.baseLow | (desc.baseHigh << 24);
1316 Addr limit = desc.limitLow | (desc.limitHigh << 16);
1317 if (desc.g)
1318 limit = (limit << 12) | mask(12);
1319 SegBaseDest = base;
1320 SegLimitDest = limit;
1321 SegAttrDest = attr;
1322 } else {
1323 SegBaseDest = SegBaseDest;
1324 SegLimitDest = SegLimitDest;
1325 SegAttrDest = SegAttrDest;
1326 }
1327 '''
1328}};
988 class Wrip(WrRegOp, CondRegOp):
989 code = 'RIP = psrc1 + sop2 + CSBase'
990 else_code="RIP = RIP;"
991
992 class Wruflags(WrRegOp):
993 code = 'ccFlagBits = psrc1 ^ op2'
994
995 class Wrflags(WrRegOp):
996 code = '''
997 MiscReg newFlags = psrc1 ^ op2;
998 MiscReg userFlagMask = 0xDD5;
999 // Get only the user flags
1000 ccFlagBits = newFlags & userFlagMask;
1001 // Get everything else
1002 nccFlagBits = newFlags & ~userFlagMask;
1003 '''
1004
1005 class Rdip(RdRegOp):
1006 code = 'DestReg = RIP - CSBase'
1007
1008 class Ruflags(RdRegOp):
1009 code = 'DestReg = ccFlagBits'
1010
1011 class Rflags(RdRegOp):
1012 code = 'DestReg = ccFlagBits | nccFlagBits'
1013
1014 class Ruflag(RegOp):
1015 code = '''
1016 int flag = bits(ccFlagBits, imm8);
1017 DestReg = merge(DestReg, flag, dataSize);
1018 ccFlagBits = (flag == 0) ? (ccFlagBits | EZFBit) :
1019 (ccFlagBits & ~EZFBit);
1020 '''
1021 def __init__(self, dest, imm, flags=None, \
1022 dataSize="env.dataSize"):
1023 super(Ruflag, self).__init__(dest, \
1024 "InstRegIndex(NUM_INTREGS)", imm, flags, dataSize)
1025
1026 class Rflag(RegOp):
1027 code = '''
1028 MiscReg flagMask = 0x3F7FDD5;
1029 MiscReg flags = (nccFlagBits | ccFlagBits) & flagMask;
1030 int flag = bits(flags, imm8);
1031 DestReg = merge(DestReg, flag, dataSize);
1032 ccFlagBits = (flag == 0) ? (ccFlagBits | EZFBit) :
1033 (ccFlagBits & ~EZFBit);
1034 '''
1035 def __init__(self, dest, imm, flags=None, \
1036 dataSize="env.dataSize"):
1037 super(Rflag, self).__init__(dest, \
1038 "InstRegIndex(NUM_INTREGS)", imm, flags, dataSize)
1039
1040 class Sext(RegOp):
1041 code = '''
1042 IntReg val = psrc1;
1043 // Mask the bit position so that it wraps.
1044 int bitPos = op2 & (dataSize * 8 - 1);
1045 int sign_bit = bits(val, bitPos, bitPos);
1046 uint64_t maskVal = mask(bitPos+1);
1047 val = sign_bit ? (val | ~maskVal) : (val & maskVal);
1048 DestReg = merge(DestReg, val, dataSize);
1049 '''
1050 flag_code = '''
1051 if (!sign_bit)
1052 ccFlagBits = ccFlagBits &
1053 ~(ext & (CFBit | ECFBit | ZFBit | EZFBit));
1054 else
1055 ccFlagBits = ccFlagBits |
1056 (ext & (CFBit | ECFBit | ZFBit | EZFBit));
1057 '''
1058
1059 class Zext(RegOp):
1060 code = 'DestReg = merge(DestReg, bits(psrc1, op2, 0), dataSize);'
1061
1062 class Rddr(RegOp):
1063 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"):
1064 super(Rddr, self).__init__(dest, \
1065 src1, "InstRegIndex(NUM_INTREGS)", flags, dataSize)
1066 code = '''
1067 CR4 cr4 = CR4Op;
1068 DR7 dr7 = DR7Op;
1069 if ((cr4.de == 1 && (src1 == 4 || src1 == 5)) || src1 >= 8) {
1070 fault = new InvalidOpcode();
1071 } else if (dr7.gd) {
1072 fault = new DebugException();
1073 } else {
1074 DestReg = merge(DestReg, DebugSrc1, dataSize);
1075 }
1076 '''
1077
1078 class Wrdr(RegOp):
1079 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"):
1080 super(Wrdr, self).__init__(dest, \
1081 src1, "InstRegIndex(NUM_INTREGS)", flags, dataSize)
1082 code = '''
1083 CR4 cr4 = CR4Op;
1084 DR7 dr7 = DR7Op;
1085 if ((cr4.de == 1 && (dest == 4 || dest == 5)) || dest >= 8) {
1086 fault = new InvalidOpcode();
1087 } else if ((dest == 6 || dest == 7) && bits(psrc1, 63, 32) &&
1088 machInst.mode.mode == LongMode) {
1089 fault = new GeneralProtection(0);
1090 } else if (dr7.gd) {
1091 fault = new DebugException();
1092 } else {
1093 DebugDest = psrc1;
1094 }
1095 '''
1096
1097 class Rdcr(RegOp):
1098 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"):
1099 super(Rdcr, self).__init__(dest, \
1100 src1, "InstRegIndex(NUM_INTREGS)", flags, dataSize)
1101 code = '''
1102 if (src1 == 1 || (src1 > 4 && src1 < 8) || (src1 > 8)) {
1103 fault = new InvalidOpcode();
1104 } else {
1105 DestReg = merge(DestReg, ControlSrc1, dataSize);
1106 }
1107 '''
1108
1109 class Wrcr(RegOp):
1110 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"):
1111 super(Wrcr, self).__init__(dest, \
1112 src1, "InstRegIndex(NUM_INTREGS)", flags, dataSize)
1113 code = '''
1114 if (dest == 1 || (dest > 4 && dest < 8) || (dest > 8)) {
1115 fault = new InvalidOpcode();
1116 } else {
1117 // There are *s in the line below so it doesn't confuse the
1118 // parser. They may be unnecessary.
1119 //Mis*cReg old*Val = pick(Cont*rolDest, 0, dat*aSize);
1120 MiscReg newVal = psrc1;
1121
1122 // Check for any modifications that would cause a fault.
1123 switch(dest) {
1124 case 0:
1125 {
1126 Efer efer = EferOp;
1127 CR0 cr0 = newVal;
1128 CR4 oldCr4 = CR4Op;
1129 if (bits(newVal, 63, 32) ||
1130 (!cr0.pe && cr0.pg) ||
1131 (!cr0.cd && cr0.nw) ||
1132 (cr0.pg && efer.lme && !oldCr4.pae))
1133 fault = new GeneralProtection(0);
1134 }
1135 break;
1136 case 2:
1137 break;
1138 case 3:
1139 break;
1140 case 4:
1141 {
1142 CR4 cr4 = newVal;
1143 // PAE can't be disabled in long mode.
1144 if (bits(newVal, 63, 11) ||
1145 (machInst.mode.mode == LongMode && !cr4.pae))
1146 fault = new GeneralProtection(0);
1147 }
1148 break;
1149 case 8:
1150 {
1151 if (bits(newVal, 63, 4))
1152 fault = new GeneralProtection(0);
1153 }
1154 default:
1155 panic("Unrecognized control register %d.\\n", dest);
1156 }
1157 ControlDest = newVal;
1158 }
1159 '''
1160
1161 # Microops for manipulating segmentation registers
1162 class SegOp(CondRegOp):
1163 abstract = True
1164 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"):
1165 super(SegOp, self).__init__(dest, \
1166 src1, "InstRegIndex(NUM_INTREGS)", flags, dataSize)
1167
1168 class Wrbase(SegOp):
1169 code = '''
1170 SegBaseDest = psrc1;
1171 '''
1172
1173 class Wrlimit(SegOp):
1174 code = '''
1175 SegLimitDest = psrc1;
1176 '''
1177
1178 class Wrsel(SegOp):
1179 code = '''
1180 SegSelDest = psrc1;
1181 '''
1182
1183 class WrAttr(SegOp):
1184 code = '''
1185 SegAttrDest = psrc1;
1186 '''
1187
1188 class Rdbase(SegOp):
1189 code = '''
1190 DestReg = merge(DestReg, SegBaseSrc1, dataSize);
1191 '''
1192
1193 class Rdlimit(SegOp):
1194 code = '''
1195 DestReg = merge(DestReg, SegLimitSrc1, dataSize);
1196 '''
1197
1198 class RdAttr(SegOp):
1199 code = '''
1200 DestReg = merge(DestReg, SegAttrSrc1, dataSize);
1201 '''
1202
1203 class Rdsel(SegOp):
1204 code = '''
1205 DestReg = merge(DestReg, SegSelSrc1, dataSize);
1206 '''
1207
1208 class Rdval(RegOp):
1209 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"):
1210 super(Rdval, self).__init__(dest, src1, \
1211 "InstRegIndex(NUM_INTREGS)", flags, dataSize)
1212 code = '''
1213 DestReg = MiscRegSrc1;
1214 '''
1215
1216 class Wrval(RegOp):
1217 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"):
1218 super(Wrval, self).__init__(dest, src1, \
1219 "InstRegIndex(NUM_INTREGS)", flags, dataSize)
1220 code = '''
1221 MiscRegDest = SrcReg1;
1222 '''
1223
1224 class Chks(RegOp):
1225 def __init__(self, dest, src1, src2=0,
1226 flags=None, dataSize="env.dataSize"):
1227 super(Chks, self).__init__(dest,
1228 src1, src2, flags, dataSize)
1229 code = '''
1230 // The selector is in source 1 and can be at most 16 bits.
1231 SegSelector selector = DestReg;
1232 SegDescriptor desc = SrcReg1;
1233 HandyM5Reg m5reg = M5Reg;
1234
1235 switch (imm8)
1236 {
1237 case SegNoCheck:
1238 break;
1239 case SegCSCheck:
1240 // Make sure it's the right type
1241 if (desc.s == 0 || desc.type.codeOrData != 1) {
1242 fault = new GeneralProtection(0);
1243 } else if (m5reg.cpl != desc.dpl) {
1244 fault = new GeneralProtection(0);
1245 }
1246 break;
1247 case SegCallGateCheck:
1248 panic("CS checks for far calls/jumps through call gates"
1249 "not implemented.\\n");
1250 break;
1251 case SegSoftIntGateCheck:
1252 // Check permissions.
1253 if (desc.dpl < m5reg.cpl) {
1254 fault = new GeneralProtection(selector);
1255 break;
1256 }
1257 // Fall through on purpose
1258 case SegIntGateCheck:
1259 // Make sure the gate's the right type.
1260 if ((m5reg.mode == LongMode && (desc.type & 0xe) != 0xe) ||
1261 ((desc.type & 0x6) != 0x6)) {
1262 fault = new GeneralProtection(0);
1263 }
1264 break;
1265 case SegSSCheck:
1266 if (selector.si || selector.ti) {
1267 if (!desc.p) {
1268 fault = new StackFault(selector);
1269 }
1270 } else {
1271 if ((m5reg.submode != SixtyFourBitMode ||
1272 m5reg.cpl == 3) ||
1273 !(desc.s == 1 &&
1274 desc.type.codeOrData == 0 && desc.type.w) ||
1275 (desc.dpl != m5reg.cpl) ||
1276 (selector.rpl != m5reg.cpl)) {
1277 fault = new GeneralProtection(selector);
1278 }
1279 }
1280 break;
1281 case SegIretCheck:
1282 {
1283 if ((!selector.si && !selector.ti) ||
1284 (selector.rpl < m5reg.cpl) ||
1285 !(desc.s == 1 && desc.type.codeOrData == 1) ||
1286 (!desc.type.c && desc.dpl != selector.rpl) ||
1287 (desc.type.c && desc.dpl > selector.rpl)) {
1288 fault = new GeneralProtection(selector);
1289 } else if (!desc.p) {
1290 fault = new SegmentNotPresent(selector);
1291 }
1292 break;
1293 }
1294 case SegIntCSCheck:
1295 if (m5reg.mode == LongMode) {
1296 if (desc.l != 1 || desc.d != 0) {
1297 fault = new GeneralProtection(selector);
1298 }
1299 } else {
1300 panic("Interrupt CS checks not implemented "
1301 "in legacy mode.\\n");
1302 }
1303 break;
1304 case SegTRCheck:
1305 if (!selector.si || selector.ti) {
1306 fault = new GeneralProtection(selector);
1307 }
1308 break;
1309 case SegTSSCheck:
1310 if (!desc.p) {
1311 fault = new SegmentNotPresent(selector);
1312 } else if (!(desc.type == 0x9 ||
1313 (desc.type == 1 &&
1314 m5reg.mode != LongMode))) {
1315 fault = new GeneralProtection(selector);
1316 }
1317 break;
1318 case SegInGDTCheck:
1319 if (selector.ti) {
1320 fault = new GeneralProtection(selector);
1321 }
1322 break;
1323 case SegLDTCheck:
1324 if (!desc.p) {
1325 fault = new SegmentNotPresent(selector);
1326 } else if (desc.type != 0x2) {
1327 fault = new GeneralProtection(selector);
1328 }
1329 break;
1330 default:
1331 panic("Undefined segment check type.\\n");
1332 }
1333 '''
1334 flag_code = '''
1335 // Check for a NULL selector and set ZF,EZF appropriately.
1336 ccFlagBits = ccFlagBits & ~(ext & (ZFBit | EZFBit));
1337 if (!selector.si && !selector.ti)
1338 ccFlagBits = ccFlagBits | (ext & (ZFBit | EZFBit));
1339 '''
1340
1341 class Wrdh(RegOp):
1342 code = '''
1343 SegDescriptor desc = SrcReg1;
1344
1345 uint64_t target = bits(SrcReg2, 31, 0) << 32;
1346 switch(desc.type) {
1347 case LDT64:
1348 case AvailableTSS64:
1349 case BusyTSS64:
1350 replaceBits(target, 23, 0, desc.baseLow);
1351 replaceBits(target, 31, 24, desc.baseHigh);
1352 break;
1353 case CallGate64:
1354 case IntGate64:
1355 case TrapGate64:
1356 replaceBits(target, 15, 0, bits(desc, 15, 0));
1357 replaceBits(target, 31, 16, bits(desc, 63, 48));
1358 break;
1359 default:
1360 panic("Wrdh used with wrong descriptor type!\\n");
1361 }
1362 DestReg = target;
1363 '''
1364
1365 class Wrtsc(WrRegOp):
1366 code = '''
1367 TscOp = psrc1;
1368 '''
1369
1370 class Rdtsc(RdRegOp):
1371 code = '''
1372 DestReg = TscOp;
1373 '''
1374
1375 class Rdm5reg(RdRegOp):
1376 code = '''
1377 DestReg = M5Reg;
1378 '''
1379
1380 class Wrdl(RegOp):
1381 code = '''
1382 SegDescriptor desc = SrcReg1;
1383 SegSelector selector = SrcReg2;
1384 if (selector.si || selector.ti) {
1385 if (!desc.p)
1386 panic("Segment not present.\\n");
1387 SegAttr attr = 0;
1388 attr.dpl = desc.dpl;
1389 attr.unusable = 0;
1390 attr.defaultSize = desc.d;
1391 attr.longMode = desc.l;
1392 attr.avl = desc.avl;
1393 attr.granularity = desc.g;
1394 attr.present = desc.p;
1395 attr.system = desc.s;
1396 attr.type = desc.type;
1397 if (!desc.s) {
1398 // The expand down bit happens to be set for gates.
1399 if (desc.type.e) {
1400 panic("Gate descriptor encountered.\\n");
1401 }
1402 attr.readable = 1;
1403 attr.writable = 1;
1404 attr.expandDown = 0;
1405 } else {
1406 if (desc.type.codeOrData) {
1407 attr.expandDown = 0;
1408 attr.readable = desc.type.r;
1409 attr.writable = 0;
1410 } else {
1411 attr.expandDown = desc.type.e;
1412 attr.readable = 1;
1413 attr.writable = desc.type.w;
1414 }
1415 }
1416 Addr base = desc.baseLow | (desc.baseHigh << 24);
1417 Addr limit = desc.limitLow | (desc.limitHigh << 16);
1418 if (desc.g)
1419 limit = (limit << 12) | mask(12);
1420 SegBaseDest = base;
1421 SegLimitDest = limit;
1422 SegAttrDest = attr;
1423 } else {
1424 SegBaseDest = SegBaseDest;
1425 SegLimitDest = SegLimitDest;
1426 SegAttrDest = SegAttrDest;
1427 }
1428 '''
1429}};