1// Copyright (c) 2006 The Regents of The University of Michigan
1// Copyright (c) 2006-2007 The Regents of The University of Michigan
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met: redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer;
8// redistributions in binary form must reproduce the above copyright
9// notice, this list of conditions and the following disclaimer in the
10// documentation and/or other materials provided with the distribution;
11// neither the name of the copyright holders nor the names of its
12// contributors may be used to endorse or promote products derived from
13// this software without specific prior written permission.
14//
15// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26//
27// Authors: Ali Saidi
28// Gabe Black
29// Steve Reinhardt
30
31////////////////////////////////////////////////////////////////////
32//
33// Mem utility templates and functions
34//
35
36output header {{
37 /**
38 * Base class for memory operations.
39 */
40 class Mem : public SparcStaticInst
41 {
42 protected:
43
44 // Constructor
45 Mem(const char *mnem, ExtMachInst _machInst, OpClass __opClass) :
46 SparcStaticInst(mnem, _machInst, __opClass)
47 {
48 }
49
50 std::string generateDisassembly(Addr pc,
51 const SymbolTable *symtab) const;
52 };
53
54 /**
55 * Class for memory operations which use an immediate offset.
56 */
57 class MemImm : public Mem
58 {
59 protected:
60
61 // Constructor
62 MemImm(const char *mnem, ExtMachInst _machInst, OpClass __opClass) :
63 Mem(mnem, _machInst, __opClass), imm(sext<13>(SIMM13))
64 {}
65
66 std::string generateDisassembly(Addr pc,
67 const SymbolTable *symtab) const;
68
69 const int32_t imm;
70 };
71}};
72
73output decoder {{
74 std::string Mem::generateDisassembly(Addr pc,
75 const SymbolTable *symtab) const
76 {
77 std::stringstream response;
78 bool load = flags[IsLoad];
79 bool store = flags[IsStore];
80
81 printMnemonic(response, mnemonic);
82 if(store)
83 {
84 printReg(response, _srcRegIdx[0]);
85 ccprintf(response, ", ");
86 }
87 ccprintf(response, "[");
88 if(_srcRegIdx[!store ? 0 : 1] != 0)
89 {
90 printSrcReg(response, !store ? 0 : 1);
91 ccprintf(response, " + ");
92 }
93 printSrcReg(response, !store ? 1 : 2);
94 ccprintf(response, "]");
95 if(load)
96 {
97 ccprintf(response, ", ");
98 printReg(response, _destRegIdx[0]);
99 }
100
101 return response.str();
102 }
103
104 std::string MemImm::generateDisassembly(Addr pc,
105 const SymbolTable *symtab) const
106 {
107 std::stringstream response;
108 bool load = flags[IsLoad];
109 bool save = flags[IsStore];
110
111 printMnemonic(response, mnemonic);
112 if(save)
113 {
114 printReg(response, _srcRegIdx[0]);
115 ccprintf(response, ", ");
116 }
117 ccprintf(response, "[");
118 if(_srcRegIdx[!save ? 0 : 1] != 0)
119 {
120 printReg(response, _srcRegIdx[!save ? 0 : 1]);
121 ccprintf(response, " + ");
122 }
123 if(imm >= 0)
124 ccprintf(response, "0x%x]", imm);
125 else
126 ccprintf(response, "-0x%x]", -imm);
127 if(load)
128 {
129 ccprintf(response, ", ");
130 printReg(response, _destRegIdx[0]);
131 }
132
133 return response.str();
134 }
135}};
136
137//This template provides the execute functions for a load
138def template LoadExecute {{
139 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
140 Trace::InstRecord *traceData) const
141 {
142 Fault fault = NoFault;
143 Addr EA;
144 %(fp_enable_check)s;
145 %(op_decl)s;
146 %(op_rd)s;
147 %(ea_code)s;
148 DPRINTF(Sparc, "The address is 0x%x\n", EA);
149 %(fault_check)s;
150 if(fault == NoFault)
151 {
152 fault = xc->read(EA, (uint%(mem_acc_size)s_t&)Mem, %(asi_val)s);
153 }
154 if(fault == NoFault)
155 {
156 %(code)s;
157 }
158 if(fault == NoFault)
159 {
160 //Write the resulting state to the execution context
161 %(op_wb)s;
162 }
163
164 return fault;
165 }
166
167 Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s * xc,
168 Trace::InstRecord * traceData) const
169 {
170 Fault fault = NoFault;
171 Addr EA;
172 uint%(mem_acc_size)s_t Mem;
173 %(fp_enable_check)s;
174 %(ea_decl)s;
175 %(ea_rd)s;
176 %(ea_code)s;
177 %(fault_check)s;
178 if(fault == NoFault)
179 {
180 fault = xc->read(EA, (uint%(mem_acc_size)s_t&)Mem, %(asi_val)s);
181 }
182 return fault;
183 }
184
185 Fault %(class_name)s::completeAcc(PacketPtr pkt, %(CPU_exec_context)s * xc,
186 Trace::InstRecord * traceData) const
187 {
188 Fault fault = NoFault;
189 %(code_decl)s;
190 %(code_rd)s;
191 Mem = pkt->get<typeof(Mem)>();
192 %(code)s;
193 if(fault == NoFault)
194 {
195 %(code_wb)s;
196 }
197 return fault;
198 }
199}};
200
201//This template provides the execute functions for a store
202def template StoreExecute {{
203 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
204 Trace::InstRecord *traceData) const
205 {
206 Fault fault = NoFault;
207 //This is to support the conditional store in cas instructions.
208 //It should be optomized out in all the others
209 bool storeCond = true;
210 Addr EA;
211 %(fp_enable_check)s;
212 %(op_decl)s;
213 %(op_rd)s;
214 %(ea_code)s;
215 DPRINTF(Sparc, "The address is 0x%x\n", EA);
216 %(fault_check)s;
217 if(fault == NoFault)
218 {
219 %(code)s;
220 }
221 if(storeCond && fault == NoFault)
222 {
223 fault = xc->write((uint%(mem_acc_size)s_t)Mem,
224 EA, %(asi_val)s, 0);
225 }
226 if(fault == NoFault)
227 {
228 //Write the resulting state to the execution context
229 %(op_wb)s;
230 }
231
232 return fault;
233 }
234
235 Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s * xc,
236 Trace::InstRecord * traceData) const
237 {
238 Fault fault = NoFault;
239 bool storeCond = true;
240 Addr EA;
241 %(fp_enable_check)s;
242 %(op_decl)s;
243 %(op_rd)s;
244 %(ea_code)s;
245 DPRINTF(Sparc, "The address is 0x%x\n", EA);
246 %(fault_check)s;
247 if(fault == NoFault)
248 {
249 %(code)s;
250 }
251 if(storeCond && fault == NoFault)
252 {
253 fault = xc->write((uint%(mem_acc_size)s_t)Mem,
254 EA, %(asi_val)s, 0);
255 }
256 if(fault == NoFault)
257 {
258 //Write the resulting state to the execution context
259 %(op_wb)s;
260 }
261 return fault;
262 }
263
264 Fault %(class_name)s::completeAcc(PacketPtr, %(CPU_exec_context)s * xc,
265 Trace::InstRecord * traceData) const
266 {
267 return NoFault;
268 }
269}};
270
271//This delcares the initiateAcc function in memory operations
272def template InitiateAccDeclare {{
273 Fault initiateAcc(%(CPU_exec_context)s *, Trace::InstRecord *) const;
274}};
275
276//This declares the completeAcc function in memory operations
277def template CompleteAccDeclare {{
278 Fault completeAcc(PacketPtr, %(CPU_exec_context)s *, Trace::InstRecord *) const;
279}};
280
281//Here are some code snippets which check for various fault conditions
282let {{
283 # The LSB can be zero, since it's really the MSB in doubles and quads
284 # and we're dealing with doubles
285 BlockAlignmentFaultCheck = '''
286 if(RD & 0xe)
287 fault = new IllegalInstruction;
288 else if(EA & 0x3f)
289 fault = new MemAddressNotAligned;
290 '''
291 TwinAlignmentFaultCheck = '''
292 if(RD & 0x1)
293 fault = new IllegalInstruction;
294 else if(EA & 0xf)
295 fault = new MemAddressNotAligned;
296 '''
297 # XXX Need to take care of pstate.hpriv as well. The lower ASIs
298 # are split into ones that are available in priv and hpriv, and
299 # those that are only available in hpriv
300 AlternateASIPrivFaultCheck = '''
301 if(!bits(Pstate,2,2) && !bits(Hpstate,2,2) && !AsiIsUnPriv((ASI)EXT_ASI) ||
302 !bits(Hpstate,2,2) && AsiIsHPriv((ASI)EXT_ASI))
303 fault = new PrivilegedAction;
304 else if(AsiIsAsIfUser((ASI)EXT_ASI) && !bits(Pstate,2,2))
305 fault = new PrivilegedAction;
306 '''
307
308}};
309
310//A simple function to generate the name of the macro op of a certain
311//instruction at a certain micropc
312let {{
313 def makeMicroName(name, microPc):
314 return name + "::" + name + "_" + str(microPc)
315}};
316
317//This function properly generates the execute functions for one of the
318//templates above. This is needed because in one case, ea computation,
319//fault checks and the actual code all occur in the same function,
320//and in the other they're distributed across two. Also note that for
321//execute functions, the name of the base class doesn't matter.
322let {{
323 def doSplitExecute(code, execute, name, Name, asi, opt_flags, microParam):
324 microParam["asi_val"] = asi;
325 codeParam = microParam.copy()
326 codeParam["ea_code"] = ''
327 codeIop = InstObjParams(name, Name, '', code, opt_flags, codeParam)
328 eaIop = InstObjParams(name, Name, '', microParam["ea_code"],
329 opt_flags, microParam)
330 iop = InstObjParams(name, Name, '', code, opt_flags, microParam)
331 (iop.ea_decl,
332 iop.ea_rd,
333 iop.ea_wb) = (eaIop.op_decl, eaIop.op_rd, eaIop.op_wb)
334 (iop.code_decl,
335 iop.code_rd,
336 iop.code_wb) = (codeIop.op_decl, codeIop.op_rd, codeIop.op_wb)
337 return execute.subst(iop)
338
339
340 def doDualSplitExecute(code, eaRegCode, eaImmCode, execute,
341 faultCode, nameReg, nameImm, NameReg, NameImm, asi, opt_flags):
342 executeCode = ''
343 for (eaCode, name, Name) in (
344 (eaRegCode, nameReg, NameReg),
345 (eaImmCode, nameImm, NameImm)):
346 microParams = {"ea_code" : eaCode, "fault_check": faultCode}
347 executeCode += doSplitExecute(code, execute, name, Name,
348 asi, opt_flags, microParams)
349 return executeCode
350}};