process.cc (11850:36119fa7874d) process.cc (11851:824055fe6b30)
1/*
2 * Copyright (c) 2003-2004 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Gabe Black
29 * Ali Saidi
30 */
31
32#include "arch/sparc/process.hh"
33
34#include "arch/sparc/asi.hh"
35#include "arch/sparc/handlers.hh"
36#include "arch/sparc/isa_traits.hh"
37#include "arch/sparc/registers.hh"
38#include "arch/sparc/types.hh"
39#include "base/loader/elf_object.hh"
40#include "base/loader/object_file.hh"
41#include "base/misc.hh"
42#include "cpu/thread_context.hh"
43#include "debug/Stack.hh"
44#include "mem/page_table.hh"
45#include "sim/process_impl.hh"
46#include "sim/syscall_return.hh"
47#include "sim/system.hh"
48
49using namespace std;
50using namespace SparcISA;
51
52static const int FirstArgumentReg = 8;
53
54
1/*
2 * Copyright (c) 2003-2004 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Gabe Black
29 * Ali Saidi
30 */
31
32#include "arch/sparc/process.hh"
33
34#include "arch/sparc/asi.hh"
35#include "arch/sparc/handlers.hh"
36#include "arch/sparc/isa_traits.hh"
37#include "arch/sparc/registers.hh"
38#include "arch/sparc/types.hh"
39#include "base/loader/elf_object.hh"
40#include "base/loader/object_file.hh"
41#include "base/misc.hh"
42#include "cpu/thread_context.hh"
43#include "debug/Stack.hh"
44#include "mem/page_table.hh"
45#include "sim/process_impl.hh"
46#include "sim/syscall_return.hh"
47#include "sim/system.hh"
48
49using namespace std;
50using namespace SparcISA;
51
52static const int FirstArgumentReg = 8;
53
54
55SparcLiveProcess::SparcLiveProcess(LiveProcessParams * params,
56 ObjectFile *objFile, Addr _StackBias)
57 : LiveProcess(params, objFile), StackBias(_StackBias)
55SparcProcess::SparcProcess(ProcessParams * params, ObjectFile *objFile,
56 Addr _StackBias)
57 : Process(params, objFile), StackBias(_StackBias)
58{
59
60 // XXX all the below need to be updated for SPARC - Ali
61 brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize();
62 brk_point = roundUp(brk_point, PageBytes);
63
64 // Set pointer for next thread stack. Reserve 8M for main stack.
65 next_thread_stack_base = stack_base - (8 * 1024 * 1024);
66
67 // Initialize these to 0s
68 fillStart = 0;
69 spillStart = 0;
70}
71
72void
58{
59
60 // XXX all the below need to be updated for SPARC - Ali
61 brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize();
62 brk_point = roundUp(brk_point, PageBytes);
63
64 // Set pointer for next thread stack. Reserve 8M for main stack.
65 next_thread_stack_base = stack_base - (8 * 1024 * 1024);
66
67 // Initialize these to 0s
68 fillStart = 0;
69 spillStart = 0;
70}
71
72void
73SparcLiveProcess::handleTrap(int trapNum, ThreadContext *tc)
73SparcProcess::handleTrap(int trapNum, ThreadContext *tc)
74{
75 PCState pc = tc->pcState();
76 switch (trapNum) {
77 case 0x01: // Software breakpoint
78 warn("Software breakpoint encountered at pc %#x.\n", pc.pc());
79 break;
80 case 0x02: // Division by zero
81 warn("Software signaled a division by zero at pc %#x.\n", pc.pc());
82 break;
83 case 0x03: // Flush window trap
84 flushWindows(tc);
85 break;
86 case 0x04: // Clean windows
87 warn("Ignoring process request for clean register "
88 "windows at pc %#x.\n", pc.pc());
89 break;
90 case 0x05: // Range check
91 warn("Software signaled a range check at pc %#x.\n", pc.pc());
92 break;
93 case 0x06: // Fix alignment
94 warn("Ignoring process request for os assisted unaligned accesses "
95 "at pc %#x.\n", pc.pc());
96 break;
97 case 0x07: // Integer overflow
98 warn("Software signaled an integer overflow at pc %#x.\n", pc.pc());
99 break;
100 case 0x32: // Get integer condition codes
101 warn("Ignoring process request to get the integer condition codes "
102 "at pc %#x.\n", pc.pc());
103 break;
104 case 0x33: // Set integer condition codes
105 warn("Ignoring process request to set the integer condition codes "
106 "at pc %#x.\n", pc.pc());
107 break;
108 default:
109 panic("Unimplemented trap to operating system: trap number %#x.\n", trapNum);
110 }
111}
112
113void
74{
75 PCState pc = tc->pcState();
76 switch (trapNum) {
77 case 0x01: // Software breakpoint
78 warn("Software breakpoint encountered at pc %#x.\n", pc.pc());
79 break;
80 case 0x02: // Division by zero
81 warn("Software signaled a division by zero at pc %#x.\n", pc.pc());
82 break;
83 case 0x03: // Flush window trap
84 flushWindows(tc);
85 break;
86 case 0x04: // Clean windows
87 warn("Ignoring process request for clean register "
88 "windows at pc %#x.\n", pc.pc());
89 break;
90 case 0x05: // Range check
91 warn("Software signaled a range check at pc %#x.\n", pc.pc());
92 break;
93 case 0x06: // Fix alignment
94 warn("Ignoring process request for os assisted unaligned accesses "
95 "at pc %#x.\n", pc.pc());
96 break;
97 case 0x07: // Integer overflow
98 warn("Software signaled an integer overflow at pc %#x.\n", pc.pc());
99 break;
100 case 0x32: // Get integer condition codes
101 warn("Ignoring process request to get the integer condition codes "
102 "at pc %#x.\n", pc.pc());
103 break;
104 case 0x33: // Set integer condition codes
105 warn("Ignoring process request to set the integer condition codes "
106 "at pc %#x.\n", pc.pc());
107 break;
108 default:
109 panic("Unimplemented trap to operating system: trap number %#x.\n", trapNum);
110 }
111}
112
113void
114SparcLiveProcess::initState()
114SparcProcess::initState()
115{
115{
116 LiveProcess::initState();
116 Process::initState();
117
118 ThreadContext *tc = system->getThreadContext(contextIds[0]);
119 // From the SPARC ABI
120
121 // Setup default FP state
122 tc->setMiscRegNoEffect(MISCREG_FSR, 0);
123
124 tc->setMiscRegNoEffect(MISCREG_TICK, 0);
125
126 /*
127 * Register window management registers
128 */
129
130 // No windows contain info from other programs
131 // tc->setMiscRegNoEffect(MISCREG_OTHERWIN, 0);
132 tc->setIntReg(NumIntArchRegs + 6, 0);
133 // There are no windows to pop
134 // tc->setMiscRegNoEffect(MISCREG_CANRESTORE, 0);
135 tc->setIntReg(NumIntArchRegs + 4, 0);
136 // All windows are available to save into
137 // tc->setMiscRegNoEffect(MISCREG_CANSAVE, NWindows - 2);
138 tc->setIntReg(NumIntArchRegs + 3, NWindows - 2);
139 // All windows are "clean"
140 // tc->setMiscRegNoEffect(MISCREG_CLEANWIN, NWindows);
141 tc->setIntReg(NumIntArchRegs + 5, NWindows);
142 // Start with register window 0
143 tc->setMiscReg(MISCREG_CWP, 0);
144 // Always use spill and fill traps 0
145 // tc->setMiscRegNoEffect(MISCREG_WSTATE, 0);
146 tc->setIntReg(NumIntArchRegs + 7, 0);
147 // Set the trap level to 0
148 tc->setMiscRegNoEffect(MISCREG_TL, 0);
149 // Set the ASI register to something fixed
150 tc->setMiscReg(MISCREG_ASI, ASI_PRIMARY);
151
152 // Set the MMU Primary Context Register to hold the process' pid
153 tc->setMiscReg(MISCREG_MMU_P_CONTEXT, _pid);
154
155 /*
156 * T1 specific registers
157 */
158 // Turn on the icache, dcache, dtb translation, and itb translation.
159 tc->setMiscRegNoEffect(MISCREG_MMU_LSU_CTRL, 15);
160}
161
162void
117
118 ThreadContext *tc = system->getThreadContext(contextIds[0]);
119 // From the SPARC ABI
120
121 // Setup default FP state
122 tc->setMiscRegNoEffect(MISCREG_FSR, 0);
123
124 tc->setMiscRegNoEffect(MISCREG_TICK, 0);
125
126 /*
127 * Register window management registers
128 */
129
130 // No windows contain info from other programs
131 // tc->setMiscRegNoEffect(MISCREG_OTHERWIN, 0);
132 tc->setIntReg(NumIntArchRegs + 6, 0);
133 // There are no windows to pop
134 // tc->setMiscRegNoEffect(MISCREG_CANRESTORE, 0);
135 tc->setIntReg(NumIntArchRegs + 4, 0);
136 // All windows are available to save into
137 // tc->setMiscRegNoEffect(MISCREG_CANSAVE, NWindows - 2);
138 tc->setIntReg(NumIntArchRegs + 3, NWindows - 2);
139 // All windows are "clean"
140 // tc->setMiscRegNoEffect(MISCREG_CLEANWIN, NWindows);
141 tc->setIntReg(NumIntArchRegs + 5, NWindows);
142 // Start with register window 0
143 tc->setMiscReg(MISCREG_CWP, 0);
144 // Always use spill and fill traps 0
145 // tc->setMiscRegNoEffect(MISCREG_WSTATE, 0);
146 tc->setIntReg(NumIntArchRegs + 7, 0);
147 // Set the trap level to 0
148 tc->setMiscRegNoEffect(MISCREG_TL, 0);
149 // Set the ASI register to something fixed
150 tc->setMiscReg(MISCREG_ASI, ASI_PRIMARY);
151
152 // Set the MMU Primary Context Register to hold the process' pid
153 tc->setMiscReg(MISCREG_MMU_P_CONTEXT, _pid);
154
155 /*
156 * T1 specific registers
157 */
158 // Turn on the icache, dcache, dtb translation, and itb translation.
159 tc->setMiscRegNoEffect(MISCREG_MMU_LSU_CTRL, 15);
160}
161
162void
163Sparc32LiveProcess::initState()
163Sparc32Process::initState()
164{
164{
165 SparcLiveProcess::initState();
165 SparcProcess::initState();
166
167 ThreadContext *tc = system->getThreadContext(contextIds[0]);
168 // The process runs in user mode with 32 bit addresses
169 PSTATE pstate = 0;
170 pstate.ie = 1;
171 pstate.am = 1;
172 tc->setMiscReg(MISCREG_PSTATE, pstate);
173
174 argsInit(32 / 8, PageBytes);
175}
176
177void
166
167 ThreadContext *tc = system->getThreadContext(contextIds[0]);
168 // The process runs in user mode with 32 bit addresses
169 PSTATE pstate = 0;
170 pstate.ie = 1;
171 pstate.am = 1;
172 tc->setMiscReg(MISCREG_PSTATE, pstate);
173
174 argsInit(32 / 8, PageBytes);
175}
176
177void
178Sparc64LiveProcess::initState()
178Sparc64Process::initState()
179{
179{
180 SparcLiveProcess::initState();
180 SparcProcess::initState();
181
182 ThreadContext *tc = system->getThreadContext(contextIds[0]);
183 // The process runs in user mode
184 PSTATE pstate = 0;
185 pstate.ie = 1;
186 tc->setMiscReg(MISCREG_PSTATE, pstate);
187
188 argsInit(sizeof(IntReg), PageBytes);
189}
190
191template<class IntType>
192void
181
182 ThreadContext *tc = system->getThreadContext(contextIds[0]);
183 // The process runs in user mode
184 PSTATE pstate = 0;
185 pstate.ie = 1;
186 tc->setMiscReg(MISCREG_PSTATE, pstate);
187
188 argsInit(sizeof(IntReg), PageBytes);
189}
190
191template<class IntType>
192void
193SparcLiveProcess::argsInit(int pageSize)
193SparcProcess::argsInit(int pageSize)
194{
195 int intSize = sizeof(IntType);
196
197 typedef AuxVector<IntType> auxv_t;
198
199 std::vector<auxv_t> auxv;
200
201 string filename;
202 if (argv.size() < 1)
203 filename = "";
204 else
205 filename = argv[0];
206
207 // Even for a 32 bit process, the ABI says we still need to
208 // maintain double word alignment of the stack pointer.
209 uint64_t align = 16;
210
211 // Patch the ld_bias for dynamic executables.
212 updateBias();
213
214 // load object file into target memory
215 objFile->loadSections(initVirtMem);
216
217 enum hardwareCaps
218 {
219 M5_HWCAP_SPARC_FLUSH = 1,
220 M5_HWCAP_SPARC_STBAR = 2,
221 M5_HWCAP_SPARC_SWAP = 4,
222 M5_HWCAP_SPARC_MULDIV = 8,
223 M5_HWCAP_SPARC_V9 = 16,
224 // This one should technically only be set
225 // if there is a cheetah or cheetah_plus tlb,
226 // but we'll use it all the time
227 M5_HWCAP_SPARC_ULTRA3 = 32
228 };
229
230 const int64_t hwcap =
231 M5_HWCAP_SPARC_FLUSH |
232 M5_HWCAP_SPARC_STBAR |
233 M5_HWCAP_SPARC_SWAP |
234 M5_HWCAP_SPARC_MULDIV |
235 M5_HWCAP_SPARC_V9 |
236 M5_HWCAP_SPARC_ULTRA3;
237
238 // Setup the auxilliary vectors. These will already have endian conversion.
239 // Auxilliary vectors are loaded only for elf formatted executables.
240 ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
241 if (elfObject) {
242 // Bits which describe the system hardware capabilities
243 auxv.push_back(auxv_t(M5_AT_HWCAP, hwcap));
244 // The system page size
245 auxv.push_back(auxv_t(M5_AT_PAGESZ, SparcISA::PageBytes));
246 // Defined to be 100 in the kernel source.
247 // Frequency at which times() increments
248 auxv.push_back(auxv_t(M5_AT_CLKTCK, 100));
249 // For statically linked executables, this is the virtual address of the
250 // program header tables if they appear in the executable image
251 auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
252 // This is the size of a program header entry from the elf file.
253 auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
254 // This is the number of program headers from the original elf file.
255 auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
256 // This is the base address of the ELF interpreter; it should be
257 // zero for static executables or contain the base address for
258 // dynamic executables.
259 auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
260 // This is hardwired to 0 in the elf loading code in the kernel
261 auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
262 // The entry point to the program
263 auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
264 // Different user and group IDs
265 auxv.push_back(auxv_t(M5_AT_UID, uid()));
266 auxv.push_back(auxv_t(M5_AT_EUID, euid()));
267 auxv.push_back(auxv_t(M5_AT_GID, gid()));
268 auxv.push_back(auxv_t(M5_AT_EGID, egid()));
269 // Whether to enable "secure mode" in the executable
270 auxv.push_back(auxv_t(M5_AT_SECURE, 0));
271 }
272
273 // Figure out how big the initial stack needs to be
274
275 // The unaccounted for 8 byte 0 at the top of the stack
276 int sentry_size = 8;
277
278 // This is the name of the file which is present on the initial stack
279 // It's purpose is to let the user space linker examine the original file.
280 int file_name_size = filename.size() + 1;
281
282 int env_data_size = 0;
283 for (int i = 0; i < envp.size(); ++i) {
284 env_data_size += envp[i].size() + 1;
285 }
286 int arg_data_size = 0;
287 for (int i = 0; i < argv.size(); ++i) {
288 arg_data_size += argv[i].size() + 1;
289 }
290
291 // The info_block.
292 int base_info_block_size =
293 sentry_size + file_name_size + env_data_size + arg_data_size;
294
295 int info_block_size = roundUp(base_info_block_size, align);
296
297 int info_block_padding = info_block_size - base_info_block_size;
298
299 // Each auxilliary vector is two words
300 int aux_array_size = intSize * 2 * (auxv.size() + 1);
301
302 int envp_array_size = intSize * (envp.size() + 1);
303 int argv_array_size = intSize * (argv.size() + 1);
304
305 int argc_size = intSize;
306 int window_save_size = intSize * 16;
307
308 // Figure out the size of the contents of the actual initial frame
309 int frame_size =
310 aux_array_size +
311 envp_array_size +
312 argv_array_size +
313 argc_size +
314 window_save_size;
315
316 // There needs to be padding after the auxiliary vector data so that the
317 // very bottom of the stack is aligned properly.
318 int aligned_partial_size = roundUp(frame_size, align);
319 int aux_padding = aligned_partial_size - frame_size;
320
321 int space_needed =
322 info_block_size +
323 aux_padding +
324 frame_size;
325
326 stack_min = stack_base - space_needed;
327 stack_min = roundDown(stack_min, align);
328 stack_size = stack_base - stack_min;
329
330 // Allocate space for the stack
331 allocateMem(roundDown(stack_min, pageSize), roundUp(stack_size, pageSize));
332
333 // map out initial stack contents
334 IntType sentry_base = stack_base - sentry_size;
335 IntType file_name_base = sentry_base - file_name_size;
336 IntType env_data_base = file_name_base - env_data_size;
337 IntType arg_data_base = env_data_base - arg_data_size;
338 IntType auxv_array_base = arg_data_base -
339 info_block_padding - aux_array_size - aux_padding;
340 IntType envp_array_base = auxv_array_base - envp_array_size;
341 IntType argv_array_base = envp_array_base - argv_array_size;
342 IntType argc_base = argv_array_base - argc_size;
343#if TRACING_ON
344 IntType window_save_base = argc_base - window_save_size;
345#endif
346
347 DPRINTF(Stack, "The addresses of items on the initial stack:\n");
348 DPRINTF(Stack, "%#x - sentry NULL\n", sentry_base);
349 DPRINTF(Stack, "filename = %s\n", filename);
350 DPRINTF(Stack, "%#x - file name\n", file_name_base);
351 DPRINTF(Stack, "%#x - env data\n", env_data_base);
352 DPRINTF(Stack, "%#x - arg data\n", arg_data_base);
353 DPRINTF(Stack, "%#x - auxv array\n", auxv_array_base);
354 DPRINTF(Stack, "%#x - envp array\n", envp_array_base);
355 DPRINTF(Stack, "%#x - argv array\n", argv_array_base);
356 DPRINTF(Stack, "%#x - argc \n", argc_base);
357 DPRINTF(Stack, "%#x - window save\n", window_save_base);
358 DPRINTF(Stack, "%#x - stack min\n", stack_min);
359
360 assert(window_save_base == stack_min);
361
362 // write contents to stack
363
364 // figure out argc
365 IntType argc = argv.size();
366 IntType guestArgc = SparcISA::htog(argc);
367
368 // Write out the sentry void *
369 uint64_t sentry_NULL = 0;
370 initVirtMem.writeBlob(sentry_base,
371 (uint8_t*)&sentry_NULL, sentry_size);
372
373 // Write the file name
374 initVirtMem.writeString(file_name_base, filename.c_str());
375
376 // Copy the aux stuff
377 for (int x = 0; x < auxv.size(); x++) {
378 initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
379 (uint8_t*)&(auxv[x].a_type), intSize);
380 initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
381 (uint8_t*)&(auxv[x].a_val), intSize);
382 }
383
384 // Write out the terminating zeroed auxilliary vector
385 const IntType zero = 0;
386 initVirtMem.writeBlob(auxv_array_base + intSize * 2 * auxv.size(),
387 (uint8_t*)&zero, intSize);
388 initVirtMem.writeBlob(auxv_array_base + intSize * (2 * auxv.size() + 1),
389 (uint8_t*)&zero, intSize);
390
391 copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
392 copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
393
394 initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
395
396 // Set up space for the trap handlers into the processes address space.
397 // Since the stack grows down and there is reserved address space abov
398 // it, we can put stuff above it and stay out of the way.
399 fillStart = stack_base;
400 spillStart = fillStart + sizeof(MachInst) * numFillInsts;
401
402 ThreadContext *tc = system->getThreadContext(contextIds[0]);
403 // Set up the thread context to start running the process
404 // assert(NumArgumentRegs >= 2);
405 // tc->setIntReg(ArgumentReg[0], argc);
406 // tc->setIntReg(ArgumentReg[1], argv_array_base);
407 tc->setIntReg(StackPointerReg, stack_min - StackBias);
408
409 // %g1 is a pointer to a function that should be run at exit. Since we
410 // don't have anything like that, it should be set to 0.
411 tc->setIntReg(1, 0);
412
413 tc->pcState(getStartPC());
414
415 // Align the "stack_min" to a page boundary.
416 stack_min = roundDown(stack_min, pageSize);
417
418// num_processes++;
419}
420
421void
194{
195 int intSize = sizeof(IntType);
196
197 typedef AuxVector<IntType> auxv_t;
198
199 std::vector<auxv_t> auxv;
200
201 string filename;
202 if (argv.size() < 1)
203 filename = "";
204 else
205 filename = argv[0];
206
207 // Even for a 32 bit process, the ABI says we still need to
208 // maintain double word alignment of the stack pointer.
209 uint64_t align = 16;
210
211 // Patch the ld_bias for dynamic executables.
212 updateBias();
213
214 // load object file into target memory
215 objFile->loadSections(initVirtMem);
216
217 enum hardwareCaps
218 {
219 M5_HWCAP_SPARC_FLUSH = 1,
220 M5_HWCAP_SPARC_STBAR = 2,
221 M5_HWCAP_SPARC_SWAP = 4,
222 M5_HWCAP_SPARC_MULDIV = 8,
223 M5_HWCAP_SPARC_V9 = 16,
224 // This one should technically only be set
225 // if there is a cheetah or cheetah_plus tlb,
226 // but we'll use it all the time
227 M5_HWCAP_SPARC_ULTRA3 = 32
228 };
229
230 const int64_t hwcap =
231 M5_HWCAP_SPARC_FLUSH |
232 M5_HWCAP_SPARC_STBAR |
233 M5_HWCAP_SPARC_SWAP |
234 M5_HWCAP_SPARC_MULDIV |
235 M5_HWCAP_SPARC_V9 |
236 M5_HWCAP_SPARC_ULTRA3;
237
238 // Setup the auxilliary vectors. These will already have endian conversion.
239 // Auxilliary vectors are loaded only for elf formatted executables.
240 ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
241 if (elfObject) {
242 // Bits which describe the system hardware capabilities
243 auxv.push_back(auxv_t(M5_AT_HWCAP, hwcap));
244 // The system page size
245 auxv.push_back(auxv_t(M5_AT_PAGESZ, SparcISA::PageBytes));
246 // Defined to be 100 in the kernel source.
247 // Frequency at which times() increments
248 auxv.push_back(auxv_t(M5_AT_CLKTCK, 100));
249 // For statically linked executables, this is the virtual address of the
250 // program header tables if they appear in the executable image
251 auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
252 // This is the size of a program header entry from the elf file.
253 auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
254 // This is the number of program headers from the original elf file.
255 auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
256 // This is the base address of the ELF interpreter; it should be
257 // zero for static executables or contain the base address for
258 // dynamic executables.
259 auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
260 // This is hardwired to 0 in the elf loading code in the kernel
261 auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
262 // The entry point to the program
263 auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
264 // Different user and group IDs
265 auxv.push_back(auxv_t(M5_AT_UID, uid()));
266 auxv.push_back(auxv_t(M5_AT_EUID, euid()));
267 auxv.push_back(auxv_t(M5_AT_GID, gid()));
268 auxv.push_back(auxv_t(M5_AT_EGID, egid()));
269 // Whether to enable "secure mode" in the executable
270 auxv.push_back(auxv_t(M5_AT_SECURE, 0));
271 }
272
273 // Figure out how big the initial stack needs to be
274
275 // The unaccounted for 8 byte 0 at the top of the stack
276 int sentry_size = 8;
277
278 // This is the name of the file which is present on the initial stack
279 // It's purpose is to let the user space linker examine the original file.
280 int file_name_size = filename.size() + 1;
281
282 int env_data_size = 0;
283 for (int i = 0; i < envp.size(); ++i) {
284 env_data_size += envp[i].size() + 1;
285 }
286 int arg_data_size = 0;
287 for (int i = 0; i < argv.size(); ++i) {
288 arg_data_size += argv[i].size() + 1;
289 }
290
291 // The info_block.
292 int base_info_block_size =
293 sentry_size + file_name_size + env_data_size + arg_data_size;
294
295 int info_block_size = roundUp(base_info_block_size, align);
296
297 int info_block_padding = info_block_size - base_info_block_size;
298
299 // Each auxilliary vector is two words
300 int aux_array_size = intSize * 2 * (auxv.size() + 1);
301
302 int envp_array_size = intSize * (envp.size() + 1);
303 int argv_array_size = intSize * (argv.size() + 1);
304
305 int argc_size = intSize;
306 int window_save_size = intSize * 16;
307
308 // Figure out the size of the contents of the actual initial frame
309 int frame_size =
310 aux_array_size +
311 envp_array_size +
312 argv_array_size +
313 argc_size +
314 window_save_size;
315
316 // There needs to be padding after the auxiliary vector data so that the
317 // very bottom of the stack is aligned properly.
318 int aligned_partial_size = roundUp(frame_size, align);
319 int aux_padding = aligned_partial_size - frame_size;
320
321 int space_needed =
322 info_block_size +
323 aux_padding +
324 frame_size;
325
326 stack_min = stack_base - space_needed;
327 stack_min = roundDown(stack_min, align);
328 stack_size = stack_base - stack_min;
329
330 // Allocate space for the stack
331 allocateMem(roundDown(stack_min, pageSize), roundUp(stack_size, pageSize));
332
333 // map out initial stack contents
334 IntType sentry_base = stack_base - sentry_size;
335 IntType file_name_base = sentry_base - file_name_size;
336 IntType env_data_base = file_name_base - env_data_size;
337 IntType arg_data_base = env_data_base - arg_data_size;
338 IntType auxv_array_base = arg_data_base -
339 info_block_padding - aux_array_size - aux_padding;
340 IntType envp_array_base = auxv_array_base - envp_array_size;
341 IntType argv_array_base = envp_array_base - argv_array_size;
342 IntType argc_base = argv_array_base - argc_size;
343#if TRACING_ON
344 IntType window_save_base = argc_base - window_save_size;
345#endif
346
347 DPRINTF(Stack, "The addresses of items on the initial stack:\n");
348 DPRINTF(Stack, "%#x - sentry NULL\n", sentry_base);
349 DPRINTF(Stack, "filename = %s\n", filename);
350 DPRINTF(Stack, "%#x - file name\n", file_name_base);
351 DPRINTF(Stack, "%#x - env data\n", env_data_base);
352 DPRINTF(Stack, "%#x - arg data\n", arg_data_base);
353 DPRINTF(Stack, "%#x - auxv array\n", auxv_array_base);
354 DPRINTF(Stack, "%#x - envp array\n", envp_array_base);
355 DPRINTF(Stack, "%#x - argv array\n", argv_array_base);
356 DPRINTF(Stack, "%#x - argc \n", argc_base);
357 DPRINTF(Stack, "%#x - window save\n", window_save_base);
358 DPRINTF(Stack, "%#x - stack min\n", stack_min);
359
360 assert(window_save_base == stack_min);
361
362 // write contents to stack
363
364 // figure out argc
365 IntType argc = argv.size();
366 IntType guestArgc = SparcISA::htog(argc);
367
368 // Write out the sentry void *
369 uint64_t sentry_NULL = 0;
370 initVirtMem.writeBlob(sentry_base,
371 (uint8_t*)&sentry_NULL, sentry_size);
372
373 // Write the file name
374 initVirtMem.writeString(file_name_base, filename.c_str());
375
376 // Copy the aux stuff
377 for (int x = 0; x < auxv.size(); x++) {
378 initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
379 (uint8_t*)&(auxv[x].a_type), intSize);
380 initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
381 (uint8_t*)&(auxv[x].a_val), intSize);
382 }
383
384 // Write out the terminating zeroed auxilliary vector
385 const IntType zero = 0;
386 initVirtMem.writeBlob(auxv_array_base + intSize * 2 * auxv.size(),
387 (uint8_t*)&zero, intSize);
388 initVirtMem.writeBlob(auxv_array_base + intSize * (2 * auxv.size() + 1),
389 (uint8_t*)&zero, intSize);
390
391 copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
392 copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
393
394 initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
395
396 // Set up space for the trap handlers into the processes address space.
397 // Since the stack grows down and there is reserved address space abov
398 // it, we can put stuff above it and stay out of the way.
399 fillStart = stack_base;
400 spillStart = fillStart + sizeof(MachInst) * numFillInsts;
401
402 ThreadContext *tc = system->getThreadContext(contextIds[0]);
403 // Set up the thread context to start running the process
404 // assert(NumArgumentRegs >= 2);
405 // tc->setIntReg(ArgumentReg[0], argc);
406 // tc->setIntReg(ArgumentReg[1], argv_array_base);
407 tc->setIntReg(StackPointerReg, stack_min - StackBias);
408
409 // %g1 is a pointer to a function that should be run at exit. Since we
410 // don't have anything like that, it should be set to 0.
411 tc->setIntReg(1, 0);
412
413 tc->pcState(getStartPC());
414
415 // Align the "stack_min" to a page boundary.
416 stack_min = roundDown(stack_min, pageSize);
417
418// num_processes++;
419}
420
421void
422Sparc64LiveProcess::argsInit(int intSize, int pageSize)
422Sparc64Process::argsInit(int intSize, int pageSize)
423{
423{
424 SparcLiveProcess::argsInit<uint64_t>(pageSize);
424 SparcProcess::argsInit(pageSize);
425
426 // Stuff the trap handlers into the process address space
427 initVirtMem.writeBlob(fillStart,
428 (uint8_t*)fillHandler64, sizeof(MachInst) * numFillInsts);
429 initVirtMem.writeBlob(spillStart,
430 (uint8_t*)spillHandler64, sizeof(MachInst) * numSpillInsts);
431}
432
433void
425
426 // Stuff the trap handlers into the process address space
427 initVirtMem.writeBlob(fillStart,
428 (uint8_t*)fillHandler64, sizeof(MachInst) * numFillInsts);
429 initVirtMem.writeBlob(spillStart,
430 (uint8_t*)spillHandler64, sizeof(MachInst) * numSpillInsts);
431}
432
433void
434Sparc32LiveProcess::argsInit(int intSize, int pageSize)
434Sparc32Process::argsInit(int intSize, int pageSize)
435{
435{
436 SparcLiveProcess::argsInit<uint32_t>(pageSize);
436 SparcProcess::argsInit(pageSize);
437
438 // Stuff the trap handlers into the process address space
439 initVirtMem.writeBlob(fillStart,
440 (uint8_t*)fillHandler32, sizeof(MachInst) * numFillInsts);
441 initVirtMem.writeBlob(spillStart,
442 (uint8_t*)spillHandler32, sizeof(MachInst) * numSpillInsts);
443}
444
437
438 // Stuff the trap handlers into the process address space
439 initVirtMem.writeBlob(fillStart,
440 (uint8_t*)fillHandler32, sizeof(MachInst) * numFillInsts);
441 initVirtMem.writeBlob(spillStart,
442 (uint8_t*)spillHandler32, sizeof(MachInst) * numSpillInsts);
443}
444
445void Sparc32LiveProcess::flushWindows(ThreadContext *tc)
445void Sparc32Process::flushWindows(ThreadContext *tc)
446{
447 IntReg Cansave = tc->readIntReg(NumIntArchRegs + 3);
448 IntReg Canrestore = tc->readIntReg(NumIntArchRegs + 4);
449 IntReg Otherwin = tc->readIntReg(NumIntArchRegs + 6);
450 MiscReg CWP = tc->readMiscReg(MISCREG_CWP);
451 MiscReg origCWP = CWP;
452 CWP = (CWP + Cansave + 2) % NWindows;
453 while (NWindows - 2 - Cansave != 0) {
454 if (Otherwin) {
455 panic("Otherwin non-zero.\n");
456 } else {
457 tc->setMiscReg(MISCREG_CWP, CWP);
458 // Do the stores
459 IntReg sp = tc->readIntReg(StackPointerReg);
460 for (int index = 16; index < 32; index++) {
461 uint32_t regVal = tc->readIntReg(index);
462 regVal = htog(regVal);
463 if (!tc->getMemProxy().tryWriteBlob(
464 sp + (index - 16) * 4, (uint8_t *)&regVal, 4)) {
465 warn("Failed to save register to the stack when "
466 "flushing windows.\n");
467 }
468 }
469 Canrestore--;
470 Cansave++;
471 CWP = (CWP + 1) % NWindows;
472 }
473 }
474 tc->setIntReg(NumIntArchRegs + 3, Cansave);
475 tc->setIntReg(NumIntArchRegs + 4, Canrestore);
476 tc->setMiscReg(MISCREG_CWP, origCWP);
477}
478
479void
446{
447 IntReg Cansave = tc->readIntReg(NumIntArchRegs + 3);
448 IntReg Canrestore = tc->readIntReg(NumIntArchRegs + 4);
449 IntReg Otherwin = tc->readIntReg(NumIntArchRegs + 6);
450 MiscReg CWP = tc->readMiscReg(MISCREG_CWP);
451 MiscReg origCWP = CWP;
452 CWP = (CWP + Cansave + 2) % NWindows;
453 while (NWindows - 2 - Cansave != 0) {
454 if (Otherwin) {
455 panic("Otherwin non-zero.\n");
456 } else {
457 tc->setMiscReg(MISCREG_CWP, CWP);
458 // Do the stores
459 IntReg sp = tc->readIntReg(StackPointerReg);
460 for (int index = 16; index < 32; index++) {
461 uint32_t regVal = tc->readIntReg(index);
462 regVal = htog(regVal);
463 if (!tc->getMemProxy().tryWriteBlob(
464 sp + (index - 16) * 4, (uint8_t *)&regVal, 4)) {
465 warn("Failed to save register to the stack when "
466 "flushing windows.\n");
467 }
468 }
469 Canrestore--;
470 Cansave++;
471 CWP = (CWP + 1) % NWindows;
472 }
473 }
474 tc->setIntReg(NumIntArchRegs + 3, Cansave);
475 tc->setIntReg(NumIntArchRegs + 4, Canrestore);
476 tc->setMiscReg(MISCREG_CWP, origCWP);
477}
478
479void
480Sparc64LiveProcess::flushWindows(ThreadContext *tc)
480Sparc64Process::flushWindows(ThreadContext *tc)
481{
482 IntReg Cansave = tc->readIntReg(NumIntArchRegs + 3);
483 IntReg Canrestore = tc->readIntReg(NumIntArchRegs + 4);
484 IntReg Otherwin = tc->readIntReg(NumIntArchRegs + 6);
485 MiscReg CWP = tc->readMiscReg(MISCREG_CWP);
486 MiscReg origCWP = CWP;
487 CWP = (CWP + Cansave + 2) % NWindows;
488 while (NWindows - 2 - Cansave != 0) {
489 if (Otherwin) {
490 panic("Otherwin non-zero.\n");
491 } else {
492 tc->setMiscReg(MISCREG_CWP, CWP);
493 // Do the stores
494 IntReg sp = tc->readIntReg(StackPointerReg);
495 for (int index = 16; index < 32; index++) {
496 IntReg regVal = tc->readIntReg(index);
497 regVal = htog(regVal);
498 if (!tc->getMemProxy().tryWriteBlob(
499 sp + 2047 + (index - 16) * 8, (uint8_t *)&regVal, 8)) {
500 warn("Failed to save register to the stack when "
501 "flushing windows.\n");
502 }
503 }
504 Canrestore--;
505 Cansave++;
506 CWP = (CWP + 1) % NWindows;
507 }
508 }
509 tc->setIntReg(NumIntArchRegs + 3, Cansave);
510 tc->setIntReg(NumIntArchRegs + 4, Canrestore);
511 tc->setMiscReg(MISCREG_CWP, origCWP);
512}
513
514IntReg
481{
482 IntReg Cansave = tc->readIntReg(NumIntArchRegs + 3);
483 IntReg Canrestore = tc->readIntReg(NumIntArchRegs + 4);
484 IntReg Otherwin = tc->readIntReg(NumIntArchRegs + 6);
485 MiscReg CWP = tc->readMiscReg(MISCREG_CWP);
486 MiscReg origCWP = CWP;
487 CWP = (CWP + Cansave + 2) % NWindows;
488 while (NWindows - 2 - Cansave != 0) {
489 if (Otherwin) {
490 panic("Otherwin non-zero.\n");
491 } else {
492 tc->setMiscReg(MISCREG_CWP, CWP);
493 // Do the stores
494 IntReg sp = tc->readIntReg(StackPointerReg);
495 for (int index = 16; index < 32; index++) {
496 IntReg regVal = tc->readIntReg(index);
497 regVal = htog(regVal);
498 if (!tc->getMemProxy().tryWriteBlob(
499 sp + 2047 + (index - 16) * 8, (uint8_t *)&regVal, 8)) {
500 warn("Failed to save register to the stack when "
501 "flushing windows.\n");
502 }
503 }
504 Canrestore--;
505 Cansave++;
506 CWP = (CWP + 1) % NWindows;
507 }
508 }
509 tc->setIntReg(NumIntArchRegs + 3, Cansave);
510 tc->setIntReg(NumIntArchRegs + 4, Canrestore);
511 tc->setMiscReg(MISCREG_CWP, origCWP);
512}
513
514IntReg
515Sparc32LiveProcess::getSyscallArg(ThreadContext *tc, int &i)
515Sparc32Process::getSyscallArg(ThreadContext *tc, int &i)
516{
517 assert(i < 6);
518 return bits(tc->readIntReg(FirstArgumentReg + i++), 31, 0);
519}
520
521void
516{
517 assert(i < 6);
518 return bits(tc->readIntReg(FirstArgumentReg + i++), 31, 0);
519}
520
521void
522Sparc32LiveProcess::setSyscallArg(ThreadContext *tc, int i, IntReg val)
522Sparc32Process::setSyscallArg(ThreadContext *tc, int i, IntReg val)
523{
524 assert(i < 6);
525 tc->setIntReg(FirstArgumentReg + i, bits(val, 31, 0));
526}
527
528IntReg
523{
524 assert(i < 6);
525 tc->setIntReg(FirstArgumentReg + i, bits(val, 31, 0));
526}
527
528IntReg
529Sparc64LiveProcess::getSyscallArg(ThreadContext *tc, int &i)
529Sparc64Process::getSyscallArg(ThreadContext *tc, int &i)
530{
531 assert(i < 6);
532 return tc->readIntReg(FirstArgumentReg + i++);
533}
534
535void
530{
531 assert(i < 6);
532 return tc->readIntReg(FirstArgumentReg + i++);
533}
534
535void
536Sparc64LiveProcess::setSyscallArg(ThreadContext *tc, int i, IntReg val)
536Sparc64Process::setSyscallArg(ThreadContext *tc, int i, IntReg val)
537{
538 assert(i < 6);
539 tc->setIntReg(FirstArgumentReg + i, val);
540}
541
542void
537{
538 assert(i < 6);
539 tc->setIntReg(FirstArgumentReg + i, val);
540}
541
542void
543SparcLiveProcess::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
543SparcProcess::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
544{
545 // check for error condition. SPARC syscall convention is to
546 // indicate success/failure in reg the carry bit of the ccr
547 // and put the return value itself in the standard return value reg ().
548 PSTATE pstate = tc->readMiscRegNoEffect(MISCREG_PSTATE);
549 if (sysret.successful()) {
550 // no error, clear XCC.C
551 tc->setIntReg(NumIntArchRegs + 2,
552 tc->readIntReg(NumIntArchRegs + 2) & 0xEE);
553 IntReg val = sysret.returnValue();
554 if (pstate.am)
555 val = bits(val, 31, 0);
556 tc->setIntReg(ReturnValueReg, val);
557 } else {
558 // got an error, set XCC.C
559 tc->setIntReg(NumIntArchRegs + 2,
560 tc->readIntReg(NumIntArchRegs + 2) | 0x11);
561 IntReg val = sysret.errnoValue();
562 if (pstate.am)
563 val = bits(val, 31, 0);
564 tc->setIntReg(ReturnValueReg, val);
565 }
566}
544{
545 // check for error condition. SPARC syscall convention is to
546 // indicate success/failure in reg the carry bit of the ccr
547 // and put the return value itself in the standard return value reg ().
548 PSTATE pstate = tc->readMiscRegNoEffect(MISCREG_PSTATE);
549 if (sysret.successful()) {
550 // no error, clear XCC.C
551 tc->setIntReg(NumIntArchRegs + 2,
552 tc->readIntReg(NumIntArchRegs + 2) & 0xEE);
553 IntReg val = sysret.returnValue();
554 if (pstate.am)
555 val = bits(val, 31, 0);
556 tc->setIntReg(ReturnValueReg, val);
557 } else {
558 // got an error, set XCC.C
559 tc->setIntReg(NumIntArchRegs + 2,
560 tc->readIntReg(NumIntArchRegs + 2) | 0x11);
561 IntReg val = sysret.errnoValue();
562 if (pstate.am)
563 val = bits(val, 31, 0);
564 tc->setIntReg(ReturnValueReg, val);
565 }
566}