util.isa (3439:b35c5f0ff57b) util.isa (3441:24b9d6cbad0d)
1// Copyright (c) 2006 The Regents of The University of Michigan
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met: redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer;
8// redistributions in binary form must reproduce the above copyright
9// notice, this list of conditions and the following disclaimer in the
10// documentation and/or other materials provided with the distribution;
11// neither the name of the copyright holders nor the names of its
12// contributors may be used to endorse or promote products derived from
13// this software without specific prior written permission.
14//
15// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26//
27// Authors: Ali Saidi
28// Gabe Black
29// Steve Reinhardt
30
31////////////////////////////////////////////////////////////////////
32//
33// Mem utility templates and functions
34//
35
1// Copyright (c) 2006 The Regents of The University of Michigan
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met: redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer;
8// redistributions in binary form must reproduce the above copyright
9// notice, this list of conditions and the following disclaimer in the
10// documentation and/or other materials provided with the distribution;
11// neither the name of the copyright holders nor the names of its
12// contributors may be used to endorse or promote products derived from
13// this software without specific prior written permission.
14//
15// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26//
27// Authors: Ali Saidi
28// Gabe Black
29// Steve Reinhardt
30
31////////////////////////////////////////////////////////////////////
32//
33// Mem utility templates and functions
34//
35
36output header {{
37 /**
38 * Base class for memory operations.
39 */
40 class Mem : public SparcStaticInst
41 {
42 protected:
43
44 // Constructor
45 Mem(const char *mnem, ExtMachInst _machInst, OpClass __opClass) :
46 SparcStaticInst(mnem, _machInst, __opClass)
47 {
48 }
49
50 std::string generateDisassembly(Addr pc,
51 const SymbolTable *symtab) const;
52 };
53
54 /**
55 * Class for memory operations which use an immediate offset.
56 */
57 class MemImm : public Mem
58 {
59 protected:
60
61 // Constructor
62 MemImm(const char *mnem, ExtMachInst _machInst, OpClass __opClass) :
63 Mem(mnem, _machInst, __opClass), imm(sext<13>(SIMM13))
64 {}
65
66 std::string generateDisassembly(Addr pc,
67 const SymbolTable *symtab) const;
68
69 const int32_t imm;
70 };
71}};
72
73output decoder {{
74 std::string Mem::generateDisassembly(Addr pc,
75 const SymbolTable *symtab) const
76 {
77 std::stringstream response;
78 bool load = flags[IsLoad];
79 bool save = flags[IsStore];
80
81 printMnemonic(response, mnemonic);
82 if(save)
83 {
84 printReg(response, _srcRegIdx[0]);
85 ccprintf(response, ", ");
86 }
87 ccprintf(response, "[ ");
88 printReg(response, _srcRegIdx[!save ? 0 : 1]);
89 ccprintf(response, " + ");
90 printReg(response, _srcRegIdx[!save ? 1 : 2]);
91 ccprintf(response, " ]");
92 if(load)
93 {
94 ccprintf(response, ", ");
95 printReg(response, _destRegIdx[0]);
96 }
97
98 return response.str();
99 }
100
101 std::string MemImm::generateDisassembly(Addr pc,
102 const SymbolTable *symtab) const
103 {
104 std::stringstream response;
105 bool load = flags[IsLoad];
106 bool save = flags[IsStore];
107
108 printMnemonic(response, mnemonic);
109 if(save)
110 {
111 printReg(response, _srcRegIdx[0]);
112 ccprintf(response, ", ");
113 }
114 ccprintf(response, "[ ");
115 printReg(response, _srcRegIdx[!save ? 0 : 1]);
116 if(imm >= 0)
117 ccprintf(response, " + 0x%x ]", imm);
118 else
119 ccprintf(response, " + -0x%x ]", -imm);
120 if(load)
121 {
122 ccprintf(response, ", ");
123 printReg(response, _destRegIdx[0]);
124 }
125
126 return response.str();
127 }
128}};
129
36//This template provides the execute functions for a load
37def template LoadExecute {{
38 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
39 Trace::InstRecord *traceData) const
40 {
41 Fault fault = NoFault;
42 Addr EA;
43 %(op_decl)s;
44 %(op_rd)s;
45 %(ea_code)s;
46 DPRINTF(Sparc, "The address is 0x%x\n", EA);
47 %(fault_check)s;
48 if(fault == NoFault)
49 {
50 fault = xc->read(EA, (uint%(mem_acc_size)s_t&)Mem, 0);
51 }
52 if(fault == NoFault)
53 {
54 %(code)s;
55 }
56 if(fault == NoFault)
57 {
58 //Write the resulting state to the execution context
59 %(op_wb)s;
60 }
61
62 return fault;
63 }
64
65 Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s * xc,
66 Trace::InstRecord * traceData) const
67 {
68 Fault fault = NoFault;
69 Addr EA;
70 uint%(mem_acc_size)s_t Mem;
71 %(ea_decl)s;
72 %(ea_rd)s;
73 %(ea_code)s;
74 %(fault_check)s;
75 if(fault == NoFault)
76 {
77 fault = xc->read(EA, (uint%(mem_acc_size)s_t&)Mem, 0);
78 }
79 return fault;
80 }
81
82 Fault %(class_name)s::completeAcc(PacketPtr pkt, %(CPU_exec_context)s * xc,
83 Trace::InstRecord * traceData) const
84 {
85 Fault fault = NoFault;
86 %(code_decl)s;
87 %(code_rd)s;
88 Mem = pkt->get<typeof(Mem)>();
89 %(code)s;
90 if(fault == NoFault)
91 {
92 %(code_wb)s;
93 }
94 return fault;
95 }
96}};
97
98//This template provides the execute functions for a store
99def template StoreExecute {{
100 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
101 Trace::InstRecord *traceData) const
102 {
103 Fault fault = NoFault;
104 uint64_t write_result = 0;
105 //This is to support the conditional store in cas instructions.
106 //It should be optomized out in all the others
107 bool storeCond = true;
108 Addr EA;
109 %(op_decl)s;
110 %(op_rd)s;
111 %(ea_code)s;
112 DPRINTF(Sparc, "The address is 0x%x\n", EA);
113 %(fault_check)s;
114 if(fault == NoFault)
115 {
116 %(code)s;
117 }
118 if(storeCond && fault == NoFault)
119 {
120 fault = xc->write((uint%(mem_acc_size)s_t)Mem, EA, 0, &write_result);
121 }
122 if(fault == NoFault)
123 {
124 //Write the resulting state to the execution context
125 %(op_wb)s;
126 }
127
128 return fault;
129 }
130
131 Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s * xc,
132 Trace::InstRecord * traceData) const
133 {
134 Fault fault = NoFault;
135 uint64_t write_result = 0;
136 bool storeCond = true;
137 Addr EA;
138 %(op_decl)s;
139 %(op_rd)s;
140 %(ea_code)s;
141 DPRINTF(Sparc, "The address is 0x%x\n", EA);
142 %(fault_check)s;
143 if(fault == NoFault)
144 {
145 %(code)s;
146 }
147 if(storeCond && fault == NoFault)
148 {
149 fault = xc->write((uint%(mem_acc_size)s_t)Mem, EA, 0, &write_result);
150 }
151 if(fault == NoFault)
152 {
153 //Write the resulting state to the execution context
154 %(op_wb)s;
155 }
156 return fault;
157 }
158
159 Fault %(class_name)s::completeAcc(PacketPtr, %(CPU_exec_context)s * xc,
160 Trace::InstRecord * traceData) const
161 {
162 return NoFault;
163 }
164}};
165
166//This delcares the initiateAcc function in memory operations
167def template InitiateAccDeclare {{
168 Fault initiateAcc(%(CPU_exec_context)s *, Trace::InstRecord *) const;
169}};
170
171//This declares the completeAcc function in memory operations
172def template CompleteAccDeclare {{
173 Fault completeAcc(PacketPtr, %(CPU_exec_context)s *, Trace::InstRecord *) const;
174}};
175
176//Here are some code snippets which check for various fault conditions
177let {{
178 # The LSB can be zero, since it's really the MSB in doubles and quads
179 # and we're dealing with doubles
180 BlockAlignmentFaultCheck = '''
181 if(RD & 0xe)
182 fault = new IllegalInstruction;
183 else if(EA & 0x3f)
184 fault = new MemAddressNotAligned;
185 '''
186 # XXX Need to take care of pstate.hpriv as well. The lower ASIs
187 # are split into ones that are available in priv and hpriv, and
188 # those that are only available in hpriv
189 AlternateASIPrivFaultCheck = '''
190 if(bits(Pstate,2,2) == 0 && (EXT_ASI & 0x80) == 0)
191 fault = new PrivilegedAction;
192 else if(AsiIsAsIfUser((ASI)EXT_ASI) && !bits(Pstate,2,2))
193 fault = new PrivilegedAction;
194 '''
195
196}};
197
198//A simple function to generate the name of the macro op of a certain
199//instruction at a certain micropc
200let {{
201 def makeMicroName(name, microPc):
202 return name + "::" + name + "_" + str(microPc)
203}};
204
205//This function properly generates the execute functions for one of the
206//templates above. This is needed because in one case, ea computation,
207//fault checks and the actual code all occur in the same function,
208//and in the other they're distributed across two. Also note that for
209//execute functions, the name of the base class doesn't matter.
210let {{
211 def doSplitExecute(code, eaCode, execute,
212 faultCode, name, Name, opt_flags):
213 codeIop = InstObjParams(name, Name, '', code, opt_flags)
214 eaIop = InstObjParams(name, Name, '', eaCode,
215 opt_flags, {"fault_check": faultCode})
216 iop = InstObjParams(name, Name, '', code, opt_flags,
217 {"fault_check": faultCode, "ea_code" : eaCode})
218 (iop.ea_decl,
219 iop.ea_rd,
220 iop.ea_wb) = (eaIop.op_decl, eaIop.op_rd, eaIop.op_wb)
221 (iop.code_decl,
222 iop.code_rd,
223 iop.code_wb) = (codeIop.op_decl, codeIop.op_rd, codeIop.op_wb)
224 return execute.subst(iop)
225
226
227 def doDualSplitExecute(code, eaRegCode, eaImmCode, execute,
228 faultCode, nameReg, nameImm, NameReg, NameImm, opt_flags):
229 executeCode = ''
230 for (eaCode, name, Name) in (
231 (eaRegCode, nameReg, NameReg),
232 (eaImmCode, nameImm, NameImm)):
233 executeCode += doSplitExecute(code, eaCode,
234 execute, faultCode, name, Name, opt_flags)
235 return executeCode
236}};
130//This template provides the execute functions for a load
131def template LoadExecute {{
132 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
133 Trace::InstRecord *traceData) const
134 {
135 Fault fault = NoFault;
136 Addr EA;
137 %(op_decl)s;
138 %(op_rd)s;
139 %(ea_code)s;
140 DPRINTF(Sparc, "The address is 0x%x\n", EA);
141 %(fault_check)s;
142 if(fault == NoFault)
143 {
144 fault = xc->read(EA, (uint%(mem_acc_size)s_t&)Mem, 0);
145 }
146 if(fault == NoFault)
147 {
148 %(code)s;
149 }
150 if(fault == NoFault)
151 {
152 //Write the resulting state to the execution context
153 %(op_wb)s;
154 }
155
156 return fault;
157 }
158
159 Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s * xc,
160 Trace::InstRecord * traceData) const
161 {
162 Fault fault = NoFault;
163 Addr EA;
164 uint%(mem_acc_size)s_t Mem;
165 %(ea_decl)s;
166 %(ea_rd)s;
167 %(ea_code)s;
168 %(fault_check)s;
169 if(fault == NoFault)
170 {
171 fault = xc->read(EA, (uint%(mem_acc_size)s_t&)Mem, 0);
172 }
173 return fault;
174 }
175
176 Fault %(class_name)s::completeAcc(PacketPtr pkt, %(CPU_exec_context)s * xc,
177 Trace::InstRecord * traceData) const
178 {
179 Fault fault = NoFault;
180 %(code_decl)s;
181 %(code_rd)s;
182 Mem = pkt->get<typeof(Mem)>();
183 %(code)s;
184 if(fault == NoFault)
185 {
186 %(code_wb)s;
187 }
188 return fault;
189 }
190}};
191
192//This template provides the execute functions for a store
193def template StoreExecute {{
194 Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
195 Trace::InstRecord *traceData) const
196 {
197 Fault fault = NoFault;
198 uint64_t write_result = 0;
199 //This is to support the conditional store in cas instructions.
200 //It should be optomized out in all the others
201 bool storeCond = true;
202 Addr EA;
203 %(op_decl)s;
204 %(op_rd)s;
205 %(ea_code)s;
206 DPRINTF(Sparc, "The address is 0x%x\n", EA);
207 %(fault_check)s;
208 if(fault == NoFault)
209 {
210 %(code)s;
211 }
212 if(storeCond && fault == NoFault)
213 {
214 fault = xc->write((uint%(mem_acc_size)s_t)Mem, EA, 0, &write_result);
215 }
216 if(fault == NoFault)
217 {
218 //Write the resulting state to the execution context
219 %(op_wb)s;
220 }
221
222 return fault;
223 }
224
225 Fault %(class_name)s::initiateAcc(%(CPU_exec_context)s * xc,
226 Trace::InstRecord * traceData) const
227 {
228 Fault fault = NoFault;
229 uint64_t write_result = 0;
230 bool storeCond = true;
231 Addr EA;
232 %(op_decl)s;
233 %(op_rd)s;
234 %(ea_code)s;
235 DPRINTF(Sparc, "The address is 0x%x\n", EA);
236 %(fault_check)s;
237 if(fault == NoFault)
238 {
239 %(code)s;
240 }
241 if(storeCond && fault == NoFault)
242 {
243 fault = xc->write((uint%(mem_acc_size)s_t)Mem, EA, 0, &write_result);
244 }
245 if(fault == NoFault)
246 {
247 //Write the resulting state to the execution context
248 %(op_wb)s;
249 }
250 return fault;
251 }
252
253 Fault %(class_name)s::completeAcc(PacketPtr, %(CPU_exec_context)s * xc,
254 Trace::InstRecord * traceData) const
255 {
256 return NoFault;
257 }
258}};
259
260//This delcares the initiateAcc function in memory operations
261def template InitiateAccDeclare {{
262 Fault initiateAcc(%(CPU_exec_context)s *, Trace::InstRecord *) const;
263}};
264
265//This declares the completeAcc function in memory operations
266def template CompleteAccDeclare {{
267 Fault completeAcc(PacketPtr, %(CPU_exec_context)s *, Trace::InstRecord *) const;
268}};
269
270//Here are some code snippets which check for various fault conditions
271let {{
272 # The LSB can be zero, since it's really the MSB in doubles and quads
273 # and we're dealing with doubles
274 BlockAlignmentFaultCheck = '''
275 if(RD & 0xe)
276 fault = new IllegalInstruction;
277 else if(EA & 0x3f)
278 fault = new MemAddressNotAligned;
279 '''
280 # XXX Need to take care of pstate.hpriv as well. The lower ASIs
281 # are split into ones that are available in priv and hpriv, and
282 # those that are only available in hpriv
283 AlternateASIPrivFaultCheck = '''
284 if(bits(Pstate,2,2) == 0 && (EXT_ASI & 0x80) == 0)
285 fault = new PrivilegedAction;
286 else if(AsiIsAsIfUser((ASI)EXT_ASI) && !bits(Pstate,2,2))
287 fault = new PrivilegedAction;
288 '''
289
290}};
291
292//A simple function to generate the name of the macro op of a certain
293//instruction at a certain micropc
294let {{
295 def makeMicroName(name, microPc):
296 return name + "::" + name + "_" + str(microPc)
297}};
298
299//This function properly generates the execute functions for one of the
300//templates above. This is needed because in one case, ea computation,
301//fault checks and the actual code all occur in the same function,
302//and in the other they're distributed across two. Also note that for
303//execute functions, the name of the base class doesn't matter.
304let {{
305 def doSplitExecute(code, eaCode, execute,
306 faultCode, name, Name, opt_flags):
307 codeIop = InstObjParams(name, Name, '', code, opt_flags)
308 eaIop = InstObjParams(name, Name, '', eaCode,
309 opt_flags, {"fault_check": faultCode})
310 iop = InstObjParams(name, Name, '', code, opt_flags,
311 {"fault_check": faultCode, "ea_code" : eaCode})
312 (iop.ea_decl,
313 iop.ea_rd,
314 iop.ea_wb) = (eaIop.op_decl, eaIop.op_rd, eaIop.op_wb)
315 (iop.code_decl,
316 iop.code_rd,
317 iop.code_wb) = (codeIop.op_decl, codeIop.op_rd, codeIop.op_wb)
318 return execute.subst(iop)
319
320
321 def doDualSplitExecute(code, eaRegCode, eaImmCode, execute,
322 faultCode, nameReg, nameImm, NameReg, NameImm, opt_flags):
323 executeCode = ''
324 for (eaCode, name, Name) in (
325 (eaRegCode, nameReg, NameReg),
326 (eaImmCode, nameImm, NameImm)):
327 executeCode += doSplitExecute(code, eaCode,
328 execute, faultCode, name, Name, opt_flags)
329 return executeCode
330}};