regop.isa (5682:6f1cab082ba7) regop.isa (5788:6d4161a36ca1)
1// Copyright (c) 2007-2008 The Hewlett-Packard Development Company
2// All rights reserved.
3//
4// Redistribution and use of this software in source and binary forms,
5// with or without modification, are permitted provided that the
6// following conditions are met:
7//
8// The software must be used only for Non-Commercial Use which means any
9// use which is NOT directed to receiving any direct monetary
10// compensation for, or commercial advantage from such use. Illustrative
11// examples of non-commercial use are academic research, personal study,
12// teaching, education and corporate research & development.
13// Illustrative examples of commercial use are distributing products for
14// commercial advantage and providing services using the software for
15// commercial advantage.
16//
17// If you wish to use this software or functionality therein that may be
18// covered by patents for commercial use, please contact:
19// Director of Intellectual Property Licensing
20// Office of Strategy and Technology
21// Hewlett-Packard Company
22// 1501 Page Mill Road
23// Palo Alto, California 94304
24//
25// Redistributions of source code must retain the above copyright notice,
26// this list of conditions and the following disclaimer. Redistributions
27// in binary form must reproduce the above copyright notice, this list of
28// conditions and the following disclaimer in the documentation and/or
29// other materials provided with the distribution. Neither the name of
30// the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its
31// contributors may be used to endorse or promote products derived from
32// this software without specific prior written permission. No right of
33// sublicense is granted herewith. Derivatives of the software and
34// output created using the software may be prepared, but only for
35// Non-Commercial Uses. Derivatives of the software may be shared with
36// others provided: (i) the others agree to abide by the list of
37// conditions herein which includes the Non-Commercial Use restrictions;
38// and (ii) such Derivatives of the software include the above copyright
39// notice to acknowledge the contribution from this software where
40// applicable, this list of conditions and the disclaimer below.
41//
42// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
43// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
44// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
45// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
46// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
47// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
48// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
49// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
50// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
51// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
52// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
53//
54// Authors: Gabe Black
55
56//////////////////////////////////////////////////////////////////////////
57//
58// RegOp Microop templates
59//
60//////////////////////////////////////////////////////////////////////////
61
62def template MicroRegOpExecute {{
63 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
64 Trace::InstRecord *traceData) const
65 {
66 Fault fault = NoFault;
67
68 DPRINTF(X86, "The data size is %d\n", dataSize);
69 %(op_decl)s;
70 %(op_rd)s;
71
72 if(%(cond_check)s)
73 {
74 %(code)s;
75 %(flag_code)s;
76 }
77 else
78 {
79 %(else_code)s;
80 }
81
82 //Write the resulting state to the execution context
83 if(fault == NoFault)
84 {
85 %(op_wb)s;
86 }
87 return fault;
88 }
89}};
90
91def template MicroRegOpImmExecute {{
92 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
93 Trace::InstRecord *traceData) const
94 {
95 Fault fault = NoFault;
96
97 %(op_decl)s;
98 %(op_rd)s;
99
100 if(%(cond_check)s)
101 {
102 %(code)s;
103 %(flag_code)s;
104 }
105 else
106 {
107 %(else_code)s;
108 }
109
110 //Write the resulting state to the execution context
111 if(fault == NoFault)
112 {
113 %(op_wb)s;
114 }
115 return fault;
116 }
117}};
118
119def template MicroRegOpDeclare {{
120 class %(class_name)s : public %(base_class)s
121 {
122 protected:
123 void buildMe();
124
125 public:
126 %(class_name)s(ExtMachInst _machInst,
127 const char * instMnem,
128 bool isMicro, bool isDelayed, bool isFirst, bool isLast,
129 RegIndex _src1, RegIndex _src2, RegIndex _dest,
130 uint8_t _dataSize, uint16_t _ext);
131
132 %(class_name)s(ExtMachInst _machInst,
133 const char * instMnem,
134 RegIndex _src1, RegIndex _src2, RegIndex _dest,
135 uint8_t _dataSize, uint16_t _ext);
136
137 %(BasicExecDeclare)s
138 };
139}};
140
141def template MicroRegOpImmDeclare {{
142
143 class %(class_name)s : public %(base_class)s
144 {
145 protected:
146 void buildMe();
147
148 public:
149 %(class_name)s(ExtMachInst _machInst,
150 const char * instMnem,
151 bool isMicro, bool isDelayed, bool isFirst, bool isLast,
152 RegIndex _src1, uint16_t _imm8, RegIndex _dest,
153 uint8_t _dataSize, uint16_t _ext);
154
155 %(class_name)s(ExtMachInst _machInst,
156 const char * instMnem,
157 RegIndex _src1, uint16_t _imm8, RegIndex _dest,
158 uint8_t _dataSize, uint16_t _ext);
159
160 %(BasicExecDeclare)s
161 };
162}};
163
164def template MicroRegOpConstructor {{
165
166 inline void %(class_name)s::buildMe()
167 {
168 %(constructor)s;
169 }
170
171 inline %(class_name)s::%(class_name)s(
172 ExtMachInst machInst, const char * instMnem,
173 RegIndex _src1, RegIndex _src2, RegIndex _dest,
174 uint8_t _dataSize, uint16_t _ext) :
175 %(base_class)s(machInst, "%(mnemonic)s", instMnem,
176 false, false, false, false,
177 _src1, _src2, _dest, _dataSize, _ext,
178 %(op_class)s)
179 {
180 buildMe();
181 }
182
183 inline %(class_name)s::%(class_name)s(
184 ExtMachInst machInst, const char * instMnem,
185 bool isMicro, bool isDelayed, bool isFirst, bool isLast,
186 RegIndex _src1, RegIndex _src2, RegIndex _dest,
187 uint8_t _dataSize, uint16_t _ext) :
188 %(base_class)s(machInst, "%(mnemonic)s", instMnem,
189 isMicro, isDelayed, isFirst, isLast,
190 _src1, _src2, _dest, _dataSize, _ext,
191 %(op_class)s)
192 {
193 buildMe();
194 }
195}};
196
197def template MicroRegOpImmConstructor {{
198
199 inline void %(class_name)s::buildMe()
200 {
201 %(constructor)s;
202 }
203
204 inline %(class_name)s::%(class_name)s(
205 ExtMachInst machInst, const char * instMnem,
206 RegIndex _src1, uint16_t _imm8, RegIndex _dest,
207 uint8_t _dataSize, uint16_t _ext) :
208 %(base_class)s(machInst, "%(mnemonic)s", instMnem,
209 false, false, false, false,
210 _src1, _imm8, _dest, _dataSize, _ext,
211 %(op_class)s)
212 {
213 buildMe();
214 }
215
216 inline %(class_name)s::%(class_name)s(
217 ExtMachInst machInst, const char * instMnem,
218 bool isMicro, bool isDelayed, bool isFirst, bool isLast,
219 RegIndex _src1, uint16_t _imm8, RegIndex _dest,
220 uint8_t _dataSize, uint16_t _ext) :
221 %(base_class)s(machInst, "%(mnemonic)s", instMnem,
222 isMicro, isDelayed, isFirst, isLast,
223 _src1, _imm8, _dest, _dataSize, _ext,
224 %(op_class)s)
225 {
226 buildMe();
227 }
228}};
229
230output header {{
231 void
232 divide(uint64_t dividend, uint64_t divisor,
233 uint64_t &quotient, uint64_t &remainder);
234
235 enum SegmentSelectorCheck {
236 SegNoCheck, SegCSCheck, SegCallGateCheck, SegIntGateCheck,
237 SegSSCheck, SegIretCheck, SegIntCSCheck
238 };
239
240 enum LongModeDescriptorType {
241 LDT64 = 2,
242 AvailableTSS64 = 9,
243 BusyTSS64 = 0xb,
244 CallGate64 = 0xc,
245 IntGate64 = 0xe,
246 TrapGate64 = 0xf
247 };
248}};
249
250output decoder {{
251 void
252 divide(uint64_t dividend, uint64_t divisor,
253 uint64_t &quotient, uint64_t &remainder)
254 {
255 //Check for divide by zero.
256 if (divisor == 0)
257 panic("Divide by zero!\\n");
258 //If the divisor is bigger than the dividend, don't do anything.
259 if (divisor <= dividend) {
260 //Shift the divisor so it's msb lines up with the dividend.
261 int dividendMsb = findMsbSet(dividend);
262 int divisorMsb = findMsbSet(divisor);
263 int shift = dividendMsb - divisorMsb;
264 divisor <<= shift;
265 //Compute what we'll add to the quotient if the divisor isn't
266 //now larger than the dividend.
267 uint64_t quotientBit = 1;
268 quotientBit <<= shift;
269 //If we need to step back a bit (no pun intended) because the
270 //divisor got too to large, do that here. This is the "or two"
271 //part of one or two bit division.
272 if (divisor > dividend) {
273 quotientBit >>= 1;
274 divisor >>= 1;
275 }
276 //Decrement the remainder and increment the quotient.
277 quotient += quotientBit;
278 remainder -= divisor;
279 }
280 }
281}};
282
283let {{
284 # Make these empty strings so that concatenating onto
285 # them will always work.
286 header_output = ""
287 decoder_output = ""
288 exec_output = ""
289
290 immTemplates = (
291 MicroRegOpImmDeclare,
292 MicroRegOpImmConstructor,
293 MicroRegOpImmExecute)
294
295 regTemplates = (
296 MicroRegOpDeclare,
297 MicroRegOpConstructor,
298 MicroRegOpExecute)
299
300 class RegOpMeta(type):
301 def buildCppClasses(self, name, Name, suffix, \
302 code, flag_code, cond_check, else_code):
303
304 # Globals to stick the output in
305 global header_output
306 global decoder_output
307 global exec_output
308
309 # Stick all the code together so it can be searched at once
310 allCode = "|".join((code, flag_code, cond_check, else_code))
311
312 # If op2 is used anywhere, make register and immediate versions
313 # of this code.
314 matcher = re.compile("(?<!\\w)(?P<prefix>s?)op2(?P<typeQual>\\.\\w+)?")
315 match = matcher.search(allCode)
316 if match:
317 typeQual = ""
318 if match.group("typeQual"):
319 typeQual = match.group("typeQual")
320 src2_name = "%spsrc2%s" % (match.group("prefix"), typeQual)
321 self.buildCppClasses(name, Name, suffix,
322 matcher.sub(src2_name, code),
323 matcher.sub(src2_name, flag_code),
324 matcher.sub(src2_name, cond_check),
325 matcher.sub(src2_name, else_code))
326 self.buildCppClasses(name + "i", Name, suffix + "Imm",
327 matcher.sub("imm8", code),
328 matcher.sub("imm8", flag_code),
329 matcher.sub("imm8", cond_check),
330 matcher.sub("imm8", else_code))
331 return
332
333 # If there's something optional to do with flags, generate
334 # a version without it and fix up this version to use it.
335 if flag_code != "" or cond_check != "true":
336 self.buildCppClasses(name, Name, suffix,
337 code, "", "true", else_code)
338 suffix = "Flags" + suffix
339
340 # If psrc1 or psrc2 is used, we need to actually insert code to
341 # compute it.
342 matcher = re.compile("(?<!\w)psrc1(?!\w)")
343 if matcher.search(allCode):
344 code = "uint64_t psrc1 = pick(SrcReg1, 0, dataSize);" + code
345 matcher = re.compile("(?<!\w)psrc2(?!\w)")
346 if matcher.search(allCode):
347 code = "uint64_t psrc2 = pick(SrcReg2, 1, dataSize);" + code
348 # Also make available versions which do sign extension
349 matcher = re.compile("(?<!\w)spsrc1(?!\w)")
350 if matcher.search(allCode):
351 code = "int64_t spsrc1 = signedPick(SrcReg1, 0, dataSize);" + code
352 matcher = re.compile("(?<!\w)spsrc2(?!\w)")
353 if matcher.search(allCode):
354 code = "int64_t spsrc2 = signedPick(SrcReg2, 1, dataSize);" + code
355
356 base = "X86ISA::RegOp"
357
358 # If imm8 shows up in the code, use the immediate templates, if
359 # not, hopefully the register ones will be correct.
360 templates = regTemplates
361 matcher = re.compile("(?<!\w)imm8(?!\w)")
362 if matcher.search(allCode):
363 base += "Imm"
364 templates = immTemplates
365
366 # Get everything ready for the substitution
367 iop = InstObjParams(name, Name + suffix, base,
368 {"code" : code,
369 "flag_code" : flag_code,
370 "cond_check" : cond_check,
371 "else_code" : else_code})
372
373 # Generate the actual code (finally!)
374 header_output += templates[0].subst(iop)
375 decoder_output += templates[1].subst(iop)
376 exec_output += templates[2].subst(iop)
377
378
379 def __new__(mcls, Name, bases, dict):
380 abstract = False
381 name = Name.lower()
382 if "abstract" in dict:
383 abstract = dict['abstract']
384 del dict['abstract']
385
386 cls = super(RegOpMeta, mcls).__new__(mcls, Name, bases, dict)
387 if not abstract:
388 cls.className = Name
389 cls.base_mnemonic = name
390 code = cls.code
391 flag_code = cls.flag_code
392 cond_check = cls.cond_check
393 else_code = cls.else_code
394
395 # Set up the C++ classes
396 mcls.buildCppClasses(cls, name, Name, "",
397 code, flag_code, cond_check, else_code)
398
399 # Hook into the microassembler dict
400 global microopClasses
401 microopClasses[name] = cls
402
403 allCode = "|".join((code, flag_code, cond_check, else_code))
404
405 # If op2 is used anywhere, make register and immediate versions
406 # of this code.
407 matcher = re.compile("op2(?P<typeQual>\\.\\w+)?")
408 if matcher.search(allCode):
409 microopClasses[name + 'i'] = cls
410 return cls
411
412
413 class RegOp(X86Microop):
414 __metaclass__ = RegOpMeta
415 # This class itself doesn't act as a microop
416 abstract = True
417
418 # Default template parameter values
419 flag_code = ""
420 cond_check = "true"
421 else_code = ";"
422
423 def __init__(self, dest, src1, op2, flags = None, dataSize = "env.dataSize"):
424 self.dest = dest
425 self.src1 = src1
426 self.op2 = op2
427 self.flags = flags
428 self.dataSize = dataSize
429 if flags is None:
430 self.ext = 0
431 else:
432 if not isinstance(flags, (list, tuple)):
433 raise Exception, "flags must be a list or tuple of flags"
434 self.ext = " | ".join(flags)
435 self.className += "Flags"
436
437 def getAllocator(self, *microFlags):
438 className = self.className
439 if self.mnemonic == self.base_mnemonic + 'i':
440 className += "Imm"
1// Copyright (c) 2007-2008 The Hewlett-Packard Development Company
2// All rights reserved.
3//
4// Redistribution and use of this software in source and binary forms,
5// with or without modification, are permitted provided that the
6// following conditions are met:
7//
8// The software must be used only for Non-Commercial Use which means any
9// use which is NOT directed to receiving any direct monetary
10// compensation for, or commercial advantage from such use. Illustrative
11// examples of non-commercial use are academic research, personal study,
12// teaching, education and corporate research & development.
13// Illustrative examples of commercial use are distributing products for
14// commercial advantage and providing services using the software for
15// commercial advantage.
16//
17// If you wish to use this software or functionality therein that may be
18// covered by patents for commercial use, please contact:
19// Director of Intellectual Property Licensing
20// Office of Strategy and Technology
21// Hewlett-Packard Company
22// 1501 Page Mill Road
23// Palo Alto, California 94304
24//
25// Redistributions of source code must retain the above copyright notice,
26// this list of conditions and the following disclaimer. Redistributions
27// in binary form must reproduce the above copyright notice, this list of
28// conditions and the following disclaimer in the documentation and/or
29// other materials provided with the distribution. Neither the name of
30// the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its
31// contributors may be used to endorse or promote products derived from
32// this software without specific prior written permission. No right of
33// sublicense is granted herewith. Derivatives of the software and
34// output created using the software may be prepared, but only for
35// Non-Commercial Uses. Derivatives of the software may be shared with
36// others provided: (i) the others agree to abide by the list of
37// conditions herein which includes the Non-Commercial Use restrictions;
38// and (ii) such Derivatives of the software include the above copyright
39// notice to acknowledge the contribution from this software where
40// applicable, this list of conditions and the disclaimer below.
41//
42// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
43// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
44// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
45// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
46// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
47// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
48// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
49// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
50// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
51// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
52// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
53//
54// Authors: Gabe Black
55
56//////////////////////////////////////////////////////////////////////////
57//
58// RegOp Microop templates
59//
60//////////////////////////////////////////////////////////////////////////
61
62def template MicroRegOpExecute {{
63 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
64 Trace::InstRecord *traceData) const
65 {
66 Fault fault = NoFault;
67
68 DPRINTF(X86, "The data size is %d\n", dataSize);
69 %(op_decl)s;
70 %(op_rd)s;
71
72 if(%(cond_check)s)
73 {
74 %(code)s;
75 %(flag_code)s;
76 }
77 else
78 {
79 %(else_code)s;
80 }
81
82 //Write the resulting state to the execution context
83 if(fault == NoFault)
84 {
85 %(op_wb)s;
86 }
87 return fault;
88 }
89}};
90
91def template MicroRegOpImmExecute {{
92 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
93 Trace::InstRecord *traceData) const
94 {
95 Fault fault = NoFault;
96
97 %(op_decl)s;
98 %(op_rd)s;
99
100 if(%(cond_check)s)
101 {
102 %(code)s;
103 %(flag_code)s;
104 }
105 else
106 {
107 %(else_code)s;
108 }
109
110 //Write the resulting state to the execution context
111 if(fault == NoFault)
112 {
113 %(op_wb)s;
114 }
115 return fault;
116 }
117}};
118
119def template MicroRegOpDeclare {{
120 class %(class_name)s : public %(base_class)s
121 {
122 protected:
123 void buildMe();
124
125 public:
126 %(class_name)s(ExtMachInst _machInst,
127 const char * instMnem,
128 bool isMicro, bool isDelayed, bool isFirst, bool isLast,
129 RegIndex _src1, RegIndex _src2, RegIndex _dest,
130 uint8_t _dataSize, uint16_t _ext);
131
132 %(class_name)s(ExtMachInst _machInst,
133 const char * instMnem,
134 RegIndex _src1, RegIndex _src2, RegIndex _dest,
135 uint8_t _dataSize, uint16_t _ext);
136
137 %(BasicExecDeclare)s
138 };
139}};
140
141def template MicroRegOpImmDeclare {{
142
143 class %(class_name)s : public %(base_class)s
144 {
145 protected:
146 void buildMe();
147
148 public:
149 %(class_name)s(ExtMachInst _machInst,
150 const char * instMnem,
151 bool isMicro, bool isDelayed, bool isFirst, bool isLast,
152 RegIndex _src1, uint16_t _imm8, RegIndex _dest,
153 uint8_t _dataSize, uint16_t _ext);
154
155 %(class_name)s(ExtMachInst _machInst,
156 const char * instMnem,
157 RegIndex _src1, uint16_t _imm8, RegIndex _dest,
158 uint8_t _dataSize, uint16_t _ext);
159
160 %(BasicExecDeclare)s
161 };
162}};
163
164def template MicroRegOpConstructor {{
165
166 inline void %(class_name)s::buildMe()
167 {
168 %(constructor)s;
169 }
170
171 inline %(class_name)s::%(class_name)s(
172 ExtMachInst machInst, const char * instMnem,
173 RegIndex _src1, RegIndex _src2, RegIndex _dest,
174 uint8_t _dataSize, uint16_t _ext) :
175 %(base_class)s(machInst, "%(mnemonic)s", instMnem,
176 false, false, false, false,
177 _src1, _src2, _dest, _dataSize, _ext,
178 %(op_class)s)
179 {
180 buildMe();
181 }
182
183 inline %(class_name)s::%(class_name)s(
184 ExtMachInst machInst, const char * instMnem,
185 bool isMicro, bool isDelayed, bool isFirst, bool isLast,
186 RegIndex _src1, RegIndex _src2, RegIndex _dest,
187 uint8_t _dataSize, uint16_t _ext) :
188 %(base_class)s(machInst, "%(mnemonic)s", instMnem,
189 isMicro, isDelayed, isFirst, isLast,
190 _src1, _src2, _dest, _dataSize, _ext,
191 %(op_class)s)
192 {
193 buildMe();
194 }
195}};
196
197def template MicroRegOpImmConstructor {{
198
199 inline void %(class_name)s::buildMe()
200 {
201 %(constructor)s;
202 }
203
204 inline %(class_name)s::%(class_name)s(
205 ExtMachInst machInst, const char * instMnem,
206 RegIndex _src1, uint16_t _imm8, RegIndex _dest,
207 uint8_t _dataSize, uint16_t _ext) :
208 %(base_class)s(machInst, "%(mnemonic)s", instMnem,
209 false, false, false, false,
210 _src1, _imm8, _dest, _dataSize, _ext,
211 %(op_class)s)
212 {
213 buildMe();
214 }
215
216 inline %(class_name)s::%(class_name)s(
217 ExtMachInst machInst, const char * instMnem,
218 bool isMicro, bool isDelayed, bool isFirst, bool isLast,
219 RegIndex _src1, uint16_t _imm8, RegIndex _dest,
220 uint8_t _dataSize, uint16_t _ext) :
221 %(base_class)s(machInst, "%(mnemonic)s", instMnem,
222 isMicro, isDelayed, isFirst, isLast,
223 _src1, _imm8, _dest, _dataSize, _ext,
224 %(op_class)s)
225 {
226 buildMe();
227 }
228}};
229
230output header {{
231 void
232 divide(uint64_t dividend, uint64_t divisor,
233 uint64_t &quotient, uint64_t &remainder);
234
235 enum SegmentSelectorCheck {
236 SegNoCheck, SegCSCheck, SegCallGateCheck, SegIntGateCheck,
237 SegSSCheck, SegIretCheck, SegIntCSCheck
238 };
239
240 enum LongModeDescriptorType {
241 LDT64 = 2,
242 AvailableTSS64 = 9,
243 BusyTSS64 = 0xb,
244 CallGate64 = 0xc,
245 IntGate64 = 0xe,
246 TrapGate64 = 0xf
247 };
248}};
249
250output decoder {{
251 void
252 divide(uint64_t dividend, uint64_t divisor,
253 uint64_t &quotient, uint64_t &remainder)
254 {
255 //Check for divide by zero.
256 if (divisor == 0)
257 panic("Divide by zero!\\n");
258 //If the divisor is bigger than the dividend, don't do anything.
259 if (divisor <= dividend) {
260 //Shift the divisor so it's msb lines up with the dividend.
261 int dividendMsb = findMsbSet(dividend);
262 int divisorMsb = findMsbSet(divisor);
263 int shift = dividendMsb - divisorMsb;
264 divisor <<= shift;
265 //Compute what we'll add to the quotient if the divisor isn't
266 //now larger than the dividend.
267 uint64_t quotientBit = 1;
268 quotientBit <<= shift;
269 //If we need to step back a bit (no pun intended) because the
270 //divisor got too to large, do that here. This is the "or two"
271 //part of one or two bit division.
272 if (divisor > dividend) {
273 quotientBit >>= 1;
274 divisor >>= 1;
275 }
276 //Decrement the remainder and increment the quotient.
277 quotient += quotientBit;
278 remainder -= divisor;
279 }
280 }
281}};
282
283let {{
284 # Make these empty strings so that concatenating onto
285 # them will always work.
286 header_output = ""
287 decoder_output = ""
288 exec_output = ""
289
290 immTemplates = (
291 MicroRegOpImmDeclare,
292 MicroRegOpImmConstructor,
293 MicroRegOpImmExecute)
294
295 regTemplates = (
296 MicroRegOpDeclare,
297 MicroRegOpConstructor,
298 MicroRegOpExecute)
299
300 class RegOpMeta(type):
301 def buildCppClasses(self, name, Name, suffix, \
302 code, flag_code, cond_check, else_code):
303
304 # Globals to stick the output in
305 global header_output
306 global decoder_output
307 global exec_output
308
309 # Stick all the code together so it can be searched at once
310 allCode = "|".join((code, flag_code, cond_check, else_code))
311
312 # If op2 is used anywhere, make register and immediate versions
313 # of this code.
314 matcher = re.compile("(?<!\\w)(?P<prefix>s?)op2(?P<typeQual>\\.\\w+)?")
315 match = matcher.search(allCode)
316 if match:
317 typeQual = ""
318 if match.group("typeQual"):
319 typeQual = match.group("typeQual")
320 src2_name = "%spsrc2%s" % (match.group("prefix"), typeQual)
321 self.buildCppClasses(name, Name, suffix,
322 matcher.sub(src2_name, code),
323 matcher.sub(src2_name, flag_code),
324 matcher.sub(src2_name, cond_check),
325 matcher.sub(src2_name, else_code))
326 self.buildCppClasses(name + "i", Name, suffix + "Imm",
327 matcher.sub("imm8", code),
328 matcher.sub("imm8", flag_code),
329 matcher.sub("imm8", cond_check),
330 matcher.sub("imm8", else_code))
331 return
332
333 # If there's something optional to do with flags, generate
334 # a version without it and fix up this version to use it.
335 if flag_code != "" or cond_check != "true":
336 self.buildCppClasses(name, Name, suffix,
337 code, "", "true", else_code)
338 suffix = "Flags" + suffix
339
340 # If psrc1 or psrc2 is used, we need to actually insert code to
341 # compute it.
342 matcher = re.compile("(?<!\w)psrc1(?!\w)")
343 if matcher.search(allCode):
344 code = "uint64_t psrc1 = pick(SrcReg1, 0, dataSize);" + code
345 matcher = re.compile("(?<!\w)psrc2(?!\w)")
346 if matcher.search(allCode):
347 code = "uint64_t psrc2 = pick(SrcReg2, 1, dataSize);" + code
348 # Also make available versions which do sign extension
349 matcher = re.compile("(?<!\w)spsrc1(?!\w)")
350 if matcher.search(allCode):
351 code = "int64_t spsrc1 = signedPick(SrcReg1, 0, dataSize);" + code
352 matcher = re.compile("(?<!\w)spsrc2(?!\w)")
353 if matcher.search(allCode):
354 code = "int64_t spsrc2 = signedPick(SrcReg2, 1, dataSize);" + code
355
356 base = "X86ISA::RegOp"
357
358 # If imm8 shows up in the code, use the immediate templates, if
359 # not, hopefully the register ones will be correct.
360 templates = regTemplates
361 matcher = re.compile("(?<!\w)imm8(?!\w)")
362 if matcher.search(allCode):
363 base += "Imm"
364 templates = immTemplates
365
366 # Get everything ready for the substitution
367 iop = InstObjParams(name, Name + suffix, base,
368 {"code" : code,
369 "flag_code" : flag_code,
370 "cond_check" : cond_check,
371 "else_code" : else_code})
372
373 # Generate the actual code (finally!)
374 header_output += templates[0].subst(iop)
375 decoder_output += templates[1].subst(iop)
376 exec_output += templates[2].subst(iop)
377
378
379 def __new__(mcls, Name, bases, dict):
380 abstract = False
381 name = Name.lower()
382 if "abstract" in dict:
383 abstract = dict['abstract']
384 del dict['abstract']
385
386 cls = super(RegOpMeta, mcls).__new__(mcls, Name, bases, dict)
387 if not abstract:
388 cls.className = Name
389 cls.base_mnemonic = name
390 code = cls.code
391 flag_code = cls.flag_code
392 cond_check = cls.cond_check
393 else_code = cls.else_code
394
395 # Set up the C++ classes
396 mcls.buildCppClasses(cls, name, Name, "",
397 code, flag_code, cond_check, else_code)
398
399 # Hook into the microassembler dict
400 global microopClasses
401 microopClasses[name] = cls
402
403 allCode = "|".join((code, flag_code, cond_check, else_code))
404
405 # If op2 is used anywhere, make register and immediate versions
406 # of this code.
407 matcher = re.compile("op2(?P<typeQual>\\.\\w+)?")
408 if matcher.search(allCode):
409 microopClasses[name + 'i'] = cls
410 return cls
411
412
413 class RegOp(X86Microop):
414 __metaclass__ = RegOpMeta
415 # This class itself doesn't act as a microop
416 abstract = True
417
418 # Default template parameter values
419 flag_code = ""
420 cond_check = "true"
421 else_code = ";"
422
423 def __init__(self, dest, src1, op2, flags = None, dataSize = "env.dataSize"):
424 self.dest = dest
425 self.src1 = src1
426 self.op2 = op2
427 self.flags = flags
428 self.dataSize = dataSize
429 if flags is None:
430 self.ext = 0
431 else:
432 if not isinstance(flags, (list, tuple)):
433 raise Exception, "flags must be a list or tuple of flags"
434 self.ext = " | ".join(flags)
435 self.className += "Flags"
436
437 def getAllocator(self, *microFlags):
438 className = self.className
439 if self.mnemonic == self.base_mnemonic + 'i':
440 className += "Imm"
441 allocator = '''new %(class_name)s(machInst, mnemonic
441 allocator = '''new %(class_name)s(machInst, macrocodeBlock
442 %(flags)s, %(src1)s, %(op2)s, %(dest)s,
443 %(dataSize)s, %(ext)s)''' % {
444 "class_name" : className,
445 "flags" : self.microFlagsText(microFlags),
446 "src1" : self.src1, "op2" : self.op2,
447 "dest" : self.dest,
448 "dataSize" : self.dataSize,
449 "ext" : self.ext}
450 return allocator
451
452 class LogicRegOp(RegOp):
453 abstract = True
454 flag_code = '''
455 //Don't have genFlags handle the OF or CF bits
456 uint64_t mask = CFBit | ECFBit | OFBit;
457 ccFlagBits = genFlags(ccFlagBits, ext & ~mask, DestReg, psrc1, op2);
458 //If a logic microop wants to set these, it wants to set them to 0.
459 ccFlagBits &= ~(CFBit & ext);
460 ccFlagBits &= ~(ECFBit & ext);
461 ccFlagBits &= ~(OFBit & ext);
462 '''
463
464 class FlagRegOp(RegOp):
465 abstract = True
466 flag_code = \
467 "ccFlagBits = genFlags(ccFlagBits, ext, DestReg, psrc1, op2);"
468
469 class SubRegOp(RegOp):
470 abstract = True
471 flag_code = \
472 "ccFlagBits = genFlags(ccFlagBits, ext, DestReg, psrc1, ~op2, true);"
473
474 class CondRegOp(RegOp):
475 abstract = True
476 cond_check = "checkCondition(ccFlagBits, ext)"
477
478 class RdRegOp(RegOp):
479 abstract = True
480 def __init__(self, dest, src1=None, dataSize="env.dataSize"):
481 if not src1:
482 src1 = dest
483 super(RdRegOp, self).__init__(dest, src1, "NUM_INTREGS", None, dataSize)
484
485 class WrRegOp(RegOp):
486 abstract = True
487 def __init__(self, src1, src2, flags=None, dataSize="env.dataSize"):
488 super(WrRegOp, self).__init__("NUM_INTREGS", src1, src2, flags, dataSize)
489
490 class Add(FlagRegOp):
491 code = 'DestReg = merge(DestReg, psrc1 + op2, dataSize);'
492
493 class Or(LogicRegOp):
494 code = 'DestReg = merge(DestReg, psrc1 | op2, dataSize);'
495
496 class Adc(FlagRegOp):
497 code = '''
498 CCFlagBits flags = ccFlagBits;
499 DestReg = merge(DestReg, psrc1 + op2 + flags.cf, dataSize);
500 '''
501
502 class Sbb(SubRegOp):
503 code = '''
504 CCFlagBits flags = ccFlagBits;
505 DestReg = merge(DestReg, psrc1 - op2 - flags.cf, dataSize);
506 '''
507
508 class And(LogicRegOp):
509 code = 'DestReg = merge(DestReg, psrc1 & op2, dataSize)'
510
511 class Sub(SubRegOp):
512 code = 'DestReg = merge(DestReg, psrc1 - op2, dataSize)'
513
514 class Xor(LogicRegOp):
515 code = 'DestReg = merge(DestReg, psrc1 ^ op2, dataSize)'
516
517 # Neither of these is quite correct because it assumes that right shifting
518 # a signed or unsigned value does sign or zero extension respectively.
519 # The C standard says that what happens on a right shift with a 1 in the
520 # MSB position is undefined. On x86 and under likely most compilers the
521 # "right thing" happens, but this isn't a guarantee.
522 class Mul1s(WrRegOp):
523 code = '''
524 ProdLow = psrc1 * op2;
525 int halfSize = (dataSize * 8) / 2;
526 int64_t spsrc1_h = spsrc1 >> halfSize;
527 int64_t spsrc1_l = spsrc1 & mask(halfSize);
528 int64_t spsrc2_h = sop2 >> halfSize;
529 int64_t spsrc2_l = sop2 & mask(halfSize);
530 ProdHi = ((spsrc1_l * spsrc2_h + spsrc1_h * spsrc2_l +
531 ((spsrc1_l * spsrc2_l) >> halfSize)) >> halfSize) +
532 spsrc1_h * spsrc2_h;
533 '''
534
535 class Mul1u(WrRegOp):
536 code = '''
537 ProdLow = psrc1 * op2;
538 int halfSize = (dataSize * 8) / 2;
539 uint64_t psrc1_h = psrc1 >> halfSize;
540 uint64_t psrc1_l = psrc1 & mask(halfSize);
541 uint64_t psrc2_h = op2 >> halfSize;
542 uint64_t psrc2_l = op2 & mask(halfSize);
543 ProdHi = ((psrc1_l * psrc2_h + psrc1_h * psrc2_l +
544 ((psrc1_l * psrc2_l) >> halfSize)) >> halfSize) +
545 psrc1_h * psrc2_h;
546 '''
547
548 class Mulel(RdRegOp):
549 code = 'DestReg = merge(SrcReg1, ProdLow, dataSize);'
550
551 class Muleh(RdRegOp):
552 def __init__(self, dest, src1=None, flags=None, dataSize="env.dataSize"):
553 if not src1:
554 src1 = dest
555 super(RdRegOp, self).__init__(dest, src1, "NUM_INTREGS", flags, dataSize)
556 code = 'DestReg = merge(SrcReg1, ProdHi, dataSize);'
557 flag_code = '''
558 if (ProdHi)
559 ccFlagBits = ccFlagBits | (ext & (CFBit | OFBit | ECFBit));
560 else
561 ccFlagBits = ccFlagBits & ~(ext & (CFBit | OFBit | ECFBit));
562 '''
563
564 # One or two bit divide
565 class Div1(WrRegOp):
566 code = '''
567 //These are temporaries so that modifying them later won't make
568 //the ISA parser think they're also sources.
569 uint64_t quotient = 0;
570 uint64_t remainder = psrc1;
571 //Similarly, this is a temporary so changing it doesn't make it
572 //a source.
573 uint64_t divisor = op2;
574 //This is a temporary just for consistency and clarity.
575 uint64_t dividend = remainder;
576 //Do the division.
577 divide(dividend, divisor, quotient, remainder);
578 //Record the final results.
579 Remainder = remainder;
580 Quotient = quotient;
581 Divisor = divisor;
582 '''
583
584 # Step divide
585 class Div2(RegOp):
586 code = '''
587 uint64_t dividend = Remainder;
588 uint64_t divisor = Divisor;
589 uint64_t quotient = Quotient;
590 uint64_t remainder = dividend;
591 int remaining = op2;
592 //If we overshot, do nothing. This lets us unrool division loops a
593 //little.
594 if (remaining) {
595 //Shift in bits from the low order portion of the dividend
596 while(dividend < divisor && remaining) {
597 dividend = (dividend << 1) | bits(SrcReg1, remaining - 1);
598 quotient <<= 1;
599 remaining--;
600 }
601 remainder = dividend;
602 //Do the division.
603 divide(dividend, divisor, quotient, remainder);
604 }
605 //Keep track of how many bits there are still to pull in.
606 DestReg = merge(DestReg, remaining, dataSize);
607 //Record the final results
608 Remainder = remainder;
609 Quotient = quotient;
610 '''
611 flag_code = '''
612 if (DestReg == 0)
613 ccFlagBits = ccFlagBits | (ext & EZFBit);
614 else
615 ccFlagBits = ccFlagBits & ~(ext & EZFBit);
616 '''
617
618 class Divq(RdRegOp):
619 code = 'DestReg = merge(SrcReg1, Quotient, dataSize);'
620
621 class Divr(RdRegOp):
622 code = 'DestReg = merge(SrcReg1, Remainder, dataSize);'
623
624 class Mov(CondRegOp):
625 code = 'DestReg = merge(SrcReg1, op2, dataSize)'
626 else_code = 'DestReg=DestReg;'
627
628 # Shift instructions
629
630 class Sll(RegOp):
631 code = '''
632 uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
633 DestReg = merge(DestReg, psrc1 << shiftAmt, dataSize);
634 '''
635 flag_code = '''
636 // If the shift amount is zero, no flags should be modified.
637 if (shiftAmt) {
638 //Zero out any flags we might modify. This way we only have to
639 //worry about setting them.
640 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
641 int CFBits = 0;
642 //Figure out if we -would- set the CF bits if requested.
643 if (bits(SrcReg1, dataSize * 8 - shiftAmt))
644 CFBits = 1;
645 //If some combination of the CF bits need to be set, set them.
646 if ((ext & (CFBit | ECFBit)) && CFBits)
647 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
648 //Figure out what the OF bit should be.
649 if ((ext & OFBit) && (CFBits ^ bits(DestReg, dataSize * 8 - 1)))
650 ccFlagBits = ccFlagBits | OFBit;
651 //Use the regular mechanisms to calculate the other flags.
652 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
653 DestReg, psrc1, op2);
654 }
655 '''
656
657 class Srl(RegOp):
658 code = '''
659 uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
660 // Because what happens to the bits shift -in- on a right shift
661 // is not defined in the C/C++ standard, we have to mask them out
662 // to be sure they're zero.
663 uint64_t logicalMask = mask(dataSize * 8 - shiftAmt);
664 DestReg = merge(DestReg, (psrc1 >> shiftAmt) & logicalMask, dataSize);
665 '''
666 flag_code = '''
667 // If the shift amount is zero, no flags should be modified.
668 if (shiftAmt) {
669 //Zero out any flags we might modify. This way we only have to
670 //worry about setting them.
671 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
672 //If some combination of the CF bits need to be set, set them.
673 if ((ext & (CFBit | ECFBit)) && bits(SrcReg1, shiftAmt - 1))
674 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
675 //Figure out what the OF bit should be.
676 if ((ext & OFBit) && bits(SrcReg1, dataSize * 8 - 1))
677 ccFlagBits = ccFlagBits | OFBit;
678 //Use the regular mechanisms to calculate the other flags.
679 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
680 DestReg, psrc1, op2);
681 }
682 '''
683
684 class Sra(RegOp):
685 code = '''
686 uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
687 // Because what happens to the bits shift -in- on a right shift
688 // is not defined in the C/C++ standard, we have to sign extend
689 // them manually to be sure.
690 uint64_t arithMask =
691 -bits(psrc1, dataSize * 8 - 1) << (dataSize * 8 - shiftAmt);
692 DestReg = merge(DestReg, (psrc1 >> shiftAmt) | arithMask, dataSize);
693 '''
694 flag_code = '''
695 // If the shift amount is zero, no flags should be modified.
696 if (shiftAmt) {
697 //Zero out any flags we might modify. This way we only have to
698 //worry about setting them.
699 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
700 //If some combination of the CF bits need to be set, set them.
701 if ((ext & (CFBit | ECFBit)) && bits(SrcReg1, shiftAmt - 1))
702 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
703 //Use the regular mechanisms to calculate the other flags.
704 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
705 DestReg, psrc1, op2);
706 }
707 '''
708
709 class Ror(RegOp):
710 code = '''
711 uint8_t shiftAmt =
712 (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
713 if(shiftAmt)
714 {
715 uint64_t top = psrc1 << (dataSize * 8 - shiftAmt);
716 uint64_t bottom = bits(psrc1, dataSize * 8, shiftAmt);
717 DestReg = merge(DestReg, top | bottom, dataSize);
718 }
719 else
720 DestReg = DestReg;
721 '''
722 flag_code = '''
723 // If the shift amount is zero, no flags should be modified.
724 if (shiftAmt) {
725 //Zero out any flags we might modify. This way we only have to
726 //worry about setting them.
727 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
728 //Find the most and second most significant bits of the result.
729 int msb = bits(DestReg, dataSize * 8 - 1);
730 int smsb = bits(DestReg, dataSize * 8 - 2);
731 //If some combination of the CF bits need to be set, set them.
732 if ((ext & (CFBit | ECFBit)) && msb)
733 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
734 //Figure out what the OF bit should be.
735 if ((ext & OFBit) && (msb ^ smsb))
736 ccFlagBits = ccFlagBits | OFBit;
737 //Use the regular mechanisms to calculate the other flags.
738 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
739 DestReg, psrc1, op2);
740 }
741 '''
742
743 class Rcr(RegOp):
744 code = '''
745 uint8_t shiftAmt =
746 (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
747 if(shiftAmt)
748 {
749 CCFlagBits flags = ccFlagBits;
750 uint64_t top = flags.cf << (dataSize * 8 - shiftAmt);
751 if(shiftAmt > 1)
752 top |= psrc1 << (dataSize * 8 - shiftAmt - 1);
753 uint64_t bottom = bits(psrc1, dataSize * 8, shiftAmt);
754 DestReg = merge(DestReg, top | bottom, dataSize);
755 }
756 else
757 DestReg = DestReg;
758 '''
759 flag_code = '''
760 // If the shift amount is zero, no flags should be modified.
761 if (shiftAmt) {
762 //Zero out any flags we might modify. This way we only have to
763 //worry about setting them.
764 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
765 //Figure out what the OF bit should be.
766 if ((ext & OFBit) && ((ccFlagBits & CFBit) ^
767 bits(SrcReg1, dataSize * 8 - 1)))
768 ccFlagBits = ccFlagBits | OFBit;
769 //If some combination of the CF bits need to be set, set them.
770 if ((ext & (CFBit | ECFBit)) && bits(SrcReg1, shiftAmt - 1))
771 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
772 //Use the regular mechanisms to calculate the other flags.
773 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
774 DestReg, psrc1, op2);
775 }
776 '''
777
778 class Rol(RegOp):
779 code = '''
780 uint8_t shiftAmt =
781 (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
782 if(shiftAmt)
783 {
784 uint64_t top = psrc1 << shiftAmt;
785 uint64_t bottom =
786 bits(psrc1, dataSize * 8 - 1, dataSize * 8 - shiftAmt);
787 DestReg = merge(DestReg, top | bottom, dataSize);
788 }
789 else
790 DestReg = DestReg;
791 '''
792 flag_code = '''
793 // If the shift amount is zero, no flags should be modified.
794 if (shiftAmt) {
795 //Zero out any flags we might modify. This way we only have to
796 //worry about setting them.
797 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
798 //The CF bits, if set, would be set to the lsb of the result.
799 int lsb = DestReg & 0x1;
800 int msb = bits(DestReg, dataSize * 8 - 1);
801 //If some combination of the CF bits need to be set, set them.
802 if ((ext & (CFBit | ECFBit)) && lsb)
803 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
804 //Figure out what the OF bit should be.
805 if ((ext & OFBit) && (msb ^ lsb))
806 ccFlagBits = ccFlagBits | OFBit;
807 //Use the regular mechanisms to calculate the other flags.
808 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
809 DestReg, psrc1, op2);
810 }
811 '''
812
813 class Rcl(RegOp):
814 code = '''
815 uint8_t shiftAmt =
816 (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
817 if(shiftAmt)
818 {
819 CCFlagBits flags = ccFlagBits;
820 uint64_t top = psrc1 << shiftAmt;
821 uint64_t bottom = flags.cf << (shiftAmt - 1);
822 if(shiftAmt > 1)
823 bottom |=
824 bits(psrc1, dataSize * 8 - 1,
825 dataSize * 8 - shiftAmt + 1);
826 DestReg = merge(DestReg, top | bottom, dataSize);
827 }
828 else
829 DestReg = DestReg;
830 '''
831 flag_code = '''
832 // If the shift amount is zero, no flags should be modified.
833 if (shiftAmt) {
834 //Zero out any flags we might modify. This way we only have to
835 //worry about setting them.
836 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
837 int msb = bits(DestReg, dataSize * 8 - 1);
838 int CFBits = bits(SrcReg1, dataSize * 8 - shiftAmt);
839 //If some combination of the CF bits need to be set, set them.
840 if ((ext & (CFBit | ECFBit)) && CFBits)
841 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
842 //Figure out what the OF bit should be.
843 if ((ext & OFBit) && (msb ^ CFBits))
844 ccFlagBits = ccFlagBits | OFBit;
845 //Use the regular mechanisms to calculate the other flags.
846 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
847 DestReg, psrc1, op2);
848 }
849 '''
850
851 class Wrip(WrRegOp, CondRegOp):
852 code = 'RIP = psrc1 + sop2 + CSBase'
853 else_code="RIP = RIP;"
854
855 class Wruflags(WrRegOp):
856 code = 'ccFlagBits = psrc1 ^ op2'
857
858 class Wrflags(WrRegOp):
859 code = '''
860 MiscReg newFlags = psrc1 ^ op2;
861 MiscReg userFlagMask = 0xDD5;
862 // Get only the user flags
863 ccFlagBits = newFlags & userFlagMask;
864 // Get everything else
865 nccFlagBits = newFlags & ~userFlagMask;
866 '''
867
868 class Rdip(RdRegOp):
869 code = 'DestReg = RIP - CSBase'
870
871 class Ruflags(RdRegOp):
872 code = 'DestReg = ccFlagBits'
873
874 class Rflags(RdRegOp):
875 code = 'DestReg = ccFlagBits | nccFlagBits'
876
877 class Ruflag(RegOp):
878 code = '''
879 int flag = bits(ccFlagBits, imm8);
880 DestReg = merge(DestReg, flag, dataSize);
881 ccFlagBits = (flag == 0) ? (ccFlagBits | EZFBit) :
882 (ccFlagBits & ~EZFBit);
883 '''
884 def __init__(self, dest, imm, flags=None, \
885 dataSize="env.dataSize"):
886 super(Ruflag, self).__init__(dest, \
887 "NUM_INTREGS", imm, flags, dataSize)
888
889 class Rflag(RegOp):
890 code = '''
891 MiscReg flagMask = 0x3F7FDD5;
892 MiscReg flags = (nccFlagBits | ccFlagBits) & flagMask;
893 int flag = bits(flags, imm8);
894 DestReg = merge(DestReg, flag, dataSize);
895 ccFlagBits = (flag == 0) ? (ccFlagBits | EZFBit) :
896 (ccFlagBits & ~EZFBit);
897 '''
898 def __init__(self, dest, imm, flags=None, \
899 dataSize="env.dataSize"):
900 super(Rflag, self).__init__(dest, \
901 "NUM_INTREGS", imm, flags, dataSize)
902
903 class Sext(RegOp):
904 code = '''
905 IntReg val = psrc1;
906 // Mask the bit position so that it wraps.
907 int bitPos = op2 & (dataSize * 8 - 1);
908 int sign_bit = bits(val, bitPos, bitPos);
909 uint64_t maskVal = mask(bitPos+1);
910 val = sign_bit ? (val | ~maskVal) : (val & maskVal);
911 DestReg = merge(DestReg, val, dataSize);
912 '''
913 flag_code = '''
914 if (!sign_bit)
915 ccFlagBits = ccFlagBits &
916 ~(ext & (CFBit | ECFBit | ZFBit | EZFBit));
917 else
918 ccFlagBits = ccFlagBits |
919 (ext & (CFBit | ECFBit | ZFBit | EZFBit));
920 '''
921
922 class Zext(RegOp):
923 code = 'DestReg = bits(psrc1, op2, 0);'
924
925 class Rdcr(RegOp):
926 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"):
927 super(Rdcr, self).__init__(dest, \
928 src1, "NUM_INTREGS", flags, dataSize)
929 code = '''
930 if (dest == 1 || (dest > 4 && dest < 8) || (dest > 8)) {
931 fault = new InvalidOpcode();
932 } else {
933 DestReg = ControlSrc1;
934 }
935 '''
936
937 class Wrcr(RegOp):
938 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"):
939 super(Wrcr, self).__init__(dest, \
940 src1, "NUM_INTREGS", flags, dataSize)
941 code = '''
942 if (dest == 1 || (dest > 4 && dest < 8) || (dest > 8)) {
943 fault = new InvalidOpcode();
944 } else {
945 // There are *s in the line below so it doesn't confuse the
946 // parser. They may be unnecessary.
947 //Mis*cReg old*Val = pick(Cont*rolDest, 0, dat*aSize);
948 MiscReg newVal = psrc1;
949
950 // Check for any modifications that would cause a fault.
951 switch(dest) {
952 case 0:
953 {
954 Efer efer = EferOp;
955 CR0 cr0 = newVal;
956 CR4 oldCr4 = CR4Op;
957 if (bits(newVal, 63, 32) ||
958 (!cr0.pe && cr0.pg) ||
959 (!cr0.cd && cr0.nw) ||
960 (cr0.pg && efer.lme && !oldCr4.pae))
961 fault = new GeneralProtection(0);
962 }
963 break;
964 case 2:
965 break;
966 case 3:
967 break;
968 case 4:
969 {
970 CR4 cr4 = newVal;
971 // PAE can't be disabled in long mode.
972 if (bits(newVal, 63, 11) ||
973 (machInst.mode.mode == LongMode && !cr4.pae))
974 fault = new GeneralProtection(0);
975 }
976 break;
977 case 8:
978 {
979 if (bits(newVal, 63, 4))
980 fault = new GeneralProtection(0);
981 }
982 default:
983 panic("Unrecognized control register %d.\\n", dest);
984 }
985 ControlDest = newVal;
986 }
987 '''
988
989 # Microops for manipulating segmentation registers
990 class SegOp(CondRegOp):
991 abstract = True
992 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"):
993 super(SegOp, self).__init__(dest, \
994 src1, "NUM_INTREGS", flags, dataSize)
995
996 class Wrbase(SegOp):
997 code = '''
998 SegBaseDest = psrc1;
999 '''
1000
1001 class Wrlimit(SegOp):
1002 code = '''
1003 SegLimitDest = psrc1;
1004 '''
1005
1006 class Wrsel(SegOp):
1007 code = '''
1008 SegSelDest = psrc1;
1009 '''
1010
1011 class Rdbase(SegOp):
1012 code = '''
1013 DestReg = SegBaseSrc1;
1014 '''
1015
1016 class Rdlimit(SegOp):
1017 code = '''
1018 DestReg = SegLimitSrc1;
1019 '''
1020
1021 class RdAttr(SegOp):
1022 code = '''
1023 DestReg = SegAttrSrc1;
1024 '''
1025
1026 class Rdsel(SegOp):
1027 code = '''
1028 DestReg = SegSelSrc1;
1029 '''
1030
1031 class Rdval(RegOp):
1032 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"):
1033 super(Rdval, self).__init__(dest, \
1034 src1, "NUM_INTREGS", flags, dataSize)
1035 code = '''
1036 DestReg = MiscRegSrc1;
1037 '''
1038
1039 class Wrval(RegOp):
1040 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"):
1041 super(Wrval, self).__init__(dest, \
1042 src1, "NUM_INTREGS", flags, dataSize)
1043 code = '''
1044 MiscRegDest = SrcReg1;
1045 '''
1046
1047 class Chks(RegOp):
1048 def __init__(self, dest, src1, src2=0,
1049 flags=None, dataSize="env.dataSize"):
1050 super(Chks, self).__init__(dest,
1051 src1, src2, flags, dataSize)
1052 code = '''
1053 // The selector is in source 1 and can be at most 16 bits.
1054 SegSelector selector = DestReg;
1055 SegDescriptor desc = SrcReg1;
1056 HandyM5Reg m5reg = M5Reg;
1057
1058 switch (imm8)
1059 {
1060 case SegNoCheck:
1061 break;
1062 case SegCSCheck:
1063 panic("CS checks for far calls/jumps not implemented.\\n");
1064 break;
1065 case SegCallGateCheck:
1066 panic("CS checks for far calls/jumps through call gates"
1067 "not implemented.\\n");
1068 break;
1069 case SegIntGateCheck:
1070 if (desc.dpl < m5reg.cpl) {
1071 fault = new GeneralProtection((uint16_t)selector);
1072 }
1073 break;
1074 case SegSSCheck:
1075 if (selector.si || selector.ti) {
1076 if (!desc.p) {
1077 //FIXME This needs to also push the selector.
1078 fault = new StackFault;
1079 }
1080 } else {
1081 if ((m5reg.submode != SixtyFourBitMode ||
1082 m5reg.cpl == 3) ||
1083 !(desc.s == 1 &&
1084 desc.type.codeOrData == 0 && desc.type.w) ||
1085 (desc.dpl != m5reg.cpl) ||
1086 (selector.rpl != m5reg.cpl)) {
1087 fault = new GeneralProtection(psrc1 & 0xFFFF);
1088 }
1089 }
1090 break;
1091 case SegIretCheck:
1092 {
1093 if ((!selector.si && !selector.ti) ||
1094 (selector.rpl < m5reg.cpl) ||
1095 !(desc.s == 1 && desc.type.codeOrData == 1) ||
1096 (!desc.type.c && desc.dpl != selector.rpl) ||
1097 (desc.type.c && desc.dpl > selector.rpl)) {
1098 fault = new GeneralProtection(psrc1 & 0xFFFF);
1099 } else if (!desc.p) {
1100 fault = new SegmentNotPresent;
1101 }
1102 break;
1103 }
1104 case SegIntCSCheck:
1105 if (m5reg.mode == LongMode) {
1106 if (desc.l != 1 || desc.d != 0) {
1107 fault = new GeneralProtection(selector);
1108 }
1109 } else {
1110 panic("Interrupt CS checks not implemented "
1111 "in legacy mode.\\n");
1112 }
1113 break;
1114 default:
1115 panic("Undefined segment check type.\\n");
1116 }
1117 '''
1118 flag_code = '''
1119 // Check for a NULL selector and set ZF,EZF appropriately.
1120 ccFlagBits = ccFlagBits & ~(ext & (ZFBit | EZFBit));
1121 if (!selector.si && !selector.ti)
1122 ccFlagBits = ccFlagBits | (ext & (ZFBit | EZFBit));
1123 '''
1124
1125 class Wrdh(RegOp):
1126 code = '''
1127 SegDescriptor desc = SrcReg1;
1128
1129 uint64_t target = bits(SrcReg2, 31, 0) << 32;
1130 switch(desc.type) {
1131 case LDT64:
1132 case AvailableTSS64:
1133 case BusyTSS64:
1134 replaceBits(target, 23, 0, desc.baseLow);
1135 replaceBits(target, 31, 24, desc.baseHigh);
1136 break;
1137 case CallGate64:
1138 case IntGate64:
1139 case TrapGate64:
1140 replaceBits(target, 15, 0, bits(desc, 15, 0));
1141 replaceBits(target, 31, 16, bits(desc, 63, 48));
1142 break;
1143 default:
1144 panic("Wrdh used with wrong descriptor type!\\n");
1145 }
1146 DestReg = target;
1147 '''
1148
1149 class Wrtsc(WrRegOp):
1150 code = '''
1151 TscOp = psrc1;
1152 '''
1153
1154 class Rdtsc(RdRegOp):
1155 code = '''
1156 DestReg = TscOp;
1157 '''
1158
1159 class Rdm5reg(RdRegOp):
1160 code = '''
1161 DestReg = M5Reg;
1162 '''
1163
1164 class Wrdl(RegOp):
1165 code = '''
1166 SegDescriptor desc = SrcReg1;
1167 SegSelector selector = SrcReg2;
1168 if (selector.si || selector.ti) {
1169 SegAttr attr = 0;
1170 attr.dpl = desc.dpl;
1171 attr.defaultSize = desc.d;
1172 if (!desc.s) {
1173 SegBaseDest = SegBaseDest;
1174 SegLimitDest = SegLimitDest;
1175 SegAttrDest = SegAttrDest;
1176 panic("System segment encountered.\\n");
1177 } else {
1178 if (!desc.p)
1179 panic("Segment not present.\\n");
1180 if (desc.type.codeOrData) {
1181 attr.readable = desc.type.r;
1182 attr.longMode = desc.l;
1183 } else {
1184 attr.expandDown = desc.type.e;
1185 attr.readable = 1;
1186 attr.writable = desc.type.w;
1187 }
1188 Addr base = desc.baseLow | (desc.baseHigh << 24);
1189 Addr limit = desc.limitLow | (desc.limitHigh << 16);
1190 if (desc.g)
1191 limit = (limit << 12) | mask(12);
1192 SegBaseDest = base;
1193 SegLimitDest = limit;
1194 SegAttrDest = attr;
1195 }
1196 } else {
1197 SegBaseDest = SegBaseDest;
1198 SegLimitDest = SegLimitDest;
1199 SegAttrDest = SegAttrDest;
1200 }
1201 '''
1202}};
442 %(flags)s, %(src1)s, %(op2)s, %(dest)s,
443 %(dataSize)s, %(ext)s)''' % {
444 "class_name" : className,
445 "flags" : self.microFlagsText(microFlags),
446 "src1" : self.src1, "op2" : self.op2,
447 "dest" : self.dest,
448 "dataSize" : self.dataSize,
449 "ext" : self.ext}
450 return allocator
451
452 class LogicRegOp(RegOp):
453 abstract = True
454 flag_code = '''
455 //Don't have genFlags handle the OF or CF bits
456 uint64_t mask = CFBit | ECFBit | OFBit;
457 ccFlagBits = genFlags(ccFlagBits, ext & ~mask, DestReg, psrc1, op2);
458 //If a logic microop wants to set these, it wants to set them to 0.
459 ccFlagBits &= ~(CFBit & ext);
460 ccFlagBits &= ~(ECFBit & ext);
461 ccFlagBits &= ~(OFBit & ext);
462 '''
463
464 class FlagRegOp(RegOp):
465 abstract = True
466 flag_code = \
467 "ccFlagBits = genFlags(ccFlagBits, ext, DestReg, psrc1, op2);"
468
469 class SubRegOp(RegOp):
470 abstract = True
471 flag_code = \
472 "ccFlagBits = genFlags(ccFlagBits, ext, DestReg, psrc1, ~op2, true);"
473
474 class CondRegOp(RegOp):
475 abstract = True
476 cond_check = "checkCondition(ccFlagBits, ext)"
477
478 class RdRegOp(RegOp):
479 abstract = True
480 def __init__(self, dest, src1=None, dataSize="env.dataSize"):
481 if not src1:
482 src1 = dest
483 super(RdRegOp, self).__init__(dest, src1, "NUM_INTREGS", None, dataSize)
484
485 class WrRegOp(RegOp):
486 abstract = True
487 def __init__(self, src1, src2, flags=None, dataSize="env.dataSize"):
488 super(WrRegOp, self).__init__("NUM_INTREGS", src1, src2, flags, dataSize)
489
490 class Add(FlagRegOp):
491 code = 'DestReg = merge(DestReg, psrc1 + op2, dataSize);'
492
493 class Or(LogicRegOp):
494 code = 'DestReg = merge(DestReg, psrc1 | op2, dataSize);'
495
496 class Adc(FlagRegOp):
497 code = '''
498 CCFlagBits flags = ccFlagBits;
499 DestReg = merge(DestReg, psrc1 + op2 + flags.cf, dataSize);
500 '''
501
502 class Sbb(SubRegOp):
503 code = '''
504 CCFlagBits flags = ccFlagBits;
505 DestReg = merge(DestReg, psrc1 - op2 - flags.cf, dataSize);
506 '''
507
508 class And(LogicRegOp):
509 code = 'DestReg = merge(DestReg, psrc1 & op2, dataSize)'
510
511 class Sub(SubRegOp):
512 code = 'DestReg = merge(DestReg, psrc1 - op2, dataSize)'
513
514 class Xor(LogicRegOp):
515 code = 'DestReg = merge(DestReg, psrc1 ^ op2, dataSize)'
516
517 # Neither of these is quite correct because it assumes that right shifting
518 # a signed or unsigned value does sign or zero extension respectively.
519 # The C standard says that what happens on a right shift with a 1 in the
520 # MSB position is undefined. On x86 and under likely most compilers the
521 # "right thing" happens, but this isn't a guarantee.
522 class Mul1s(WrRegOp):
523 code = '''
524 ProdLow = psrc1 * op2;
525 int halfSize = (dataSize * 8) / 2;
526 int64_t spsrc1_h = spsrc1 >> halfSize;
527 int64_t spsrc1_l = spsrc1 & mask(halfSize);
528 int64_t spsrc2_h = sop2 >> halfSize;
529 int64_t spsrc2_l = sop2 & mask(halfSize);
530 ProdHi = ((spsrc1_l * spsrc2_h + spsrc1_h * spsrc2_l +
531 ((spsrc1_l * spsrc2_l) >> halfSize)) >> halfSize) +
532 spsrc1_h * spsrc2_h;
533 '''
534
535 class Mul1u(WrRegOp):
536 code = '''
537 ProdLow = psrc1 * op2;
538 int halfSize = (dataSize * 8) / 2;
539 uint64_t psrc1_h = psrc1 >> halfSize;
540 uint64_t psrc1_l = psrc1 & mask(halfSize);
541 uint64_t psrc2_h = op2 >> halfSize;
542 uint64_t psrc2_l = op2 & mask(halfSize);
543 ProdHi = ((psrc1_l * psrc2_h + psrc1_h * psrc2_l +
544 ((psrc1_l * psrc2_l) >> halfSize)) >> halfSize) +
545 psrc1_h * psrc2_h;
546 '''
547
548 class Mulel(RdRegOp):
549 code = 'DestReg = merge(SrcReg1, ProdLow, dataSize);'
550
551 class Muleh(RdRegOp):
552 def __init__(self, dest, src1=None, flags=None, dataSize="env.dataSize"):
553 if not src1:
554 src1 = dest
555 super(RdRegOp, self).__init__(dest, src1, "NUM_INTREGS", flags, dataSize)
556 code = 'DestReg = merge(SrcReg1, ProdHi, dataSize);'
557 flag_code = '''
558 if (ProdHi)
559 ccFlagBits = ccFlagBits | (ext & (CFBit | OFBit | ECFBit));
560 else
561 ccFlagBits = ccFlagBits & ~(ext & (CFBit | OFBit | ECFBit));
562 '''
563
564 # One or two bit divide
565 class Div1(WrRegOp):
566 code = '''
567 //These are temporaries so that modifying them later won't make
568 //the ISA parser think they're also sources.
569 uint64_t quotient = 0;
570 uint64_t remainder = psrc1;
571 //Similarly, this is a temporary so changing it doesn't make it
572 //a source.
573 uint64_t divisor = op2;
574 //This is a temporary just for consistency and clarity.
575 uint64_t dividend = remainder;
576 //Do the division.
577 divide(dividend, divisor, quotient, remainder);
578 //Record the final results.
579 Remainder = remainder;
580 Quotient = quotient;
581 Divisor = divisor;
582 '''
583
584 # Step divide
585 class Div2(RegOp):
586 code = '''
587 uint64_t dividend = Remainder;
588 uint64_t divisor = Divisor;
589 uint64_t quotient = Quotient;
590 uint64_t remainder = dividend;
591 int remaining = op2;
592 //If we overshot, do nothing. This lets us unrool division loops a
593 //little.
594 if (remaining) {
595 //Shift in bits from the low order portion of the dividend
596 while(dividend < divisor && remaining) {
597 dividend = (dividend << 1) | bits(SrcReg1, remaining - 1);
598 quotient <<= 1;
599 remaining--;
600 }
601 remainder = dividend;
602 //Do the division.
603 divide(dividend, divisor, quotient, remainder);
604 }
605 //Keep track of how many bits there are still to pull in.
606 DestReg = merge(DestReg, remaining, dataSize);
607 //Record the final results
608 Remainder = remainder;
609 Quotient = quotient;
610 '''
611 flag_code = '''
612 if (DestReg == 0)
613 ccFlagBits = ccFlagBits | (ext & EZFBit);
614 else
615 ccFlagBits = ccFlagBits & ~(ext & EZFBit);
616 '''
617
618 class Divq(RdRegOp):
619 code = 'DestReg = merge(SrcReg1, Quotient, dataSize);'
620
621 class Divr(RdRegOp):
622 code = 'DestReg = merge(SrcReg1, Remainder, dataSize);'
623
624 class Mov(CondRegOp):
625 code = 'DestReg = merge(SrcReg1, op2, dataSize)'
626 else_code = 'DestReg=DestReg;'
627
628 # Shift instructions
629
630 class Sll(RegOp):
631 code = '''
632 uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
633 DestReg = merge(DestReg, psrc1 << shiftAmt, dataSize);
634 '''
635 flag_code = '''
636 // If the shift amount is zero, no flags should be modified.
637 if (shiftAmt) {
638 //Zero out any flags we might modify. This way we only have to
639 //worry about setting them.
640 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
641 int CFBits = 0;
642 //Figure out if we -would- set the CF bits if requested.
643 if (bits(SrcReg1, dataSize * 8 - shiftAmt))
644 CFBits = 1;
645 //If some combination of the CF bits need to be set, set them.
646 if ((ext & (CFBit | ECFBit)) && CFBits)
647 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
648 //Figure out what the OF bit should be.
649 if ((ext & OFBit) && (CFBits ^ bits(DestReg, dataSize * 8 - 1)))
650 ccFlagBits = ccFlagBits | OFBit;
651 //Use the regular mechanisms to calculate the other flags.
652 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
653 DestReg, psrc1, op2);
654 }
655 '''
656
657 class Srl(RegOp):
658 code = '''
659 uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
660 // Because what happens to the bits shift -in- on a right shift
661 // is not defined in the C/C++ standard, we have to mask them out
662 // to be sure they're zero.
663 uint64_t logicalMask = mask(dataSize * 8 - shiftAmt);
664 DestReg = merge(DestReg, (psrc1 >> shiftAmt) & logicalMask, dataSize);
665 '''
666 flag_code = '''
667 // If the shift amount is zero, no flags should be modified.
668 if (shiftAmt) {
669 //Zero out any flags we might modify. This way we only have to
670 //worry about setting them.
671 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
672 //If some combination of the CF bits need to be set, set them.
673 if ((ext & (CFBit | ECFBit)) && bits(SrcReg1, shiftAmt - 1))
674 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
675 //Figure out what the OF bit should be.
676 if ((ext & OFBit) && bits(SrcReg1, dataSize * 8 - 1))
677 ccFlagBits = ccFlagBits | OFBit;
678 //Use the regular mechanisms to calculate the other flags.
679 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
680 DestReg, psrc1, op2);
681 }
682 '''
683
684 class Sra(RegOp):
685 code = '''
686 uint8_t shiftAmt = (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
687 // Because what happens to the bits shift -in- on a right shift
688 // is not defined in the C/C++ standard, we have to sign extend
689 // them manually to be sure.
690 uint64_t arithMask =
691 -bits(psrc1, dataSize * 8 - 1) << (dataSize * 8 - shiftAmt);
692 DestReg = merge(DestReg, (psrc1 >> shiftAmt) | arithMask, dataSize);
693 '''
694 flag_code = '''
695 // If the shift amount is zero, no flags should be modified.
696 if (shiftAmt) {
697 //Zero out any flags we might modify. This way we only have to
698 //worry about setting them.
699 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
700 //If some combination of the CF bits need to be set, set them.
701 if ((ext & (CFBit | ECFBit)) && bits(SrcReg1, shiftAmt - 1))
702 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
703 //Use the regular mechanisms to calculate the other flags.
704 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
705 DestReg, psrc1, op2);
706 }
707 '''
708
709 class Ror(RegOp):
710 code = '''
711 uint8_t shiftAmt =
712 (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
713 if(shiftAmt)
714 {
715 uint64_t top = psrc1 << (dataSize * 8 - shiftAmt);
716 uint64_t bottom = bits(psrc1, dataSize * 8, shiftAmt);
717 DestReg = merge(DestReg, top | bottom, dataSize);
718 }
719 else
720 DestReg = DestReg;
721 '''
722 flag_code = '''
723 // If the shift amount is zero, no flags should be modified.
724 if (shiftAmt) {
725 //Zero out any flags we might modify. This way we only have to
726 //worry about setting them.
727 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
728 //Find the most and second most significant bits of the result.
729 int msb = bits(DestReg, dataSize * 8 - 1);
730 int smsb = bits(DestReg, dataSize * 8 - 2);
731 //If some combination of the CF bits need to be set, set them.
732 if ((ext & (CFBit | ECFBit)) && msb)
733 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
734 //Figure out what the OF bit should be.
735 if ((ext & OFBit) && (msb ^ smsb))
736 ccFlagBits = ccFlagBits | OFBit;
737 //Use the regular mechanisms to calculate the other flags.
738 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
739 DestReg, psrc1, op2);
740 }
741 '''
742
743 class Rcr(RegOp):
744 code = '''
745 uint8_t shiftAmt =
746 (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
747 if(shiftAmt)
748 {
749 CCFlagBits flags = ccFlagBits;
750 uint64_t top = flags.cf << (dataSize * 8 - shiftAmt);
751 if(shiftAmt > 1)
752 top |= psrc1 << (dataSize * 8 - shiftAmt - 1);
753 uint64_t bottom = bits(psrc1, dataSize * 8, shiftAmt);
754 DestReg = merge(DestReg, top | bottom, dataSize);
755 }
756 else
757 DestReg = DestReg;
758 '''
759 flag_code = '''
760 // If the shift amount is zero, no flags should be modified.
761 if (shiftAmt) {
762 //Zero out any flags we might modify. This way we only have to
763 //worry about setting them.
764 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
765 //Figure out what the OF bit should be.
766 if ((ext & OFBit) && ((ccFlagBits & CFBit) ^
767 bits(SrcReg1, dataSize * 8 - 1)))
768 ccFlagBits = ccFlagBits | OFBit;
769 //If some combination of the CF bits need to be set, set them.
770 if ((ext & (CFBit | ECFBit)) && bits(SrcReg1, shiftAmt - 1))
771 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
772 //Use the regular mechanisms to calculate the other flags.
773 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
774 DestReg, psrc1, op2);
775 }
776 '''
777
778 class Rol(RegOp):
779 code = '''
780 uint8_t shiftAmt =
781 (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
782 if(shiftAmt)
783 {
784 uint64_t top = psrc1 << shiftAmt;
785 uint64_t bottom =
786 bits(psrc1, dataSize * 8 - 1, dataSize * 8 - shiftAmt);
787 DestReg = merge(DestReg, top | bottom, dataSize);
788 }
789 else
790 DestReg = DestReg;
791 '''
792 flag_code = '''
793 // If the shift amount is zero, no flags should be modified.
794 if (shiftAmt) {
795 //Zero out any flags we might modify. This way we only have to
796 //worry about setting them.
797 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
798 //The CF bits, if set, would be set to the lsb of the result.
799 int lsb = DestReg & 0x1;
800 int msb = bits(DestReg, dataSize * 8 - 1);
801 //If some combination of the CF bits need to be set, set them.
802 if ((ext & (CFBit | ECFBit)) && lsb)
803 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
804 //Figure out what the OF bit should be.
805 if ((ext & OFBit) && (msb ^ lsb))
806 ccFlagBits = ccFlagBits | OFBit;
807 //Use the regular mechanisms to calculate the other flags.
808 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
809 DestReg, psrc1, op2);
810 }
811 '''
812
813 class Rcl(RegOp):
814 code = '''
815 uint8_t shiftAmt =
816 (op2 & ((dataSize == 8) ? mask(6) : mask(5)));
817 if(shiftAmt)
818 {
819 CCFlagBits flags = ccFlagBits;
820 uint64_t top = psrc1 << shiftAmt;
821 uint64_t bottom = flags.cf << (shiftAmt - 1);
822 if(shiftAmt > 1)
823 bottom |=
824 bits(psrc1, dataSize * 8 - 1,
825 dataSize * 8 - shiftAmt + 1);
826 DestReg = merge(DestReg, top | bottom, dataSize);
827 }
828 else
829 DestReg = DestReg;
830 '''
831 flag_code = '''
832 // If the shift amount is zero, no flags should be modified.
833 if (shiftAmt) {
834 //Zero out any flags we might modify. This way we only have to
835 //worry about setting them.
836 ccFlagBits = ccFlagBits & ~(ext & (CFBit | ECFBit | OFBit));
837 int msb = bits(DestReg, dataSize * 8 - 1);
838 int CFBits = bits(SrcReg1, dataSize * 8 - shiftAmt);
839 //If some combination of the CF bits need to be set, set them.
840 if ((ext & (CFBit | ECFBit)) && CFBits)
841 ccFlagBits = ccFlagBits | (ext & (CFBit | ECFBit));
842 //Figure out what the OF bit should be.
843 if ((ext & OFBit) && (msb ^ CFBits))
844 ccFlagBits = ccFlagBits | OFBit;
845 //Use the regular mechanisms to calculate the other flags.
846 ccFlagBits = genFlags(ccFlagBits, ext & ~(CFBit | ECFBit | OFBit),
847 DestReg, psrc1, op2);
848 }
849 '''
850
851 class Wrip(WrRegOp, CondRegOp):
852 code = 'RIP = psrc1 + sop2 + CSBase'
853 else_code="RIP = RIP;"
854
855 class Wruflags(WrRegOp):
856 code = 'ccFlagBits = psrc1 ^ op2'
857
858 class Wrflags(WrRegOp):
859 code = '''
860 MiscReg newFlags = psrc1 ^ op2;
861 MiscReg userFlagMask = 0xDD5;
862 // Get only the user flags
863 ccFlagBits = newFlags & userFlagMask;
864 // Get everything else
865 nccFlagBits = newFlags & ~userFlagMask;
866 '''
867
868 class Rdip(RdRegOp):
869 code = 'DestReg = RIP - CSBase'
870
871 class Ruflags(RdRegOp):
872 code = 'DestReg = ccFlagBits'
873
874 class Rflags(RdRegOp):
875 code = 'DestReg = ccFlagBits | nccFlagBits'
876
877 class Ruflag(RegOp):
878 code = '''
879 int flag = bits(ccFlagBits, imm8);
880 DestReg = merge(DestReg, flag, dataSize);
881 ccFlagBits = (flag == 0) ? (ccFlagBits | EZFBit) :
882 (ccFlagBits & ~EZFBit);
883 '''
884 def __init__(self, dest, imm, flags=None, \
885 dataSize="env.dataSize"):
886 super(Ruflag, self).__init__(dest, \
887 "NUM_INTREGS", imm, flags, dataSize)
888
889 class Rflag(RegOp):
890 code = '''
891 MiscReg flagMask = 0x3F7FDD5;
892 MiscReg flags = (nccFlagBits | ccFlagBits) & flagMask;
893 int flag = bits(flags, imm8);
894 DestReg = merge(DestReg, flag, dataSize);
895 ccFlagBits = (flag == 0) ? (ccFlagBits | EZFBit) :
896 (ccFlagBits & ~EZFBit);
897 '''
898 def __init__(self, dest, imm, flags=None, \
899 dataSize="env.dataSize"):
900 super(Rflag, self).__init__(dest, \
901 "NUM_INTREGS", imm, flags, dataSize)
902
903 class Sext(RegOp):
904 code = '''
905 IntReg val = psrc1;
906 // Mask the bit position so that it wraps.
907 int bitPos = op2 & (dataSize * 8 - 1);
908 int sign_bit = bits(val, bitPos, bitPos);
909 uint64_t maskVal = mask(bitPos+1);
910 val = sign_bit ? (val | ~maskVal) : (val & maskVal);
911 DestReg = merge(DestReg, val, dataSize);
912 '''
913 flag_code = '''
914 if (!sign_bit)
915 ccFlagBits = ccFlagBits &
916 ~(ext & (CFBit | ECFBit | ZFBit | EZFBit));
917 else
918 ccFlagBits = ccFlagBits |
919 (ext & (CFBit | ECFBit | ZFBit | EZFBit));
920 '''
921
922 class Zext(RegOp):
923 code = 'DestReg = bits(psrc1, op2, 0);'
924
925 class Rdcr(RegOp):
926 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"):
927 super(Rdcr, self).__init__(dest, \
928 src1, "NUM_INTREGS", flags, dataSize)
929 code = '''
930 if (dest == 1 || (dest > 4 && dest < 8) || (dest > 8)) {
931 fault = new InvalidOpcode();
932 } else {
933 DestReg = ControlSrc1;
934 }
935 '''
936
937 class Wrcr(RegOp):
938 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"):
939 super(Wrcr, self).__init__(dest, \
940 src1, "NUM_INTREGS", flags, dataSize)
941 code = '''
942 if (dest == 1 || (dest > 4 && dest < 8) || (dest > 8)) {
943 fault = new InvalidOpcode();
944 } else {
945 // There are *s in the line below so it doesn't confuse the
946 // parser. They may be unnecessary.
947 //Mis*cReg old*Val = pick(Cont*rolDest, 0, dat*aSize);
948 MiscReg newVal = psrc1;
949
950 // Check for any modifications that would cause a fault.
951 switch(dest) {
952 case 0:
953 {
954 Efer efer = EferOp;
955 CR0 cr0 = newVal;
956 CR4 oldCr4 = CR4Op;
957 if (bits(newVal, 63, 32) ||
958 (!cr0.pe && cr0.pg) ||
959 (!cr0.cd && cr0.nw) ||
960 (cr0.pg && efer.lme && !oldCr4.pae))
961 fault = new GeneralProtection(0);
962 }
963 break;
964 case 2:
965 break;
966 case 3:
967 break;
968 case 4:
969 {
970 CR4 cr4 = newVal;
971 // PAE can't be disabled in long mode.
972 if (bits(newVal, 63, 11) ||
973 (machInst.mode.mode == LongMode && !cr4.pae))
974 fault = new GeneralProtection(0);
975 }
976 break;
977 case 8:
978 {
979 if (bits(newVal, 63, 4))
980 fault = new GeneralProtection(0);
981 }
982 default:
983 panic("Unrecognized control register %d.\\n", dest);
984 }
985 ControlDest = newVal;
986 }
987 '''
988
989 # Microops for manipulating segmentation registers
990 class SegOp(CondRegOp):
991 abstract = True
992 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"):
993 super(SegOp, self).__init__(dest, \
994 src1, "NUM_INTREGS", flags, dataSize)
995
996 class Wrbase(SegOp):
997 code = '''
998 SegBaseDest = psrc1;
999 '''
1000
1001 class Wrlimit(SegOp):
1002 code = '''
1003 SegLimitDest = psrc1;
1004 '''
1005
1006 class Wrsel(SegOp):
1007 code = '''
1008 SegSelDest = psrc1;
1009 '''
1010
1011 class Rdbase(SegOp):
1012 code = '''
1013 DestReg = SegBaseSrc1;
1014 '''
1015
1016 class Rdlimit(SegOp):
1017 code = '''
1018 DestReg = SegLimitSrc1;
1019 '''
1020
1021 class RdAttr(SegOp):
1022 code = '''
1023 DestReg = SegAttrSrc1;
1024 '''
1025
1026 class Rdsel(SegOp):
1027 code = '''
1028 DestReg = SegSelSrc1;
1029 '''
1030
1031 class Rdval(RegOp):
1032 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"):
1033 super(Rdval, self).__init__(dest, \
1034 src1, "NUM_INTREGS", flags, dataSize)
1035 code = '''
1036 DestReg = MiscRegSrc1;
1037 '''
1038
1039 class Wrval(RegOp):
1040 def __init__(self, dest, src1, flags=None, dataSize="env.dataSize"):
1041 super(Wrval, self).__init__(dest, \
1042 src1, "NUM_INTREGS", flags, dataSize)
1043 code = '''
1044 MiscRegDest = SrcReg1;
1045 '''
1046
1047 class Chks(RegOp):
1048 def __init__(self, dest, src1, src2=0,
1049 flags=None, dataSize="env.dataSize"):
1050 super(Chks, self).__init__(dest,
1051 src1, src2, flags, dataSize)
1052 code = '''
1053 // The selector is in source 1 and can be at most 16 bits.
1054 SegSelector selector = DestReg;
1055 SegDescriptor desc = SrcReg1;
1056 HandyM5Reg m5reg = M5Reg;
1057
1058 switch (imm8)
1059 {
1060 case SegNoCheck:
1061 break;
1062 case SegCSCheck:
1063 panic("CS checks for far calls/jumps not implemented.\\n");
1064 break;
1065 case SegCallGateCheck:
1066 panic("CS checks for far calls/jumps through call gates"
1067 "not implemented.\\n");
1068 break;
1069 case SegIntGateCheck:
1070 if (desc.dpl < m5reg.cpl) {
1071 fault = new GeneralProtection((uint16_t)selector);
1072 }
1073 break;
1074 case SegSSCheck:
1075 if (selector.si || selector.ti) {
1076 if (!desc.p) {
1077 //FIXME This needs to also push the selector.
1078 fault = new StackFault;
1079 }
1080 } else {
1081 if ((m5reg.submode != SixtyFourBitMode ||
1082 m5reg.cpl == 3) ||
1083 !(desc.s == 1 &&
1084 desc.type.codeOrData == 0 && desc.type.w) ||
1085 (desc.dpl != m5reg.cpl) ||
1086 (selector.rpl != m5reg.cpl)) {
1087 fault = new GeneralProtection(psrc1 & 0xFFFF);
1088 }
1089 }
1090 break;
1091 case SegIretCheck:
1092 {
1093 if ((!selector.si && !selector.ti) ||
1094 (selector.rpl < m5reg.cpl) ||
1095 !(desc.s == 1 && desc.type.codeOrData == 1) ||
1096 (!desc.type.c && desc.dpl != selector.rpl) ||
1097 (desc.type.c && desc.dpl > selector.rpl)) {
1098 fault = new GeneralProtection(psrc1 & 0xFFFF);
1099 } else if (!desc.p) {
1100 fault = new SegmentNotPresent;
1101 }
1102 break;
1103 }
1104 case SegIntCSCheck:
1105 if (m5reg.mode == LongMode) {
1106 if (desc.l != 1 || desc.d != 0) {
1107 fault = new GeneralProtection(selector);
1108 }
1109 } else {
1110 panic("Interrupt CS checks not implemented "
1111 "in legacy mode.\\n");
1112 }
1113 break;
1114 default:
1115 panic("Undefined segment check type.\\n");
1116 }
1117 '''
1118 flag_code = '''
1119 // Check for a NULL selector and set ZF,EZF appropriately.
1120 ccFlagBits = ccFlagBits & ~(ext & (ZFBit | EZFBit));
1121 if (!selector.si && !selector.ti)
1122 ccFlagBits = ccFlagBits | (ext & (ZFBit | EZFBit));
1123 '''
1124
1125 class Wrdh(RegOp):
1126 code = '''
1127 SegDescriptor desc = SrcReg1;
1128
1129 uint64_t target = bits(SrcReg2, 31, 0) << 32;
1130 switch(desc.type) {
1131 case LDT64:
1132 case AvailableTSS64:
1133 case BusyTSS64:
1134 replaceBits(target, 23, 0, desc.baseLow);
1135 replaceBits(target, 31, 24, desc.baseHigh);
1136 break;
1137 case CallGate64:
1138 case IntGate64:
1139 case TrapGate64:
1140 replaceBits(target, 15, 0, bits(desc, 15, 0));
1141 replaceBits(target, 31, 16, bits(desc, 63, 48));
1142 break;
1143 default:
1144 panic("Wrdh used with wrong descriptor type!\\n");
1145 }
1146 DestReg = target;
1147 '''
1148
1149 class Wrtsc(WrRegOp):
1150 code = '''
1151 TscOp = psrc1;
1152 '''
1153
1154 class Rdtsc(RdRegOp):
1155 code = '''
1156 DestReg = TscOp;
1157 '''
1158
1159 class Rdm5reg(RdRegOp):
1160 code = '''
1161 DestReg = M5Reg;
1162 '''
1163
1164 class Wrdl(RegOp):
1165 code = '''
1166 SegDescriptor desc = SrcReg1;
1167 SegSelector selector = SrcReg2;
1168 if (selector.si || selector.ti) {
1169 SegAttr attr = 0;
1170 attr.dpl = desc.dpl;
1171 attr.defaultSize = desc.d;
1172 if (!desc.s) {
1173 SegBaseDest = SegBaseDest;
1174 SegLimitDest = SegLimitDest;
1175 SegAttrDest = SegAttrDest;
1176 panic("System segment encountered.\\n");
1177 } else {
1178 if (!desc.p)
1179 panic("Segment not present.\\n");
1180 if (desc.type.codeOrData) {
1181 attr.readable = desc.type.r;
1182 attr.longMode = desc.l;
1183 } else {
1184 attr.expandDown = desc.type.e;
1185 attr.readable = 1;
1186 attr.writable = desc.type.w;
1187 }
1188 Addr base = desc.baseLow | (desc.baseHigh << 24);
1189 Addr limit = desc.limitLow | (desc.limitHigh << 16);
1190 if (desc.g)
1191 limit = (limit << 12) | mask(12);
1192 SegBaseDest = base;
1193 SegLimitDest = limit;
1194 SegAttrDest = attr;
1195 }
1196 } else {
1197 SegBaseDest = SegBaseDest;
1198 SegLimitDest = SegLimitDest;
1199 SegAttrDest = SegAttrDest;
1200 }
1201 '''
1202}};