util.isa (12104:edd63f9c6184) util.isa (12106:7784fac1b159)
1// Copyright (c) 2006-2007 The Regents of The University of Michigan
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met: redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer;
8// redistributions in binary form must reproduce the above copyright
9// notice, this list of conditions and the following disclaimer in the
10// documentation and/or other materials provided with the distribution;
11// neither the name of the copyright holders nor the names of its
12// contributors may be used to endorse or promote products derived from
13// this software without specific prior written permission.
14//
15// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26//
27// Authors: Ali Saidi
28// Gabe Black
29// Steve Reinhardt
30
31////////////////////////////////////////////////////////////////////
32//
33// Mem utility templates and functions
34//
35
36output header {{
37 /**
38 * Base class for memory operations.
39 */
40 class Mem : public SparcStaticInst
41 {
42 protected:
43
44 // Constructor
45 Mem(const char *mnem, ExtMachInst _machInst, OpClass __opClass) :
46 SparcStaticInst(mnem, _machInst, __opClass)
47 {
48 }
49
50 std::string generateDisassembly(Addr pc,
51 const SymbolTable *symtab) const;
52 };
53
54 /**
55 * Class for memory operations which use an immediate offset.
56 */
57 class MemImm : public Mem
58 {
59 protected:
60
61 // Constructor
62 MemImm(const char *mnem, ExtMachInst _machInst, OpClass __opClass) :
63 Mem(mnem, _machInst, __opClass), imm(sext<13>(SIMM13))
64 {}
65
66 std::string generateDisassembly(Addr pc,
67 const SymbolTable *symtab) const;
68
69 const int32_t imm;
70 };
71}};
72
73output decoder {{
74 std::string Mem::generateDisassembly(Addr pc,
75 const SymbolTable *symtab) const
76 {
77 std::stringstream response;
78 bool load = flags[IsLoad];
79 bool store = flags[IsStore];
80
81 printMnemonic(response, mnemonic);
82 if (store) {
83 printReg(response, _srcRegIdx[0]);
84 ccprintf(response, ", ");
85 }
86 ccprintf(response, "[");
1// Copyright (c) 2006-2007 The Regents of The University of Michigan
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met: redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer;
8// redistributions in binary form must reproduce the above copyright
9// notice, this list of conditions and the following disclaimer in the
10// documentation and/or other materials provided with the distribution;
11// neither the name of the copyright holders nor the names of its
12// contributors may be used to endorse or promote products derived from
13// this software without specific prior written permission.
14//
15// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26//
27// Authors: Ali Saidi
28// Gabe Black
29// Steve Reinhardt
30
31////////////////////////////////////////////////////////////////////
32//
33// Mem utility templates and functions
34//
35
36output header {{
37 /**
38 * Base class for memory operations.
39 */
40 class Mem : public SparcStaticInst
41 {
42 protected:
43
44 // Constructor
45 Mem(const char *mnem, ExtMachInst _machInst, OpClass __opClass) :
46 SparcStaticInst(mnem, _machInst, __opClass)
47 {
48 }
49
50 std::string generateDisassembly(Addr pc,
51 const SymbolTable *symtab) const;
52 };
53
54 /**
55 * Class for memory operations which use an immediate offset.
56 */
57 class MemImm : public Mem
58 {
59 protected:
60
61 // Constructor
62 MemImm(const char *mnem, ExtMachInst _machInst, OpClass __opClass) :
63 Mem(mnem, _machInst, __opClass), imm(sext<13>(SIMM13))
64 {}
65
66 std::string generateDisassembly(Addr pc,
67 const SymbolTable *symtab) const;
68
69 const int32_t imm;
70 };
71}};
72
73output decoder {{
74 std::string Mem::generateDisassembly(Addr pc,
75 const SymbolTable *symtab) const
76 {
77 std::stringstream response;
78 bool load = flags[IsLoad];
79 bool store = flags[IsStore];
80
81 printMnemonic(response, mnemonic);
82 if (store) {
83 printReg(response, _srcRegIdx[0]);
84 ccprintf(response, ", ");
85 }
86 ccprintf(response, "[");
87 if (_srcRegIdx[!store ? 0 : 1].regIdx != 0) {
87 if (_srcRegIdx[!store ? 0 : 1].index() != 0) {
88 printSrcReg(response, !store ? 0 : 1);
89 ccprintf(response, " + ");
90 }
91 printSrcReg(response, !store ? 1 : 2);
92 ccprintf(response, "]");
93 if (load) {
94 ccprintf(response, ", ");
95 printReg(response, _destRegIdx[0]);
96 }
97
98 return response.str();
99 }
100
101 std::string MemImm::generateDisassembly(Addr pc,
102 const SymbolTable *symtab) const
103 {
104 std::stringstream response;
105 bool load = flags[IsLoad];
106 bool save = flags[IsStore];
107
108 printMnemonic(response, mnemonic);
109 if (save) {
110 printReg(response, _srcRegIdx[0]);
111 ccprintf(response, ", ");
112 }
113 ccprintf(response, "[");
88 printSrcReg(response, !store ? 0 : 1);
89 ccprintf(response, " + ");
90 }
91 printSrcReg(response, !store ? 1 : 2);
92 ccprintf(response, "]");
93 if (load) {
94 ccprintf(response, ", ");
95 printReg(response, _destRegIdx[0]);
96 }
97
98 return response.str();
99 }
100
101 std::string MemImm::generateDisassembly(Addr pc,
102 const SymbolTable *symtab) const
103 {
104 std::stringstream response;
105 bool load = flags[IsLoad];
106 bool save = flags[IsStore];
107
108 printMnemonic(response, mnemonic);
109 if (save) {
110 printReg(response, _srcRegIdx[0]);
111 ccprintf(response, ", ");
112 }
113 ccprintf(response, "[");
114 if (_srcRegIdx[!save ? 0 : 1].regIdx != 0) {
114 if (_srcRegIdx[!save ? 0 : 1].index() != 0) {
115 printReg(response, _srcRegIdx[!save ? 0 : 1]);
116 ccprintf(response, " + ");
117 }
118 if (imm >= 0)
119 ccprintf(response, "0x%x]", imm);
120 else
121 ccprintf(response, "-0x%x]", -imm);
122 if (load) {
123 ccprintf(response, ", ");
124 printReg(response, _destRegIdx[0]);
125 }
126
127 return response.str();
128 }
129}};
130
131// This template provides the execute functions for a load
132def template LoadExecute {{
133 Fault %(class_name)s::execute(CPU_EXEC_CONTEXT *xc,
134 Trace::InstRecord *traceData) const
135 {
136 Fault fault = NoFault;
137 Addr EA;
138 %(fp_enable_check)s;
139 %(op_decl)s;
140 %(op_rd)s;
141 %(ea_code)s;
142 DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
143 %(fault_check)s;
144 if (fault == NoFault) {
145 %(EA_trunc)s
146 fault = readMemAtomic(xc, traceData, EA, Mem, %(asi_val)s);
147 }
148 if (fault == NoFault) {
149 %(code)s;
150 }
151 if (fault == NoFault) {
152 // Write the resulting state to the execution context
153 %(op_wb)s;
154 }
155
156 return fault;
157 }
158}};
159
160def template LoadInitiateAcc {{
161 Fault %(class_name)s::initiateAcc(CPU_EXEC_CONTEXT * xc,
162 Trace::InstRecord * traceData) const
163 {
164 Fault fault = NoFault;
165 Addr EA;
166 %(fp_enable_check)s;
167 %(op_decl)s;
168 %(op_rd)s;
169 %(ea_code)s;
170 DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
171 %(fault_check)s;
172 if (fault == NoFault) {
173 %(EA_trunc)s
174 fault = initiateMemRead(xc, traceData, EA, Mem, %(asi_val)s);
175 }
176 return fault;
177 }
178}};
179
180def template LoadCompleteAcc {{
181 Fault %(class_name)s::completeAcc(PacketPtr pkt, CPU_EXEC_CONTEXT * xc,
182 Trace::InstRecord * traceData) const
183 {
184 Fault fault = NoFault;
185 %(op_decl)s;
186 %(op_rd)s;
187 getMem(pkt, Mem, traceData);
188 %(code)s;
189 if (fault == NoFault) {
190 %(op_wb)s;
191 }
192 return fault;
193 }
194}};
195
196// This template provides the execute functions for a store
197def template StoreExecute {{
198 Fault %(class_name)s::execute(CPU_EXEC_CONTEXT *xc,
199 Trace::InstRecord *traceData) const
200 {
201 Fault fault = NoFault;
202 // This is to support the conditional store in cas instructions.
203 // It should be optomized out in all the others
204 bool storeCond = true;
205 Addr EA;
206 %(fp_enable_check)s;
207 %(op_decl)s;
208 %(op_rd)s;
209 %(ea_code)s;
210 DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
211 %(fault_check)s;
212 if (fault == NoFault) {
213 %(code)s;
214 }
215 if (storeCond && fault == NoFault) {
216 %(EA_trunc)s
217 fault = writeMemAtomic(xc, traceData, Mem, EA, %(asi_val)s, 0);
218 }
219 if (fault == NoFault) {
220 // Write the resulting state to the execution context
221 %(op_wb)s;
222 }
223
224 return fault;
225 }
226}};
227
228def template StoreInitiateAcc {{
229 Fault %(class_name)s::initiateAcc(CPU_EXEC_CONTEXT * xc,
230 Trace::InstRecord * traceData) const
231 {
232 Fault fault = NoFault;
233 bool storeCond = true;
234 Addr EA;
235 %(fp_enable_check)s;
236 %(op_decl)s;
237
238 %(op_rd)s;
239 %(ea_code)s;
240 DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
241 %(fault_check)s;
242 if (fault == NoFault) {
243 %(code)s;
244 }
245 if (storeCond && fault == NoFault) {
246 %(EA_trunc)s
247 fault = writeMemTiming(xc, traceData, Mem, EA, %(asi_val)s, 0);
248 }
249 return fault;
250 }
251}};
252
253def template StoreCompleteAcc {{
254 Fault %(class_name)s::completeAcc(PacketPtr, CPU_EXEC_CONTEXT * xc,
255 Trace::InstRecord * traceData) const
256 {
257 return NoFault;
258 }
259}};
260
261def template EACompExecute {{
262 Fault
263 %(class_name)s::eaComp(CPU_EXEC_CONTEXT *xc,
264 Trace::InstRecord *traceData) const
265 {
266 Addr EA;
267 Fault fault = NoFault;
268 %(op_decl)s;
269 %(op_rd)s;
270 %(ea_code)s;
271 %(fault_check)s;
272
273 // NOTE: Trace Data is written using execute or completeAcc templates
274 if (fault == NoFault) {
275 %(EA_trunc)s
276 xc->setEA(EA);
277 }
278
279 return fault;
280 }
281}};
282
283def template EACompDeclare {{
284 Fault eaComp(%(CPU_exec_context)s *, Trace::InstRecord *) const;
285}};
286
287// This delcares the initiateAcc function in memory operations
288def template InitiateAccDeclare {{
289 Fault initiateAcc(%(CPU_exec_context)s *, Trace::InstRecord *) const;
290}};
291
292// This declares the completeAcc function in memory operations
293def template CompleteAccDeclare {{
294 Fault completeAcc(PacketPtr, %(CPU_exec_context)s *, Trace::InstRecord *) const;
295}};
296
297// Here are some code snippets which check for various fault conditions
298let {{
299 LoadFuncs = [LoadExecute, LoadInitiateAcc, LoadCompleteAcc]
300 StoreFuncs = [StoreExecute, StoreInitiateAcc, StoreCompleteAcc]
301
302 # The LSB can be zero, since it's really the MSB in doubles and quads
303 # and we're dealing with doubles
304 BlockAlignmentFaultCheck = '''
305 if (RD & 0xe)
306 fault = std::make_shared<IllegalInstruction>();
307 else if (EA & 0x3f)
308 fault = std::make_shared<MemAddressNotAligned>();
309 '''
310 TwinAlignmentFaultCheck = '''
311 if (RD & 0x1)
312 fault = std::make_shared<IllegalInstruction>();
313 else if (EA & 0xf)
314 fault = std::make_shared<MemAddressNotAligned>();
315 '''
316 # XXX Need to take care of pstate.hpriv as well. The lower ASIs
317 # are split into ones that are available in priv and hpriv, and
318 # those that are only available in hpriv
319 AlternateASIPrivFaultCheck = '''
320 if ((!Pstate.priv && !Hpstate.hpriv &&
321 !asiIsUnPriv((ASI)EXT_ASI)) ||
322 (!Hpstate.hpriv && asiIsHPriv((ASI)EXT_ASI)))
323 fault = std::make_shared<PrivilegedAction>();
324 else if (asiIsAsIfUser((ASI)EXT_ASI) && !Pstate.priv)
325 fault = std::make_shared<PrivilegedAction>();
326 '''
327
328 TruncateEA = '''
329 if (!FullSystem) {
330 EA = Pstate.am ? EA<31:0> : EA;
331 }
332 '''
333}};
334
335// A simple function to generate the name of the macro op of a certain
336// instruction at a certain micropc
337let {{
338 def makeMicroName(name, microPc):
339 return name + "::" + name + "_" + str(microPc)
340}};
341
342// This function properly generates the execute functions for one of the
343// templates above. This is needed because in one case, ea computation,
344// fault checks and the actual code all occur in the same function,
345// and in the other they're distributed across two. Also note that for
346// execute functions, the name of the base class doesn't matter.
347let {{
348 def doSplitExecute(execute, name, Name, asi, opt_flags, microParam):
349 microParam["asi_val"] = asi;
350 iop = InstObjParams(name, Name, '', microParam, opt_flags)
351 (execf, initf, compf) = execute
352 return execf.subst(iop) + initf.subst(iop) + compf.subst(iop)
353
354
355 def doDualSplitExecute(code, postacc_code, eaRegCode, eaImmCode, execute,
356 faultCode, nameReg, nameImm, NameReg, NameImm, asi, opt_flags):
357 executeCode = ''
358 for (eaCode, name, Name) in (
359 (eaRegCode, nameReg, NameReg),
360 (eaImmCode, nameImm, NameImm)):
361 microParams = {"code": code, "postacc_code" : postacc_code,
362 "ea_code": eaCode, "fault_check": faultCode,
363 "EA_trunc" : TruncateEA}
364 executeCode += doSplitExecute(execute, name, Name,
365 asi, opt_flags, microParams)
366 return executeCode
367}};
115 printReg(response, _srcRegIdx[!save ? 0 : 1]);
116 ccprintf(response, " + ");
117 }
118 if (imm >= 0)
119 ccprintf(response, "0x%x]", imm);
120 else
121 ccprintf(response, "-0x%x]", -imm);
122 if (load) {
123 ccprintf(response, ", ");
124 printReg(response, _destRegIdx[0]);
125 }
126
127 return response.str();
128 }
129}};
130
131// This template provides the execute functions for a load
132def template LoadExecute {{
133 Fault %(class_name)s::execute(CPU_EXEC_CONTEXT *xc,
134 Trace::InstRecord *traceData) const
135 {
136 Fault fault = NoFault;
137 Addr EA;
138 %(fp_enable_check)s;
139 %(op_decl)s;
140 %(op_rd)s;
141 %(ea_code)s;
142 DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
143 %(fault_check)s;
144 if (fault == NoFault) {
145 %(EA_trunc)s
146 fault = readMemAtomic(xc, traceData, EA, Mem, %(asi_val)s);
147 }
148 if (fault == NoFault) {
149 %(code)s;
150 }
151 if (fault == NoFault) {
152 // Write the resulting state to the execution context
153 %(op_wb)s;
154 }
155
156 return fault;
157 }
158}};
159
160def template LoadInitiateAcc {{
161 Fault %(class_name)s::initiateAcc(CPU_EXEC_CONTEXT * xc,
162 Trace::InstRecord * traceData) const
163 {
164 Fault fault = NoFault;
165 Addr EA;
166 %(fp_enable_check)s;
167 %(op_decl)s;
168 %(op_rd)s;
169 %(ea_code)s;
170 DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
171 %(fault_check)s;
172 if (fault == NoFault) {
173 %(EA_trunc)s
174 fault = initiateMemRead(xc, traceData, EA, Mem, %(asi_val)s);
175 }
176 return fault;
177 }
178}};
179
180def template LoadCompleteAcc {{
181 Fault %(class_name)s::completeAcc(PacketPtr pkt, CPU_EXEC_CONTEXT * xc,
182 Trace::InstRecord * traceData) const
183 {
184 Fault fault = NoFault;
185 %(op_decl)s;
186 %(op_rd)s;
187 getMem(pkt, Mem, traceData);
188 %(code)s;
189 if (fault == NoFault) {
190 %(op_wb)s;
191 }
192 return fault;
193 }
194}};
195
196// This template provides the execute functions for a store
197def template StoreExecute {{
198 Fault %(class_name)s::execute(CPU_EXEC_CONTEXT *xc,
199 Trace::InstRecord *traceData) const
200 {
201 Fault fault = NoFault;
202 // This is to support the conditional store in cas instructions.
203 // It should be optomized out in all the others
204 bool storeCond = true;
205 Addr EA;
206 %(fp_enable_check)s;
207 %(op_decl)s;
208 %(op_rd)s;
209 %(ea_code)s;
210 DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
211 %(fault_check)s;
212 if (fault == NoFault) {
213 %(code)s;
214 }
215 if (storeCond && fault == NoFault) {
216 %(EA_trunc)s
217 fault = writeMemAtomic(xc, traceData, Mem, EA, %(asi_val)s, 0);
218 }
219 if (fault == NoFault) {
220 // Write the resulting state to the execution context
221 %(op_wb)s;
222 }
223
224 return fault;
225 }
226}};
227
228def template StoreInitiateAcc {{
229 Fault %(class_name)s::initiateAcc(CPU_EXEC_CONTEXT * xc,
230 Trace::InstRecord * traceData) const
231 {
232 Fault fault = NoFault;
233 bool storeCond = true;
234 Addr EA;
235 %(fp_enable_check)s;
236 %(op_decl)s;
237
238 %(op_rd)s;
239 %(ea_code)s;
240 DPRINTF(Sparc, "%s: The address is 0x%x\n", mnemonic, EA);
241 %(fault_check)s;
242 if (fault == NoFault) {
243 %(code)s;
244 }
245 if (storeCond && fault == NoFault) {
246 %(EA_trunc)s
247 fault = writeMemTiming(xc, traceData, Mem, EA, %(asi_val)s, 0);
248 }
249 return fault;
250 }
251}};
252
253def template StoreCompleteAcc {{
254 Fault %(class_name)s::completeAcc(PacketPtr, CPU_EXEC_CONTEXT * xc,
255 Trace::InstRecord * traceData) const
256 {
257 return NoFault;
258 }
259}};
260
261def template EACompExecute {{
262 Fault
263 %(class_name)s::eaComp(CPU_EXEC_CONTEXT *xc,
264 Trace::InstRecord *traceData) const
265 {
266 Addr EA;
267 Fault fault = NoFault;
268 %(op_decl)s;
269 %(op_rd)s;
270 %(ea_code)s;
271 %(fault_check)s;
272
273 // NOTE: Trace Data is written using execute or completeAcc templates
274 if (fault == NoFault) {
275 %(EA_trunc)s
276 xc->setEA(EA);
277 }
278
279 return fault;
280 }
281}};
282
283def template EACompDeclare {{
284 Fault eaComp(%(CPU_exec_context)s *, Trace::InstRecord *) const;
285}};
286
287// This delcares the initiateAcc function in memory operations
288def template InitiateAccDeclare {{
289 Fault initiateAcc(%(CPU_exec_context)s *, Trace::InstRecord *) const;
290}};
291
292// This declares the completeAcc function in memory operations
293def template CompleteAccDeclare {{
294 Fault completeAcc(PacketPtr, %(CPU_exec_context)s *, Trace::InstRecord *) const;
295}};
296
297// Here are some code snippets which check for various fault conditions
298let {{
299 LoadFuncs = [LoadExecute, LoadInitiateAcc, LoadCompleteAcc]
300 StoreFuncs = [StoreExecute, StoreInitiateAcc, StoreCompleteAcc]
301
302 # The LSB can be zero, since it's really the MSB in doubles and quads
303 # and we're dealing with doubles
304 BlockAlignmentFaultCheck = '''
305 if (RD & 0xe)
306 fault = std::make_shared<IllegalInstruction>();
307 else if (EA & 0x3f)
308 fault = std::make_shared<MemAddressNotAligned>();
309 '''
310 TwinAlignmentFaultCheck = '''
311 if (RD & 0x1)
312 fault = std::make_shared<IllegalInstruction>();
313 else if (EA & 0xf)
314 fault = std::make_shared<MemAddressNotAligned>();
315 '''
316 # XXX Need to take care of pstate.hpriv as well. The lower ASIs
317 # are split into ones that are available in priv and hpriv, and
318 # those that are only available in hpriv
319 AlternateASIPrivFaultCheck = '''
320 if ((!Pstate.priv && !Hpstate.hpriv &&
321 !asiIsUnPriv((ASI)EXT_ASI)) ||
322 (!Hpstate.hpriv && asiIsHPriv((ASI)EXT_ASI)))
323 fault = std::make_shared<PrivilegedAction>();
324 else if (asiIsAsIfUser((ASI)EXT_ASI) && !Pstate.priv)
325 fault = std::make_shared<PrivilegedAction>();
326 '''
327
328 TruncateEA = '''
329 if (!FullSystem) {
330 EA = Pstate.am ? EA<31:0> : EA;
331 }
332 '''
333}};
334
335// A simple function to generate the name of the macro op of a certain
336// instruction at a certain micropc
337let {{
338 def makeMicroName(name, microPc):
339 return name + "::" + name + "_" + str(microPc)
340}};
341
342// This function properly generates the execute functions for one of the
343// templates above. This is needed because in one case, ea computation,
344// fault checks and the actual code all occur in the same function,
345// and in the other they're distributed across two. Also note that for
346// execute functions, the name of the base class doesn't matter.
347let {{
348 def doSplitExecute(execute, name, Name, asi, opt_flags, microParam):
349 microParam["asi_val"] = asi;
350 iop = InstObjParams(name, Name, '', microParam, opt_flags)
351 (execf, initf, compf) = execute
352 return execf.subst(iop) + initf.subst(iop) + compf.subst(iop)
353
354
355 def doDualSplitExecute(code, postacc_code, eaRegCode, eaImmCode, execute,
356 faultCode, nameReg, nameImm, NameReg, NameImm, asi, opt_flags):
357 executeCode = ''
358 for (eaCode, name, Name) in (
359 (eaRegCode, nameReg, NameReg),
360 (eaImmCode, nameImm, NameImm)):
361 microParams = {"code": code, "postacc_code" : postacc_code,
362 "ea_code": eaCode, "fault_check": faultCode,
363 "EA_trunc" : TruncateEA}
364 executeCode += doSplitExecute(execute, name, Name,
365 asi, opt_flags, microParams)
366 return executeCode
367}};