interrupts.cc (12124:6edbfe40f4e8) interrupts.cc (13229:b45254f2733a)
1/*
2 * Copyright (c) 2012-2013 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2008 The Hewlett-Packard Development Company
15 * All rights reserved.
16 *
17 * The license below extends only to copyright in the software and shall
18 * not be construed as granting a license to any other intellectual
19 * property including but not limited to intellectual property relating
20 * to a hardware implementation of the functionality of the software
21 * licensed hereunder. You may use the software subject to the license
22 * terms below provided that you ensure that this notice is replicated
23 * unmodified and in its entirety in all distributions of the software,
24 * modified or unmodified, in source code or in binary form.
25 *
26 * Redistribution and use in source and binary forms, with or without
27 * modification, are permitted provided that the following conditions are
28 * met: redistributions of source code must retain the above copyright
29 * notice, this list of conditions and the following disclaimer;
30 * redistributions in binary form must reproduce the above copyright
31 * notice, this list of conditions and the following disclaimer in the
32 * documentation and/or other materials provided with the distribution;
33 * neither the name of the copyright holders nor the names of its
34 * contributors may be used to endorse or promote products derived from
35 * this software without specific prior written permission.
36 *
37 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 *
49 * Authors: Gabe Black
50 */
51
52#include "arch/x86/interrupts.hh"
53
54#include <memory>
55
56#include "arch/x86/intmessage.hh"
57#include "arch/x86/regs/apic.hh"
58#include "cpu/base.hh"
59#include "debug/LocalApic.hh"
60#include "dev/x86/i82094aa.hh"
61#include "dev/x86/pc.hh"
62#include "dev/x86/south_bridge.hh"
63#include "mem/packet_access.hh"
64#include "sim/full_system.hh"
65#include "sim/system.hh"
66
67int
68divideFromConf(uint32_t conf)
69{
70 // This figures out what division we want from the division configuration
71 // register in the local APIC. The encoding is a little odd but it can
72 // be deciphered fairly easily.
73 int shift = ((conf & 0x8) >> 1) | (conf & 0x3);
74 shift = (shift + 1) % 8;
75 return 1 << shift;
76}
77
78namespace X86ISA
79{
80
81ApicRegIndex
82decodeAddr(Addr paddr)
83{
84 ApicRegIndex regNum;
85 paddr &= ~mask(3);
86 switch (paddr)
87 {
88 case 0x20:
89 regNum = APIC_ID;
90 break;
91 case 0x30:
92 regNum = APIC_VERSION;
93 break;
94 case 0x80:
95 regNum = APIC_TASK_PRIORITY;
96 break;
97 case 0x90:
98 regNum = APIC_ARBITRATION_PRIORITY;
99 break;
100 case 0xA0:
101 regNum = APIC_PROCESSOR_PRIORITY;
102 break;
103 case 0xB0:
104 regNum = APIC_EOI;
105 break;
106 case 0xD0:
107 regNum = APIC_LOGICAL_DESTINATION;
108 break;
109 case 0xE0:
110 regNum = APIC_DESTINATION_FORMAT;
111 break;
112 case 0xF0:
113 regNum = APIC_SPURIOUS_INTERRUPT_VECTOR;
114 break;
115 case 0x100:
116 case 0x110:
117 case 0x120:
118 case 0x130:
119 case 0x140:
120 case 0x150:
121 case 0x160:
122 case 0x170:
123 regNum = APIC_IN_SERVICE((paddr - 0x100) / 0x10);
124 break;
125 case 0x180:
126 case 0x190:
127 case 0x1A0:
128 case 0x1B0:
129 case 0x1C0:
130 case 0x1D0:
131 case 0x1E0:
132 case 0x1F0:
133 regNum = APIC_TRIGGER_MODE((paddr - 0x180) / 0x10);
134 break;
135 case 0x200:
136 case 0x210:
137 case 0x220:
138 case 0x230:
139 case 0x240:
140 case 0x250:
141 case 0x260:
142 case 0x270:
143 regNum = APIC_INTERRUPT_REQUEST((paddr - 0x200) / 0x10);
144 break;
145 case 0x280:
146 regNum = APIC_ERROR_STATUS;
147 break;
148 case 0x300:
149 regNum = APIC_INTERRUPT_COMMAND_LOW;
150 break;
151 case 0x310:
152 regNum = APIC_INTERRUPT_COMMAND_HIGH;
153 break;
154 case 0x320:
155 regNum = APIC_LVT_TIMER;
156 break;
157 case 0x330:
158 regNum = APIC_LVT_THERMAL_SENSOR;
159 break;
160 case 0x340:
161 regNum = APIC_LVT_PERFORMANCE_MONITORING_COUNTERS;
162 break;
163 case 0x350:
164 regNum = APIC_LVT_LINT0;
165 break;
166 case 0x360:
167 regNum = APIC_LVT_LINT1;
168 break;
169 case 0x370:
170 regNum = APIC_LVT_ERROR;
171 break;
172 case 0x380:
173 regNum = APIC_INITIAL_COUNT;
174 break;
175 case 0x390:
176 regNum = APIC_CURRENT_COUNT;
177 break;
178 case 0x3E0:
179 regNum = APIC_DIVIDE_CONFIGURATION;
180 break;
181 default:
182 // A reserved register field.
183 panic("Accessed reserved register field %#x.\n", paddr);
184 break;
185 }
186 return regNum;
187}
188}
189
190Tick
191X86ISA::Interrupts::read(PacketPtr pkt)
192{
193 Addr offset = pkt->getAddr() - pioAddr;
194 //Make sure we're at least only accessing one register.
195 if ((offset & ~mask(3)) != ((offset + pkt->getSize()) & ~mask(3)))
196 panic("Accessed more than one register at a time in the APIC!\n");
197 ApicRegIndex reg = decodeAddr(offset);
198 uint32_t val = htog(readReg(reg));
199 DPRINTF(LocalApic,
200 "Reading Local APIC register %d at offset %#x as %#x.\n",
201 reg, offset, val);
202 pkt->setData(((uint8_t *)&val) + (offset & mask(3)));
203 pkt->makeAtomicResponse();
204 return pioDelay;
205}
206
207Tick
208X86ISA::Interrupts::write(PacketPtr pkt)
209{
210 Addr offset = pkt->getAddr() - pioAddr;
211 //Make sure we're at least only accessing one register.
212 if ((offset & ~mask(3)) != ((offset + pkt->getSize()) & ~mask(3)))
213 panic("Accessed more than one register at a time in the APIC!\n");
214 ApicRegIndex reg = decodeAddr(offset);
215 uint32_t val = regs[reg];
216 pkt->writeData(((uint8_t *)&val) + (offset & mask(3)));
217 DPRINTF(LocalApic,
218 "Writing Local APIC register %d at offset %#x as %#x.\n",
219 reg, offset, gtoh(val));
220 setReg(reg, gtoh(val));
221 pkt->makeAtomicResponse();
222 return pioDelay;
223}
224void
225X86ISA::Interrupts::requestInterrupt(uint8_t vector,
226 uint8_t deliveryMode, bool level)
227{
228 /*
229 * Fixed and lowest-priority delivery mode interrupts are handled
230 * using the IRR/ISR registers, checking against the TPR, etc.
231 * The SMI, NMI, ExtInt, INIT, etc interrupts go straight through.
232 */
233 if (deliveryMode == DeliveryMode::Fixed ||
234 deliveryMode == DeliveryMode::LowestPriority) {
235 DPRINTF(LocalApic, "Interrupt is an %s.\n",
236 DeliveryMode::names[deliveryMode]);
237 // Queue up the interrupt in the IRR.
238 if (vector > IRRV)
239 IRRV = vector;
240 if (!getRegArrayBit(APIC_INTERRUPT_REQUEST_BASE, vector)) {
241 setRegArrayBit(APIC_INTERRUPT_REQUEST_BASE, vector);
242 if (level) {
243 setRegArrayBit(APIC_TRIGGER_MODE_BASE, vector);
244 } else {
245 clearRegArrayBit(APIC_TRIGGER_MODE_BASE, vector);
246 }
247 }
248 } else if (!DeliveryMode::isReserved(deliveryMode)) {
249 DPRINTF(LocalApic, "Interrupt is an %s.\n",
250 DeliveryMode::names[deliveryMode]);
251 if (deliveryMode == DeliveryMode::SMI && !pendingSmi) {
252 pendingUnmaskableInt = pendingSmi = true;
253 smiVector = vector;
254 } else if (deliveryMode == DeliveryMode::NMI && !pendingNmi) {
255 pendingUnmaskableInt = pendingNmi = true;
256 nmiVector = vector;
257 } else if (deliveryMode == DeliveryMode::ExtInt && !pendingExtInt) {
258 pendingExtInt = true;
259 extIntVector = vector;
260 } else if (deliveryMode == DeliveryMode::INIT && !pendingInit) {
261 pendingUnmaskableInt = pendingInit = true;
262 initVector = vector;
263 } else if (deliveryMode == DeliveryMode::SIPI &&
264 !pendingStartup && !startedUp) {
265 pendingUnmaskableInt = pendingStartup = true;
266 startupVector = vector;
267 }
268 }
269 if (FullSystem)
270 cpu->wakeup(0);
271}
272
273
274void
275X86ISA::Interrupts::setCPU(BaseCPU * newCPU)
276{
277 assert(newCPU);
278 if (cpu != NULL && cpu->cpuId() != newCPU->cpuId()) {
279 panic("Local APICs can't be moved between CPUs"
280 " with different IDs.\n");
281 }
282 cpu = newCPU;
283 initialApicId = cpu->cpuId();
284 regs[APIC_ID] = (initialApicId << 24);
285 pioAddr = x86LocalAPICAddress(initialApicId, 0);
286}
287
288
289void
290X86ISA::Interrupts::init()
291{
292 //
293 // The local apic must register its address ranges on both its pio
294 // port via the basicpiodevice(piodevice) init() function and its
295 // int port that it inherited from IntDevice. Note IntDevice is
296 // not a SimObject itself.
297 //
298 BasicPioDevice::init();
299 IntDevice::init();
300
301 // the slave port has a range so inform the connected master
302 intSlavePort.sendRangeChange();
303}
304
305
306Tick
307X86ISA::Interrupts::recvMessage(PacketPtr pkt)
308{
309 Addr offset = pkt->getAddr() - x86InterruptAddress(initialApicId, 0);
310 assert(pkt->cmd == MemCmd::MessageReq);
311 switch(offset)
312 {
313 case 0:
314 {
1/*
2 * Copyright (c) 2012-2013 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder. You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2008 The Hewlett-Packard Development Company
15 * All rights reserved.
16 *
17 * The license below extends only to copyright in the software and shall
18 * not be construed as granting a license to any other intellectual
19 * property including but not limited to intellectual property relating
20 * to a hardware implementation of the functionality of the software
21 * licensed hereunder. You may use the software subject to the license
22 * terms below provided that you ensure that this notice is replicated
23 * unmodified and in its entirety in all distributions of the software,
24 * modified or unmodified, in source code or in binary form.
25 *
26 * Redistribution and use in source and binary forms, with or without
27 * modification, are permitted provided that the following conditions are
28 * met: redistributions of source code must retain the above copyright
29 * notice, this list of conditions and the following disclaimer;
30 * redistributions in binary form must reproduce the above copyright
31 * notice, this list of conditions and the following disclaimer in the
32 * documentation and/or other materials provided with the distribution;
33 * neither the name of the copyright holders nor the names of its
34 * contributors may be used to endorse or promote products derived from
35 * this software without specific prior written permission.
36 *
37 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 *
49 * Authors: Gabe Black
50 */
51
52#include "arch/x86/interrupts.hh"
53
54#include <memory>
55
56#include "arch/x86/intmessage.hh"
57#include "arch/x86/regs/apic.hh"
58#include "cpu/base.hh"
59#include "debug/LocalApic.hh"
60#include "dev/x86/i82094aa.hh"
61#include "dev/x86/pc.hh"
62#include "dev/x86/south_bridge.hh"
63#include "mem/packet_access.hh"
64#include "sim/full_system.hh"
65#include "sim/system.hh"
66
67int
68divideFromConf(uint32_t conf)
69{
70 // This figures out what division we want from the division configuration
71 // register in the local APIC. The encoding is a little odd but it can
72 // be deciphered fairly easily.
73 int shift = ((conf & 0x8) >> 1) | (conf & 0x3);
74 shift = (shift + 1) % 8;
75 return 1 << shift;
76}
77
78namespace X86ISA
79{
80
81ApicRegIndex
82decodeAddr(Addr paddr)
83{
84 ApicRegIndex regNum;
85 paddr &= ~mask(3);
86 switch (paddr)
87 {
88 case 0x20:
89 regNum = APIC_ID;
90 break;
91 case 0x30:
92 regNum = APIC_VERSION;
93 break;
94 case 0x80:
95 regNum = APIC_TASK_PRIORITY;
96 break;
97 case 0x90:
98 regNum = APIC_ARBITRATION_PRIORITY;
99 break;
100 case 0xA0:
101 regNum = APIC_PROCESSOR_PRIORITY;
102 break;
103 case 0xB0:
104 regNum = APIC_EOI;
105 break;
106 case 0xD0:
107 regNum = APIC_LOGICAL_DESTINATION;
108 break;
109 case 0xE0:
110 regNum = APIC_DESTINATION_FORMAT;
111 break;
112 case 0xF0:
113 regNum = APIC_SPURIOUS_INTERRUPT_VECTOR;
114 break;
115 case 0x100:
116 case 0x110:
117 case 0x120:
118 case 0x130:
119 case 0x140:
120 case 0x150:
121 case 0x160:
122 case 0x170:
123 regNum = APIC_IN_SERVICE((paddr - 0x100) / 0x10);
124 break;
125 case 0x180:
126 case 0x190:
127 case 0x1A0:
128 case 0x1B0:
129 case 0x1C0:
130 case 0x1D0:
131 case 0x1E0:
132 case 0x1F0:
133 regNum = APIC_TRIGGER_MODE((paddr - 0x180) / 0x10);
134 break;
135 case 0x200:
136 case 0x210:
137 case 0x220:
138 case 0x230:
139 case 0x240:
140 case 0x250:
141 case 0x260:
142 case 0x270:
143 regNum = APIC_INTERRUPT_REQUEST((paddr - 0x200) / 0x10);
144 break;
145 case 0x280:
146 regNum = APIC_ERROR_STATUS;
147 break;
148 case 0x300:
149 regNum = APIC_INTERRUPT_COMMAND_LOW;
150 break;
151 case 0x310:
152 regNum = APIC_INTERRUPT_COMMAND_HIGH;
153 break;
154 case 0x320:
155 regNum = APIC_LVT_TIMER;
156 break;
157 case 0x330:
158 regNum = APIC_LVT_THERMAL_SENSOR;
159 break;
160 case 0x340:
161 regNum = APIC_LVT_PERFORMANCE_MONITORING_COUNTERS;
162 break;
163 case 0x350:
164 regNum = APIC_LVT_LINT0;
165 break;
166 case 0x360:
167 regNum = APIC_LVT_LINT1;
168 break;
169 case 0x370:
170 regNum = APIC_LVT_ERROR;
171 break;
172 case 0x380:
173 regNum = APIC_INITIAL_COUNT;
174 break;
175 case 0x390:
176 regNum = APIC_CURRENT_COUNT;
177 break;
178 case 0x3E0:
179 regNum = APIC_DIVIDE_CONFIGURATION;
180 break;
181 default:
182 // A reserved register field.
183 panic("Accessed reserved register field %#x.\n", paddr);
184 break;
185 }
186 return regNum;
187}
188}
189
190Tick
191X86ISA::Interrupts::read(PacketPtr pkt)
192{
193 Addr offset = pkt->getAddr() - pioAddr;
194 //Make sure we're at least only accessing one register.
195 if ((offset & ~mask(3)) != ((offset + pkt->getSize()) & ~mask(3)))
196 panic("Accessed more than one register at a time in the APIC!\n");
197 ApicRegIndex reg = decodeAddr(offset);
198 uint32_t val = htog(readReg(reg));
199 DPRINTF(LocalApic,
200 "Reading Local APIC register %d at offset %#x as %#x.\n",
201 reg, offset, val);
202 pkt->setData(((uint8_t *)&val) + (offset & mask(3)));
203 pkt->makeAtomicResponse();
204 return pioDelay;
205}
206
207Tick
208X86ISA::Interrupts::write(PacketPtr pkt)
209{
210 Addr offset = pkt->getAddr() - pioAddr;
211 //Make sure we're at least only accessing one register.
212 if ((offset & ~mask(3)) != ((offset + pkt->getSize()) & ~mask(3)))
213 panic("Accessed more than one register at a time in the APIC!\n");
214 ApicRegIndex reg = decodeAddr(offset);
215 uint32_t val = regs[reg];
216 pkt->writeData(((uint8_t *)&val) + (offset & mask(3)));
217 DPRINTF(LocalApic,
218 "Writing Local APIC register %d at offset %#x as %#x.\n",
219 reg, offset, gtoh(val));
220 setReg(reg, gtoh(val));
221 pkt->makeAtomicResponse();
222 return pioDelay;
223}
224void
225X86ISA::Interrupts::requestInterrupt(uint8_t vector,
226 uint8_t deliveryMode, bool level)
227{
228 /*
229 * Fixed and lowest-priority delivery mode interrupts are handled
230 * using the IRR/ISR registers, checking against the TPR, etc.
231 * The SMI, NMI, ExtInt, INIT, etc interrupts go straight through.
232 */
233 if (deliveryMode == DeliveryMode::Fixed ||
234 deliveryMode == DeliveryMode::LowestPriority) {
235 DPRINTF(LocalApic, "Interrupt is an %s.\n",
236 DeliveryMode::names[deliveryMode]);
237 // Queue up the interrupt in the IRR.
238 if (vector > IRRV)
239 IRRV = vector;
240 if (!getRegArrayBit(APIC_INTERRUPT_REQUEST_BASE, vector)) {
241 setRegArrayBit(APIC_INTERRUPT_REQUEST_BASE, vector);
242 if (level) {
243 setRegArrayBit(APIC_TRIGGER_MODE_BASE, vector);
244 } else {
245 clearRegArrayBit(APIC_TRIGGER_MODE_BASE, vector);
246 }
247 }
248 } else if (!DeliveryMode::isReserved(deliveryMode)) {
249 DPRINTF(LocalApic, "Interrupt is an %s.\n",
250 DeliveryMode::names[deliveryMode]);
251 if (deliveryMode == DeliveryMode::SMI && !pendingSmi) {
252 pendingUnmaskableInt = pendingSmi = true;
253 smiVector = vector;
254 } else if (deliveryMode == DeliveryMode::NMI && !pendingNmi) {
255 pendingUnmaskableInt = pendingNmi = true;
256 nmiVector = vector;
257 } else if (deliveryMode == DeliveryMode::ExtInt && !pendingExtInt) {
258 pendingExtInt = true;
259 extIntVector = vector;
260 } else if (deliveryMode == DeliveryMode::INIT && !pendingInit) {
261 pendingUnmaskableInt = pendingInit = true;
262 initVector = vector;
263 } else if (deliveryMode == DeliveryMode::SIPI &&
264 !pendingStartup && !startedUp) {
265 pendingUnmaskableInt = pendingStartup = true;
266 startupVector = vector;
267 }
268 }
269 if (FullSystem)
270 cpu->wakeup(0);
271}
272
273
274void
275X86ISA::Interrupts::setCPU(BaseCPU * newCPU)
276{
277 assert(newCPU);
278 if (cpu != NULL && cpu->cpuId() != newCPU->cpuId()) {
279 panic("Local APICs can't be moved between CPUs"
280 " with different IDs.\n");
281 }
282 cpu = newCPU;
283 initialApicId = cpu->cpuId();
284 regs[APIC_ID] = (initialApicId << 24);
285 pioAddr = x86LocalAPICAddress(initialApicId, 0);
286}
287
288
289void
290X86ISA::Interrupts::init()
291{
292 //
293 // The local apic must register its address ranges on both its pio
294 // port via the basicpiodevice(piodevice) init() function and its
295 // int port that it inherited from IntDevice. Note IntDevice is
296 // not a SimObject itself.
297 //
298 BasicPioDevice::init();
299 IntDevice::init();
300
301 // the slave port has a range so inform the connected master
302 intSlavePort.sendRangeChange();
303}
304
305
306Tick
307X86ISA::Interrupts::recvMessage(PacketPtr pkt)
308{
309 Addr offset = pkt->getAddr() - x86InterruptAddress(initialApicId, 0);
310 assert(pkt->cmd == MemCmd::MessageReq);
311 switch(offset)
312 {
313 case 0:
314 {
315 TriggerIntMessage message = pkt->get();
315 TriggerIntMessage message = pkt->getRaw<TriggerIntMessage>();
316 DPRINTF(LocalApic,
317 "Got Trigger Interrupt message with vector %#x.\n",
318 message.vector);
319
320 requestInterrupt(message.vector,
321 message.deliveryMode, message.trigger);
322 }
323 break;
324 default:
325 panic("Local apic got unknown interrupt message at offset %#x.\n",
326 offset);
327 break;
328 }
329 pkt->makeAtomicResponse();
330 return pioDelay;
331}
332
333
334Tick
335X86ISA::Interrupts::recvResponse(PacketPtr pkt)
336{
337 assert(!pkt->isError());
338 assert(pkt->cmd == MemCmd::MessageResp);
339 if (--pendingIPIs == 0) {
340 InterruptCommandRegLow low = regs[APIC_INTERRUPT_COMMAND_LOW];
341 // Record that the ICR is now idle.
342 low.deliveryStatus = 0;
343 regs[APIC_INTERRUPT_COMMAND_LOW] = low;
344 }
345 DPRINTF(LocalApic, "ICR is now idle.\n");
346 return 0;
347}
348
349
350AddrRangeList
351X86ISA::Interrupts::getIntAddrRange() const
352{
353 AddrRangeList ranges;
354 ranges.push_back(RangeEx(x86InterruptAddress(initialApicId, 0),
355 x86InterruptAddress(initialApicId, 0) +
356 PhysAddrAPICRangeSize));
357 return ranges;
358}
359
360
361uint32_t
362X86ISA::Interrupts::readReg(ApicRegIndex reg)
363{
364 if (reg >= APIC_TRIGGER_MODE(0) &&
365 reg <= APIC_TRIGGER_MODE(15)) {
366 panic("Local APIC Trigger Mode registers are unimplemented.\n");
367 }
368 switch (reg) {
369 case APIC_ARBITRATION_PRIORITY:
370 panic("Local APIC Arbitration Priority register unimplemented.\n");
371 break;
372 case APIC_PROCESSOR_PRIORITY:
373 panic("Local APIC Processor Priority register unimplemented.\n");
374 break;
375 case APIC_ERROR_STATUS:
376 regs[APIC_INTERNAL_STATE] &= ~ULL(0x1);
377 break;
378 case APIC_CURRENT_COUNT:
379 {
380 if (apicTimerEvent.scheduled()) {
381 // Compute how many m5 ticks happen per count.
382 uint64_t ticksPerCount = clockPeriod() *
383 divideFromConf(regs[APIC_DIVIDE_CONFIGURATION]);
384 // Compute how many m5 ticks are left.
385 uint64_t val = apicTimerEvent.when() - curTick();
386 // Turn that into a count.
387 val = (val + ticksPerCount - 1) / ticksPerCount;
388 return val;
389 } else {
390 return 0;
391 }
392 }
393 default:
394 break;
395 }
396 return regs[reg];
397}
398
399void
400X86ISA::Interrupts::setReg(ApicRegIndex reg, uint32_t val)
401{
402 uint32_t newVal = val;
403 if (reg >= APIC_IN_SERVICE(0) &&
404 reg <= APIC_IN_SERVICE(15)) {
405 panic("Local APIC In-Service registers are unimplemented.\n");
406 }
407 if (reg >= APIC_TRIGGER_MODE(0) &&
408 reg <= APIC_TRIGGER_MODE(15)) {
409 panic("Local APIC Trigger Mode registers are unimplemented.\n");
410 }
411 if (reg >= APIC_INTERRUPT_REQUEST(0) &&
412 reg <= APIC_INTERRUPT_REQUEST(15)) {
413 panic("Local APIC Interrupt Request registers "
414 "are unimplemented.\n");
415 }
416 switch (reg) {
417 case APIC_ID:
418 newVal = val & 0xFF;
419 break;
420 case APIC_VERSION:
421 // The Local APIC Version register is read only.
422 return;
423 case APIC_TASK_PRIORITY:
424 newVal = val & 0xFF;
425 break;
426 case APIC_ARBITRATION_PRIORITY:
427 panic("Local APIC Arbitration Priority register unimplemented.\n");
428 break;
429 case APIC_PROCESSOR_PRIORITY:
430 panic("Local APIC Processor Priority register unimplemented.\n");
431 break;
432 case APIC_EOI:
433 // Remove the interrupt that just completed from the local apic state.
434 clearRegArrayBit(APIC_IN_SERVICE_BASE, ISRV);
435 updateISRV();
436 return;
437 case APIC_LOGICAL_DESTINATION:
438 newVal = val & 0xFF000000;
439 break;
440 case APIC_DESTINATION_FORMAT:
441 newVal = val | 0x0FFFFFFF;
442 break;
443 case APIC_SPURIOUS_INTERRUPT_VECTOR:
444 regs[APIC_INTERNAL_STATE] &= ~ULL(1 << 1);
445 regs[APIC_INTERNAL_STATE] |= val & (1 << 8);
446 if (val & (1 << 9))
447 warn("Focus processor checking not implemented.\n");
448 break;
449 case APIC_ERROR_STATUS:
450 {
451 if (regs[APIC_INTERNAL_STATE] & 0x1) {
452 regs[APIC_INTERNAL_STATE] &= ~ULL(0x1);
453 newVal = 0;
454 } else {
455 regs[APIC_INTERNAL_STATE] |= ULL(0x1);
456 return;
457 }
458
459 }
460 break;
461 case APIC_INTERRUPT_COMMAND_LOW:
462 {
463 InterruptCommandRegLow low = regs[APIC_INTERRUPT_COMMAND_LOW];
464 // Check if we're already sending an IPI.
465 if (low.deliveryStatus) {
466 newVal = low;
467 break;
468 }
469 low = val;
470 InterruptCommandRegHigh high = regs[APIC_INTERRUPT_COMMAND_HIGH];
471 TriggerIntMessage message = 0;
472 message.destination = high.destination;
473 message.vector = low.vector;
474 message.deliveryMode = low.deliveryMode;
475 message.destMode = low.destMode;
476 message.level = low.level;
477 message.trigger = low.trigger;
478 ApicList apics;
479 int numContexts = sys->numContexts();
480 switch (low.destShorthand) {
481 case 0:
482 if (message.deliveryMode == DeliveryMode::LowestPriority) {
483 panic("Lowest priority delivery mode "
484 "IPIs aren't implemented.\n");
485 }
486 if (message.destMode == 1) {
487 int dest = message.destination;
488 hack_once("Assuming logical destinations are 1 << id.\n");
489 for (int i = 0; i < numContexts; i++) {
490 if (dest & 0x1)
491 apics.push_back(i);
492 dest = dest >> 1;
493 }
494 } else {
495 if (message.destination == 0xFF) {
496 for (int i = 0; i < numContexts; i++) {
497 if (i == initialApicId) {
498 requestInterrupt(message.vector,
499 message.deliveryMode, message.trigger);
500 } else {
501 apics.push_back(i);
502 }
503 }
504 } else {
505 if (message.destination == initialApicId) {
506 requestInterrupt(message.vector,
507 message.deliveryMode, message.trigger);
508 } else {
509 apics.push_back(message.destination);
510 }
511 }
512 }
513 break;
514 case 1:
515 newVal = val;
516 requestInterrupt(message.vector,
517 message.deliveryMode, message.trigger);
518 break;
519 case 2:
520 requestInterrupt(message.vector,
521 message.deliveryMode, message.trigger);
522 // Fall through
523 case 3:
524 {
525 for (int i = 0; i < numContexts; i++) {
526 if (i != initialApicId) {
527 apics.push_back(i);
528 }
529 }
530 }
531 break;
532 }
533 // Record that an IPI is being sent if one actually is.
534 if (apics.size()) {
535 low.deliveryStatus = 1;
536 pendingIPIs += apics.size();
537 }
538 regs[APIC_INTERRUPT_COMMAND_LOW] = low;
539 intMasterPort.sendMessage(apics, message, sys->isTimingMode());
540 newVal = regs[APIC_INTERRUPT_COMMAND_LOW];
541 }
542 break;
543 case APIC_LVT_TIMER:
544 case APIC_LVT_THERMAL_SENSOR:
545 case APIC_LVT_PERFORMANCE_MONITORING_COUNTERS:
546 case APIC_LVT_LINT0:
547 case APIC_LVT_LINT1:
548 case APIC_LVT_ERROR:
549 {
550 uint64_t readOnlyMask = (1 << 12) | (1 << 14);
551 newVal = (val & ~readOnlyMask) |
552 (regs[reg] & readOnlyMask);
553 }
554 break;
555 case APIC_INITIAL_COUNT:
556 {
557 newVal = bits(val, 31, 0);
558 // Compute how many timer ticks we're being programmed for.
559 uint64_t newCount = newVal *
560 (divideFromConf(regs[APIC_DIVIDE_CONFIGURATION]));
561 // Schedule on the edge of the next tick plus the new count.
562 Tick offset = curTick() % clockPeriod();
563 if (offset) {
564 reschedule(apicTimerEvent,
565 curTick() + (newCount + 1) *
566 clockPeriod() - offset, true);
567 } else {
568 if (newCount)
569 reschedule(apicTimerEvent,
570 curTick() + newCount *
571 clockPeriod(), true);
572 }
573 }
574 break;
575 case APIC_CURRENT_COUNT:
576 //Local APIC Current Count register is read only.
577 return;
578 case APIC_DIVIDE_CONFIGURATION:
579 newVal = val & 0xB;
580 break;
581 default:
582 break;
583 }
584 regs[reg] = newVal;
585 return;
586}
587
588
589X86ISA::Interrupts::Interrupts(Params * p)
590 : BasicPioDevice(p, PageBytes), IntDevice(this, p->int_latency),
591 apicTimerEvent([this]{ processApicTimerEvent(); }, name()),
592 pendingSmi(false), smiVector(0),
593 pendingNmi(false), nmiVector(0),
594 pendingExtInt(false), extIntVector(0),
595 pendingInit(false), initVector(0),
596 pendingStartup(false), startupVector(0),
597 startedUp(false), pendingUnmaskableInt(false),
598 pendingIPIs(0), cpu(NULL),
599 intSlavePort(name() + ".int_slave", this, this)
600{
601 memset(regs, 0, sizeof(regs));
602 //Set the local apic DFR to the flat model.
603 regs[APIC_DESTINATION_FORMAT] = (uint32_t)(-1);
604 ISRV = 0;
605 IRRV = 0;
606}
607
608
609bool
610X86ISA::Interrupts::checkInterrupts(ThreadContext *tc) const
611{
612 RFLAGS rflags = tc->readMiscRegNoEffect(MISCREG_RFLAGS);
613 if (pendingUnmaskableInt) {
614 DPRINTF(LocalApic, "Reported pending unmaskable interrupt.\n");
615 return true;
616 }
617 if (rflags.intf) {
618 if (pendingExtInt) {
619 DPRINTF(LocalApic, "Reported pending external interrupt.\n");
620 return true;
621 }
622 if (IRRV > ISRV && bits(IRRV, 7, 4) >
623 bits(regs[APIC_TASK_PRIORITY], 7, 4)) {
624 DPRINTF(LocalApic, "Reported pending regular interrupt.\n");
625 return true;
626 }
627 }
628 return false;
629}
630
631bool
632X86ISA::Interrupts::checkInterruptsRaw() const
633{
634 return pendingUnmaskableInt || pendingExtInt ||
635 (IRRV > ISRV && bits(IRRV, 7, 4) >
636 bits(regs[APIC_TASK_PRIORITY], 7, 4));
637}
638
639Fault
640X86ISA::Interrupts::getInterrupt(ThreadContext *tc)
641{
642 assert(checkInterrupts(tc));
643 // These are all probably fairly uncommon, so we'll make them easier to
644 // check for.
645 if (pendingUnmaskableInt) {
646 if (pendingSmi) {
647 DPRINTF(LocalApic, "Generated SMI fault object.\n");
648 return std::make_shared<SystemManagementInterrupt>();
649 } else if (pendingNmi) {
650 DPRINTF(LocalApic, "Generated NMI fault object.\n");
651 return std::make_shared<NonMaskableInterrupt>(nmiVector);
652 } else if (pendingInit) {
653 DPRINTF(LocalApic, "Generated INIT fault object.\n");
654 return std::make_shared<InitInterrupt>(initVector);
655 } else if (pendingStartup) {
656 DPRINTF(LocalApic, "Generating SIPI fault object.\n");
657 return std::make_shared<StartupInterrupt>(startupVector);
658 } else {
659 panic("pendingUnmaskableInt set, but no unmaskable "
660 "ints were pending.\n");
661 return NoFault;
662 }
663 } else if (pendingExtInt) {
664 DPRINTF(LocalApic, "Generated external interrupt fault object.\n");
665 return std::make_shared<ExternalInterrupt>(extIntVector);
666 } else {
667 DPRINTF(LocalApic, "Generated regular interrupt fault object.\n");
668 // The only thing left are fixed and lowest priority interrupts.
669 return std::make_shared<ExternalInterrupt>(IRRV);
670 }
671}
672
673void
674X86ISA::Interrupts::updateIntrInfo(ThreadContext *tc)
675{
676 assert(checkInterrupts(tc));
677 if (pendingUnmaskableInt) {
678 if (pendingSmi) {
679 DPRINTF(LocalApic, "SMI sent to core.\n");
680 pendingSmi = false;
681 } else if (pendingNmi) {
682 DPRINTF(LocalApic, "NMI sent to core.\n");
683 pendingNmi = false;
684 } else if (pendingInit) {
685 DPRINTF(LocalApic, "Init sent to core.\n");
686 pendingInit = false;
687 startedUp = false;
688 } else if (pendingStartup) {
689 DPRINTF(LocalApic, "SIPI sent to core.\n");
690 pendingStartup = false;
691 startedUp = true;
692 }
693 if (!(pendingSmi || pendingNmi || pendingInit || pendingStartup))
694 pendingUnmaskableInt = false;
695 } else if (pendingExtInt) {
696 pendingExtInt = false;
697 } else {
698 DPRINTF(LocalApic, "Interrupt %d sent to core.\n", IRRV);
699 // Mark the interrupt as "in service".
700 ISRV = IRRV;
701 setRegArrayBit(APIC_IN_SERVICE_BASE, ISRV);
702 // Clear it out of the IRR.
703 clearRegArrayBit(APIC_INTERRUPT_REQUEST_BASE, IRRV);
704 updateIRRV();
705 }
706}
707
708void
709X86ISA::Interrupts::serialize(CheckpointOut &cp) const
710{
711 SERIALIZE_ARRAY(regs, NUM_APIC_REGS);
712 SERIALIZE_SCALAR(pendingSmi);
713 SERIALIZE_SCALAR(smiVector);
714 SERIALIZE_SCALAR(pendingNmi);
715 SERIALIZE_SCALAR(nmiVector);
716 SERIALIZE_SCALAR(pendingExtInt);
717 SERIALIZE_SCALAR(extIntVector);
718 SERIALIZE_SCALAR(pendingInit);
719 SERIALIZE_SCALAR(initVector);
720 SERIALIZE_SCALAR(pendingStartup);
721 SERIALIZE_SCALAR(startupVector);
722 SERIALIZE_SCALAR(startedUp);
723 SERIALIZE_SCALAR(pendingUnmaskableInt);
724 SERIALIZE_SCALAR(pendingIPIs);
725 SERIALIZE_SCALAR(IRRV);
726 SERIALIZE_SCALAR(ISRV);
727 bool apicTimerEventScheduled = apicTimerEvent.scheduled();
728 SERIALIZE_SCALAR(apicTimerEventScheduled);
729 Tick apicTimerEventTick = apicTimerEvent.when();
730 SERIALIZE_SCALAR(apicTimerEventTick);
731}
732
733void
734X86ISA::Interrupts::unserialize(CheckpointIn &cp)
735{
736 UNSERIALIZE_ARRAY(regs, NUM_APIC_REGS);
737 UNSERIALIZE_SCALAR(pendingSmi);
738 UNSERIALIZE_SCALAR(smiVector);
739 UNSERIALIZE_SCALAR(pendingNmi);
740 UNSERIALIZE_SCALAR(nmiVector);
741 UNSERIALIZE_SCALAR(pendingExtInt);
742 UNSERIALIZE_SCALAR(extIntVector);
743 UNSERIALIZE_SCALAR(pendingInit);
744 UNSERIALIZE_SCALAR(initVector);
745 UNSERIALIZE_SCALAR(pendingStartup);
746 UNSERIALIZE_SCALAR(startupVector);
747 UNSERIALIZE_SCALAR(startedUp);
748 UNSERIALIZE_SCALAR(pendingUnmaskableInt);
749 UNSERIALIZE_SCALAR(pendingIPIs);
750 UNSERIALIZE_SCALAR(IRRV);
751 UNSERIALIZE_SCALAR(ISRV);
752 bool apicTimerEventScheduled;
753 UNSERIALIZE_SCALAR(apicTimerEventScheduled);
754 if (apicTimerEventScheduled) {
755 Tick apicTimerEventTick;
756 UNSERIALIZE_SCALAR(apicTimerEventTick);
757 if (apicTimerEvent.scheduled()) {
758 reschedule(apicTimerEvent, apicTimerEventTick, true);
759 } else {
760 schedule(apicTimerEvent, apicTimerEventTick);
761 }
762 }
763}
764
765X86ISA::Interrupts *
766X86LocalApicParams::create()
767{
768 return new X86ISA::Interrupts(this);
769}
770
771void
772X86ISA::Interrupts::processApicTimerEvent() {
773 if (triggerTimerInterrupt())
774 setReg(APIC_INITIAL_COUNT, readReg(APIC_INITIAL_COUNT));
775}
316 DPRINTF(LocalApic,
317 "Got Trigger Interrupt message with vector %#x.\n",
318 message.vector);
319
320 requestInterrupt(message.vector,
321 message.deliveryMode, message.trigger);
322 }
323 break;
324 default:
325 panic("Local apic got unknown interrupt message at offset %#x.\n",
326 offset);
327 break;
328 }
329 pkt->makeAtomicResponse();
330 return pioDelay;
331}
332
333
334Tick
335X86ISA::Interrupts::recvResponse(PacketPtr pkt)
336{
337 assert(!pkt->isError());
338 assert(pkt->cmd == MemCmd::MessageResp);
339 if (--pendingIPIs == 0) {
340 InterruptCommandRegLow low = regs[APIC_INTERRUPT_COMMAND_LOW];
341 // Record that the ICR is now idle.
342 low.deliveryStatus = 0;
343 regs[APIC_INTERRUPT_COMMAND_LOW] = low;
344 }
345 DPRINTF(LocalApic, "ICR is now idle.\n");
346 return 0;
347}
348
349
350AddrRangeList
351X86ISA::Interrupts::getIntAddrRange() const
352{
353 AddrRangeList ranges;
354 ranges.push_back(RangeEx(x86InterruptAddress(initialApicId, 0),
355 x86InterruptAddress(initialApicId, 0) +
356 PhysAddrAPICRangeSize));
357 return ranges;
358}
359
360
361uint32_t
362X86ISA::Interrupts::readReg(ApicRegIndex reg)
363{
364 if (reg >= APIC_TRIGGER_MODE(0) &&
365 reg <= APIC_TRIGGER_MODE(15)) {
366 panic("Local APIC Trigger Mode registers are unimplemented.\n");
367 }
368 switch (reg) {
369 case APIC_ARBITRATION_PRIORITY:
370 panic("Local APIC Arbitration Priority register unimplemented.\n");
371 break;
372 case APIC_PROCESSOR_PRIORITY:
373 panic("Local APIC Processor Priority register unimplemented.\n");
374 break;
375 case APIC_ERROR_STATUS:
376 regs[APIC_INTERNAL_STATE] &= ~ULL(0x1);
377 break;
378 case APIC_CURRENT_COUNT:
379 {
380 if (apicTimerEvent.scheduled()) {
381 // Compute how many m5 ticks happen per count.
382 uint64_t ticksPerCount = clockPeriod() *
383 divideFromConf(regs[APIC_DIVIDE_CONFIGURATION]);
384 // Compute how many m5 ticks are left.
385 uint64_t val = apicTimerEvent.when() - curTick();
386 // Turn that into a count.
387 val = (val + ticksPerCount - 1) / ticksPerCount;
388 return val;
389 } else {
390 return 0;
391 }
392 }
393 default:
394 break;
395 }
396 return regs[reg];
397}
398
399void
400X86ISA::Interrupts::setReg(ApicRegIndex reg, uint32_t val)
401{
402 uint32_t newVal = val;
403 if (reg >= APIC_IN_SERVICE(0) &&
404 reg <= APIC_IN_SERVICE(15)) {
405 panic("Local APIC In-Service registers are unimplemented.\n");
406 }
407 if (reg >= APIC_TRIGGER_MODE(0) &&
408 reg <= APIC_TRIGGER_MODE(15)) {
409 panic("Local APIC Trigger Mode registers are unimplemented.\n");
410 }
411 if (reg >= APIC_INTERRUPT_REQUEST(0) &&
412 reg <= APIC_INTERRUPT_REQUEST(15)) {
413 panic("Local APIC Interrupt Request registers "
414 "are unimplemented.\n");
415 }
416 switch (reg) {
417 case APIC_ID:
418 newVal = val & 0xFF;
419 break;
420 case APIC_VERSION:
421 // The Local APIC Version register is read only.
422 return;
423 case APIC_TASK_PRIORITY:
424 newVal = val & 0xFF;
425 break;
426 case APIC_ARBITRATION_PRIORITY:
427 panic("Local APIC Arbitration Priority register unimplemented.\n");
428 break;
429 case APIC_PROCESSOR_PRIORITY:
430 panic("Local APIC Processor Priority register unimplemented.\n");
431 break;
432 case APIC_EOI:
433 // Remove the interrupt that just completed from the local apic state.
434 clearRegArrayBit(APIC_IN_SERVICE_BASE, ISRV);
435 updateISRV();
436 return;
437 case APIC_LOGICAL_DESTINATION:
438 newVal = val & 0xFF000000;
439 break;
440 case APIC_DESTINATION_FORMAT:
441 newVal = val | 0x0FFFFFFF;
442 break;
443 case APIC_SPURIOUS_INTERRUPT_VECTOR:
444 regs[APIC_INTERNAL_STATE] &= ~ULL(1 << 1);
445 regs[APIC_INTERNAL_STATE] |= val & (1 << 8);
446 if (val & (1 << 9))
447 warn("Focus processor checking not implemented.\n");
448 break;
449 case APIC_ERROR_STATUS:
450 {
451 if (regs[APIC_INTERNAL_STATE] & 0x1) {
452 regs[APIC_INTERNAL_STATE] &= ~ULL(0x1);
453 newVal = 0;
454 } else {
455 regs[APIC_INTERNAL_STATE] |= ULL(0x1);
456 return;
457 }
458
459 }
460 break;
461 case APIC_INTERRUPT_COMMAND_LOW:
462 {
463 InterruptCommandRegLow low = regs[APIC_INTERRUPT_COMMAND_LOW];
464 // Check if we're already sending an IPI.
465 if (low.deliveryStatus) {
466 newVal = low;
467 break;
468 }
469 low = val;
470 InterruptCommandRegHigh high = regs[APIC_INTERRUPT_COMMAND_HIGH];
471 TriggerIntMessage message = 0;
472 message.destination = high.destination;
473 message.vector = low.vector;
474 message.deliveryMode = low.deliveryMode;
475 message.destMode = low.destMode;
476 message.level = low.level;
477 message.trigger = low.trigger;
478 ApicList apics;
479 int numContexts = sys->numContexts();
480 switch (low.destShorthand) {
481 case 0:
482 if (message.deliveryMode == DeliveryMode::LowestPriority) {
483 panic("Lowest priority delivery mode "
484 "IPIs aren't implemented.\n");
485 }
486 if (message.destMode == 1) {
487 int dest = message.destination;
488 hack_once("Assuming logical destinations are 1 << id.\n");
489 for (int i = 0; i < numContexts; i++) {
490 if (dest & 0x1)
491 apics.push_back(i);
492 dest = dest >> 1;
493 }
494 } else {
495 if (message.destination == 0xFF) {
496 for (int i = 0; i < numContexts; i++) {
497 if (i == initialApicId) {
498 requestInterrupt(message.vector,
499 message.deliveryMode, message.trigger);
500 } else {
501 apics.push_back(i);
502 }
503 }
504 } else {
505 if (message.destination == initialApicId) {
506 requestInterrupt(message.vector,
507 message.deliveryMode, message.trigger);
508 } else {
509 apics.push_back(message.destination);
510 }
511 }
512 }
513 break;
514 case 1:
515 newVal = val;
516 requestInterrupt(message.vector,
517 message.deliveryMode, message.trigger);
518 break;
519 case 2:
520 requestInterrupt(message.vector,
521 message.deliveryMode, message.trigger);
522 // Fall through
523 case 3:
524 {
525 for (int i = 0; i < numContexts; i++) {
526 if (i != initialApicId) {
527 apics.push_back(i);
528 }
529 }
530 }
531 break;
532 }
533 // Record that an IPI is being sent if one actually is.
534 if (apics.size()) {
535 low.deliveryStatus = 1;
536 pendingIPIs += apics.size();
537 }
538 regs[APIC_INTERRUPT_COMMAND_LOW] = low;
539 intMasterPort.sendMessage(apics, message, sys->isTimingMode());
540 newVal = regs[APIC_INTERRUPT_COMMAND_LOW];
541 }
542 break;
543 case APIC_LVT_TIMER:
544 case APIC_LVT_THERMAL_SENSOR:
545 case APIC_LVT_PERFORMANCE_MONITORING_COUNTERS:
546 case APIC_LVT_LINT0:
547 case APIC_LVT_LINT1:
548 case APIC_LVT_ERROR:
549 {
550 uint64_t readOnlyMask = (1 << 12) | (1 << 14);
551 newVal = (val & ~readOnlyMask) |
552 (regs[reg] & readOnlyMask);
553 }
554 break;
555 case APIC_INITIAL_COUNT:
556 {
557 newVal = bits(val, 31, 0);
558 // Compute how many timer ticks we're being programmed for.
559 uint64_t newCount = newVal *
560 (divideFromConf(regs[APIC_DIVIDE_CONFIGURATION]));
561 // Schedule on the edge of the next tick plus the new count.
562 Tick offset = curTick() % clockPeriod();
563 if (offset) {
564 reschedule(apicTimerEvent,
565 curTick() + (newCount + 1) *
566 clockPeriod() - offset, true);
567 } else {
568 if (newCount)
569 reschedule(apicTimerEvent,
570 curTick() + newCount *
571 clockPeriod(), true);
572 }
573 }
574 break;
575 case APIC_CURRENT_COUNT:
576 //Local APIC Current Count register is read only.
577 return;
578 case APIC_DIVIDE_CONFIGURATION:
579 newVal = val & 0xB;
580 break;
581 default:
582 break;
583 }
584 regs[reg] = newVal;
585 return;
586}
587
588
589X86ISA::Interrupts::Interrupts(Params * p)
590 : BasicPioDevice(p, PageBytes), IntDevice(this, p->int_latency),
591 apicTimerEvent([this]{ processApicTimerEvent(); }, name()),
592 pendingSmi(false), smiVector(0),
593 pendingNmi(false), nmiVector(0),
594 pendingExtInt(false), extIntVector(0),
595 pendingInit(false), initVector(0),
596 pendingStartup(false), startupVector(0),
597 startedUp(false), pendingUnmaskableInt(false),
598 pendingIPIs(0), cpu(NULL),
599 intSlavePort(name() + ".int_slave", this, this)
600{
601 memset(regs, 0, sizeof(regs));
602 //Set the local apic DFR to the flat model.
603 regs[APIC_DESTINATION_FORMAT] = (uint32_t)(-1);
604 ISRV = 0;
605 IRRV = 0;
606}
607
608
609bool
610X86ISA::Interrupts::checkInterrupts(ThreadContext *tc) const
611{
612 RFLAGS rflags = tc->readMiscRegNoEffect(MISCREG_RFLAGS);
613 if (pendingUnmaskableInt) {
614 DPRINTF(LocalApic, "Reported pending unmaskable interrupt.\n");
615 return true;
616 }
617 if (rflags.intf) {
618 if (pendingExtInt) {
619 DPRINTF(LocalApic, "Reported pending external interrupt.\n");
620 return true;
621 }
622 if (IRRV > ISRV && bits(IRRV, 7, 4) >
623 bits(regs[APIC_TASK_PRIORITY], 7, 4)) {
624 DPRINTF(LocalApic, "Reported pending regular interrupt.\n");
625 return true;
626 }
627 }
628 return false;
629}
630
631bool
632X86ISA::Interrupts::checkInterruptsRaw() const
633{
634 return pendingUnmaskableInt || pendingExtInt ||
635 (IRRV > ISRV && bits(IRRV, 7, 4) >
636 bits(regs[APIC_TASK_PRIORITY], 7, 4));
637}
638
639Fault
640X86ISA::Interrupts::getInterrupt(ThreadContext *tc)
641{
642 assert(checkInterrupts(tc));
643 // These are all probably fairly uncommon, so we'll make them easier to
644 // check for.
645 if (pendingUnmaskableInt) {
646 if (pendingSmi) {
647 DPRINTF(LocalApic, "Generated SMI fault object.\n");
648 return std::make_shared<SystemManagementInterrupt>();
649 } else if (pendingNmi) {
650 DPRINTF(LocalApic, "Generated NMI fault object.\n");
651 return std::make_shared<NonMaskableInterrupt>(nmiVector);
652 } else if (pendingInit) {
653 DPRINTF(LocalApic, "Generated INIT fault object.\n");
654 return std::make_shared<InitInterrupt>(initVector);
655 } else if (pendingStartup) {
656 DPRINTF(LocalApic, "Generating SIPI fault object.\n");
657 return std::make_shared<StartupInterrupt>(startupVector);
658 } else {
659 panic("pendingUnmaskableInt set, but no unmaskable "
660 "ints were pending.\n");
661 return NoFault;
662 }
663 } else if (pendingExtInt) {
664 DPRINTF(LocalApic, "Generated external interrupt fault object.\n");
665 return std::make_shared<ExternalInterrupt>(extIntVector);
666 } else {
667 DPRINTF(LocalApic, "Generated regular interrupt fault object.\n");
668 // The only thing left are fixed and lowest priority interrupts.
669 return std::make_shared<ExternalInterrupt>(IRRV);
670 }
671}
672
673void
674X86ISA::Interrupts::updateIntrInfo(ThreadContext *tc)
675{
676 assert(checkInterrupts(tc));
677 if (pendingUnmaskableInt) {
678 if (pendingSmi) {
679 DPRINTF(LocalApic, "SMI sent to core.\n");
680 pendingSmi = false;
681 } else if (pendingNmi) {
682 DPRINTF(LocalApic, "NMI sent to core.\n");
683 pendingNmi = false;
684 } else if (pendingInit) {
685 DPRINTF(LocalApic, "Init sent to core.\n");
686 pendingInit = false;
687 startedUp = false;
688 } else if (pendingStartup) {
689 DPRINTF(LocalApic, "SIPI sent to core.\n");
690 pendingStartup = false;
691 startedUp = true;
692 }
693 if (!(pendingSmi || pendingNmi || pendingInit || pendingStartup))
694 pendingUnmaskableInt = false;
695 } else if (pendingExtInt) {
696 pendingExtInt = false;
697 } else {
698 DPRINTF(LocalApic, "Interrupt %d sent to core.\n", IRRV);
699 // Mark the interrupt as "in service".
700 ISRV = IRRV;
701 setRegArrayBit(APIC_IN_SERVICE_BASE, ISRV);
702 // Clear it out of the IRR.
703 clearRegArrayBit(APIC_INTERRUPT_REQUEST_BASE, IRRV);
704 updateIRRV();
705 }
706}
707
708void
709X86ISA::Interrupts::serialize(CheckpointOut &cp) const
710{
711 SERIALIZE_ARRAY(regs, NUM_APIC_REGS);
712 SERIALIZE_SCALAR(pendingSmi);
713 SERIALIZE_SCALAR(smiVector);
714 SERIALIZE_SCALAR(pendingNmi);
715 SERIALIZE_SCALAR(nmiVector);
716 SERIALIZE_SCALAR(pendingExtInt);
717 SERIALIZE_SCALAR(extIntVector);
718 SERIALIZE_SCALAR(pendingInit);
719 SERIALIZE_SCALAR(initVector);
720 SERIALIZE_SCALAR(pendingStartup);
721 SERIALIZE_SCALAR(startupVector);
722 SERIALIZE_SCALAR(startedUp);
723 SERIALIZE_SCALAR(pendingUnmaskableInt);
724 SERIALIZE_SCALAR(pendingIPIs);
725 SERIALIZE_SCALAR(IRRV);
726 SERIALIZE_SCALAR(ISRV);
727 bool apicTimerEventScheduled = apicTimerEvent.scheduled();
728 SERIALIZE_SCALAR(apicTimerEventScheduled);
729 Tick apicTimerEventTick = apicTimerEvent.when();
730 SERIALIZE_SCALAR(apicTimerEventTick);
731}
732
733void
734X86ISA::Interrupts::unserialize(CheckpointIn &cp)
735{
736 UNSERIALIZE_ARRAY(regs, NUM_APIC_REGS);
737 UNSERIALIZE_SCALAR(pendingSmi);
738 UNSERIALIZE_SCALAR(smiVector);
739 UNSERIALIZE_SCALAR(pendingNmi);
740 UNSERIALIZE_SCALAR(nmiVector);
741 UNSERIALIZE_SCALAR(pendingExtInt);
742 UNSERIALIZE_SCALAR(extIntVector);
743 UNSERIALIZE_SCALAR(pendingInit);
744 UNSERIALIZE_SCALAR(initVector);
745 UNSERIALIZE_SCALAR(pendingStartup);
746 UNSERIALIZE_SCALAR(startupVector);
747 UNSERIALIZE_SCALAR(startedUp);
748 UNSERIALIZE_SCALAR(pendingUnmaskableInt);
749 UNSERIALIZE_SCALAR(pendingIPIs);
750 UNSERIALIZE_SCALAR(IRRV);
751 UNSERIALIZE_SCALAR(ISRV);
752 bool apicTimerEventScheduled;
753 UNSERIALIZE_SCALAR(apicTimerEventScheduled);
754 if (apicTimerEventScheduled) {
755 Tick apicTimerEventTick;
756 UNSERIALIZE_SCALAR(apicTimerEventTick);
757 if (apicTimerEvent.scheduled()) {
758 reschedule(apicTimerEvent, apicTimerEventTick, true);
759 } else {
760 schedule(apicTimerEvent, apicTimerEventTick);
761 }
762 }
763}
764
765X86ISA::Interrupts *
766X86LocalApicParams::create()
767{
768 return new X86ISA::Interrupts(this);
769}
770
771void
772X86ISA::Interrupts::processApicTimerEvent() {
773 if (triggerTimerInterrupt())
774 setReg(APIC_INITIAL_COUNT, readReg(APIC_INITIAL_COUNT));
775}