util.isa (3441:24b9d6cbad0d) util.isa (3616:91847c08a9a6)
1// Copyright (c) 2006 The Regents of The University of Michigan
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met: redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer;
8// redistributions in binary form must reproduce the above copyright
9// notice, this list of conditions and the following disclaimer in the
10// documentation and/or other materials provided with the distribution;
11// neither the name of the copyright holders nor the names of its
12// contributors may be used to endorse or promote products derived from
13// this software without specific prior written permission.
14//
15// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26//
27// Authors: Ali Saidi
28// Gabe Black
29// Steve Reinhardt
30
31////////////////////////////////////////////////////////////////////
32//
33// Mem utility templates and functions
34//
35
36output header {{
37 /**
38 * Base class for memory operations.
39 */
40 class Mem : public SparcStaticInst
41 {
42 protected:
43
44 // Constructor
45 Mem(const char *mnem, ExtMachInst _machInst, OpClass __opClass) :
46 SparcStaticInst(mnem, _machInst, __opClass)
47 {
48 }
49
50 std::string generateDisassembly(Addr pc,
51 const SymbolTable *symtab) const;
52 };
53
54 /**
55 * Class for memory operations which use an immediate offset.
56 */
57 class MemImm : public Mem
58 {
59 protected:
60
61 // Constructor
62 MemImm(const char *mnem, ExtMachInst _machInst, OpClass __opClass) :
63 Mem(mnem, _machInst, __opClass), imm(sext<13>(SIMM13))
64 {}
65
66 std::string generateDisassembly(Addr pc,
67 const SymbolTable *symtab) const;
68
69 const int32_t imm;
70 };
71}};
72
73output decoder {{
74 std::string Mem::generateDisassembly(Addr pc,
75 const SymbolTable *symtab) const
76 {
77 std::stringstream response;
78 bool load = flags[IsLoad];
79 bool save = flags[IsStore];
80
81 printMnemonic(response, mnemonic);
82 if(save)
83 {
1// Copyright (c) 2006 The Regents of The University of Michigan
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met: redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer;
8// redistributions in binary form must reproduce the above copyright
9// notice, this list of conditions and the following disclaimer in the
10// documentation and/or other materials provided with the distribution;
11// neither the name of the copyright holders nor the names of its
12// contributors may be used to endorse or promote products derived from
13// this software without specific prior written permission.
14//
15// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26//
27// Authors: Ali Saidi
28// Gabe Black
29// Steve Reinhardt
30
31////////////////////////////////////////////////////////////////////
32//
33// Mem utility templates and functions
34//
35
36output header {{
37 /**
38 * Base class for memory operations.
39 */
40 class Mem : public SparcStaticInst
41 {
42 protected:
43
44 // Constructor
45 Mem(const char *mnem, ExtMachInst _machInst, OpClass __opClass) :
46 SparcStaticInst(mnem, _machInst, __opClass)
47 {
48 }
49
50 std::string generateDisassembly(Addr pc,
51 const SymbolTable *symtab) const;
52 };
53
54 /**
55 * Class for memory operations which use an immediate offset.
56 */
57 class MemImm : public Mem
58 {
59 protected:
60
61 // Constructor
62 MemImm(const char *mnem, ExtMachInst _machInst, OpClass __opClass) :
63 Mem(mnem, _machInst, __opClass), imm(sext<13>(SIMM13))
64 {}
65
66 std::string generateDisassembly(Addr pc,
67 const SymbolTable *symtab) const;
68
69 const int32_t imm;
70 };
71}};
72
73output decoder {{
74 std::string Mem::generateDisassembly(Addr pc,
75 const SymbolTable *symtab) const
76 {
77 std::stringstream response;
78 bool load = flags[IsLoad];
79 bool save = flags[IsStore];
80
81 printMnemonic(response, mnemonic);
82 if(save)
83 {
84 printReg(response, _srcRegIdx[0]);
84 printReg(response, _srcRegIdx[0]);
85 ccprintf(response, ", ");
86 }
87 ccprintf(response, "[ ");
88 printReg(response, _srcRegIdx[!save ? 0 : 1]);
89 ccprintf(response, " + ");
90 printReg(response, _srcRegIdx[!save ? 1 : 2]);
91 ccprintf(response, " ]");
92 if(load)
93 {
94 ccprintf(response, ", ");
85 ccprintf(response, ", ");
86 }
87 ccprintf(response, "[ ");
88 printReg(response, _srcRegIdx[!save ? 0 : 1]);
89 ccprintf(response, " + ");
90 printReg(response, _srcRegIdx[!save ? 1 : 2]);
91 ccprintf(response, " ]");
92 if(load)
93 {
94 ccprintf(response, ", ");
95 printReg(response, _destRegIdx[0]);
95 printReg(response, _destRegIdx[0]);
96 }
97
98 return response.str();
99 }
100
101 std::string MemImm::generateDisassembly(Addr pc,
102 const SymbolTable *symtab) const
103 {
104 std::stringstream response;
105 bool load = flags[IsLoad];
106 bool save = flags[IsStore];
107
108 printMnemonic(response, mnemonic);
109 if(save)
110 {
96 }
97
98 return response.str();
99 }
100
101 std::string MemImm::generateDisassembly(Addr pc,
102 const SymbolTable *symtab) const
103 {
104 std::stringstream response;
105 bool load = flags[IsLoad];
106 bool save = flags[IsStore];
107
108 printMnemonic(response, mnemonic);
109 if(save)
110 {
111 printReg(response, _srcRegIdx[0]);
111 printReg(response, _srcRegIdx[0]);
112 ccprintf(response, ", ");
113 }
114 ccprintf(response, "[ ");
115 printReg(response, _srcRegIdx[!save ? 0 : 1]);
116 if(imm >= 0)
117 ccprintf(response, " + 0x%x ]", imm);
118 else
119 ccprintf(response, " + -0x%x ]", -imm);
120 if(load)
121 {
122 ccprintf(response, ", ");
112 ccprintf(response, ", ");
113 }
114 ccprintf(response, "[ ");
115 printReg(response, _srcRegIdx[!save ? 0 : 1]);
116 if(imm >= 0)
117 ccprintf(response, " + 0x%x ]", imm);
118 else
119 ccprintf(response, " + -0x%x ]", -imm);
120 if(load)
121 {
122 ccprintf(response, ", ");
123 printReg(response, _destRegIdx[0]);
123 printReg(response, _destRegIdx[0]);
124 }
125
126 return response.str();
127 }
128}};
129
130//This template provides the execute functions for a load
131def template LoadExecute {{
132 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
133 Trace::InstRecord *traceData) const
134 {
135 Fault fault = NoFault;
136 Addr EA;
137 %(op_decl)s;
138 %(op_rd)s;
139 %(ea_code)s;
140 DPRINTF(Sparc, "The address is 0x%x\n", EA);
141 %(fault_check)s;
142 if(fault == NoFault)
143 {
144 fault = xc->read(EA, (uint%(mem_acc_size)s_t&)Mem, 0);
145 }
146 if(fault == NoFault)
147 {
148 %(code)s;
149 }
150 if(fault == NoFault)
151 {
124 }
125
126 return response.str();
127 }
128}};
129
130//This template provides the execute functions for a load
131def template LoadExecute {{
132 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
133 Trace::InstRecord *traceData) const
134 {
135 Fault fault = NoFault;
136 Addr EA;
137 %(op_decl)s;
138 %(op_rd)s;
139 %(ea_code)s;
140 DPRINTF(Sparc, "The address is 0x%x\n", EA);
141 %(fault_check)s;
142 if(fault == NoFault)
143 {
144 fault = xc->read(EA, (uint%(mem_acc_size)s_t&)Mem, 0);
145 }
146 if(fault == NoFault)
147 {
148 %(code)s;
149 }
150 if(fault == NoFault)
151 {
152 //Write the resulting state to the execution context
153 %(op_wb)s;
152 //Write the resulting state to the execution context
153 %(op_wb)s;
154 }
155
156 return fault;
157 }
158
159 Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s * xc,
160 Trace::InstRecord * traceData) const
161 {
162 Fault fault = NoFault;
163 Addr EA;
164 uint%(mem_acc_size)s_t Mem;
165 %(ea_decl)s;
166 %(ea_rd)s;
167 %(ea_code)s;
168 %(fault_check)s;
169 if(fault == NoFault)
170 {
171 fault = xc->read(EA, (uint%(mem_acc_size)s_t&)Mem, 0);
172 }
173 return fault;
174 }
175
176 Fault %(class_name)s::completeAcc(PacketPtr pkt, %(CPU_exec_context)s * xc,
177 Trace::InstRecord * traceData) const
178 {
179 Fault fault = NoFault;
180 %(code_decl)s;
181 %(code_rd)s;
182 Mem = pkt->get<typeof(Mem)>();
183 %(code)s;
184 if(fault == NoFault)
185 {
186 %(code_wb)s;
187 }
188 return fault;
189 }
190}};
191
192//This template provides the execute functions for a store
193def template StoreExecute {{
194 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
195 Trace::InstRecord *traceData) const
196 {
197 Fault fault = NoFault;
198 uint64_t write_result = 0;
199 //This is to support the conditional store in cas instructions.
200 //It should be optomized out in all the others
201 bool storeCond = true;
202 Addr EA;
203 %(op_decl)s;
204 %(op_rd)s;
205 %(ea_code)s;
206 DPRINTF(Sparc, "The address is 0x%x\n", EA);
207 %(fault_check)s;
208 if(fault == NoFault)
209 {
210 %(code)s;
211 }
212 if(storeCond && fault == NoFault)
213 {
214 fault = xc->write((uint%(mem_acc_size)s_t)Mem, EA, 0, &write_result);
215 }
216 if(fault == NoFault)
217 {
154 }
155
156 return fault;
157 }
158
159 Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s * xc,
160 Trace::InstRecord * traceData) const
161 {
162 Fault fault = NoFault;
163 Addr EA;
164 uint%(mem_acc_size)s_t Mem;
165 %(ea_decl)s;
166 %(ea_rd)s;
167 %(ea_code)s;
168 %(fault_check)s;
169 if(fault == NoFault)
170 {
171 fault = xc->read(EA, (uint%(mem_acc_size)s_t&)Mem, 0);
172 }
173 return fault;
174 }
175
176 Fault %(class_name)s::completeAcc(PacketPtr pkt, %(CPU_exec_context)s * xc,
177 Trace::InstRecord * traceData) const
178 {
179 Fault fault = NoFault;
180 %(code_decl)s;
181 %(code_rd)s;
182 Mem = pkt->get<typeof(Mem)>();
183 %(code)s;
184 if(fault == NoFault)
185 {
186 %(code_wb)s;
187 }
188 return fault;
189 }
190}};
191
192//This template provides the execute functions for a store
193def template StoreExecute {{
194 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
195 Trace::InstRecord *traceData) const
196 {
197 Fault fault = NoFault;
198 uint64_t write_result = 0;
199 //This is to support the conditional store in cas instructions.
200 //It should be optomized out in all the others
201 bool storeCond = true;
202 Addr EA;
203 %(op_decl)s;
204 %(op_rd)s;
205 %(ea_code)s;
206 DPRINTF(Sparc, "The address is 0x%x\n", EA);
207 %(fault_check)s;
208 if(fault == NoFault)
209 {
210 %(code)s;
211 }
212 if(storeCond && fault == NoFault)
213 {
214 fault = xc->write((uint%(mem_acc_size)s_t)Mem, EA, 0, &write_result);
215 }
216 if(fault == NoFault)
217 {
218 //Write the resulting state to the execution context
219 %(op_wb)s;
218 //Write the resulting state to the execution context
219 %(op_wb)s;
220 }
221
222 return fault;
223 }
224
225 Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s * xc,
226 Trace::InstRecord * traceData) const
227 {
228 Fault fault = NoFault;
229 uint64_t write_result = 0;
230 bool storeCond = true;
231 Addr EA;
232 %(op_decl)s;
233 %(op_rd)s;
234 %(ea_code)s;
235 DPRINTF(Sparc, "The address is 0x%x\n", EA);
236 %(fault_check)s;
237 if(fault == NoFault)
238 {
239 %(code)s;
240 }
241 if(storeCond && fault == NoFault)
242 {
243 fault = xc->write((uint%(mem_acc_size)s_t)Mem, EA, 0, &write_result);
244 }
245 if(fault == NoFault)
246 {
220 }
221
222 return fault;
223 }
224
225 Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s * xc,
226 Trace::InstRecord * traceData) const
227 {
228 Fault fault = NoFault;
229 uint64_t write_result = 0;
230 bool storeCond = true;
231 Addr EA;
232 %(op_decl)s;
233 %(op_rd)s;
234 %(ea_code)s;
235 DPRINTF(Sparc, "The address is 0x%x\n", EA);
236 %(fault_check)s;
237 if(fault == NoFault)
238 {
239 %(code)s;
240 }
241 if(storeCond && fault == NoFault)
242 {
243 fault = xc->write((uint%(mem_acc_size)s_t)Mem, EA, 0, &write_result);
244 }
245 if(fault == NoFault)
246 {
247 //Write the resulting state to the execution context
247 //Write the resulting state to the execution context
248 %(op_wb)s;
249 }
250 return fault;
251 }
252
253 Fault %(class_name)s::completeAcc(PacketPtr, %(CPU_exec_context)s * xc,
254 Trace::InstRecord * traceData) const
255 {
256 return NoFault;
257 }
258}};
259
260//This delcares the initiateAcc function in memory operations
261def template InitiateAccDeclare {{
262 Fault initiateAcc(%(CPU_exec_context)s *, Trace::InstRecord *) const;
263}};
264
265//This declares the completeAcc function in memory operations
266def template CompleteAccDeclare {{
267 Fault completeAcc(PacketPtr, %(CPU_exec_context)s *, Trace::InstRecord *) const;
268}};
269
270//Here are some code snippets which check for various fault conditions
271let {{
272 # The LSB can be zero, since it's really the MSB in doubles and quads
273 # and we're dealing with doubles
274 BlockAlignmentFaultCheck = '''
275 if(RD & 0xe)
276 fault = new IllegalInstruction;
277 else if(EA & 0x3f)
278 fault = new MemAddressNotAligned;
279 '''
280 # XXX Need to take care of pstate.hpriv as well. The lower ASIs
281 # are split into ones that are available in priv and hpriv, and
282 # those that are only available in hpriv
283 AlternateASIPrivFaultCheck = '''
284 if(bits(Pstate,2,2) == 0 && (EXT_ASI & 0x80) == 0)
285 fault = new PrivilegedAction;
286 else if(AsiIsAsIfUser((ASI)EXT_ASI) && !bits(Pstate,2,2))
287 fault = new PrivilegedAction;
288 '''
289
290}};
291
292//A simple function to generate the name of the macro op of a certain
293//instruction at a certain micropc
294let {{
295 def makeMicroName(name, microPc):
248 %(op_wb)s;
249 }
250 return fault;
251 }
252
253 Fault %(class_name)s::completeAcc(PacketPtr, %(CPU_exec_context)s * xc,
254 Trace::InstRecord * traceData) const
255 {
256 return NoFault;
257 }
258}};
259
260//This delcares the initiateAcc function in memory operations
261def template InitiateAccDeclare {{
262 Fault initiateAcc(%(CPU_exec_context)s *, Trace::InstRecord *) const;
263}};
264
265//This declares the completeAcc function in memory operations
266def template CompleteAccDeclare {{
267 Fault completeAcc(PacketPtr, %(CPU_exec_context)s *, Trace::InstRecord *) const;
268}};
269
270//Here are some code snippets which check for various fault conditions
271let {{
272 # The LSB can be zero, since it's really the MSB in doubles and quads
273 # and we're dealing with doubles
274 BlockAlignmentFaultCheck = '''
275 if(RD & 0xe)
276 fault = new IllegalInstruction;
277 else if(EA & 0x3f)
278 fault = new MemAddressNotAligned;
279 '''
280 # XXX Need to take care of pstate.hpriv as well. The lower ASIs
281 # are split into ones that are available in priv and hpriv, and
282 # those that are only available in hpriv
283 AlternateASIPrivFaultCheck = '''
284 if(bits(Pstate,2,2) == 0 && (EXT_ASI & 0x80) == 0)
285 fault = new PrivilegedAction;
286 else if(AsiIsAsIfUser((ASI)EXT_ASI) && !bits(Pstate,2,2))
287 fault = new PrivilegedAction;
288 '''
289
290}};
291
292//A simple function to generate the name of the macro op of a certain
293//instruction at a certain micropc
294let {{
295 def makeMicroName(name, microPc):
296 return name + "::" + name + "_" + str(microPc)
296 return name + "::" + name + "_" + str(microPc)
297}};
298
299//This function properly generates the execute functions for one of the
300//templates above. This is needed because in one case, ea computation,
301//fault checks and the actual code all occur in the same function,
302//and in the other they're distributed across two. Also note that for
303//execute functions, the name of the base class doesn't matter.
304let {{
297}};
298
299//This function properly generates the execute functions for one of the
300//templates above. This is needed because in one case, ea computation,
301//fault checks and the actual code all occur in the same function,
302//and in the other they're distributed across two. Also note that for
303//execute functions, the name of the base class doesn't matter.
304let {{
305 def doSplitExecute(code, eaCode, execute,
306 faultCode, name, Name, opt_flags):
307 codeIop = InstObjParams(name, Name, '', code, opt_flags)
308 eaIop = InstObjParams(name, Name, '', eaCode,
309 opt_flags, {"fault_check": faultCode})
310 iop = InstObjParams(name, Name, '', code, opt_flags,
311 {"fault_check": faultCode, "ea_code" : eaCode})
305 def doSplitExecute(code, execute, name, Name, opt_flags, microParam):
306 codeParam = microParam.copy()
307 codeParam["ea_code"] = ''
308 codeIop = InstObjParams(name, Name, '', code, opt_flags, codeParam)
309 eaIop = InstObjParams(name, Name, '', microParam["ea_code"],
310 opt_flags, microParam)
311 iop = InstObjParams(name, Name, '', code, opt_flags, microParam)
312 (iop.ea_decl,
313 iop.ea_rd,
314 iop.ea_wb) = (eaIop.op_decl, eaIop.op_rd, eaIop.op_wb)
315 (iop.code_decl,
316 iop.code_rd,
317 iop.code_wb) = (codeIop.op_decl, codeIop.op_rd, codeIop.op_wb)
318 return execute.subst(iop)
319
320
321 def doDualSplitExecute(code, eaRegCode, eaImmCode, execute,
322 faultCode, nameReg, nameImm, NameReg, NameImm, opt_flags):
323 executeCode = ''
324 for (eaCode, name, Name) in (
325 (eaRegCode, nameReg, NameReg),
326 (eaImmCode, nameImm, NameImm)):
312 (iop.ea_decl,
313 iop.ea_rd,
314 iop.ea_wb) = (eaIop.op_decl, eaIop.op_rd, eaIop.op_wb)
315 (iop.code_decl,
316 iop.code_rd,
317 iop.code_wb) = (codeIop.op_decl, codeIop.op_rd, codeIop.op_wb)
318 return execute.subst(iop)
319
320
321 def doDualSplitExecute(code, eaRegCode, eaImmCode, execute,
322 faultCode, nameReg, nameImm, NameReg, NameImm, opt_flags):
323 executeCode = ''
324 for (eaCode, name, Name) in (
325 (eaRegCode, nameReg, NameReg),
326 (eaImmCode, nameImm, NameImm)):
327 executeCode += doSplitExecute(code, eaCode,
328 execute, faultCode, name, Name, opt_flags)
327 microParams = {"ea_code" : eaCode, "fault_check": faultCode}
328 executeCode += doSplitExecute(code, execute, name, Name,
329 opt_flags, microParams)
329 return executeCode
330}};
330 return executeCode
331}};