process.cc (12432:2480d8b432f5) process.cc (12441:ece14e2e8c0a)
1/*
2 * Copyright (c) 2003-2004 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Gabe Black
29 * Ali Saidi
30 */
31
32#include "arch/sparc/process.hh"
33
34#include "arch/sparc/asi.hh"
35#include "arch/sparc/handlers.hh"
36#include "arch/sparc/isa_traits.hh"
37#include "arch/sparc/registers.hh"
38#include "arch/sparc/types.hh"
39#include "base/loader/elf_object.hh"
40#include "base/loader/object_file.hh"
41#include "base/logging.hh"
42#include "cpu/thread_context.hh"
43#include "debug/Stack.hh"
44#include "mem/page_table.hh"
45#include "params/Process.hh"
46#include "sim/aux_vector.hh"
47#include "sim/process_impl.hh"
48#include "sim/syscall_return.hh"
49#include "sim/system.hh"
50
51using namespace std;
52using namespace SparcISA;
53
54static const int FirstArgumentReg = 8;
55
56
57SparcProcess::SparcProcess(ProcessParams *params, ObjectFile *objFile,
58 Addr _StackBias)
59 : Process(params, new FuncPageTable(params->name, params->pid, PageBytes),
60 objFile),
61 StackBias(_StackBias)
62{
1/*
2 * Copyright (c) 2003-2004 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Gabe Black
29 * Ali Saidi
30 */
31
32#include "arch/sparc/process.hh"
33
34#include "arch/sparc/asi.hh"
35#include "arch/sparc/handlers.hh"
36#include "arch/sparc/isa_traits.hh"
37#include "arch/sparc/registers.hh"
38#include "arch/sparc/types.hh"
39#include "base/loader/elf_object.hh"
40#include "base/loader/object_file.hh"
41#include "base/logging.hh"
42#include "cpu/thread_context.hh"
43#include "debug/Stack.hh"
44#include "mem/page_table.hh"
45#include "params/Process.hh"
46#include "sim/aux_vector.hh"
47#include "sim/process_impl.hh"
48#include "sim/syscall_return.hh"
49#include "sim/system.hh"
50
51using namespace std;
52using namespace SparcISA;
53
54static const int FirstArgumentReg = 8;
55
56
57SparcProcess::SparcProcess(ProcessParams *params, ObjectFile *objFile,
58 Addr _StackBias)
59 : Process(params, new FuncPageTable(params->name, params->pid, PageBytes),
60 objFile),
61 StackBias(_StackBias)
62{
63 fatal_if(!params->useArchPT, "Arch page tables not implemented.");
63 fatal_if(params->useArchPT, "Arch page tables not implemented.");
64 // Initialize these to 0s
65 fillStart = 0;
66 spillStart = 0;
67}
68
69void
70SparcProcess::handleTrap(int trapNum, ThreadContext *tc, Fault *fault)
71{
72 PCState pc = tc->pcState();
73 switch (trapNum) {
74 case 0x01: // Software breakpoint
75 warn("Software breakpoint encountered at pc %#x.\n", pc.pc());
76 break;
77 case 0x02: // Division by zero
78 warn("Software signaled a division by zero at pc %#x.\n", pc.pc());
79 break;
80 case 0x03: // Flush window trap
81 flushWindows(tc);
82 break;
83 case 0x04: // Clean windows
84 warn("Ignoring process request for clean register "
85 "windows at pc %#x.\n", pc.pc());
86 break;
87 case 0x05: // Range check
88 warn("Software signaled a range check at pc %#x.\n", pc.pc());
89 break;
90 case 0x06: // Fix alignment
91 warn("Ignoring process request for os assisted unaligned accesses "
92 "at pc %#x.\n", pc.pc());
93 break;
94 case 0x07: // Integer overflow
95 warn("Software signaled an integer overflow at pc %#x.\n", pc.pc());
96 break;
97 case 0x32: // Get integer condition codes
98 warn("Ignoring process request to get the integer condition codes "
99 "at pc %#x.\n", pc.pc());
100 break;
101 case 0x33: // Set integer condition codes
102 warn("Ignoring process request to set the integer condition codes "
103 "at pc %#x.\n", pc.pc());
104 break;
105 default:
106 panic("Unimplemented trap to operating system: trap number %#x.\n", trapNum);
107 }
108}
109
110void
111SparcProcess::initState()
112{
113 Process::initState();
114
115 ThreadContext *tc = system->getThreadContext(contextIds[0]);
116 // From the SPARC ABI
117
118 // Setup default FP state
119 tc->setMiscRegNoEffect(MISCREG_FSR, 0);
120
121 tc->setMiscRegNoEffect(MISCREG_TICK, 0);
122
123 /*
124 * Register window management registers
125 */
126
127 // No windows contain info from other programs
128 // tc->setMiscRegNoEffect(MISCREG_OTHERWIN, 0);
129 tc->setIntReg(NumIntArchRegs + 6, 0);
130 // There are no windows to pop
131 // tc->setMiscRegNoEffect(MISCREG_CANRESTORE, 0);
132 tc->setIntReg(NumIntArchRegs + 4, 0);
133 // All windows are available to save into
134 // tc->setMiscRegNoEffect(MISCREG_CANSAVE, NWindows - 2);
135 tc->setIntReg(NumIntArchRegs + 3, NWindows - 2);
136 // All windows are "clean"
137 // tc->setMiscRegNoEffect(MISCREG_CLEANWIN, NWindows);
138 tc->setIntReg(NumIntArchRegs + 5, NWindows);
139 // Start with register window 0
140 tc->setMiscReg(MISCREG_CWP, 0);
141 // Always use spill and fill traps 0
142 // tc->setMiscRegNoEffect(MISCREG_WSTATE, 0);
143 tc->setIntReg(NumIntArchRegs + 7, 0);
144 // Set the trap level to 0
145 tc->setMiscRegNoEffect(MISCREG_TL, 0);
146 // Set the ASI register to something fixed
147 tc->setMiscReg(MISCREG_ASI, ASI_PRIMARY);
148
149 // Set the MMU Primary Context Register to hold the process' pid
150 tc->setMiscReg(MISCREG_MMU_P_CONTEXT, _pid);
151
152 /*
153 * T1 specific registers
154 */
155 // Turn on the icache, dcache, dtb translation, and itb translation.
156 tc->setMiscRegNoEffect(MISCREG_MMU_LSU_CTRL, 15);
157}
158
159void
160Sparc32Process::initState()
161{
162 SparcProcess::initState();
163
164 ThreadContext *tc = system->getThreadContext(contextIds[0]);
165 // The process runs in user mode with 32 bit addresses
166 PSTATE pstate = 0;
167 pstate.ie = 1;
168 pstate.am = 1;
169 tc->setMiscReg(MISCREG_PSTATE, pstate);
170
171 argsInit(32 / 8, PageBytes);
172}
173
174void
175Sparc64Process::initState()
176{
177 SparcProcess::initState();
178
179 ThreadContext *tc = system->getThreadContext(contextIds[0]);
180 // The process runs in user mode
181 PSTATE pstate = 0;
182 pstate.ie = 1;
183 tc->setMiscReg(MISCREG_PSTATE, pstate);
184
185 argsInit(sizeof(IntReg), PageBytes);
186}
187
188template<class IntType>
189void
190SparcProcess::argsInit(int pageSize)
191{
192 int intSize = sizeof(IntType);
193
194 typedef AuxVector<IntType> auxv_t;
195
196 std::vector<auxv_t> auxv;
197
198 string filename;
199 if (argv.size() < 1)
200 filename = "";
201 else
202 filename = argv[0];
203
204 // Even for a 32 bit process, the ABI says we still need to
205 // maintain double word alignment of the stack pointer.
206 uint64_t align = 16;
207
208 // Patch the ld_bias for dynamic executables.
209 updateBias();
210
211 // load object file into target memory
212 objFile->loadSections(initVirtMem);
213
214 enum hardwareCaps
215 {
216 M5_HWCAP_SPARC_FLUSH = 1,
217 M5_HWCAP_SPARC_STBAR = 2,
218 M5_HWCAP_SPARC_SWAP = 4,
219 M5_HWCAP_SPARC_MULDIV = 8,
220 M5_HWCAP_SPARC_V9 = 16,
221 // This one should technically only be set
222 // if there is a cheetah or cheetah_plus tlb,
223 // but we'll use it all the time
224 M5_HWCAP_SPARC_ULTRA3 = 32
225 };
226
227 const int64_t hwcap =
228 M5_HWCAP_SPARC_FLUSH |
229 M5_HWCAP_SPARC_STBAR |
230 M5_HWCAP_SPARC_SWAP |
231 M5_HWCAP_SPARC_MULDIV |
232 M5_HWCAP_SPARC_V9 |
233 M5_HWCAP_SPARC_ULTRA3;
234
235 // Setup the auxilliary vectors. These will already have endian conversion.
236 // Auxilliary vectors are loaded only for elf formatted executables.
237 ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
238 if (elfObject) {
239 // Bits which describe the system hardware capabilities
240 auxv.push_back(auxv_t(M5_AT_HWCAP, hwcap));
241 // The system page size
242 auxv.push_back(auxv_t(M5_AT_PAGESZ, SparcISA::PageBytes));
243 // Defined to be 100 in the kernel source.
244 // Frequency at which times() increments
245 auxv.push_back(auxv_t(M5_AT_CLKTCK, 100));
246 // For statically linked executables, this is the virtual address of the
247 // program header tables if they appear in the executable image
248 auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
249 // This is the size of a program header entry from the elf file.
250 auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
251 // This is the number of program headers from the original elf file.
252 auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
253 // This is the base address of the ELF interpreter; it should be
254 // zero for static executables or contain the base address for
255 // dynamic executables.
256 auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
257 // This is hardwired to 0 in the elf loading code in the kernel
258 auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
259 // The entry point to the program
260 auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
261 // Different user and group IDs
262 auxv.push_back(auxv_t(M5_AT_UID, uid()));
263 auxv.push_back(auxv_t(M5_AT_EUID, euid()));
264 auxv.push_back(auxv_t(M5_AT_GID, gid()));
265 auxv.push_back(auxv_t(M5_AT_EGID, egid()));
266 // Whether to enable "secure mode" in the executable
267 auxv.push_back(auxv_t(M5_AT_SECURE, 0));
268 }
269
270 // Figure out how big the initial stack needs to be
271
272 // The unaccounted for 8 byte 0 at the top of the stack
273 int sentry_size = 8;
274
275 // This is the name of the file which is present on the initial stack
276 // It's purpose is to let the user space linker examine the original file.
277 int file_name_size = filename.size() + 1;
278
279 int env_data_size = 0;
280 for (int i = 0; i < envp.size(); ++i) {
281 env_data_size += envp[i].size() + 1;
282 }
283 int arg_data_size = 0;
284 for (int i = 0; i < argv.size(); ++i) {
285 arg_data_size += argv[i].size() + 1;
286 }
287
288 // The info_block.
289 int base_info_block_size =
290 sentry_size + file_name_size + env_data_size + arg_data_size;
291
292 int info_block_size = roundUp(base_info_block_size, align);
293
294 int info_block_padding = info_block_size - base_info_block_size;
295
296 // Each auxilliary vector is two words
297 int aux_array_size = intSize * 2 * (auxv.size() + 1);
298
299 int envp_array_size = intSize * (envp.size() + 1);
300 int argv_array_size = intSize * (argv.size() + 1);
301
302 int argc_size = intSize;
303 int window_save_size = intSize * 16;
304
305 // Figure out the size of the contents of the actual initial frame
306 int frame_size =
307 aux_array_size +
308 envp_array_size +
309 argv_array_size +
310 argc_size +
311 window_save_size;
312
313 // There needs to be padding after the auxiliary vector data so that the
314 // very bottom of the stack is aligned properly.
315 int aligned_partial_size = roundUp(frame_size, align);
316 int aux_padding = aligned_partial_size - frame_size;
317
318 int space_needed =
319 info_block_size +
320 aux_padding +
321 frame_size;
322
323 memState->setStackMin(memState->getStackBase() - space_needed);
324 memState->setStackMin(roundDown(memState->getStackMin(), align));
325 memState->setStackSize(memState->getStackBase() - memState->getStackMin());
326
327 // Allocate space for the stack
328 allocateMem(roundDown(memState->getStackMin(), pageSize),
329 roundUp(memState->getStackSize(), pageSize));
330
331 // map out initial stack contents
332 IntType sentry_base = memState->getStackBase() - sentry_size;
333 IntType file_name_base = sentry_base - file_name_size;
334 IntType env_data_base = file_name_base - env_data_size;
335 IntType arg_data_base = env_data_base - arg_data_size;
336 IntType auxv_array_base = arg_data_base -
337 info_block_padding - aux_array_size - aux_padding;
338 IntType envp_array_base = auxv_array_base - envp_array_size;
339 IntType argv_array_base = envp_array_base - argv_array_size;
340 IntType argc_base = argv_array_base - argc_size;
341#if TRACING_ON
342 IntType window_save_base = argc_base - window_save_size;
343#endif
344
345 DPRINTF(Stack, "The addresses of items on the initial stack:\n");
346 DPRINTF(Stack, "%#x - sentry NULL\n", sentry_base);
347 DPRINTF(Stack, "filename = %s\n", filename);
348 DPRINTF(Stack, "%#x - file name\n", file_name_base);
349 DPRINTF(Stack, "%#x - env data\n", env_data_base);
350 DPRINTF(Stack, "%#x - arg data\n", arg_data_base);
351 DPRINTF(Stack, "%#x - auxv array\n", auxv_array_base);
352 DPRINTF(Stack, "%#x - envp array\n", envp_array_base);
353 DPRINTF(Stack, "%#x - argv array\n", argv_array_base);
354 DPRINTF(Stack, "%#x - argc \n", argc_base);
355 DPRINTF(Stack, "%#x - window save\n", window_save_base);
356 DPRINTF(Stack, "%#x - stack min\n", memState->getStackMin());
357
358 assert(window_save_base == memState->getStackMin());
359
360 // write contents to stack
361
362 // figure out argc
363 IntType argc = argv.size();
364 IntType guestArgc = SparcISA::htog(argc);
365
366 // Write out the sentry void *
367 uint64_t sentry_NULL = 0;
368 initVirtMem.writeBlob(sentry_base,
369 (uint8_t*)&sentry_NULL, sentry_size);
370
371 // Write the file name
372 initVirtMem.writeString(file_name_base, filename.c_str());
373
374 // Copy the aux stuff
375 for (int x = 0; x < auxv.size(); x++) {
376 initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
377 (uint8_t*)&(auxv[x].a_type), intSize);
378 initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
379 (uint8_t*)&(auxv[x].a_val), intSize);
380 }
381
382 // Write out the terminating zeroed auxilliary vector
383 const IntType zero = 0;
384 initVirtMem.writeBlob(auxv_array_base + intSize * 2 * auxv.size(),
385 (uint8_t*)&zero, intSize);
386 initVirtMem.writeBlob(auxv_array_base + intSize * (2 * auxv.size() + 1),
387 (uint8_t*)&zero, intSize);
388
389 copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
390 copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
391
392 initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
393
394 // Set up space for the trap handlers into the processes address space.
395 // Since the stack grows down and there is reserved address space abov
396 // it, we can put stuff above it and stay out of the way.
397 fillStart = memState->getStackBase();
398 spillStart = fillStart + sizeof(MachInst) * numFillInsts;
399
400 ThreadContext *tc = system->getThreadContext(contextIds[0]);
401 // Set up the thread context to start running the process
402 // assert(NumArgumentRegs >= 2);
403 // tc->setIntReg(ArgumentReg[0], argc);
404 // tc->setIntReg(ArgumentReg[1], argv_array_base);
405 tc->setIntReg(StackPointerReg, memState->getStackMin() - StackBias);
406
407 // %g1 is a pointer to a function that should be run at exit. Since we
408 // don't have anything like that, it should be set to 0.
409 tc->setIntReg(1, 0);
410
411 tc->pcState(getStartPC());
412
413 // Align the "stack_min" to a page boundary.
414 memState->setStackMin(roundDown(memState->getStackMin(), pageSize));
415}
416
417void
418Sparc64Process::argsInit(int intSize, int pageSize)
419{
420 SparcProcess::argsInit<uint64_t>(pageSize);
421
422 // Stuff the trap handlers into the process address space
423 initVirtMem.writeBlob(fillStart,
424 (uint8_t*)fillHandler64, sizeof(MachInst) * numFillInsts);
425 initVirtMem.writeBlob(spillStart,
426 (uint8_t*)spillHandler64, sizeof(MachInst) * numSpillInsts);
427}
428
429void
430Sparc32Process::argsInit(int intSize, int pageSize)
431{
432 SparcProcess::argsInit<uint32_t>(pageSize);
433
434 // Stuff the trap handlers into the process address space
435 initVirtMem.writeBlob(fillStart,
436 (uint8_t*)fillHandler32, sizeof(MachInst) * numFillInsts);
437 initVirtMem.writeBlob(spillStart,
438 (uint8_t*)spillHandler32, sizeof(MachInst) * numSpillInsts);
439}
440
441void Sparc32Process::flushWindows(ThreadContext *tc)
442{
443 IntReg Cansave = tc->readIntReg(NumIntArchRegs + 3);
444 IntReg Canrestore = tc->readIntReg(NumIntArchRegs + 4);
445 IntReg Otherwin = tc->readIntReg(NumIntArchRegs + 6);
446 MiscReg CWP = tc->readMiscReg(MISCREG_CWP);
447 MiscReg origCWP = CWP;
448 CWP = (CWP + Cansave + 2) % NWindows;
449 while (NWindows - 2 - Cansave != 0) {
450 if (Otherwin) {
451 panic("Otherwin non-zero.\n");
452 } else {
453 tc->setMiscReg(MISCREG_CWP, CWP);
454 // Do the stores
455 IntReg sp = tc->readIntReg(StackPointerReg);
456 for (int index = 16; index < 32; index++) {
457 uint32_t regVal = tc->readIntReg(index);
458 regVal = htog(regVal);
459 if (!tc->getMemProxy().tryWriteBlob(
460 sp + (index - 16) * 4, (uint8_t *)&regVal, 4)) {
461 warn("Failed to save register to the stack when "
462 "flushing windows.\n");
463 }
464 }
465 Canrestore--;
466 Cansave++;
467 CWP = (CWP + 1) % NWindows;
468 }
469 }
470 tc->setIntReg(NumIntArchRegs + 3, Cansave);
471 tc->setIntReg(NumIntArchRegs + 4, Canrestore);
472 tc->setMiscReg(MISCREG_CWP, origCWP);
473}
474
475void
476Sparc64Process::flushWindows(ThreadContext *tc)
477{
478 IntReg Cansave = tc->readIntReg(NumIntArchRegs + 3);
479 IntReg Canrestore = tc->readIntReg(NumIntArchRegs + 4);
480 IntReg Otherwin = tc->readIntReg(NumIntArchRegs + 6);
481 MiscReg CWP = tc->readMiscReg(MISCREG_CWP);
482 MiscReg origCWP = CWP;
483 CWP = (CWP + Cansave + 2) % NWindows;
484 while (NWindows - 2 - Cansave != 0) {
485 if (Otherwin) {
486 panic("Otherwin non-zero.\n");
487 } else {
488 tc->setMiscReg(MISCREG_CWP, CWP);
489 // Do the stores
490 IntReg sp = tc->readIntReg(StackPointerReg);
491 for (int index = 16; index < 32; index++) {
492 IntReg regVal = tc->readIntReg(index);
493 regVal = htog(regVal);
494 if (!tc->getMemProxy().tryWriteBlob(
495 sp + 2047 + (index - 16) * 8, (uint8_t *)&regVal, 8)) {
496 warn("Failed to save register to the stack when "
497 "flushing windows.\n");
498 }
499 }
500 Canrestore--;
501 Cansave++;
502 CWP = (CWP + 1) % NWindows;
503 }
504 }
505 tc->setIntReg(NumIntArchRegs + 3, Cansave);
506 tc->setIntReg(NumIntArchRegs + 4, Canrestore);
507 tc->setMiscReg(MISCREG_CWP, origCWP);
508}
509
510IntReg
511Sparc32Process::getSyscallArg(ThreadContext *tc, int &i)
512{
513 assert(i < 6);
514 return bits(tc->readIntReg(FirstArgumentReg + i++), 31, 0);
515}
516
517void
518Sparc32Process::setSyscallArg(ThreadContext *tc, int i, IntReg val)
519{
520 assert(i < 6);
521 tc->setIntReg(FirstArgumentReg + i, bits(val, 31, 0));
522}
523
524IntReg
525Sparc64Process::getSyscallArg(ThreadContext *tc, int &i)
526{
527 assert(i < 6);
528 return tc->readIntReg(FirstArgumentReg + i++);
529}
530
531void
532Sparc64Process::setSyscallArg(ThreadContext *tc, int i, IntReg val)
533{
534 assert(i < 6);
535 tc->setIntReg(FirstArgumentReg + i, val);
536}
537
538void
539SparcProcess::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
540{
541 // check for error condition. SPARC syscall convention is to
542 // indicate success/failure in reg the carry bit of the ccr
543 // and put the return value itself in the standard return value reg ().
544 PSTATE pstate = tc->readMiscRegNoEffect(MISCREG_PSTATE);
545 if (sysret.successful()) {
546 // no error, clear XCC.C
547 tc->setIntReg(NumIntArchRegs + 2,
548 tc->readIntReg(NumIntArchRegs + 2) & 0xEE);
549 IntReg val = sysret.returnValue();
550 if (pstate.am)
551 val = bits(val, 31, 0);
552 tc->setIntReg(ReturnValueReg, val);
553 } else {
554 // got an error, set XCC.C
555 tc->setIntReg(NumIntArchRegs + 2,
556 tc->readIntReg(NumIntArchRegs + 2) | 0x11);
557 IntReg val = sysret.errnoValue();
558 if (pstate.am)
559 val = bits(val, 31, 0);
560 tc->setIntReg(ReturnValueReg, val);
561 }
562}
64 // Initialize these to 0s
65 fillStart = 0;
66 spillStart = 0;
67}
68
69void
70SparcProcess::handleTrap(int trapNum, ThreadContext *tc, Fault *fault)
71{
72 PCState pc = tc->pcState();
73 switch (trapNum) {
74 case 0x01: // Software breakpoint
75 warn("Software breakpoint encountered at pc %#x.\n", pc.pc());
76 break;
77 case 0x02: // Division by zero
78 warn("Software signaled a division by zero at pc %#x.\n", pc.pc());
79 break;
80 case 0x03: // Flush window trap
81 flushWindows(tc);
82 break;
83 case 0x04: // Clean windows
84 warn("Ignoring process request for clean register "
85 "windows at pc %#x.\n", pc.pc());
86 break;
87 case 0x05: // Range check
88 warn("Software signaled a range check at pc %#x.\n", pc.pc());
89 break;
90 case 0x06: // Fix alignment
91 warn("Ignoring process request for os assisted unaligned accesses "
92 "at pc %#x.\n", pc.pc());
93 break;
94 case 0x07: // Integer overflow
95 warn("Software signaled an integer overflow at pc %#x.\n", pc.pc());
96 break;
97 case 0x32: // Get integer condition codes
98 warn("Ignoring process request to get the integer condition codes "
99 "at pc %#x.\n", pc.pc());
100 break;
101 case 0x33: // Set integer condition codes
102 warn("Ignoring process request to set the integer condition codes "
103 "at pc %#x.\n", pc.pc());
104 break;
105 default:
106 panic("Unimplemented trap to operating system: trap number %#x.\n", trapNum);
107 }
108}
109
110void
111SparcProcess::initState()
112{
113 Process::initState();
114
115 ThreadContext *tc = system->getThreadContext(contextIds[0]);
116 // From the SPARC ABI
117
118 // Setup default FP state
119 tc->setMiscRegNoEffect(MISCREG_FSR, 0);
120
121 tc->setMiscRegNoEffect(MISCREG_TICK, 0);
122
123 /*
124 * Register window management registers
125 */
126
127 // No windows contain info from other programs
128 // tc->setMiscRegNoEffect(MISCREG_OTHERWIN, 0);
129 tc->setIntReg(NumIntArchRegs + 6, 0);
130 // There are no windows to pop
131 // tc->setMiscRegNoEffect(MISCREG_CANRESTORE, 0);
132 tc->setIntReg(NumIntArchRegs + 4, 0);
133 // All windows are available to save into
134 // tc->setMiscRegNoEffect(MISCREG_CANSAVE, NWindows - 2);
135 tc->setIntReg(NumIntArchRegs + 3, NWindows - 2);
136 // All windows are "clean"
137 // tc->setMiscRegNoEffect(MISCREG_CLEANWIN, NWindows);
138 tc->setIntReg(NumIntArchRegs + 5, NWindows);
139 // Start with register window 0
140 tc->setMiscReg(MISCREG_CWP, 0);
141 // Always use spill and fill traps 0
142 // tc->setMiscRegNoEffect(MISCREG_WSTATE, 0);
143 tc->setIntReg(NumIntArchRegs + 7, 0);
144 // Set the trap level to 0
145 tc->setMiscRegNoEffect(MISCREG_TL, 0);
146 // Set the ASI register to something fixed
147 tc->setMiscReg(MISCREG_ASI, ASI_PRIMARY);
148
149 // Set the MMU Primary Context Register to hold the process' pid
150 tc->setMiscReg(MISCREG_MMU_P_CONTEXT, _pid);
151
152 /*
153 * T1 specific registers
154 */
155 // Turn on the icache, dcache, dtb translation, and itb translation.
156 tc->setMiscRegNoEffect(MISCREG_MMU_LSU_CTRL, 15);
157}
158
159void
160Sparc32Process::initState()
161{
162 SparcProcess::initState();
163
164 ThreadContext *tc = system->getThreadContext(contextIds[0]);
165 // The process runs in user mode with 32 bit addresses
166 PSTATE pstate = 0;
167 pstate.ie = 1;
168 pstate.am = 1;
169 tc->setMiscReg(MISCREG_PSTATE, pstate);
170
171 argsInit(32 / 8, PageBytes);
172}
173
174void
175Sparc64Process::initState()
176{
177 SparcProcess::initState();
178
179 ThreadContext *tc = system->getThreadContext(contextIds[0]);
180 // The process runs in user mode
181 PSTATE pstate = 0;
182 pstate.ie = 1;
183 tc->setMiscReg(MISCREG_PSTATE, pstate);
184
185 argsInit(sizeof(IntReg), PageBytes);
186}
187
188template<class IntType>
189void
190SparcProcess::argsInit(int pageSize)
191{
192 int intSize = sizeof(IntType);
193
194 typedef AuxVector<IntType> auxv_t;
195
196 std::vector<auxv_t> auxv;
197
198 string filename;
199 if (argv.size() < 1)
200 filename = "";
201 else
202 filename = argv[0];
203
204 // Even for a 32 bit process, the ABI says we still need to
205 // maintain double word alignment of the stack pointer.
206 uint64_t align = 16;
207
208 // Patch the ld_bias for dynamic executables.
209 updateBias();
210
211 // load object file into target memory
212 objFile->loadSections(initVirtMem);
213
214 enum hardwareCaps
215 {
216 M5_HWCAP_SPARC_FLUSH = 1,
217 M5_HWCAP_SPARC_STBAR = 2,
218 M5_HWCAP_SPARC_SWAP = 4,
219 M5_HWCAP_SPARC_MULDIV = 8,
220 M5_HWCAP_SPARC_V9 = 16,
221 // This one should technically only be set
222 // if there is a cheetah or cheetah_plus tlb,
223 // but we'll use it all the time
224 M5_HWCAP_SPARC_ULTRA3 = 32
225 };
226
227 const int64_t hwcap =
228 M5_HWCAP_SPARC_FLUSH |
229 M5_HWCAP_SPARC_STBAR |
230 M5_HWCAP_SPARC_SWAP |
231 M5_HWCAP_SPARC_MULDIV |
232 M5_HWCAP_SPARC_V9 |
233 M5_HWCAP_SPARC_ULTRA3;
234
235 // Setup the auxilliary vectors. These will already have endian conversion.
236 // Auxilliary vectors are loaded only for elf formatted executables.
237 ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
238 if (elfObject) {
239 // Bits which describe the system hardware capabilities
240 auxv.push_back(auxv_t(M5_AT_HWCAP, hwcap));
241 // The system page size
242 auxv.push_back(auxv_t(M5_AT_PAGESZ, SparcISA::PageBytes));
243 // Defined to be 100 in the kernel source.
244 // Frequency at which times() increments
245 auxv.push_back(auxv_t(M5_AT_CLKTCK, 100));
246 // For statically linked executables, this is the virtual address of the
247 // program header tables if they appear in the executable image
248 auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
249 // This is the size of a program header entry from the elf file.
250 auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
251 // This is the number of program headers from the original elf file.
252 auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
253 // This is the base address of the ELF interpreter; it should be
254 // zero for static executables or contain the base address for
255 // dynamic executables.
256 auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
257 // This is hardwired to 0 in the elf loading code in the kernel
258 auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
259 // The entry point to the program
260 auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
261 // Different user and group IDs
262 auxv.push_back(auxv_t(M5_AT_UID, uid()));
263 auxv.push_back(auxv_t(M5_AT_EUID, euid()));
264 auxv.push_back(auxv_t(M5_AT_GID, gid()));
265 auxv.push_back(auxv_t(M5_AT_EGID, egid()));
266 // Whether to enable "secure mode" in the executable
267 auxv.push_back(auxv_t(M5_AT_SECURE, 0));
268 }
269
270 // Figure out how big the initial stack needs to be
271
272 // The unaccounted for 8 byte 0 at the top of the stack
273 int sentry_size = 8;
274
275 // This is the name of the file which is present on the initial stack
276 // It's purpose is to let the user space linker examine the original file.
277 int file_name_size = filename.size() + 1;
278
279 int env_data_size = 0;
280 for (int i = 0; i < envp.size(); ++i) {
281 env_data_size += envp[i].size() + 1;
282 }
283 int arg_data_size = 0;
284 for (int i = 0; i < argv.size(); ++i) {
285 arg_data_size += argv[i].size() + 1;
286 }
287
288 // The info_block.
289 int base_info_block_size =
290 sentry_size + file_name_size + env_data_size + arg_data_size;
291
292 int info_block_size = roundUp(base_info_block_size, align);
293
294 int info_block_padding = info_block_size - base_info_block_size;
295
296 // Each auxilliary vector is two words
297 int aux_array_size = intSize * 2 * (auxv.size() + 1);
298
299 int envp_array_size = intSize * (envp.size() + 1);
300 int argv_array_size = intSize * (argv.size() + 1);
301
302 int argc_size = intSize;
303 int window_save_size = intSize * 16;
304
305 // Figure out the size of the contents of the actual initial frame
306 int frame_size =
307 aux_array_size +
308 envp_array_size +
309 argv_array_size +
310 argc_size +
311 window_save_size;
312
313 // There needs to be padding after the auxiliary vector data so that the
314 // very bottom of the stack is aligned properly.
315 int aligned_partial_size = roundUp(frame_size, align);
316 int aux_padding = aligned_partial_size - frame_size;
317
318 int space_needed =
319 info_block_size +
320 aux_padding +
321 frame_size;
322
323 memState->setStackMin(memState->getStackBase() - space_needed);
324 memState->setStackMin(roundDown(memState->getStackMin(), align));
325 memState->setStackSize(memState->getStackBase() - memState->getStackMin());
326
327 // Allocate space for the stack
328 allocateMem(roundDown(memState->getStackMin(), pageSize),
329 roundUp(memState->getStackSize(), pageSize));
330
331 // map out initial stack contents
332 IntType sentry_base = memState->getStackBase() - sentry_size;
333 IntType file_name_base = sentry_base - file_name_size;
334 IntType env_data_base = file_name_base - env_data_size;
335 IntType arg_data_base = env_data_base - arg_data_size;
336 IntType auxv_array_base = arg_data_base -
337 info_block_padding - aux_array_size - aux_padding;
338 IntType envp_array_base = auxv_array_base - envp_array_size;
339 IntType argv_array_base = envp_array_base - argv_array_size;
340 IntType argc_base = argv_array_base - argc_size;
341#if TRACING_ON
342 IntType window_save_base = argc_base - window_save_size;
343#endif
344
345 DPRINTF(Stack, "The addresses of items on the initial stack:\n");
346 DPRINTF(Stack, "%#x - sentry NULL\n", sentry_base);
347 DPRINTF(Stack, "filename = %s\n", filename);
348 DPRINTF(Stack, "%#x - file name\n", file_name_base);
349 DPRINTF(Stack, "%#x - env data\n", env_data_base);
350 DPRINTF(Stack, "%#x - arg data\n", arg_data_base);
351 DPRINTF(Stack, "%#x - auxv array\n", auxv_array_base);
352 DPRINTF(Stack, "%#x - envp array\n", envp_array_base);
353 DPRINTF(Stack, "%#x - argv array\n", argv_array_base);
354 DPRINTF(Stack, "%#x - argc \n", argc_base);
355 DPRINTF(Stack, "%#x - window save\n", window_save_base);
356 DPRINTF(Stack, "%#x - stack min\n", memState->getStackMin());
357
358 assert(window_save_base == memState->getStackMin());
359
360 // write contents to stack
361
362 // figure out argc
363 IntType argc = argv.size();
364 IntType guestArgc = SparcISA::htog(argc);
365
366 // Write out the sentry void *
367 uint64_t sentry_NULL = 0;
368 initVirtMem.writeBlob(sentry_base,
369 (uint8_t*)&sentry_NULL, sentry_size);
370
371 // Write the file name
372 initVirtMem.writeString(file_name_base, filename.c_str());
373
374 // Copy the aux stuff
375 for (int x = 0; x < auxv.size(); x++) {
376 initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
377 (uint8_t*)&(auxv[x].a_type), intSize);
378 initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
379 (uint8_t*)&(auxv[x].a_val), intSize);
380 }
381
382 // Write out the terminating zeroed auxilliary vector
383 const IntType zero = 0;
384 initVirtMem.writeBlob(auxv_array_base + intSize * 2 * auxv.size(),
385 (uint8_t*)&zero, intSize);
386 initVirtMem.writeBlob(auxv_array_base + intSize * (2 * auxv.size() + 1),
387 (uint8_t*)&zero, intSize);
388
389 copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
390 copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
391
392 initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
393
394 // Set up space for the trap handlers into the processes address space.
395 // Since the stack grows down and there is reserved address space abov
396 // it, we can put stuff above it and stay out of the way.
397 fillStart = memState->getStackBase();
398 spillStart = fillStart + sizeof(MachInst) * numFillInsts;
399
400 ThreadContext *tc = system->getThreadContext(contextIds[0]);
401 // Set up the thread context to start running the process
402 // assert(NumArgumentRegs >= 2);
403 // tc->setIntReg(ArgumentReg[0], argc);
404 // tc->setIntReg(ArgumentReg[1], argv_array_base);
405 tc->setIntReg(StackPointerReg, memState->getStackMin() - StackBias);
406
407 // %g1 is a pointer to a function that should be run at exit. Since we
408 // don't have anything like that, it should be set to 0.
409 tc->setIntReg(1, 0);
410
411 tc->pcState(getStartPC());
412
413 // Align the "stack_min" to a page boundary.
414 memState->setStackMin(roundDown(memState->getStackMin(), pageSize));
415}
416
417void
418Sparc64Process::argsInit(int intSize, int pageSize)
419{
420 SparcProcess::argsInit<uint64_t>(pageSize);
421
422 // Stuff the trap handlers into the process address space
423 initVirtMem.writeBlob(fillStart,
424 (uint8_t*)fillHandler64, sizeof(MachInst) * numFillInsts);
425 initVirtMem.writeBlob(spillStart,
426 (uint8_t*)spillHandler64, sizeof(MachInst) * numSpillInsts);
427}
428
429void
430Sparc32Process::argsInit(int intSize, int pageSize)
431{
432 SparcProcess::argsInit<uint32_t>(pageSize);
433
434 // Stuff the trap handlers into the process address space
435 initVirtMem.writeBlob(fillStart,
436 (uint8_t*)fillHandler32, sizeof(MachInst) * numFillInsts);
437 initVirtMem.writeBlob(spillStart,
438 (uint8_t*)spillHandler32, sizeof(MachInst) * numSpillInsts);
439}
440
441void Sparc32Process::flushWindows(ThreadContext *tc)
442{
443 IntReg Cansave = tc->readIntReg(NumIntArchRegs + 3);
444 IntReg Canrestore = tc->readIntReg(NumIntArchRegs + 4);
445 IntReg Otherwin = tc->readIntReg(NumIntArchRegs + 6);
446 MiscReg CWP = tc->readMiscReg(MISCREG_CWP);
447 MiscReg origCWP = CWP;
448 CWP = (CWP + Cansave + 2) % NWindows;
449 while (NWindows - 2 - Cansave != 0) {
450 if (Otherwin) {
451 panic("Otherwin non-zero.\n");
452 } else {
453 tc->setMiscReg(MISCREG_CWP, CWP);
454 // Do the stores
455 IntReg sp = tc->readIntReg(StackPointerReg);
456 for (int index = 16; index < 32; index++) {
457 uint32_t regVal = tc->readIntReg(index);
458 regVal = htog(regVal);
459 if (!tc->getMemProxy().tryWriteBlob(
460 sp + (index - 16) * 4, (uint8_t *)&regVal, 4)) {
461 warn("Failed to save register to the stack when "
462 "flushing windows.\n");
463 }
464 }
465 Canrestore--;
466 Cansave++;
467 CWP = (CWP + 1) % NWindows;
468 }
469 }
470 tc->setIntReg(NumIntArchRegs + 3, Cansave);
471 tc->setIntReg(NumIntArchRegs + 4, Canrestore);
472 tc->setMiscReg(MISCREG_CWP, origCWP);
473}
474
475void
476Sparc64Process::flushWindows(ThreadContext *tc)
477{
478 IntReg Cansave = tc->readIntReg(NumIntArchRegs + 3);
479 IntReg Canrestore = tc->readIntReg(NumIntArchRegs + 4);
480 IntReg Otherwin = tc->readIntReg(NumIntArchRegs + 6);
481 MiscReg CWP = tc->readMiscReg(MISCREG_CWP);
482 MiscReg origCWP = CWP;
483 CWP = (CWP + Cansave + 2) % NWindows;
484 while (NWindows - 2 - Cansave != 0) {
485 if (Otherwin) {
486 panic("Otherwin non-zero.\n");
487 } else {
488 tc->setMiscReg(MISCREG_CWP, CWP);
489 // Do the stores
490 IntReg sp = tc->readIntReg(StackPointerReg);
491 for (int index = 16; index < 32; index++) {
492 IntReg regVal = tc->readIntReg(index);
493 regVal = htog(regVal);
494 if (!tc->getMemProxy().tryWriteBlob(
495 sp + 2047 + (index - 16) * 8, (uint8_t *)&regVal, 8)) {
496 warn("Failed to save register to the stack when "
497 "flushing windows.\n");
498 }
499 }
500 Canrestore--;
501 Cansave++;
502 CWP = (CWP + 1) % NWindows;
503 }
504 }
505 tc->setIntReg(NumIntArchRegs + 3, Cansave);
506 tc->setIntReg(NumIntArchRegs + 4, Canrestore);
507 tc->setMiscReg(MISCREG_CWP, origCWP);
508}
509
510IntReg
511Sparc32Process::getSyscallArg(ThreadContext *tc, int &i)
512{
513 assert(i < 6);
514 return bits(tc->readIntReg(FirstArgumentReg + i++), 31, 0);
515}
516
517void
518Sparc32Process::setSyscallArg(ThreadContext *tc, int i, IntReg val)
519{
520 assert(i < 6);
521 tc->setIntReg(FirstArgumentReg + i, bits(val, 31, 0));
522}
523
524IntReg
525Sparc64Process::getSyscallArg(ThreadContext *tc, int &i)
526{
527 assert(i < 6);
528 return tc->readIntReg(FirstArgumentReg + i++);
529}
530
531void
532Sparc64Process::setSyscallArg(ThreadContext *tc, int i, IntReg val)
533{
534 assert(i < 6);
535 tc->setIntReg(FirstArgumentReg + i, val);
536}
537
538void
539SparcProcess::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
540{
541 // check for error condition. SPARC syscall convention is to
542 // indicate success/failure in reg the carry bit of the ccr
543 // and put the return value itself in the standard return value reg ().
544 PSTATE pstate = tc->readMiscRegNoEffect(MISCREG_PSTATE);
545 if (sysret.successful()) {
546 // no error, clear XCC.C
547 tc->setIntReg(NumIntArchRegs + 2,
548 tc->readIntReg(NumIntArchRegs + 2) & 0xEE);
549 IntReg val = sysret.returnValue();
550 if (pstate.am)
551 val = bits(val, 31, 0);
552 tc->setIntReg(ReturnValueReg, val);
553 } else {
554 // got an error, set XCC.C
555 tc->setIntReg(NumIntArchRegs + 2,
556 tc->readIntReg(NumIntArchRegs + 2) | 0x11);
557 IntReg val = sysret.errnoValue();
558 if (pstate.am)
559 val = bits(val, 31, 0);
560 tc->setIntReg(ReturnValueReg, val);
561 }
562}