Deleted Added
sdiff udiff text old ( 11793:ef606668d247 ) new ( 12045:31d9a81ba286 )
full compact
1/*
2 * Copyright (c) 2011 Google
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;

--- 82 unchanged lines hidden (view full) ---

91
92 //While there's still something to do...
93 while (!instDone && !outOfBytes) {
94 uint8_t nextByte = getNextByte();
95 switch (state) {
96 case PrefixState:
97 state = doPrefixState(nextByte);
98 break;
99 case Vex2Of2State:
100 state = doVex2Of2State(nextByte);
101 break;
102 case Vex2Of3State:
103 state = doVex2Of3State(nextByte);
104 break;
105 case Vex3Of3State:
106 state = doVex3Of3State(nextByte);
107 break;
108 case VexOpcodeState:
109 state = doVexOpcodeState(nextByte);
110 break;
111 case OneByteOpcodeState:
112 state = doOneByteOpcodeState(nextByte);
113 break;
114 case TwoByteOpcodeState:
115 state = doTwoByteOpcodeState(nextByte);
116 break;
117 case ThreeByte0F38OpcodeState:
118 state = doThreeByte0F38OpcodeState(nextByte);

--- 97 unchanged lines hidden (view full) ---

216 case Repne:
217 DPRINTF(Decoder, "Found repne prefix.\n");
218 emi.legacy.repne = true;
219 break;
220 case RexPrefix:
221 DPRINTF(Decoder, "Found Rex prefix %#x.\n", nextByte);
222 emi.rex = nextByte;
223 break;
224 case Vex2Prefix:
225 DPRINTF(Decoder, "Found VEX two-byte prefix %#x.\n", nextByte);
226 emi.vex.present = 1;
227 nextState = Vex2Of2State;
228 break;
229 case Vex3Prefix:
230 DPRINTF(Decoder, "Found VEX three-byte prefix %#x.\n", nextByte);
231 emi.vex.present = 1;
232 nextState = Vex2Of3State;
233 break;
234 case 0:
235 nextState = OneByteOpcodeState;
236 break;
237
238 default:
239 panic("Unrecognized prefix %#x\n", nextByte);
240 }
241 return nextState;
242}
243
244Decoder::State
245Decoder::doVex2Of2State(uint8_t nextByte)
246{
247 consumeByte();
248 Vex2Of2 vex = nextByte;
249
250 emi.rex.r = !vex.r;
251
252 emi.vex.l = vex.l;
253 emi.vex.v = ~vex.v;
254
255 switch (vex.p) {
256 case 0:
257 break;
258 case 1:
259 emi.legacy.op = 1;
260 break;
261 case 2:
262 emi.legacy.rep = 1;
263 break;
264 case 3:
265 emi.legacy.repne = 1;
266 break;
267 }
268
269 emi.opcode.type = TwoByteOpcode;
270
271 return VexOpcodeState;
272}
273
274Decoder::State
275Decoder::doVex2Of3State(uint8_t nextByte)
276{
277 if (emi.mode.submode != SixtyFourBitMode && bits(nextByte, 7, 6) == 0x3) {
278 // This was actually an LDS instruction. Reroute to that path.
279 emi.vex.present = 0;
280 emi.opcode.type = OneByteOpcode;
281 emi.opcode.op = 0xC4;
282 return processOpcode(ImmediateTypeOneByte, UsesModRMOneByte,
283 nextByte >= 0xA0 && nextByte <= 0xA3);
284 }
285
286 consumeByte();
287 Vex2Of3 vex = nextByte;
288
289 emi.rex.r = !vex.r;
290 emi.rex.x = !vex.x;
291 emi.rex.b = !vex.b;
292
293 switch (vex.m) {
294 case 1:
295 emi.opcode.type = TwoByteOpcode;
296 break;
297 case 2:
298 emi.opcode.type = ThreeByte0F38Opcode;
299 break;
300 case 3:
301 emi.opcode.type = ThreeByte0F3AOpcode;
302 break;
303 default:
304 // These encodings are reserved. Pretend this was an undefined
305 // instruction so the main decoder will behave correctly, and stop
306 // trying to interpret bytes.
307 emi.opcode.type = TwoByteOpcode;
308 emi.opcode.op = 0x0B;
309 instDone = true;
310 return ResetState;
311 }
312 return Vex3Of3State;
313}
314
315Decoder::State
316Decoder::doVex3Of3State(uint8_t nextByte)
317{
318 if (emi.mode.submode != SixtyFourBitMode && bits(nextByte, 7, 6) == 0x3) {
319 // This was actually an LES instruction. Reroute to that path.
320 emi.vex.present = 0;
321 emi.opcode.type = OneByteOpcode;
322 emi.opcode.op = 0xC5;
323 return processOpcode(ImmediateTypeOneByte, UsesModRMOneByte,
324 nextByte >= 0xA0 && nextByte <= 0xA3);
325 }
326
327 consumeByte();
328 Vex3Of3 vex = nextByte;
329
330 emi.rex.w = vex.w;
331
332 emi.vex.l = vex.l;
333 emi.vex.v = ~vex.v;
334
335 switch (vex.p) {
336 case 0:
337 break;
338 case 1:
339 emi.legacy.op = 1;
340 break;
341 case 2:
342 emi.legacy.rep = 1;
343 break;
344 case 3:
345 emi.legacy.repne = 1;
346 break;
347 }
348
349 return VexOpcodeState;
350}
351
352Decoder::State
353Decoder::doVexOpcodeState(uint8_t nextByte)
354{
355 DPRINTF(Decoder, "Found VEX opcode %#x.\n", nextByte);
356
357 emi.opcode.op = nextByte;
358
359 switch (emi.opcode.type) {
360 case TwoByteOpcode:
361 return processOpcode(ImmediateTypeTwoByte, UsesModRMTwoByte);
362 case ThreeByte0F38Opcode:
363 return processOpcode(ImmediateTypeThreeByte0F38,
364 UsesModRMThreeByte0F38);
365 case ThreeByte0F3AOpcode:
366 return processOpcode(ImmediateTypeThreeByte0F3A,
367 UsesModRMThreeByte0F3A);
368 default:
369 panic("Unrecognized opcode type %d.\n", emi.opcode.type);
370 }
371}
372
373// Load the first opcode byte. Determine if there are more opcode bytes, and
374// if not, what immediate and/or ModRM is needed.
375Decoder::State
376Decoder::doOneByteOpcodeState(uint8_t nextByte)
377{
378 State nextState = ErrorState;
379 consumeByte();
380
381 if (nextByte == 0x0f) {
382 DPRINTF(Decoder, "Found opcode escape byte %#x.\n", nextByte);
383 nextState = TwoByteOpcodeState;
384 } else {
385 DPRINTF(Decoder, "Found one byte opcode %#x.\n", nextByte);
386 emi.opcode.type = OneByteOpcode;
387 emi.opcode.op = nextByte;
388
389 nextState = processOpcode(ImmediateTypeOneByte, UsesModRMOneByte,
390 nextByte >= 0xA0 && nextByte <= 0xA3);
391 }

--- 105 unchanged lines hidden (view full) ---

497 } else {
498 instDone = true;
499 nextState = ResetState;
500 }
501 }
502 return nextState;
503}
504
505//Get the ModRM byte and determine what displacement, if any, there is.
506//Also determine whether or not to get the SIB byte, displacement, or
507//immediate next.
508Decoder::State
509Decoder::doModRMState(uint8_t nextByte)
510{
511 State nextState = ErrorState;
512 ModRM modRM = nextByte;

--- 224 unchanged lines hidden ---