util.isa (3949:b6664282d899) util.isa (3952:092d03b2ab95)
1// Copyright (c) 2006 The Regents of The University of Michigan
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met: redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer;
8// redistributions in binary form must reproduce the above copyright
9// notice, this list of conditions and the following disclaimer in the
10// documentation and/or other materials provided with the distribution;
11// neither the name of the copyright holders nor the names of its
12// contributors may be used to endorse or promote products derived from
13// this software without specific prior written permission.
14//
15// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26//
27// Authors: Ali Saidi
28// Gabe Black
29// Steve Reinhardt
30
31////////////////////////////////////////////////////////////////////
32//
33// Mem utility templates and functions
34//
35
36output header {{
37 /**
38 * Base class for memory operations.
39 */
40 class Mem : public SparcStaticInst
41 {
42 protected:
43
44 // Constructor
45 Mem(const char *mnem, ExtMachInst _machInst, OpClass __opClass) :
46 SparcStaticInst(mnem, _machInst, __opClass)
47 {
48 }
49
50 std::string generateDisassembly(Addr pc,
51 const SymbolTable *symtab) const;
52 };
53
54 /**
55 * Class for memory operations which use an immediate offset.
56 */
57 class MemImm : public Mem
58 {
59 protected:
60
61 // Constructor
62 MemImm(const char *mnem, ExtMachInst _machInst, OpClass __opClass) :
63 Mem(mnem, _machInst, __opClass), imm(sext<13>(SIMM13))
64 {}
65
66 std::string generateDisassembly(Addr pc,
67 const SymbolTable *symtab) const;
68
69 const int32_t imm;
70 };
71}};
72
73output decoder {{
74 std::string Mem::generateDisassembly(Addr pc,
75 const SymbolTable *symtab) const
76 {
77 std::stringstream response;
78 bool load = flags[IsLoad];
79 bool store = flags[IsStore];
80
81 printMnemonic(response, mnemonic);
82 if(store)
83 {
84 printReg(response, _srcRegIdx[0]);
85 ccprintf(response, ", ");
86 }
87 ccprintf(response, "[");
88 if(_srcRegIdx[!store ? 0 : 1] != 0)
89 {
90 printSrcReg(response, !store ? 0 : 1);
91 ccprintf(response, " + ");
92 }
93 printSrcReg(response, !store ? 1 : 2);
94 ccprintf(response, "]");
95 if(load)
96 {
97 ccprintf(response, ", ");
98 printReg(response, _destRegIdx[0]);
99 }
100
101 return response.str();
102 }
103
104 std::string MemImm::generateDisassembly(Addr pc,
105 const SymbolTable *symtab) const
106 {
107 std::stringstream response;
108 bool load = flags[IsLoad];
109 bool save = flags[IsStore];
110
111 printMnemonic(response, mnemonic);
112 if(save)
113 {
114 printReg(response, _srcRegIdx[0]);
115 ccprintf(response, ", ");
116 }
117 ccprintf(response, "[");
118 if(_srcRegIdx[!save ? 0 : 1] != 0)
119 {
120 printReg(response, _srcRegIdx[!save ? 0 : 1]);
121 ccprintf(response, " + ");
122 }
123 if(imm >= 0)
124 ccprintf(response, "0x%x]", imm);
125 else
126 ccprintf(response, "-0x%x]", -imm);
127 if(load)
128 {
129 ccprintf(response, ", ");
130 printReg(response, _destRegIdx[0]);
131 }
132
133 return response.str();
134 }
135}};
136
137//This template provides the execute functions for a load
138def template LoadExecute {{
139 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
140 Trace::InstRecord *traceData) const
141 {
142 Fault fault = NoFault;
143 Addr EA;
144 %(op_decl)s;
145 %(op_rd)s;
146 %(ea_code)s;
147 DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
148 %(fault_check)s;
149 if(fault == NoFault)
150 {
151 fault = xc->read(EA, (uint%(mem_acc_size)s_t&)Mem, %(asi_val)s);
152 }
153 if(fault == NoFault)
154 {
155 %(code)s;
156 }
157 if(fault == NoFault)
158 {
159 //Write the resulting state to the execution context
160 %(op_wb)s;
161 }
162
163 return fault;
164 }
165}};
166
167def template LoadInitiateAcc {{
168 Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s * xc,
169 Trace::InstRecord * traceData) const
170 {
171 Fault fault = NoFault;
172 Addr EA;
173 uint%(mem_acc_size)s_t Mem;
174 %(op_decl)s;
175 %(op_rd)s;
176 %(ea_code)s;
177 DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
178 %(fault_check)s;
179 if(fault == NoFault)
180 {
181 fault = xc->read(EA, (uint%(mem_acc_size)s_t&)Mem, %(asi_val)s);
182 }
183 return fault;
184 }
185}};
186
187def template LoadCompleteAcc {{
188 Fault %(class_name)s::completeAcc(PacketPtr pkt, %(CPU_exec_context)s * xc,
189 Trace::InstRecord * traceData) const
190 {
191 Fault fault = NoFault;
192 %(op_decl)s;
193 %(op_rd)s;
194 Mem = pkt->get<typeof(Mem)>();
195 %(code)s;
196 if(fault == NoFault)
197 {
198 %(op_wb)s;
199 }
200 return fault;
201 }
202}};
203
204//This template provides the execute functions for a store
205def template StoreExecute {{
206 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
207 Trace::InstRecord *traceData) const
208 {
209 Fault fault = NoFault;
210 //This is to support the conditional store in cas instructions.
211 //It should be optomized out in all the others
212 bool storeCond = true;
213 Addr EA;
214 %(op_decl)s;
215 %(op_rd)s;
216 %(ea_code)s;
217 DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
218 %(fault_check)s;
219 if(fault == NoFault)
220 {
221 %(code)s;
222 }
223 if(storeCond && fault == NoFault)
224 {
225 fault = xc->write((uint%(mem_acc_size)s_t)Mem,
226 EA, %(asi_val)s, 0);
227 }
228 if(fault == NoFault)
229 {
230 //Write the resulting state to the execution context
231 %(op_wb)s;
232 }
233
234 return fault;
235 }
236}};
237
238def template StoreInitiateAcc {{
239 Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s * xc,
240 Trace::InstRecord * traceData) const
241 {
242 Fault fault = NoFault;
243 bool storeCond = true;
244 Addr EA;
245 %(op_decl)s;
246 %(op_rd)s;
247 %(ea_code)s;
248 DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
249 %(fault_check)s;
250 if(fault == NoFault)
251 {
252 %(code)s;
253 }
254 if(storeCond && fault == NoFault)
255 {
256 fault = xc->write((uint%(mem_acc_size)s_t)Mem,
257 EA, %(asi_val)s, 0);
258 }
259 if(fault == NoFault)
260 {
261 //Write the resulting state to the execution context
262 %(op_wb)s;
263 }
264 return fault;
265 }
266}};
267
268def template StoreCompleteAcc {{
269 Fault %(class_name)s::completeAcc(PacketPtr, %(CPU_exec_context)s * xc,
270 Trace::InstRecord * traceData) const
271 {
272 return NoFault;
273 }
274}};
275
276//This delcares the initiateAcc function in memory operations
277def template InitiateAccDeclare {{
278 Fault initiateAcc(%(CPU_exec_context)s *, Trace::InstRecord *) const;
279}};
280
281//This declares the completeAcc function in memory operations
282def template CompleteAccDeclare {{
283 Fault completeAcc(PacketPtr, %(CPU_exec_context)s *, Trace::InstRecord *) const;
284}};
285
286//Here are some code snippets which check for various fault conditions
287let {{
288 LoadFuncs = [LoadExecute, LoadInitiateAcc, LoadCompleteAcc]
289 StoreFuncs = [StoreExecute, StoreInitiateAcc, StoreCompleteAcc]
290 # The LSB can be zero, since it's really the MSB in doubles and quads
291 # and we're dealing with doubles
292 BlockAlignmentFaultCheck = '''
293 if(RD & 0xe)
294 fault = new IllegalInstruction;
295 else if(EA & 0x3f)
296 fault = new MemAddressNotAligned;
297 '''
1// Copyright (c) 2006 The Regents of The University of Michigan
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met: redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer;
8// redistributions in binary form must reproduce the above copyright
9// notice, this list of conditions and the following disclaimer in the
10// documentation and/or other materials provided with the distribution;
11// neither the name of the copyright holders nor the names of its
12// contributors may be used to endorse or promote products derived from
13// this software without specific prior written permission.
14//
15// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26//
27// Authors: Ali Saidi
28// Gabe Black
29// Steve Reinhardt
30
31////////////////////////////////////////////////////////////////////
32//
33// Mem utility templates and functions
34//
35
36output header {{
37 /**
38 * Base class for memory operations.
39 */
40 class Mem : public SparcStaticInst
41 {
42 protected:
43
44 // Constructor
45 Mem(const char *mnem, ExtMachInst _machInst, OpClass __opClass) :
46 SparcStaticInst(mnem, _machInst, __opClass)
47 {
48 }
49
50 std::string generateDisassembly(Addr pc,
51 const SymbolTable *symtab) const;
52 };
53
54 /**
55 * Class for memory operations which use an immediate offset.
56 */
57 class MemImm : public Mem
58 {
59 protected:
60
61 // Constructor
62 MemImm(const char *mnem, ExtMachInst _machInst, OpClass __opClass) :
63 Mem(mnem, _machInst, __opClass), imm(sext<13>(SIMM13))
64 {}
65
66 std::string generateDisassembly(Addr pc,
67 const SymbolTable *symtab) const;
68
69 const int32_t imm;
70 };
71}};
72
73output decoder {{
74 std::string Mem::generateDisassembly(Addr pc,
75 const SymbolTable *symtab) const
76 {
77 std::stringstream response;
78 bool load = flags[IsLoad];
79 bool store = flags[IsStore];
80
81 printMnemonic(response, mnemonic);
82 if(store)
83 {
84 printReg(response, _srcRegIdx[0]);
85 ccprintf(response, ", ");
86 }
87 ccprintf(response, "[");
88 if(_srcRegIdx[!store ? 0 : 1] != 0)
89 {
90 printSrcReg(response, !store ? 0 : 1);
91 ccprintf(response, " + ");
92 }
93 printSrcReg(response, !store ? 1 : 2);
94 ccprintf(response, "]");
95 if(load)
96 {
97 ccprintf(response, ", ");
98 printReg(response, _destRegIdx[0]);
99 }
100
101 return response.str();
102 }
103
104 std::string MemImm::generateDisassembly(Addr pc,
105 const SymbolTable *symtab) const
106 {
107 std::stringstream response;
108 bool load = flags[IsLoad];
109 bool save = flags[IsStore];
110
111 printMnemonic(response, mnemonic);
112 if(save)
113 {
114 printReg(response, _srcRegIdx[0]);
115 ccprintf(response, ", ");
116 }
117 ccprintf(response, "[");
118 if(_srcRegIdx[!save ? 0 : 1] != 0)
119 {
120 printReg(response, _srcRegIdx[!save ? 0 : 1]);
121 ccprintf(response, " + ");
122 }
123 if(imm >= 0)
124 ccprintf(response, "0x%x]", imm);
125 else
126 ccprintf(response, "-0x%x]", -imm);
127 if(load)
128 {
129 ccprintf(response, ", ");
130 printReg(response, _destRegIdx[0]);
131 }
132
133 return response.str();
134 }
135}};
136
137//This template provides the execute functions for a load
138def template LoadExecute {{
139 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
140 Trace::InstRecord *traceData) const
141 {
142 Fault fault = NoFault;
143 Addr EA;
144 %(op_decl)s;
145 %(op_rd)s;
146 %(ea_code)s;
147 DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
148 %(fault_check)s;
149 if(fault == NoFault)
150 {
151 fault = xc->read(EA, (uint%(mem_acc_size)s_t&)Mem, %(asi_val)s);
152 }
153 if(fault == NoFault)
154 {
155 %(code)s;
156 }
157 if(fault == NoFault)
158 {
159 //Write the resulting state to the execution context
160 %(op_wb)s;
161 }
162
163 return fault;
164 }
165}};
166
167def template LoadInitiateAcc {{
168 Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s * xc,
169 Trace::InstRecord * traceData) const
170 {
171 Fault fault = NoFault;
172 Addr EA;
173 uint%(mem_acc_size)s_t Mem;
174 %(op_decl)s;
175 %(op_rd)s;
176 %(ea_code)s;
177 DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
178 %(fault_check)s;
179 if(fault == NoFault)
180 {
181 fault = xc->read(EA, (uint%(mem_acc_size)s_t&)Mem, %(asi_val)s);
182 }
183 return fault;
184 }
185}};
186
187def template LoadCompleteAcc {{
188 Fault %(class_name)s::completeAcc(PacketPtr pkt, %(CPU_exec_context)s * xc,
189 Trace::InstRecord * traceData) const
190 {
191 Fault fault = NoFault;
192 %(op_decl)s;
193 %(op_rd)s;
194 Mem = pkt->get<typeof(Mem)>();
195 %(code)s;
196 if(fault == NoFault)
197 {
198 %(op_wb)s;
199 }
200 return fault;
201 }
202}};
203
204//This template provides the execute functions for a store
205def template StoreExecute {{
206 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
207 Trace::InstRecord *traceData) const
208 {
209 Fault fault = NoFault;
210 //This is to support the conditional store in cas instructions.
211 //It should be optomized out in all the others
212 bool storeCond = true;
213 Addr EA;
214 %(op_decl)s;
215 %(op_rd)s;
216 %(ea_code)s;
217 DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
218 %(fault_check)s;
219 if(fault == NoFault)
220 {
221 %(code)s;
222 }
223 if(storeCond && fault == NoFault)
224 {
225 fault = xc->write((uint%(mem_acc_size)s_t)Mem,
226 EA, %(asi_val)s, 0);
227 }
228 if(fault == NoFault)
229 {
230 //Write the resulting state to the execution context
231 %(op_wb)s;
232 }
233
234 return fault;
235 }
236}};
237
238def template StoreInitiateAcc {{
239 Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s * xc,
240 Trace::InstRecord * traceData) const
241 {
242 Fault fault = NoFault;
243 bool storeCond = true;
244 Addr EA;
245 %(op_decl)s;
246 %(op_rd)s;
247 %(ea_code)s;
248 DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
249 %(fault_check)s;
250 if(fault == NoFault)
251 {
252 %(code)s;
253 }
254 if(storeCond && fault == NoFault)
255 {
256 fault = xc->write((uint%(mem_acc_size)s_t)Mem,
257 EA, %(asi_val)s, 0);
258 }
259 if(fault == NoFault)
260 {
261 //Write the resulting state to the execution context
262 %(op_wb)s;
263 }
264 return fault;
265 }
266}};
267
268def template StoreCompleteAcc {{
269 Fault %(class_name)s::completeAcc(PacketPtr, %(CPU_exec_context)s * xc,
270 Trace::InstRecord * traceData) const
271 {
272 return NoFault;
273 }
274}};
275
276//This delcares the initiateAcc function in memory operations
277def template InitiateAccDeclare {{
278 Fault initiateAcc(%(CPU_exec_context)s *, Trace::InstRecord *) const;
279}};
280
281//This declares the completeAcc function in memory operations
282def template CompleteAccDeclare {{
283 Fault completeAcc(PacketPtr, %(CPU_exec_context)s *, Trace::InstRecord *) const;
284}};
285
286//Here are some code snippets which check for various fault conditions
287let {{
288 LoadFuncs = [LoadExecute, LoadInitiateAcc, LoadCompleteAcc]
289 StoreFuncs = [StoreExecute, StoreInitiateAcc, StoreCompleteAcc]
290 # The LSB can be zero, since it's really the MSB in doubles and quads
291 # and we're dealing with doubles
292 BlockAlignmentFaultCheck = '''
293 if(RD & 0xe)
294 fault = new IllegalInstruction;
295 else if(EA & 0x3f)
296 fault = new MemAddressNotAligned;
297 '''
298 TwinAlignmentFaultCheck = '''
299 if(RD & 0xe)
300 fault = new IllegalInstruction;
301 else if(EA & 0x1f)
302 fault = new MemAddressNotAligned;
303 '''
298 # XXX Need to take care of pstate.hpriv as well. The lower ASIs
299 # are split into ones that are available in priv and hpriv, and
300 # those that are only available in hpriv
301 AlternateASIPrivFaultCheck = '''
302 if(!bits(Pstate,2,2) && !bits(Hpstate,2,2) && !AsiIsUnPriv((ASI)EXT_ASI) ||
303 !bits(Hpstate,2,2) && AsiIsHPriv((ASI)EXT_ASI))
304 fault = new PrivilegedAction;
305 else if(AsiIsAsIfUser((ASI)EXT_ASI) && !bits(Pstate,2,2))
306 fault = new PrivilegedAction;
307 '''
308
309}};
310
311//A simple function to generate the name of the macro op of a certain
312//instruction at a certain micropc
313let {{
314 def makeMicroName(name, microPc):
315 return name + "::" + name + "_" + str(microPc)
316}};
317
318//This function properly generates the execute functions for one of the
319//templates above. This is needed because in one case, ea computation,
320//fault checks and the actual code all occur in the same function,
321//and in the other they're distributed across two. Also note that for
322//execute functions, the name of the base class doesn't matter.
323let {{
324 def doSplitExecute(execute, name, Name, asi, opt_flags, microParam):
325 microParam["asi_val"] = asi;
326 iop = InstObjParams(name, Name, '', microParam, opt_flags)
327 (execf, initf, compf) = execute
328 return execf.subst(iop) + initf.subst(iop) + compf.subst(iop)
329
330
331 def doDualSplitExecute(code, eaRegCode, eaImmCode, execute,
332 faultCode, nameReg, nameImm, NameReg, NameImm, asi, opt_flags):
333 executeCode = ''
334 for (eaCode, name, Name) in (
335 (eaRegCode, nameReg, NameReg),
336 (eaImmCode, nameImm, NameImm)):
337 microParams = {"code": code, "ea_code": eaCode,
338 "fault_check": faultCode}
339 executeCode += doSplitExecute(execute, name, Name,
340 asi, opt_flags, microParams)
341 return executeCode
342}};
304 # XXX Need to take care of pstate.hpriv as well. The lower ASIs
305 # are split into ones that are available in priv and hpriv, and
306 # those that are only available in hpriv
307 AlternateASIPrivFaultCheck = '''
308 if(!bits(Pstate,2,2) && !bits(Hpstate,2,2) && !AsiIsUnPriv((ASI)EXT_ASI) ||
309 !bits(Hpstate,2,2) && AsiIsHPriv((ASI)EXT_ASI))
310 fault = new PrivilegedAction;
311 else if(AsiIsAsIfUser((ASI)EXT_ASI) && !bits(Pstate,2,2))
312 fault = new PrivilegedAction;
313 '''
314
315}};
316
317//A simple function to generate the name of the macro op of a certain
318//instruction at a certain micropc
319let {{
320 def makeMicroName(name, microPc):
321 return name + "::" + name + "_" + str(microPc)
322}};
323
324//This function properly generates the execute functions for one of the
325//templates above. This is needed because in one case, ea computation,
326//fault checks and the actual code all occur in the same function,
327//and in the other they're distributed across two. Also note that for
328//execute functions, the name of the base class doesn't matter.
329let {{
330 def doSplitExecute(execute, name, Name, asi, opt_flags, microParam):
331 microParam["asi_val"] = asi;
332 iop = InstObjParams(name, Name, '', microParam, opt_flags)
333 (execf, initf, compf) = execute
334 return execf.subst(iop) + initf.subst(iop) + compf.subst(iop)
335
336
337 def doDualSplitExecute(code, eaRegCode, eaImmCode, execute,
338 faultCode, nameReg, nameImm, NameReg, NameImm, asi, opt_flags):
339 executeCode = ''
340 for (eaCode, name, Name) in (
341 (eaRegCode, nameReg, NameReg),
342 (eaImmCode, nameImm, NameImm)):
343 microParams = {"code": code, "ea_code": eaCode,
344 "fault_check": faultCode}
345 executeCode += doSplitExecute(execute, name, Name,
346 asi, opt_flags, microParams)
347 return executeCode
348}};