faults.cc (12572:749b07984c79) faults.cc (13583:f7482392b097)
1/*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Gabe Black
29 * Kevin Lim
30 */
31
32#include "arch/sparc/faults.hh"
33
34#include <algorithm>
35
36#include "arch/sparc/isa_traits.hh"
37#include "arch/sparc/process.hh"
38#include "arch/sparc/tlb.hh"
39#include "arch/sparc/types.hh"
40#include "base/bitfield.hh"
41#include "base/trace.hh"
42#include "cpu/base.hh"
43#include "cpu/thread_context.hh"
44#include "mem/page_table.hh"
45#include "sim/full_system.hh"
46#include "sim/process.hh"
47
48using namespace std;
49
50namespace SparcISA
51{
52
53template<> SparcFaultBase::FaultVals
54 SparcFault<PowerOnReset>::vals
55("power_on_reset", 0x001, 0, {{H, H, H}});
56
57template<> SparcFaultBase::FaultVals
58 SparcFault<WatchDogReset>::vals
59("watch_dog_reset", 0x002, 120, {{H, H, H}});
60
61template<> SparcFaultBase::FaultVals
62 SparcFault<ExternallyInitiatedReset>::vals
63("externally_initiated_reset", 0x003, 110, {{H, H, H}});
64
65template<> SparcFaultBase::FaultVals
66 SparcFault<SoftwareInitiatedReset>::vals
67("software_initiated_reset", 0x004, 130, {{SH, SH, H}});
68
69template<> SparcFaultBase::FaultVals
70 SparcFault<REDStateException>::vals
71("RED_state_exception", 0x005, 1, {{H, H, H}});
72
73template<> SparcFaultBase::FaultVals
74 SparcFault<StoreError>::vals
75("store_error", 0x007, 201, {{H, H, H}});
76
77template<> SparcFaultBase::FaultVals
78 SparcFault<InstructionAccessException>::vals
79("instruction_access_exception", 0x008, 300, {{H, H, H}});
80
81//XXX This trap is apparently dropped from ua2005
82/*template<> SparcFaultBase::FaultVals
83 SparcFault<InstructionAccessMMUMiss>::vals
84 ("inst_mmu", 0x009, 2, {{H, H, H}});*/
85
86template<> SparcFaultBase::FaultVals
87 SparcFault<InstructionAccessError>::vals
88("instruction_access_error", 0x00A, 400, {{H, H, H}});
89
90template<> SparcFaultBase::FaultVals
91 SparcFault<IllegalInstruction>::vals
92("illegal_instruction", 0x010, 620, {{H, H, H}});
93
94template<> SparcFaultBase::FaultVals
95 SparcFault<PrivilegedOpcode>::vals
96("privileged_opcode", 0x011, 700, {{P, SH, SH}});
97
98//XXX This trap is apparently dropped from ua2005
99/*template<> SparcFaultBase::FaultVals
100 SparcFault<UnimplementedLDD>::vals
101 ("unimp_ldd", 0x012, 6, {{H, H, H}});*/
102
103//XXX This trap is apparently dropped from ua2005
104/*template<> SparcFaultBase::FaultVals
105 SparcFault<UnimplementedSTD>::vals
106 ("unimp_std", 0x013, 6, {{H, H, H}});*/
107
108template<> SparcFaultBase::FaultVals
109 SparcFault<FpDisabled>::vals
110("fp_disabled", 0x020, 800, {{P, P, H}});
111
112/* SPARCv8 and SPARCv9 define just fp_disabled trap. SIMD is not contemplated
113 * as a separate part. Therefore, we use the same code and TT */
114template<> SparcFaultBase::FaultVals
115 SparcFault<VecDisabled>::vals
116("fp_disabled", 0x020, 800, {{P, P, H}});
117
118template<> SparcFaultBase::FaultVals
119 SparcFault<FpExceptionIEEE754>::vals
120("fp_exception_ieee_754", 0x021, 1110, {{P, P, H}});
121
122template<> SparcFaultBase::FaultVals
123 SparcFault<FpExceptionOther>::vals
124("fp_exception_other", 0x022, 1110, {{P, P, H}});
125
126template<> SparcFaultBase::FaultVals
127 SparcFault<TagOverflow>::vals
128("tag_overflow", 0x023, 1400, {{P, P, H}});
129
130template<> SparcFaultBase::FaultVals
131 SparcFault<CleanWindow>::vals
132("clean_window", 0x024, 1010, {{P, P, H}});
133
134template<> SparcFaultBase::FaultVals
135 SparcFault<DivisionByZero>::vals
136("division_by_zero", 0x028, 1500, {{P, P, H}});
137
138template<> SparcFaultBase::FaultVals
139 SparcFault<InternalProcessorError>::vals
140("internal_processor_error", 0x029, 4, {{H, H, H}});
141
142template<> SparcFaultBase::FaultVals
143 SparcFault<InstructionInvalidTSBEntry>::vals
144("instruction_invalid_tsb_entry", 0x02A, 210, {{H, H, SH}});
145
146template<> SparcFaultBase::FaultVals
147 SparcFault<DataInvalidTSBEntry>::vals
148("data_invalid_tsb_entry", 0x02B, 1203, {{H, H, H}});
149
150template<> SparcFaultBase::FaultVals
151 SparcFault<DataAccessException>::vals
152("data_access_exception", 0x030, 1201, {{H, H, H}});
153
154//XXX This trap is apparently dropped from ua2005
155/*template<> SparcFaultBase::FaultVals
156 SparcFault<DataAccessMMUMiss>::vals
157 ("data_mmu", 0x031, 12, {{H, H, H}});*/
158
159template<> SparcFaultBase::FaultVals
160 SparcFault<DataAccessError>::vals
161("data_access_error", 0x032, 1210, {{H, H, H}});
162
163template<> SparcFaultBase::FaultVals
164 SparcFault<DataAccessProtection>::vals
165("data_access_protection", 0x033, 1207, {{H, H, H}});
166
167template<> SparcFaultBase::FaultVals
168 SparcFault<MemAddressNotAligned>::vals
169("mem_address_not_aligned", 0x034, 1020, {{H, H, H}});
170
171template<> SparcFaultBase::FaultVals
172 SparcFault<LDDFMemAddressNotAligned>::vals
173("LDDF_mem_address_not_aligned", 0x035, 1010, {{H, H, H}});
174
175template<> SparcFaultBase::FaultVals
176 SparcFault<STDFMemAddressNotAligned>::vals
177("STDF_mem_address_not_aligned", 0x036, 1010, {{H, H, H}});
178
179template<> SparcFaultBase::FaultVals
180 SparcFault<PrivilegedAction>::vals
181("privileged_action", 0x037, 1110, {{H, H, SH}});
182
183template<> SparcFaultBase::FaultVals
184 SparcFault<LDQFMemAddressNotAligned>::vals
185("LDQF_mem_address_not_aligned", 0x038, 1010, {{H, H, H}});
186
187template<> SparcFaultBase::FaultVals
188 SparcFault<STQFMemAddressNotAligned>::vals
189("STQF_mem_address_not_aligned", 0x039, 1010, {{H, H, H}});
190
191template<> SparcFaultBase::FaultVals
192 SparcFault<InstructionRealTranslationMiss>::vals
193("instruction_real_translation_miss", 0x03E, 208, {{H, H, SH}});
194
195template<> SparcFaultBase::FaultVals
196 SparcFault<DataRealTranslationMiss>::vals
197("data_real_translation_miss", 0x03F, 1203, {{H, H, H}});
198
199//XXX This trap is apparently dropped from ua2005
200/*template<> SparcFaultBase::FaultVals
201 SparcFault<AsyncDataError>::vals
202 ("async_data", 0x040, 2, {{H, H, H}});*/
203
204template<> SparcFaultBase::FaultVals
205 SparcFault<InterruptLevelN>::vals
206("interrupt_level_n", 0x040, 0, {{P, P, SH}});
207
208template<> SparcFaultBase::FaultVals
209 SparcFault<HstickMatch>::vals
210("hstick_match", 0x05E, 1601, {{H, H, H}});
211
212template<> SparcFaultBase::FaultVals
213 SparcFault<TrapLevelZero>::vals
214("trap_level_zero", 0x05F, 202, {{H, H, SH}});
215
216template<> SparcFaultBase::FaultVals
217 SparcFault<InterruptVector>::vals
218("interrupt_vector", 0x060, 2630, {{H, H, H}});
219
220template<> SparcFaultBase::FaultVals
221 SparcFault<PAWatchpoint>::vals
222("PA_watchpoint", 0x061, 1209, {{H, H, H}});
223
224template<> SparcFaultBase::FaultVals
225 SparcFault<VAWatchpoint>::vals
226("VA_watchpoint", 0x062, 1120, {{P, P, SH}});
227
228template<> SparcFaultBase::FaultVals
229 SparcFault<FastInstructionAccessMMUMiss>::vals
230("fast_instruction_access_MMU_miss", 0x064, 208, {{H, H, SH}});
231
232template<> SparcFaultBase::FaultVals
233 SparcFault<FastDataAccessMMUMiss>::vals
234("fast_data_access_MMU_miss", 0x068, 1203, {{H, H, H}});
235
236template<> SparcFaultBase::FaultVals
237 SparcFault<FastDataAccessProtection>::vals
238("fast_data_access_protection", 0x06C, 1207, {{H, H, H}});
239
240template<> SparcFaultBase::FaultVals
241 SparcFault<InstructionBreakpoint>::vals
242("instruction_break", 0x076, 610, {{H, H, H}});
243
244template<> SparcFaultBase::FaultVals
245 SparcFault<CpuMondo>::vals
246("cpu_mondo", 0x07C, 1608, {{P, P, SH}});
247
248template<> SparcFaultBase::FaultVals
249 SparcFault<DevMondo>::vals
250("dev_mondo", 0x07D, 1611, {{P, P, SH}});
251
252template<> SparcFaultBase::FaultVals
253 SparcFault<ResumableError>::vals
254("resume_error", 0x07E, 3330, {{P, P, SH}});
255
256template<> SparcFaultBase::FaultVals
257 SparcFault<SpillNNormal>::vals
258("spill_n_normal", 0x080, 900, {{P, P, H}});
259
260template<> SparcFaultBase::FaultVals
261 SparcFault<SpillNOther>::vals
262("spill_n_other", 0x0A0, 900, {{P, P, H}});
263
264template<> SparcFaultBase::FaultVals
265 SparcFault<FillNNormal>::vals
266("fill_n_normal", 0x0C0, 900, {{P, P, H}});
267
268template<> SparcFaultBase::FaultVals
269 SparcFault<FillNOther>::vals
270("fill_n_other", 0x0E0, 900, {{P, P, H}});
271
272template<> SparcFaultBase::FaultVals
273 SparcFault<TrapInstruction>::vals
274("trap_instruction", 0x100, 1602, {{P, P, H}});
275
276/**
277 * This causes the thread context to enter RED state. This causes the side
278 * effects which go with entering RED state because of a trap.
279 */
280
281void
282enterREDState(ThreadContext *tc)
283{
284 //@todo Disable the mmu?
285 //@todo Disable watchpoints?
286 HPSTATE hpstate= tc->readMiscRegNoEffect(MISCREG_HPSTATE);
287 hpstate.red = 1;
288 hpstate.hpriv = 1;
289 tc->setMiscReg(MISCREG_HPSTATE, hpstate);
290 // PSTATE.priv is set to 1 here. The manual says it should be 0, but
291 // Legion sets it to 1.
292 PSTATE pstate = tc->readMiscRegNoEffect(MISCREG_PSTATE);
293 pstate.priv = 1;
294 tc->setMiscReg(MISCREG_PSTATE, pstate);
295}
296
297/**
298 * This sets everything up for a RED state trap except for actually jumping to
299 * the handler.
300 */
301
302void
303doREDFault(ThreadContext *tc, TrapType tt)
304{
1/*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Gabe Black
29 * Kevin Lim
30 */
31
32#include "arch/sparc/faults.hh"
33
34#include <algorithm>
35
36#include "arch/sparc/isa_traits.hh"
37#include "arch/sparc/process.hh"
38#include "arch/sparc/tlb.hh"
39#include "arch/sparc/types.hh"
40#include "base/bitfield.hh"
41#include "base/trace.hh"
42#include "cpu/base.hh"
43#include "cpu/thread_context.hh"
44#include "mem/page_table.hh"
45#include "sim/full_system.hh"
46#include "sim/process.hh"
47
48using namespace std;
49
50namespace SparcISA
51{
52
53template<> SparcFaultBase::FaultVals
54 SparcFault<PowerOnReset>::vals
55("power_on_reset", 0x001, 0, {{H, H, H}});
56
57template<> SparcFaultBase::FaultVals
58 SparcFault<WatchDogReset>::vals
59("watch_dog_reset", 0x002, 120, {{H, H, H}});
60
61template<> SparcFaultBase::FaultVals
62 SparcFault<ExternallyInitiatedReset>::vals
63("externally_initiated_reset", 0x003, 110, {{H, H, H}});
64
65template<> SparcFaultBase::FaultVals
66 SparcFault<SoftwareInitiatedReset>::vals
67("software_initiated_reset", 0x004, 130, {{SH, SH, H}});
68
69template<> SparcFaultBase::FaultVals
70 SparcFault<REDStateException>::vals
71("RED_state_exception", 0x005, 1, {{H, H, H}});
72
73template<> SparcFaultBase::FaultVals
74 SparcFault<StoreError>::vals
75("store_error", 0x007, 201, {{H, H, H}});
76
77template<> SparcFaultBase::FaultVals
78 SparcFault<InstructionAccessException>::vals
79("instruction_access_exception", 0x008, 300, {{H, H, H}});
80
81//XXX This trap is apparently dropped from ua2005
82/*template<> SparcFaultBase::FaultVals
83 SparcFault<InstructionAccessMMUMiss>::vals
84 ("inst_mmu", 0x009, 2, {{H, H, H}});*/
85
86template<> SparcFaultBase::FaultVals
87 SparcFault<InstructionAccessError>::vals
88("instruction_access_error", 0x00A, 400, {{H, H, H}});
89
90template<> SparcFaultBase::FaultVals
91 SparcFault<IllegalInstruction>::vals
92("illegal_instruction", 0x010, 620, {{H, H, H}});
93
94template<> SparcFaultBase::FaultVals
95 SparcFault<PrivilegedOpcode>::vals
96("privileged_opcode", 0x011, 700, {{P, SH, SH}});
97
98//XXX This trap is apparently dropped from ua2005
99/*template<> SparcFaultBase::FaultVals
100 SparcFault<UnimplementedLDD>::vals
101 ("unimp_ldd", 0x012, 6, {{H, H, H}});*/
102
103//XXX This trap is apparently dropped from ua2005
104/*template<> SparcFaultBase::FaultVals
105 SparcFault<UnimplementedSTD>::vals
106 ("unimp_std", 0x013, 6, {{H, H, H}});*/
107
108template<> SparcFaultBase::FaultVals
109 SparcFault<FpDisabled>::vals
110("fp_disabled", 0x020, 800, {{P, P, H}});
111
112/* SPARCv8 and SPARCv9 define just fp_disabled trap. SIMD is not contemplated
113 * as a separate part. Therefore, we use the same code and TT */
114template<> SparcFaultBase::FaultVals
115 SparcFault<VecDisabled>::vals
116("fp_disabled", 0x020, 800, {{P, P, H}});
117
118template<> SparcFaultBase::FaultVals
119 SparcFault<FpExceptionIEEE754>::vals
120("fp_exception_ieee_754", 0x021, 1110, {{P, P, H}});
121
122template<> SparcFaultBase::FaultVals
123 SparcFault<FpExceptionOther>::vals
124("fp_exception_other", 0x022, 1110, {{P, P, H}});
125
126template<> SparcFaultBase::FaultVals
127 SparcFault<TagOverflow>::vals
128("tag_overflow", 0x023, 1400, {{P, P, H}});
129
130template<> SparcFaultBase::FaultVals
131 SparcFault<CleanWindow>::vals
132("clean_window", 0x024, 1010, {{P, P, H}});
133
134template<> SparcFaultBase::FaultVals
135 SparcFault<DivisionByZero>::vals
136("division_by_zero", 0x028, 1500, {{P, P, H}});
137
138template<> SparcFaultBase::FaultVals
139 SparcFault<InternalProcessorError>::vals
140("internal_processor_error", 0x029, 4, {{H, H, H}});
141
142template<> SparcFaultBase::FaultVals
143 SparcFault<InstructionInvalidTSBEntry>::vals
144("instruction_invalid_tsb_entry", 0x02A, 210, {{H, H, SH}});
145
146template<> SparcFaultBase::FaultVals
147 SparcFault<DataInvalidTSBEntry>::vals
148("data_invalid_tsb_entry", 0x02B, 1203, {{H, H, H}});
149
150template<> SparcFaultBase::FaultVals
151 SparcFault<DataAccessException>::vals
152("data_access_exception", 0x030, 1201, {{H, H, H}});
153
154//XXX This trap is apparently dropped from ua2005
155/*template<> SparcFaultBase::FaultVals
156 SparcFault<DataAccessMMUMiss>::vals
157 ("data_mmu", 0x031, 12, {{H, H, H}});*/
158
159template<> SparcFaultBase::FaultVals
160 SparcFault<DataAccessError>::vals
161("data_access_error", 0x032, 1210, {{H, H, H}});
162
163template<> SparcFaultBase::FaultVals
164 SparcFault<DataAccessProtection>::vals
165("data_access_protection", 0x033, 1207, {{H, H, H}});
166
167template<> SparcFaultBase::FaultVals
168 SparcFault<MemAddressNotAligned>::vals
169("mem_address_not_aligned", 0x034, 1020, {{H, H, H}});
170
171template<> SparcFaultBase::FaultVals
172 SparcFault<LDDFMemAddressNotAligned>::vals
173("LDDF_mem_address_not_aligned", 0x035, 1010, {{H, H, H}});
174
175template<> SparcFaultBase::FaultVals
176 SparcFault<STDFMemAddressNotAligned>::vals
177("STDF_mem_address_not_aligned", 0x036, 1010, {{H, H, H}});
178
179template<> SparcFaultBase::FaultVals
180 SparcFault<PrivilegedAction>::vals
181("privileged_action", 0x037, 1110, {{H, H, SH}});
182
183template<> SparcFaultBase::FaultVals
184 SparcFault<LDQFMemAddressNotAligned>::vals
185("LDQF_mem_address_not_aligned", 0x038, 1010, {{H, H, H}});
186
187template<> SparcFaultBase::FaultVals
188 SparcFault<STQFMemAddressNotAligned>::vals
189("STQF_mem_address_not_aligned", 0x039, 1010, {{H, H, H}});
190
191template<> SparcFaultBase::FaultVals
192 SparcFault<InstructionRealTranslationMiss>::vals
193("instruction_real_translation_miss", 0x03E, 208, {{H, H, SH}});
194
195template<> SparcFaultBase::FaultVals
196 SparcFault<DataRealTranslationMiss>::vals
197("data_real_translation_miss", 0x03F, 1203, {{H, H, H}});
198
199//XXX This trap is apparently dropped from ua2005
200/*template<> SparcFaultBase::FaultVals
201 SparcFault<AsyncDataError>::vals
202 ("async_data", 0x040, 2, {{H, H, H}});*/
203
204template<> SparcFaultBase::FaultVals
205 SparcFault<InterruptLevelN>::vals
206("interrupt_level_n", 0x040, 0, {{P, P, SH}});
207
208template<> SparcFaultBase::FaultVals
209 SparcFault<HstickMatch>::vals
210("hstick_match", 0x05E, 1601, {{H, H, H}});
211
212template<> SparcFaultBase::FaultVals
213 SparcFault<TrapLevelZero>::vals
214("trap_level_zero", 0x05F, 202, {{H, H, SH}});
215
216template<> SparcFaultBase::FaultVals
217 SparcFault<InterruptVector>::vals
218("interrupt_vector", 0x060, 2630, {{H, H, H}});
219
220template<> SparcFaultBase::FaultVals
221 SparcFault<PAWatchpoint>::vals
222("PA_watchpoint", 0x061, 1209, {{H, H, H}});
223
224template<> SparcFaultBase::FaultVals
225 SparcFault<VAWatchpoint>::vals
226("VA_watchpoint", 0x062, 1120, {{P, P, SH}});
227
228template<> SparcFaultBase::FaultVals
229 SparcFault<FastInstructionAccessMMUMiss>::vals
230("fast_instruction_access_MMU_miss", 0x064, 208, {{H, H, SH}});
231
232template<> SparcFaultBase::FaultVals
233 SparcFault<FastDataAccessMMUMiss>::vals
234("fast_data_access_MMU_miss", 0x068, 1203, {{H, H, H}});
235
236template<> SparcFaultBase::FaultVals
237 SparcFault<FastDataAccessProtection>::vals
238("fast_data_access_protection", 0x06C, 1207, {{H, H, H}});
239
240template<> SparcFaultBase::FaultVals
241 SparcFault<InstructionBreakpoint>::vals
242("instruction_break", 0x076, 610, {{H, H, H}});
243
244template<> SparcFaultBase::FaultVals
245 SparcFault<CpuMondo>::vals
246("cpu_mondo", 0x07C, 1608, {{P, P, SH}});
247
248template<> SparcFaultBase::FaultVals
249 SparcFault<DevMondo>::vals
250("dev_mondo", 0x07D, 1611, {{P, P, SH}});
251
252template<> SparcFaultBase::FaultVals
253 SparcFault<ResumableError>::vals
254("resume_error", 0x07E, 3330, {{P, P, SH}});
255
256template<> SparcFaultBase::FaultVals
257 SparcFault<SpillNNormal>::vals
258("spill_n_normal", 0x080, 900, {{P, P, H}});
259
260template<> SparcFaultBase::FaultVals
261 SparcFault<SpillNOther>::vals
262("spill_n_other", 0x0A0, 900, {{P, P, H}});
263
264template<> SparcFaultBase::FaultVals
265 SparcFault<FillNNormal>::vals
266("fill_n_normal", 0x0C0, 900, {{P, P, H}});
267
268template<> SparcFaultBase::FaultVals
269 SparcFault<FillNOther>::vals
270("fill_n_other", 0x0E0, 900, {{P, P, H}});
271
272template<> SparcFaultBase::FaultVals
273 SparcFault<TrapInstruction>::vals
274("trap_instruction", 0x100, 1602, {{P, P, H}});
275
276/**
277 * This causes the thread context to enter RED state. This causes the side
278 * effects which go with entering RED state because of a trap.
279 */
280
281void
282enterREDState(ThreadContext *tc)
283{
284 //@todo Disable the mmu?
285 //@todo Disable watchpoints?
286 HPSTATE hpstate= tc->readMiscRegNoEffect(MISCREG_HPSTATE);
287 hpstate.red = 1;
288 hpstate.hpriv = 1;
289 tc->setMiscReg(MISCREG_HPSTATE, hpstate);
290 // PSTATE.priv is set to 1 here. The manual says it should be 0, but
291 // Legion sets it to 1.
292 PSTATE pstate = tc->readMiscRegNoEffect(MISCREG_PSTATE);
293 pstate.priv = 1;
294 tc->setMiscReg(MISCREG_PSTATE, pstate);
295}
296
297/**
298 * This sets everything up for a RED state trap except for actually jumping to
299 * the handler.
300 */
301
302void
303doREDFault(ThreadContext *tc, TrapType tt)
304{
305 MiscReg TL = tc->readMiscRegNoEffect(MISCREG_TL);
306 MiscReg TSTATE = tc->readMiscRegNoEffect(MISCREG_TSTATE);
305 RegVal TL = tc->readMiscRegNoEffect(MISCREG_TL);
306 RegVal TSTATE = tc->readMiscRegNoEffect(MISCREG_TSTATE);
307 PSTATE pstate = tc->readMiscRegNoEffect(MISCREG_PSTATE);
308 HPSTATE hpstate = tc->readMiscRegNoEffect(MISCREG_HPSTATE);
307 PSTATE pstate = tc->readMiscRegNoEffect(MISCREG_PSTATE);
308 HPSTATE hpstate = tc->readMiscRegNoEffect(MISCREG_HPSTATE);
309 MiscReg CCR = tc->readIntReg(NumIntArchRegs + 2);
310 MiscReg ASI = tc->readMiscRegNoEffect(MISCREG_ASI);
311 MiscReg CWP = tc->readMiscRegNoEffect(MISCREG_CWP);
312 MiscReg CANSAVE = tc->readMiscRegNoEffect(NumIntArchRegs + 3);
313 MiscReg GL = tc->readMiscRegNoEffect(MISCREG_GL);
309 RegVal CCR = tc->readIntReg(NumIntArchRegs + 2);
310 RegVal ASI = tc->readMiscRegNoEffect(MISCREG_ASI);
311 RegVal CWP = tc->readMiscRegNoEffect(MISCREG_CWP);
312 RegVal CANSAVE = tc->readMiscRegNoEffect(NumIntArchRegs + 3);
313 RegVal GL = tc->readMiscRegNoEffect(MISCREG_GL);
314 PCState pc = tc->pcState();
315
316 TL++;
317
318 Addr pcMask = pstate.am ? mask(32) : mask(64);
319
320 // set TSTATE.gl to gl
321 replaceBits(TSTATE, 42, 40, GL);
322 // set TSTATE.ccr to ccr
323 replaceBits(TSTATE, 39, 32, CCR);
324 // set TSTATE.asi to asi
325 replaceBits(TSTATE, 31, 24, ASI);
326 // set TSTATE.pstate to pstate
327 replaceBits(TSTATE, 20, 8, pstate);
328 // set TSTATE.cwp to cwp
329 replaceBits(TSTATE, 4, 0, CWP);
330
331 // Write back TSTATE
332 tc->setMiscRegNoEffect(MISCREG_TSTATE, TSTATE);
333
334 // set TPC to PC
335 tc->setMiscRegNoEffect(MISCREG_TPC, pc.pc() & pcMask);
336 // set TNPC to NPC
337 tc->setMiscRegNoEffect(MISCREG_TNPC, pc.npc() & pcMask);
338
339 // set HTSTATE.hpstate to hpstate
340 tc->setMiscRegNoEffect(MISCREG_HTSTATE, hpstate);
341
342 // TT = trap type;
343 tc->setMiscRegNoEffect(MISCREG_TT, tt);
344
345 // Update GL
346 tc->setMiscReg(MISCREG_GL, min<int>(GL+1, MaxGL));
347
348 bool priv = pstate.priv; // just save the priv bit
349 pstate = 0;
350 pstate.priv = priv;
351 pstate.pef = 1;
352 tc->setMiscRegNoEffect(MISCREG_PSTATE, pstate);
353
354 hpstate.red = 1;
355 hpstate.hpriv = 1;
356 hpstate.ibe = 0;
357 hpstate.tlz = 0;
358 tc->setMiscRegNoEffect(MISCREG_HPSTATE, hpstate);
359
360 bool changedCWP = true;
361 if (tt == 0x24)
362 CWP++;
363 else if (0x80 <= tt && tt <= 0xbf)
364 CWP += (CANSAVE + 2);
365 else if (0xc0 <= tt && tt <= 0xff)
366 CWP--;
367 else
368 changedCWP = false;
369
370 if (changedCWP) {
371 CWP = (CWP + NWindows) % NWindows;
372 tc->setMiscReg(MISCREG_CWP, CWP);
373 }
374}
375
376/**
377 * This sets everything up for a normal trap except for actually jumping to
378 * the handler.
379 */
380
381void
382doNormalFault(ThreadContext *tc, TrapType tt, bool gotoHpriv)
383{
314 PCState pc = tc->pcState();
315
316 TL++;
317
318 Addr pcMask = pstate.am ? mask(32) : mask(64);
319
320 // set TSTATE.gl to gl
321 replaceBits(TSTATE, 42, 40, GL);
322 // set TSTATE.ccr to ccr
323 replaceBits(TSTATE, 39, 32, CCR);
324 // set TSTATE.asi to asi
325 replaceBits(TSTATE, 31, 24, ASI);
326 // set TSTATE.pstate to pstate
327 replaceBits(TSTATE, 20, 8, pstate);
328 // set TSTATE.cwp to cwp
329 replaceBits(TSTATE, 4, 0, CWP);
330
331 // Write back TSTATE
332 tc->setMiscRegNoEffect(MISCREG_TSTATE, TSTATE);
333
334 // set TPC to PC
335 tc->setMiscRegNoEffect(MISCREG_TPC, pc.pc() & pcMask);
336 // set TNPC to NPC
337 tc->setMiscRegNoEffect(MISCREG_TNPC, pc.npc() & pcMask);
338
339 // set HTSTATE.hpstate to hpstate
340 tc->setMiscRegNoEffect(MISCREG_HTSTATE, hpstate);
341
342 // TT = trap type;
343 tc->setMiscRegNoEffect(MISCREG_TT, tt);
344
345 // Update GL
346 tc->setMiscReg(MISCREG_GL, min<int>(GL+1, MaxGL));
347
348 bool priv = pstate.priv; // just save the priv bit
349 pstate = 0;
350 pstate.priv = priv;
351 pstate.pef = 1;
352 tc->setMiscRegNoEffect(MISCREG_PSTATE, pstate);
353
354 hpstate.red = 1;
355 hpstate.hpriv = 1;
356 hpstate.ibe = 0;
357 hpstate.tlz = 0;
358 tc->setMiscRegNoEffect(MISCREG_HPSTATE, hpstate);
359
360 bool changedCWP = true;
361 if (tt == 0x24)
362 CWP++;
363 else if (0x80 <= tt && tt <= 0xbf)
364 CWP += (CANSAVE + 2);
365 else if (0xc0 <= tt && tt <= 0xff)
366 CWP--;
367 else
368 changedCWP = false;
369
370 if (changedCWP) {
371 CWP = (CWP + NWindows) % NWindows;
372 tc->setMiscReg(MISCREG_CWP, CWP);
373 }
374}
375
376/**
377 * This sets everything up for a normal trap except for actually jumping to
378 * the handler.
379 */
380
381void
382doNormalFault(ThreadContext *tc, TrapType tt, bool gotoHpriv)
383{
384 MiscReg TL = tc->readMiscRegNoEffect(MISCREG_TL);
385 MiscReg TSTATE = tc->readMiscRegNoEffect(MISCREG_TSTATE);
384 RegVal TL = tc->readMiscRegNoEffect(MISCREG_TL);
385 RegVal TSTATE = tc->readMiscRegNoEffect(MISCREG_TSTATE);
386 PSTATE pstate = tc->readMiscRegNoEffect(MISCREG_PSTATE);
387 HPSTATE hpstate = tc->readMiscRegNoEffect(MISCREG_HPSTATE);
386 PSTATE pstate = tc->readMiscRegNoEffect(MISCREG_PSTATE);
387 HPSTATE hpstate = tc->readMiscRegNoEffect(MISCREG_HPSTATE);
388 MiscReg CCR = tc->readIntReg(NumIntArchRegs + 2);
389 MiscReg ASI = tc->readMiscRegNoEffect(MISCREG_ASI);
390 MiscReg CWP = tc->readMiscRegNoEffect(MISCREG_CWP);
391 MiscReg CANSAVE = tc->readIntReg(NumIntArchRegs + 3);
392 MiscReg GL = tc->readMiscRegNoEffect(MISCREG_GL);
388 RegVal CCR = tc->readIntReg(NumIntArchRegs + 2);
389 RegVal ASI = tc->readMiscRegNoEffect(MISCREG_ASI);
390 RegVal CWP = tc->readMiscRegNoEffect(MISCREG_CWP);
391 RegVal CANSAVE = tc->readIntReg(NumIntArchRegs + 3);
392 RegVal GL = tc->readMiscRegNoEffect(MISCREG_GL);
393 PCState pc = tc->pcState();
394
395 // Increment the trap level
396 TL++;
397 tc->setMiscRegNoEffect(MISCREG_TL, TL);
398
399 Addr pcMask = pstate.am ? mask(32) : mask(64);
400
401 // Save off state
402
403 // set TSTATE.gl to gl
404 replaceBits(TSTATE, 42, 40, GL);
405 // set TSTATE.ccr to ccr
406 replaceBits(TSTATE, 39, 32, CCR);
407 // set TSTATE.asi to asi
408 replaceBits(TSTATE, 31, 24, ASI);
409 // set TSTATE.pstate to pstate
410 replaceBits(TSTATE, 20, 8, pstate);
411 // set TSTATE.cwp to cwp
412 replaceBits(TSTATE, 4, 0, CWP);
413
414 // Write back TSTATE
415 tc->setMiscRegNoEffect(MISCREG_TSTATE, TSTATE);
416
417 // set TPC to PC
418 tc->setMiscRegNoEffect(MISCREG_TPC, pc.pc() & pcMask);
419 // set TNPC to NPC
420 tc->setMiscRegNoEffect(MISCREG_TNPC, pc.npc() & pcMask);
421
422 // set HTSTATE.hpstate to hpstate
423 tc->setMiscRegNoEffect(MISCREG_HTSTATE, hpstate);
424
425 // TT = trap type;
426 tc->setMiscRegNoEffect(MISCREG_TT, tt);
427
428 // Update the global register level
429 if (!gotoHpriv)
430 tc->setMiscReg(MISCREG_GL, min<int>(GL + 1, MaxPGL));
431 else
432 tc->setMiscReg(MISCREG_GL, min<int>(GL + 1, MaxGL));
433
434 // pstate.mm is unchanged
435 pstate.pef = 1; // PSTATE.pef = whether or not an fpu is present
436 pstate.am = 0;
437 pstate.ie = 0;
438 // pstate.tle is unchanged
439 // pstate.tct = 0
440
441 if (gotoHpriv) {
442 pstate.cle = 0;
443 // The manual says PSTATE.priv should be 0, but Legion leaves it alone
444 hpstate.red = 0;
445 hpstate.hpriv = 1;
446 hpstate.ibe = 0;
447 // hpstate.tlz is unchanged
448 tc->setMiscRegNoEffect(MISCREG_HPSTATE, hpstate);
449 } else { // we are going to priv
450 pstate.priv = 1;
451 pstate.cle = pstate.tle;
452 }
453 tc->setMiscRegNoEffect(MISCREG_PSTATE, pstate);
454
455
456 bool changedCWP = true;
457 if (tt == 0x24)
458 CWP++;
459 else if (0x80 <= tt && tt <= 0xbf)
460 CWP += (CANSAVE + 2);
461 else if (0xc0 <= tt && tt <= 0xff)
462 CWP--;
463 else
464 changedCWP = false;
465
466 if (changedCWP) {
467 CWP = (CWP + NWindows) % NWindows;
468 tc->setMiscReg(MISCREG_CWP, CWP);
469 }
470}
471
472void
393 PCState pc = tc->pcState();
394
395 // Increment the trap level
396 TL++;
397 tc->setMiscRegNoEffect(MISCREG_TL, TL);
398
399 Addr pcMask = pstate.am ? mask(32) : mask(64);
400
401 // Save off state
402
403 // set TSTATE.gl to gl
404 replaceBits(TSTATE, 42, 40, GL);
405 // set TSTATE.ccr to ccr
406 replaceBits(TSTATE, 39, 32, CCR);
407 // set TSTATE.asi to asi
408 replaceBits(TSTATE, 31, 24, ASI);
409 // set TSTATE.pstate to pstate
410 replaceBits(TSTATE, 20, 8, pstate);
411 // set TSTATE.cwp to cwp
412 replaceBits(TSTATE, 4, 0, CWP);
413
414 // Write back TSTATE
415 tc->setMiscRegNoEffect(MISCREG_TSTATE, TSTATE);
416
417 // set TPC to PC
418 tc->setMiscRegNoEffect(MISCREG_TPC, pc.pc() & pcMask);
419 // set TNPC to NPC
420 tc->setMiscRegNoEffect(MISCREG_TNPC, pc.npc() & pcMask);
421
422 // set HTSTATE.hpstate to hpstate
423 tc->setMiscRegNoEffect(MISCREG_HTSTATE, hpstate);
424
425 // TT = trap type;
426 tc->setMiscRegNoEffect(MISCREG_TT, tt);
427
428 // Update the global register level
429 if (!gotoHpriv)
430 tc->setMiscReg(MISCREG_GL, min<int>(GL + 1, MaxPGL));
431 else
432 tc->setMiscReg(MISCREG_GL, min<int>(GL + 1, MaxGL));
433
434 // pstate.mm is unchanged
435 pstate.pef = 1; // PSTATE.pef = whether or not an fpu is present
436 pstate.am = 0;
437 pstate.ie = 0;
438 // pstate.tle is unchanged
439 // pstate.tct = 0
440
441 if (gotoHpriv) {
442 pstate.cle = 0;
443 // The manual says PSTATE.priv should be 0, but Legion leaves it alone
444 hpstate.red = 0;
445 hpstate.hpriv = 1;
446 hpstate.ibe = 0;
447 // hpstate.tlz is unchanged
448 tc->setMiscRegNoEffect(MISCREG_HPSTATE, hpstate);
449 } else { // we are going to priv
450 pstate.priv = 1;
451 pstate.cle = pstate.tle;
452 }
453 tc->setMiscRegNoEffect(MISCREG_PSTATE, pstate);
454
455
456 bool changedCWP = true;
457 if (tt == 0x24)
458 CWP++;
459 else if (0x80 <= tt && tt <= 0xbf)
460 CWP += (CANSAVE + 2);
461 else if (0xc0 <= tt && tt <= 0xff)
462 CWP--;
463 else
464 changedCWP = false;
465
466 if (changedCWP) {
467 CWP = (CWP + NWindows) % NWindows;
468 tc->setMiscReg(MISCREG_CWP, CWP);
469 }
470}
471
472void
473getREDVector(MiscReg TT, Addr &PC, Addr &NPC)
473getREDVector(RegVal TT, Addr &PC, Addr &NPC)
474{
475 //XXX The following constant might belong in a header file.
476 const Addr RSTVAddr = 0xFFF0000000ULL;
477 PC = RSTVAddr | ((TT << 5) & 0xFF);
478 NPC = PC + sizeof(MachInst);
479}
480
481void
474{
475 //XXX The following constant might belong in a header file.
476 const Addr RSTVAddr = 0xFFF0000000ULL;
477 PC = RSTVAddr | ((TT << 5) & 0xFF);
478 NPC = PC + sizeof(MachInst);
479}
480
481void
482getHyperVector(ThreadContext * tc, Addr &PC, Addr &NPC, MiscReg TT)
482getHyperVector(ThreadContext * tc, Addr &PC, Addr &NPC, RegVal TT)
483{
484 Addr HTBA = tc->readMiscRegNoEffect(MISCREG_HTBA);
485 PC = (HTBA & ~mask(14)) | ((TT << 5) & mask(14));
486 NPC = PC + sizeof(MachInst);
487}
488
489void
483{
484 Addr HTBA = tc->readMiscRegNoEffect(MISCREG_HTBA);
485 PC = (HTBA & ~mask(14)) | ((TT << 5) & mask(14));
486 NPC = PC + sizeof(MachInst);
487}
488
489void
490getPrivVector(ThreadContext *tc, Addr &PC, Addr &NPC, MiscReg TT, MiscReg TL)
490getPrivVector(ThreadContext *tc, Addr &PC, Addr &NPC, RegVal TT, RegVal TL)
491{
492 Addr TBA = tc->readMiscRegNoEffect(MISCREG_TBA);
493 PC = (TBA & ~mask(15)) |
494 (TL > 1 ? (1 << 14) : 0) |
495 ((TT << 5) & mask(14));
496 NPC = PC + sizeof(MachInst);
497}
498
499void
500SparcFaultBase::invoke(ThreadContext * tc, const StaticInstPtr &inst)
501{
502 FaultBase::invoke(tc);
503 if (!FullSystem)
504 return;
505
506 countStat()++;
507
508 // We can refer to this to see what the trap level -was-, but something
509 // in the middle could change it in the regfile out from under us.
491{
492 Addr TBA = tc->readMiscRegNoEffect(MISCREG_TBA);
493 PC = (TBA & ~mask(15)) |
494 (TL > 1 ? (1 << 14) : 0) |
495 ((TT << 5) & mask(14));
496 NPC = PC + sizeof(MachInst);
497}
498
499void
500SparcFaultBase::invoke(ThreadContext * tc, const StaticInstPtr &inst)
501{
502 FaultBase::invoke(tc);
503 if (!FullSystem)
504 return;
505
506 countStat()++;
507
508 // We can refer to this to see what the trap level -was-, but something
509 // in the middle could change it in the regfile out from under us.
510 MiscReg tl = tc->readMiscRegNoEffect(MISCREG_TL);
511 MiscReg tt = tc->readMiscRegNoEffect(MISCREG_TT);
510 RegVal tl = tc->readMiscRegNoEffect(MISCREG_TL);
511 RegVal tt = tc->readMiscRegNoEffect(MISCREG_TT);
512 PSTATE pstate = tc->readMiscRegNoEffect(MISCREG_PSTATE);
513 HPSTATE hpstate = tc->readMiscRegNoEffect(MISCREG_HPSTATE);
514
515 Addr PC, NPC;
516
517 PrivilegeLevel current;
518 if (hpstate.hpriv)
519 current = Hyperprivileged;
520 else if (pstate.priv)
521 current = Privileged;
522 else
523 current = User;
524
525 PrivilegeLevel level = getNextLevel(current);
526
527 if (hpstate.red || (tl == MaxTL - 1)) {
528 getREDVector(5, PC, NPC);
529 doREDFault(tc, tt);
530 // This changes the hpstate and pstate, so we need to make sure we
531 // save the old version on the trap stack in doREDFault.
532 enterREDState(tc);
533 } else if (tl == MaxTL) {
534 panic("Should go to error state here.. crap\n");
535 // Do error_state somehow?
536 // Probably inject a WDR fault using the interrupt mechanism.
537 // What should the PC and NPC be set to?
538 } else if (tl > MaxPTL && level == Privileged) {
539 // guest_watchdog fault
540 doNormalFault(tc, trapType(), true);
541 getHyperVector(tc, PC, NPC, 2);
542 } else if (level == Hyperprivileged ||
543 (level == Privileged && trapType() >= 384)) {
544 doNormalFault(tc, trapType(), true);
545 getHyperVector(tc, PC, NPC, trapType());
546 } else {
547 doNormalFault(tc, trapType(), false);
548 getPrivVector(tc, PC, NPC, trapType(), tl + 1);
549 }
550
551 PCState pc;
552 pc.pc(PC);
553 pc.npc(NPC);
554 pc.nnpc(NPC + sizeof(MachInst));
555 pc.upc(0);
556 pc.nupc(1);
557 tc->pcState(pc);
558}
559
560void
561PowerOnReset::invoke(ThreadContext *tc, const StaticInstPtr &inst)
562{
563 // For SPARC, when a system is first started, there is a power
564 // on reset Trap which sets the processor into the following state.
565 // Bits that aren't set aren't defined on startup.
566
567 tc->setMiscRegNoEffect(MISCREG_TL, MaxTL);
568 tc->setMiscRegNoEffect(MISCREG_TT, trapType());
569 tc->setMiscReg(MISCREG_GL, MaxGL);
570
571 PSTATE pstate = 0;
572 pstate.pef = 1;
573 pstate.priv = 1;
574 tc->setMiscRegNoEffect(MISCREG_PSTATE, pstate);
575
576 // Turn on red and hpriv, set everything else to 0
577 HPSTATE hpstate = tc->readMiscRegNoEffect(MISCREG_HPSTATE);
578 hpstate.red = 1;
579 hpstate.hpriv = 1;
580 hpstate.ibe = 0;
581 hpstate.tlz = 0;
582 tc->setMiscRegNoEffect(MISCREG_HPSTATE, hpstate);
583
584 // The tick register is unreadable by nonprivileged software
585 tc->setMiscRegNoEffect(MISCREG_TICK, 1ULL << 63);
586
587 // Enter RED state. We do this last so that the actual state preserved in
588 // the trap stack is the state from before this fault.
589 enterREDState(tc);
590
591 Addr PC, NPC;
592 getREDVector(trapType(), PC, NPC);
593
594 PCState pc;
595 pc.pc(PC);
596 pc.npc(NPC);
597 pc.nnpc(NPC + sizeof(MachInst));
598 pc.upc(0);
599 pc.nupc(1);
600 tc->pcState(pc);
601
602 // These registers are specified as "undefined" after a POR, and they
603 // should have reasonable values after the miscregfile is reset
604 /*
605 // Clear all the soft interrupt bits
606 softint = 0;
607 // disable timer compare interrupts, reset tick_cmpr
608 tc->setMiscRegNoEffect(MISCREG_
609 tick_cmprFields.int_dis = 1;
610 tick_cmprFields.tick_cmpr = 0; // Reset to 0 for pretty printing
611 stickFields.npt = 1; // The TICK register is unreadable by by !priv
612 stick_cmprFields.int_dis = 1; // disable timer compare interrupts
613 stick_cmprFields.tick_cmpr = 0; // Reset to 0 for pretty printing
614
615 tt[tl] = _trapType;
616
617 hintp = 0; // no interrupts pending
618 hstick_cmprFields.int_dis = 1; // disable timer compare interrupts
619 hstick_cmprFields.tick_cmpr = 0; // Reset to 0 for pretty printing
620 */
621}
622
623void
624FastInstructionAccessMMUMiss::invoke(ThreadContext *tc,
625 const StaticInstPtr &inst)
626{
627 if (FullSystem) {
628 SparcFaultBase::invoke(tc, inst);
629 return;
630 }
631
632 Process *p = tc->getProcessPtr();
633 const EmulationPageTable::Entry *pte = p->pTable->lookup(vaddr);
634 panic_if(!pte, "Tried to execute unmapped address %#x.\n", vaddr);
635
636 Addr alignedvaddr = p->pTable->pageAlign(vaddr);
637
638 // Grab fields used during instruction translation to figure out
639 // which context to use.
640 uint64_t tlbdata = tc->readMiscRegNoEffect(MISCREG_TLB_DATA);
641
642 // Inside a VM, a real address is the address that guest OS would
643 // interpret to be a physical address. To map to the physical address,
644 // it still needs to undergo a translation. The instruction
645 // translation code in the SPARC ITLB code assumes that the context is
646 // zero (kernel-level) if real addressing is being used.
647 bool is_real_address = !bits(tlbdata, 4);
648
649 // The SPARC ITLB code assumes that traps are executed in context
650 // zero so we carry that assumption through here.
651 bool trapped = bits(tlbdata, 18, 16) > 0;
652
653 // The primary context acts as a PASID. It allows the MMU to
654 // distinguish between virtual addresses that would alias to the
655 // same physical address (if two or more processes shared the same
656 // virtual address mapping).
657 int primary_context = bits(tlbdata, 47, 32);
658
659 // The partition id distinguishes between virtualized environments.
660 int const partition_id = 0;
661
662 // Given the assumptions in the translateInst code in the SPARC ITLB,
663 // the logic works out to the following for the context.
664 int context_id = (is_real_address || trapped) ? 0 : primary_context;
665
666 TlbEntry entry(p->pTable->pid(), alignedvaddr, pte->paddr,
667 pte->flags & EmulationPageTable::Uncacheable,
668 pte->flags & EmulationPageTable::ReadOnly);
669
670 // Insert the TLB entry.
671 // The entry specifying whether the address is "real" is set to
672 // false for syscall emulation mode regardless of whether the
673 // address is real in preceding code. Not sure sure that this is
674 // correct, but also not sure if it matters at all.
675 dynamic_cast<TLB *>(tc->getITBPtr())->
676 insert(alignedvaddr, partition_id, context_id, false, entry.pte);
677}
678
679void
680FastDataAccessMMUMiss::invoke(ThreadContext *tc, const StaticInstPtr &inst)
681{
682 if (FullSystem) {
683 SparcFaultBase::invoke(tc, inst);
684 return;
685 }
686
687 Process *p = tc->getProcessPtr();
688 const EmulationPageTable::Entry *pte = p->pTable->lookup(vaddr);
689 if (!pte && p->fixupStackFault(vaddr))
690 pte = p->pTable->lookup(vaddr);
691 panic_if(!pte, "Tried to access unmapped address %#x.\n", vaddr);
692
693 Addr alignedvaddr = p->pTable->pageAlign(vaddr);
694
695 // Grab fields used during data translation to figure out
696 // which context to use.
697 uint64_t tlbdata = tc->readMiscRegNoEffect(MISCREG_TLB_DATA);
698
699 // The primary context acts as a PASID. It allows the MMU to
700 // distinguish between virtual addresses that would alias to the
701 // same physical address (if two or more processes shared the same
702 // virtual address mapping). There's a secondary context used in the
703 // DTLB translation code, but it should __probably__ be zero for
704 // syscall emulation code. (The secondary context is used by Solaris
705 // to allow kernel privilege code to access user space code:
706 // [ISBN 0-13-022496-0]:PG199.)
707 int primary_context = bits(tlbdata, 47, 32);
708
709 // "Hyper-Privileged Mode" is in use. There are three main modes of
710 // operation for Sparc: Hyper-Privileged Mode, Privileged Mode, and
711 // User Mode.
712 int hpriv = bits(tlbdata, 0);
713
714 // Reset, Error and Debug state is in use. Something horrible has
715 // happened or the system is operating in Reset Mode.
716 int red = bits(tlbdata, 1);
717
718 // Inside a VM, a real address is the address that guest OS would
719 // interpret to be a physical address. To map to the physical address,
720 // it still needs to undergo a translation. The instruction
721 // translation code in the SPARC ITLB code assumes that the context is
722 // zero (kernel-level) if real addressing is being used.
723 int is_real_address = !bits(tlbdata, 5);
724
725 // Grab the address space identifier register from the thread context.
726 // XXX: Inspecting how setMiscReg and setMiscRegNoEffect behave for
727 // MISCREG_ASI causes me to think that the ASI register implementation
728 // might be bugged. The NoEffect variant changes the ASI register
729 // value in the architectural state while the normal variant changes
730 // the context field in the thread context's currently decoded request
731 // but does not directly affect the ASI register value in the
732 // architectural state. The ASI values and the context field in the
733 // request packet seem to have completely different uses.
512 PSTATE pstate = tc->readMiscRegNoEffect(MISCREG_PSTATE);
513 HPSTATE hpstate = tc->readMiscRegNoEffect(MISCREG_HPSTATE);
514
515 Addr PC, NPC;
516
517 PrivilegeLevel current;
518 if (hpstate.hpriv)
519 current = Hyperprivileged;
520 else if (pstate.priv)
521 current = Privileged;
522 else
523 current = User;
524
525 PrivilegeLevel level = getNextLevel(current);
526
527 if (hpstate.red || (tl == MaxTL - 1)) {
528 getREDVector(5, PC, NPC);
529 doREDFault(tc, tt);
530 // This changes the hpstate and pstate, so we need to make sure we
531 // save the old version on the trap stack in doREDFault.
532 enterREDState(tc);
533 } else if (tl == MaxTL) {
534 panic("Should go to error state here.. crap\n");
535 // Do error_state somehow?
536 // Probably inject a WDR fault using the interrupt mechanism.
537 // What should the PC and NPC be set to?
538 } else if (tl > MaxPTL && level == Privileged) {
539 // guest_watchdog fault
540 doNormalFault(tc, trapType(), true);
541 getHyperVector(tc, PC, NPC, 2);
542 } else if (level == Hyperprivileged ||
543 (level == Privileged && trapType() >= 384)) {
544 doNormalFault(tc, trapType(), true);
545 getHyperVector(tc, PC, NPC, trapType());
546 } else {
547 doNormalFault(tc, trapType(), false);
548 getPrivVector(tc, PC, NPC, trapType(), tl + 1);
549 }
550
551 PCState pc;
552 pc.pc(PC);
553 pc.npc(NPC);
554 pc.nnpc(NPC + sizeof(MachInst));
555 pc.upc(0);
556 pc.nupc(1);
557 tc->pcState(pc);
558}
559
560void
561PowerOnReset::invoke(ThreadContext *tc, const StaticInstPtr &inst)
562{
563 // For SPARC, when a system is first started, there is a power
564 // on reset Trap which sets the processor into the following state.
565 // Bits that aren't set aren't defined on startup.
566
567 tc->setMiscRegNoEffect(MISCREG_TL, MaxTL);
568 tc->setMiscRegNoEffect(MISCREG_TT, trapType());
569 tc->setMiscReg(MISCREG_GL, MaxGL);
570
571 PSTATE pstate = 0;
572 pstate.pef = 1;
573 pstate.priv = 1;
574 tc->setMiscRegNoEffect(MISCREG_PSTATE, pstate);
575
576 // Turn on red and hpriv, set everything else to 0
577 HPSTATE hpstate = tc->readMiscRegNoEffect(MISCREG_HPSTATE);
578 hpstate.red = 1;
579 hpstate.hpriv = 1;
580 hpstate.ibe = 0;
581 hpstate.tlz = 0;
582 tc->setMiscRegNoEffect(MISCREG_HPSTATE, hpstate);
583
584 // The tick register is unreadable by nonprivileged software
585 tc->setMiscRegNoEffect(MISCREG_TICK, 1ULL << 63);
586
587 // Enter RED state. We do this last so that the actual state preserved in
588 // the trap stack is the state from before this fault.
589 enterREDState(tc);
590
591 Addr PC, NPC;
592 getREDVector(trapType(), PC, NPC);
593
594 PCState pc;
595 pc.pc(PC);
596 pc.npc(NPC);
597 pc.nnpc(NPC + sizeof(MachInst));
598 pc.upc(0);
599 pc.nupc(1);
600 tc->pcState(pc);
601
602 // These registers are specified as "undefined" after a POR, and they
603 // should have reasonable values after the miscregfile is reset
604 /*
605 // Clear all the soft interrupt bits
606 softint = 0;
607 // disable timer compare interrupts, reset tick_cmpr
608 tc->setMiscRegNoEffect(MISCREG_
609 tick_cmprFields.int_dis = 1;
610 tick_cmprFields.tick_cmpr = 0; // Reset to 0 for pretty printing
611 stickFields.npt = 1; // The TICK register is unreadable by by !priv
612 stick_cmprFields.int_dis = 1; // disable timer compare interrupts
613 stick_cmprFields.tick_cmpr = 0; // Reset to 0 for pretty printing
614
615 tt[tl] = _trapType;
616
617 hintp = 0; // no interrupts pending
618 hstick_cmprFields.int_dis = 1; // disable timer compare interrupts
619 hstick_cmprFields.tick_cmpr = 0; // Reset to 0 for pretty printing
620 */
621}
622
623void
624FastInstructionAccessMMUMiss::invoke(ThreadContext *tc,
625 const StaticInstPtr &inst)
626{
627 if (FullSystem) {
628 SparcFaultBase::invoke(tc, inst);
629 return;
630 }
631
632 Process *p = tc->getProcessPtr();
633 const EmulationPageTable::Entry *pte = p->pTable->lookup(vaddr);
634 panic_if(!pte, "Tried to execute unmapped address %#x.\n", vaddr);
635
636 Addr alignedvaddr = p->pTable->pageAlign(vaddr);
637
638 // Grab fields used during instruction translation to figure out
639 // which context to use.
640 uint64_t tlbdata = tc->readMiscRegNoEffect(MISCREG_TLB_DATA);
641
642 // Inside a VM, a real address is the address that guest OS would
643 // interpret to be a physical address. To map to the physical address,
644 // it still needs to undergo a translation. The instruction
645 // translation code in the SPARC ITLB code assumes that the context is
646 // zero (kernel-level) if real addressing is being used.
647 bool is_real_address = !bits(tlbdata, 4);
648
649 // The SPARC ITLB code assumes that traps are executed in context
650 // zero so we carry that assumption through here.
651 bool trapped = bits(tlbdata, 18, 16) > 0;
652
653 // The primary context acts as a PASID. It allows the MMU to
654 // distinguish between virtual addresses that would alias to the
655 // same physical address (if two or more processes shared the same
656 // virtual address mapping).
657 int primary_context = bits(tlbdata, 47, 32);
658
659 // The partition id distinguishes between virtualized environments.
660 int const partition_id = 0;
661
662 // Given the assumptions in the translateInst code in the SPARC ITLB,
663 // the logic works out to the following for the context.
664 int context_id = (is_real_address || trapped) ? 0 : primary_context;
665
666 TlbEntry entry(p->pTable->pid(), alignedvaddr, pte->paddr,
667 pte->flags & EmulationPageTable::Uncacheable,
668 pte->flags & EmulationPageTable::ReadOnly);
669
670 // Insert the TLB entry.
671 // The entry specifying whether the address is "real" is set to
672 // false for syscall emulation mode regardless of whether the
673 // address is real in preceding code. Not sure sure that this is
674 // correct, but also not sure if it matters at all.
675 dynamic_cast<TLB *>(tc->getITBPtr())->
676 insert(alignedvaddr, partition_id, context_id, false, entry.pte);
677}
678
679void
680FastDataAccessMMUMiss::invoke(ThreadContext *tc, const StaticInstPtr &inst)
681{
682 if (FullSystem) {
683 SparcFaultBase::invoke(tc, inst);
684 return;
685 }
686
687 Process *p = tc->getProcessPtr();
688 const EmulationPageTable::Entry *pte = p->pTable->lookup(vaddr);
689 if (!pte && p->fixupStackFault(vaddr))
690 pte = p->pTable->lookup(vaddr);
691 panic_if(!pte, "Tried to access unmapped address %#x.\n", vaddr);
692
693 Addr alignedvaddr = p->pTable->pageAlign(vaddr);
694
695 // Grab fields used during data translation to figure out
696 // which context to use.
697 uint64_t tlbdata = tc->readMiscRegNoEffect(MISCREG_TLB_DATA);
698
699 // The primary context acts as a PASID. It allows the MMU to
700 // distinguish between virtual addresses that would alias to the
701 // same physical address (if two or more processes shared the same
702 // virtual address mapping). There's a secondary context used in the
703 // DTLB translation code, but it should __probably__ be zero for
704 // syscall emulation code. (The secondary context is used by Solaris
705 // to allow kernel privilege code to access user space code:
706 // [ISBN 0-13-022496-0]:PG199.)
707 int primary_context = bits(tlbdata, 47, 32);
708
709 // "Hyper-Privileged Mode" is in use. There are three main modes of
710 // operation for Sparc: Hyper-Privileged Mode, Privileged Mode, and
711 // User Mode.
712 int hpriv = bits(tlbdata, 0);
713
714 // Reset, Error and Debug state is in use. Something horrible has
715 // happened or the system is operating in Reset Mode.
716 int red = bits(tlbdata, 1);
717
718 // Inside a VM, a real address is the address that guest OS would
719 // interpret to be a physical address. To map to the physical address,
720 // it still needs to undergo a translation. The instruction
721 // translation code in the SPARC ITLB code assumes that the context is
722 // zero (kernel-level) if real addressing is being used.
723 int is_real_address = !bits(tlbdata, 5);
724
725 // Grab the address space identifier register from the thread context.
726 // XXX: Inspecting how setMiscReg and setMiscRegNoEffect behave for
727 // MISCREG_ASI causes me to think that the ASI register implementation
728 // might be bugged. The NoEffect variant changes the ASI register
729 // value in the architectural state while the normal variant changes
730 // the context field in the thread context's currently decoded request
731 // but does not directly affect the ASI register value in the
732 // architectural state. The ASI values and the context field in the
733 // request packet seem to have completely different uses.
734 MiscReg reg_asi = tc->readMiscRegNoEffect(MISCREG_ASI);
734 RegVal reg_asi = tc->readMiscRegNoEffect(MISCREG_ASI);
735 ASI asi = static_cast<ASI>(reg_asi);
736
737 // The SPARC DTLB code assumes that traps are executed in context
738 // zero if the asi value is ASI_IMPLICIT (which is 0x0). There's also
739 // an assumption that the nucleus address space is being used, but
740 // the context is the relevant issue since we need to pass it to TLB.
741 bool trapped = bits(tlbdata, 18, 16) > 0;
742
743 // Given the assumptions in the translateData code in the SPARC DTLB,
744 // the logic works out to the following for the context.
745 int context_id = ((!hpriv && !red && is_real_address) ||
746 asiIsReal(asi) ||
747 (trapped && asi == ASI_IMPLICIT))
748 ? 0 : primary_context;
749
750 // The partition id distinguishes between virtualized environments.
751 int const partition_id = 0;
752
753 TlbEntry entry(p->pTable->pid(), alignedvaddr, pte->paddr,
754 pte->flags & EmulationPageTable::Uncacheable,
755 pte->flags & EmulationPageTable::ReadOnly);
756
757 // Insert the TLB entry.
758 // The entry specifying whether the address is "real" is set to
759 // false for syscall emulation mode regardless of whether the
760 // address is real in preceding code. Not sure sure that this is
761 // correct, but also not sure if it matters at all.
762 dynamic_cast<TLB *>(tc->getDTBPtr())->
763 insert(alignedvaddr, partition_id, context_id, false, entry.pte);
764}
765
766void
767SpillNNormal::invoke(ThreadContext *tc, const StaticInstPtr &inst)
768{
769 if (FullSystem) {
770 SparcFaultBase::invoke(tc, inst);
771 return;
772 }
773
774 doNormalFault(tc, trapType(), false);
775
776 Process *p = tc->getProcessPtr();
777
778 SparcProcess *sp = dynamic_cast<SparcProcess *>(p);
779 assert(sp);
780
781 // Then adjust the PC and NPC
782 tc->pcState(sp->readSpillStart());
783}
784
785void
786FillNNormal::invoke(ThreadContext *tc, const StaticInstPtr &inst)
787{
788 if (FullSystem) {
789 SparcFaultBase::invoke(tc, inst);
790 return;
791 }
792
793 doNormalFault(tc, trapType(), false);
794
795 Process *p = tc->getProcessPtr();
796
797 SparcProcess *sp = dynamic_cast<SparcProcess *>(p);
798 assert(sp);
799
800 // Then adjust the PC and NPC
801 tc->pcState(sp->readFillStart());
802}
803
804void
805TrapInstruction::invoke(ThreadContext *tc, const StaticInstPtr &inst)
806{
807 if (FullSystem) {
808 SparcFaultBase::invoke(tc, inst);
809 return;
810 }
811
812 // In SE, this mechanism is how the process requests a service from
813 // the operating system. We'll get the process object from the thread
814 // context and let it service the request.
815
816 Process *p = tc->getProcessPtr();
817
818 SparcProcess *sp = dynamic_cast<SparcProcess *>(p);
819 assert(sp);
820
821 Fault fault;
822 sp->handleTrap(_n, tc, &fault);
823
824 // We need to explicitly advance the pc, since that's not done for us
825 // on a faulting instruction
826 PCState pc = tc->pcState();
827 pc.advance();
828 tc->pcState(pc);
829}
830
831} // namespace SparcISA
832
735 ASI asi = static_cast<ASI>(reg_asi);
736
737 // The SPARC DTLB code assumes that traps are executed in context
738 // zero if the asi value is ASI_IMPLICIT (which is 0x0). There's also
739 // an assumption that the nucleus address space is being used, but
740 // the context is the relevant issue since we need to pass it to TLB.
741 bool trapped = bits(tlbdata, 18, 16) > 0;
742
743 // Given the assumptions in the translateData code in the SPARC DTLB,
744 // the logic works out to the following for the context.
745 int context_id = ((!hpriv && !red && is_real_address) ||
746 asiIsReal(asi) ||
747 (trapped && asi == ASI_IMPLICIT))
748 ? 0 : primary_context;
749
750 // The partition id distinguishes between virtualized environments.
751 int const partition_id = 0;
752
753 TlbEntry entry(p->pTable->pid(), alignedvaddr, pte->paddr,
754 pte->flags & EmulationPageTable::Uncacheable,
755 pte->flags & EmulationPageTable::ReadOnly);
756
757 // Insert the TLB entry.
758 // The entry specifying whether the address is "real" is set to
759 // false for syscall emulation mode regardless of whether the
760 // address is real in preceding code. Not sure sure that this is
761 // correct, but also not sure if it matters at all.
762 dynamic_cast<TLB *>(tc->getDTBPtr())->
763 insert(alignedvaddr, partition_id, context_id, false, entry.pte);
764}
765
766void
767SpillNNormal::invoke(ThreadContext *tc, const StaticInstPtr &inst)
768{
769 if (FullSystem) {
770 SparcFaultBase::invoke(tc, inst);
771 return;
772 }
773
774 doNormalFault(tc, trapType(), false);
775
776 Process *p = tc->getProcessPtr();
777
778 SparcProcess *sp = dynamic_cast<SparcProcess *>(p);
779 assert(sp);
780
781 // Then adjust the PC and NPC
782 tc->pcState(sp->readSpillStart());
783}
784
785void
786FillNNormal::invoke(ThreadContext *tc, const StaticInstPtr &inst)
787{
788 if (FullSystem) {
789 SparcFaultBase::invoke(tc, inst);
790 return;
791 }
792
793 doNormalFault(tc, trapType(), false);
794
795 Process *p = tc->getProcessPtr();
796
797 SparcProcess *sp = dynamic_cast<SparcProcess *>(p);
798 assert(sp);
799
800 // Then adjust the PC and NPC
801 tc->pcState(sp->readFillStart());
802}
803
804void
805TrapInstruction::invoke(ThreadContext *tc, const StaticInstPtr &inst)
806{
807 if (FullSystem) {
808 SparcFaultBase::invoke(tc, inst);
809 return;
810 }
811
812 // In SE, this mechanism is how the process requests a service from
813 // the operating system. We'll get the process object from the thread
814 // context and let it service the request.
815
816 Process *p = tc->getProcessPtr();
817
818 SparcProcess *sp = dynamic_cast<SparcProcess *>(p);
819 assert(sp);
820
821 Fault fault;
822 sp->handleTrap(_n, tc, &fault);
823
824 // We need to explicitly advance the pc, since that's not done for us
825 // on a faulting instruction
826 PCState pc = tc->pcState();
827 pc.advance();
828 tc->pcState(pc);
829}
830
831} // namespace SparcISA
832