util.isa (3955:9ba76c4fcaa8) util.isa (3970:d54945bab95d)
1// Copyright (c) 2006 The Regents of The University of Michigan
1// Copyright (c) 2006-2007 The Regents of The University of Michigan
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met: redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer;
8// redistributions in binary form must reproduce the above copyright
9// notice, this list of conditions and the following disclaimer in the
10// documentation and/or other materials provided with the distribution;
11// neither the name of the copyright holders nor the names of its
12// contributors may be used to endorse or promote products derived from
13// this software without specific prior written permission.
14//
15// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26//
27// Authors: Ali Saidi
28// Gabe Black
29// Steve Reinhardt
30
31////////////////////////////////////////////////////////////////////
32//
33// Mem utility templates and functions
34//
35
36output header {{
37 /**
38 * Base class for memory operations.
39 */
40 class Mem : public SparcStaticInst
41 {
42 protected:
43
44 // Constructor
45 Mem(const char *mnem, ExtMachInst _machInst, OpClass __opClass) :
46 SparcStaticInst(mnem, _machInst, __opClass)
47 {
48 }
49
50 std::string generateDisassembly(Addr pc,
51 const SymbolTable *symtab) const;
52 };
53
54 /**
55 * Class for memory operations which use an immediate offset.
56 */
57 class MemImm : public Mem
58 {
59 protected:
60
61 // Constructor
62 MemImm(const char *mnem, ExtMachInst _machInst, OpClass __opClass) :
63 Mem(mnem, _machInst, __opClass), imm(sext<13>(SIMM13))
64 {}
65
66 std::string generateDisassembly(Addr pc,
67 const SymbolTable *symtab) const;
68
69 const int32_t imm;
70 };
71}};
72
73output decoder {{
74 std::string Mem::generateDisassembly(Addr pc,
75 const SymbolTable *symtab) const
76 {
77 std::stringstream response;
78 bool load = flags[IsLoad];
79 bool store = flags[IsStore];
80
81 printMnemonic(response, mnemonic);
82 if(store)
83 {
84 printReg(response, _srcRegIdx[0]);
85 ccprintf(response, ", ");
86 }
87 ccprintf(response, "[");
88 if(_srcRegIdx[!store ? 0 : 1] != 0)
89 {
90 printSrcReg(response, !store ? 0 : 1);
91 ccprintf(response, " + ");
92 }
93 printSrcReg(response, !store ? 1 : 2);
94 ccprintf(response, "]");
95 if(load)
96 {
97 ccprintf(response, ", ");
98 printReg(response, _destRegIdx[0]);
99 }
100
101 return response.str();
102 }
103
104 std::string MemImm::generateDisassembly(Addr pc,
105 const SymbolTable *symtab) const
106 {
107 std::stringstream response;
108 bool load = flags[IsLoad];
109 bool save = flags[IsStore];
110
111 printMnemonic(response, mnemonic);
112 if(save)
113 {
114 printReg(response, _srcRegIdx[0]);
115 ccprintf(response, ", ");
116 }
117 ccprintf(response, "[");
118 if(_srcRegIdx[!save ? 0 : 1] != 0)
119 {
120 printReg(response, _srcRegIdx[!save ? 0 : 1]);
121 ccprintf(response, " + ");
122 }
123 if(imm >= 0)
124 ccprintf(response, "0x%x]", imm);
125 else
126 ccprintf(response, "-0x%x]", -imm);
127 if(load)
128 {
129 ccprintf(response, ", ");
130 printReg(response, _destRegIdx[0]);
131 }
132
133 return response.str();
134 }
135}};
136
137//This template provides the execute functions for a load
138def template LoadExecute {{
139 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
140 Trace::InstRecord *traceData) const
141 {
142 Fault fault = NoFault;
143 Addr EA;
144 %(op_decl)s;
145 %(op_rd)s;
146 %(ea_code)s;
147 DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
148 %(fault_check)s;
149 if(fault == NoFault)
150 {
151 fault = xc->read(EA, (uint%(mem_acc_size)s_t&)Mem, %(asi_val)s);
152 }
153 if(fault == NoFault)
154 {
155 %(code)s;
156 }
157 if(fault == NoFault)
158 {
159 //Write the resulting state to the execution context
160 %(op_wb)s;
161 }
162
163 return fault;
164 }
165}};
166
167def template LoadInitiateAcc {{
168 Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s * xc,
169 Trace::InstRecord * traceData) const
170 {
171 Fault fault = NoFault;
172 Addr EA;
173 %(op_decl)s;
174 %(op_rd)s;
175 %(ea_code)s;
176 DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
177 %(fault_check)s;
178 if(fault == NoFault)
179 {
180 fault = xc->read(EA, (uint%(mem_acc_size)s_t&)Mem, %(asi_val)s);
181 }
182 return fault;
183 }
184}};
185
186def template LoadCompleteAcc {{
187 Fault %(class_name)s::completeAcc(PacketPtr pkt, %(CPU_exec_context)s * xc,
188 Trace::InstRecord * traceData) const
189 {
190 Fault fault = NoFault;
191 %(op_decl)s;
192 %(op_rd)s;
193 Mem = pkt->get<typeof(Mem)>();
194 %(code)s;
195 if(fault == NoFault)
196 {
197 %(op_wb)s;
198 }
199 return fault;
200 }
201}};
202
203//This template provides the execute functions for a store
204def template StoreExecute {{
205 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
206 Trace::InstRecord *traceData) const
207 {
208 Fault fault = NoFault;
209 //This is to support the conditional store in cas instructions.
210 //It should be optomized out in all the others
211 bool storeCond = true;
212 Addr EA;
213 %(op_decl)s;
214 %(op_rd)s;
215 %(ea_code)s;
216 DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
217 %(fault_check)s;
218 if(fault == NoFault)
219 {
220 %(code)s;
221 }
222 if(storeCond && fault == NoFault)
223 {
224 fault = xc->write((uint%(mem_acc_size)s_t)Mem,
225 EA, %(asi_val)s, 0);
226 }
227 if(fault == NoFault)
228 {
229 //Write the resulting state to the execution context
230 %(op_wb)s;
231 }
232
233 return fault;
234 }
235}};
236
237def template StoreInitiateAcc {{
238 Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s * xc,
239 Trace::InstRecord * traceData) const
240 {
241 Fault fault = NoFault;
242 bool storeCond = true;
243 Addr EA;
244 %(op_decl)s;
245 %(op_rd)s;
246 %(ea_code)s;
247 DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
248 %(fault_check)s;
249 if(fault == NoFault)
250 {
251 %(code)s;
252 }
253 if(storeCond && fault == NoFault)
254 {
255 fault = xc->write((uint%(mem_acc_size)s_t)Mem,
256 EA, %(asi_val)s, 0);
257 }
258 if(fault == NoFault)
259 {
260 //Write the resulting state to the execution context
261 %(op_wb)s;
262 }
263 return fault;
264 }
265}};
266
267def template StoreCompleteAcc {{
268 Fault %(class_name)s::completeAcc(PacketPtr, %(CPU_exec_context)s * xc,
269 Trace::InstRecord * traceData) const
270 {
271 return NoFault;
272 }
273}};
274
275//This delcares the initiateAcc function in memory operations
276def template InitiateAccDeclare {{
277 Fault initiateAcc(%(CPU_exec_context)s *, Trace::InstRecord *) const;
278}};
279
280//This declares the completeAcc function in memory operations
281def template CompleteAccDeclare {{
282 Fault completeAcc(PacketPtr, %(CPU_exec_context)s *, Trace::InstRecord *) const;
283}};
284
285//Here are some code snippets which check for various fault conditions
286let {{
287 LoadFuncs = [LoadExecute, LoadInitiateAcc, LoadCompleteAcc]
288 StoreFuncs = [StoreExecute, StoreInitiateAcc, StoreCompleteAcc]
289 # The LSB can be zero, since it's really the MSB in doubles and quads
290 # and we're dealing with doubles
291 BlockAlignmentFaultCheck = '''
292 if(RD & 0xe)
293 fault = new IllegalInstruction;
294 else if(EA & 0x3f)
295 fault = new MemAddressNotAligned;
296 '''
297 TwinAlignmentFaultCheck = '''
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met: redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer;
8// redistributions in binary form must reproduce the above copyright
9// notice, this list of conditions and the following disclaimer in the
10// documentation and/or other materials provided with the distribution;
11// neither the name of the copyright holders nor the names of its
12// contributors may be used to endorse or promote products derived from
13// this software without specific prior written permission.
14//
15// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26//
27// Authors: Ali Saidi
28// Gabe Black
29// Steve Reinhardt
30
31////////////////////////////////////////////////////////////////////
32//
33// Mem utility templates and functions
34//
35
36output header {{
37 /**
38 * Base class for memory operations.
39 */
40 class Mem : public SparcStaticInst
41 {
42 protected:
43
44 // Constructor
45 Mem(const char *mnem, ExtMachInst _machInst, OpClass __opClass) :
46 SparcStaticInst(mnem, _machInst, __opClass)
47 {
48 }
49
50 std::string generateDisassembly(Addr pc,
51 const SymbolTable *symtab) const;
52 };
53
54 /**
55 * Class for memory operations which use an immediate offset.
56 */
57 class MemImm : public Mem
58 {
59 protected:
60
61 // Constructor
62 MemImm(const char *mnem, ExtMachInst _machInst, OpClass __opClass) :
63 Mem(mnem, _machInst, __opClass), imm(sext<13>(SIMM13))
64 {}
65
66 std::string generateDisassembly(Addr pc,
67 const SymbolTable *symtab) const;
68
69 const int32_t imm;
70 };
71}};
72
73output decoder {{
74 std::string Mem::generateDisassembly(Addr pc,
75 const SymbolTable *symtab) const
76 {
77 std::stringstream response;
78 bool load = flags[IsLoad];
79 bool store = flags[IsStore];
80
81 printMnemonic(response, mnemonic);
82 if(store)
83 {
84 printReg(response, _srcRegIdx[0]);
85 ccprintf(response, ", ");
86 }
87 ccprintf(response, "[");
88 if(_srcRegIdx[!store ? 0 : 1] != 0)
89 {
90 printSrcReg(response, !store ? 0 : 1);
91 ccprintf(response, " + ");
92 }
93 printSrcReg(response, !store ? 1 : 2);
94 ccprintf(response, "]");
95 if(load)
96 {
97 ccprintf(response, ", ");
98 printReg(response, _destRegIdx[0]);
99 }
100
101 return response.str();
102 }
103
104 std::string MemImm::generateDisassembly(Addr pc,
105 const SymbolTable *symtab) const
106 {
107 std::stringstream response;
108 bool load = flags[IsLoad];
109 bool save = flags[IsStore];
110
111 printMnemonic(response, mnemonic);
112 if(save)
113 {
114 printReg(response, _srcRegIdx[0]);
115 ccprintf(response, ", ");
116 }
117 ccprintf(response, "[");
118 if(_srcRegIdx[!save ? 0 : 1] != 0)
119 {
120 printReg(response, _srcRegIdx[!save ? 0 : 1]);
121 ccprintf(response, " + ");
122 }
123 if(imm >= 0)
124 ccprintf(response, "0x%x]", imm);
125 else
126 ccprintf(response, "-0x%x]", -imm);
127 if(load)
128 {
129 ccprintf(response, ", ");
130 printReg(response, _destRegIdx[0]);
131 }
132
133 return response.str();
134 }
135}};
136
137//This template provides the execute functions for a load
138def template LoadExecute {{
139 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
140 Trace::InstRecord *traceData) const
141 {
142 Fault fault = NoFault;
143 Addr EA;
144 %(op_decl)s;
145 %(op_rd)s;
146 %(ea_code)s;
147 DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
148 %(fault_check)s;
149 if(fault == NoFault)
150 {
151 fault = xc->read(EA, (uint%(mem_acc_size)s_t&)Mem, %(asi_val)s);
152 }
153 if(fault == NoFault)
154 {
155 %(code)s;
156 }
157 if(fault == NoFault)
158 {
159 //Write the resulting state to the execution context
160 %(op_wb)s;
161 }
162
163 return fault;
164 }
165}};
166
167def template LoadInitiateAcc {{
168 Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s * xc,
169 Trace::InstRecord * traceData) const
170 {
171 Fault fault = NoFault;
172 Addr EA;
173 %(op_decl)s;
174 %(op_rd)s;
175 %(ea_code)s;
176 DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
177 %(fault_check)s;
178 if(fault == NoFault)
179 {
180 fault = xc->read(EA, (uint%(mem_acc_size)s_t&)Mem, %(asi_val)s);
181 }
182 return fault;
183 }
184}};
185
186def template LoadCompleteAcc {{
187 Fault %(class_name)s::completeAcc(PacketPtr pkt, %(CPU_exec_context)s * xc,
188 Trace::InstRecord * traceData) const
189 {
190 Fault fault = NoFault;
191 %(op_decl)s;
192 %(op_rd)s;
193 Mem = pkt->get<typeof(Mem)>();
194 %(code)s;
195 if(fault == NoFault)
196 {
197 %(op_wb)s;
198 }
199 return fault;
200 }
201}};
202
203//This template provides the execute functions for a store
204def template StoreExecute {{
205 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
206 Trace::InstRecord *traceData) const
207 {
208 Fault fault = NoFault;
209 //This is to support the conditional store in cas instructions.
210 //It should be optomized out in all the others
211 bool storeCond = true;
212 Addr EA;
213 %(op_decl)s;
214 %(op_rd)s;
215 %(ea_code)s;
216 DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
217 %(fault_check)s;
218 if(fault == NoFault)
219 {
220 %(code)s;
221 }
222 if(storeCond && fault == NoFault)
223 {
224 fault = xc->write((uint%(mem_acc_size)s_t)Mem,
225 EA, %(asi_val)s, 0);
226 }
227 if(fault == NoFault)
228 {
229 //Write the resulting state to the execution context
230 %(op_wb)s;
231 }
232
233 return fault;
234 }
235}};
236
237def template StoreInitiateAcc {{
238 Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s * xc,
239 Trace::InstRecord * traceData) const
240 {
241 Fault fault = NoFault;
242 bool storeCond = true;
243 Addr EA;
244 %(op_decl)s;
245 %(op_rd)s;
246 %(ea_code)s;
247 DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
248 %(fault_check)s;
249 if(fault == NoFault)
250 {
251 %(code)s;
252 }
253 if(storeCond && fault == NoFault)
254 {
255 fault = xc->write((uint%(mem_acc_size)s_t)Mem,
256 EA, %(asi_val)s, 0);
257 }
258 if(fault == NoFault)
259 {
260 //Write the resulting state to the execution context
261 %(op_wb)s;
262 }
263 return fault;
264 }
265}};
266
267def template StoreCompleteAcc {{
268 Fault %(class_name)s::completeAcc(PacketPtr, %(CPU_exec_context)s * xc,
269 Trace::InstRecord * traceData) const
270 {
271 return NoFault;
272 }
273}};
274
275//This delcares the initiateAcc function in memory operations
276def template InitiateAccDeclare {{
277 Fault initiateAcc(%(CPU_exec_context)s *, Trace::InstRecord *) const;
278}};
279
280//This declares the completeAcc function in memory operations
281def template CompleteAccDeclare {{
282 Fault completeAcc(PacketPtr, %(CPU_exec_context)s *, Trace::InstRecord *) const;
283}};
284
285//Here are some code snippets which check for various fault conditions
286let {{
287 LoadFuncs = [LoadExecute, LoadInitiateAcc, LoadCompleteAcc]
288 StoreFuncs = [StoreExecute, StoreInitiateAcc, StoreCompleteAcc]
289 # The LSB can be zero, since it's really the MSB in doubles and quads
290 # and we're dealing with doubles
291 BlockAlignmentFaultCheck = '''
292 if(RD & 0xe)
293 fault = new IllegalInstruction;
294 else if(EA & 0x3f)
295 fault = new MemAddressNotAligned;
296 '''
297 TwinAlignmentFaultCheck = '''
298 if(RD & 0xe)
298 if(RD & 0x1)
299 fault = new IllegalInstruction;
299 fault = new IllegalInstruction;
300 else if(EA & 0x1f)
300 else if(EA & 0xf)
301 fault = new MemAddressNotAligned;
302 '''
303 # XXX Need to take care of pstate.hpriv as well. The lower ASIs
304 # are split into ones that are available in priv and hpriv, and
305 # those that are only available in hpriv
306 AlternateASIPrivFaultCheck = '''
307 if(!bits(Pstate,2,2) && !bits(Hpstate,2,2) && !AsiIsUnPriv((ASI)EXT_ASI) ||
308 !bits(Hpstate,2,2) && AsiIsHPriv((ASI)EXT_ASI))
309 fault = new PrivilegedAction;
310 else if(AsiIsAsIfUser((ASI)EXT_ASI) && !bits(Pstate,2,2))
311 fault = new PrivilegedAction;
312 '''
313
314}};
315
316//A simple function to generate the name of the macro op of a certain
317//instruction at a certain micropc
318let {{
319 def makeMicroName(name, microPc):
320 return name + "::" + name + "_" + str(microPc)
321}};
322
323//This function properly generates the execute functions for one of the
324//templates above. This is needed because in one case, ea computation,
325//fault checks and the actual code all occur in the same function,
326//and in the other they're distributed across two. Also note that for
327//execute functions, the name of the base class doesn't matter.
328let {{
329 def doSplitExecute(execute, name, Name, asi, opt_flags, microParam):
330 microParam["asi_val"] = asi;
331 iop = InstObjParams(name, Name, '', microParam, opt_flags)
332 (execf, initf, compf) = execute
333 return execf.subst(iop) + initf.subst(iop) + compf.subst(iop)
334
335
336 def doDualSplitExecute(code, eaRegCode, eaImmCode, execute,
337 faultCode, nameReg, nameImm, NameReg, NameImm, asi, opt_flags):
338 executeCode = ''
339 for (eaCode, name, Name) in (
340 (eaRegCode, nameReg, NameReg),
341 (eaImmCode, nameImm, NameImm)):
342 microParams = {"code": code, "ea_code": eaCode,
343 "fault_check": faultCode}
344 executeCode += doSplitExecute(execute, name, Name,
345 asi, opt_flags, microParams)
346 return executeCode
347}};
301 fault = new MemAddressNotAligned;
302 '''
303 # XXX Need to take care of pstate.hpriv as well. The lower ASIs
304 # are split into ones that are available in priv and hpriv, and
305 # those that are only available in hpriv
306 AlternateASIPrivFaultCheck = '''
307 if(!bits(Pstate,2,2) && !bits(Hpstate,2,2) && !AsiIsUnPriv((ASI)EXT_ASI) ||
308 !bits(Hpstate,2,2) && AsiIsHPriv((ASI)EXT_ASI))
309 fault = new PrivilegedAction;
310 else if(AsiIsAsIfUser((ASI)EXT_ASI) && !bits(Pstate,2,2))
311 fault = new PrivilegedAction;
312 '''
313
314}};
315
316//A simple function to generate the name of the macro op of a certain
317//instruction at a certain micropc
318let {{
319 def makeMicroName(name, microPc):
320 return name + "::" + name + "_" + str(microPc)
321}};
322
323//This function properly generates the execute functions for one of the
324//templates above. This is needed because in one case, ea computation,
325//fault checks and the actual code all occur in the same function,
326//and in the other they're distributed across two. Also note that for
327//execute functions, the name of the base class doesn't matter.
328let {{
329 def doSplitExecute(execute, name, Name, asi, opt_flags, microParam):
330 microParam["asi_val"] = asi;
331 iop = InstObjParams(name, Name, '', microParam, opt_flags)
332 (execf, initf, compf) = execute
333 return execf.subst(iop) + initf.subst(iop) + compf.subst(iop)
334
335
336 def doDualSplitExecute(code, eaRegCode, eaImmCode, execute,
337 faultCode, nameReg, nameImm, NameReg, NameImm, asi, opt_flags):
338 executeCode = ''
339 for (eaCode, name, Name) in (
340 (eaRegCode, nameReg, NameReg),
341 (eaImmCode, nameImm, NameImm)):
342 microParams = {"code": code, "ea_code": eaCode,
343 "fault_check": faultCode}
344 executeCode += doSplitExecute(execute, name, Name,
345 asi, opt_flags, microParams)
346 return executeCode
347}};