process.cc (11905:4a771f8756ad) process.cc (11964:0b67d2ce9801)
1/*
2 * Copyright (c) 2004-2005 The Regents of The University of Michigan
3 * Copyright (c) 2016 The University of Virginia
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met: redistributions of source code must retain the above copyright

--- 19 unchanged lines hidden (view full) ---

28 *
29 * Authors: Gabe Black
30 * Ali Saidi
31 * Korey Sewell
32 * Alec Roelke
33 */
34#include "arch/riscv/process.hh"
35
1/*
2 * Copyright (c) 2004-2005 The Regents of The University of Michigan
3 * Copyright (c) 2016 The University of Virginia
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met: redistributions of source code must retain the above copyright

--- 19 unchanged lines hidden (view full) ---

28 *
29 * Authors: Gabe Black
30 * Ali Saidi
31 * Korey Sewell
32 * Alec Roelke
33 */
34#include "arch/riscv/process.hh"
35
36#include <algorithm>
37#include <cstddef>
38#include <iostream>
39#include <map>
40#include <string>
36#include <vector>
37
38#include "arch/riscv/isa_traits.hh"
39#include "base/loader/elf_object.hh"
40#include "base/loader/object_file.hh"
41#include "base/misc.hh"
42#include "cpu/thread_context.hh"
41#include <vector>
42
43#include "arch/riscv/isa_traits.hh"
44#include "base/loader/elf_object.hh"
45#include "base/loader/object_file.hh"
46#include "base/misc.hh"
47#include "cpu/thread_context.hh"
43#include "debug/Loader.hh"
48#include "debug/Stack.hh"
44#include "mem/page_table.hh"
49#include "mem/page_table.hh"
50#include "params/Process.hh"
45#include "sim/aux_vector.hh"
46#include "sim/process.hh"
47#include "sim/process_impl.hh"
48#include "sim/syscall_return.hh"
49#include "sim/system.hh"
50
51using namespace std;
52using namespace RiscvISA;
53
54RiscvProcess::RiscvProcess(ProcessParams * params,
55 ObjectFile *objFile) : Process(params, objFile)
56{
51#include "sim/aux_vector.hh"
52#include "sim/process.hh"
53#include "sim/process_impl.hh"
54#include "sim/syscall_return.hh"
55#include "sim/system.hh"
56
57using namespace std;
58using namespace RiscvISA;
59
60RiscvProcess::RiscvProcess(ProcessParams * params,
61 ObjectFile *objFile) : Process(params, objFile)
62{
57 // Set up stack. On RISC-V, stack starts at the top of kuseg
58 // user address space. RISC-V stack grows down from here
59 Addr stack_base = 0x7FFFFFFF;
60
61 Addr max_stack_size = 8 * 1024 * 1024;
62
63 // Set pointer for next thread stack. Reserve 8M for main stack.
64 Addr next_thread_stack_base = stack_base - max_stack_size;
65
66 // Set up break point (Top of Heap)
67 Addr brk_point = objFile->bssBase() + objFile->bssSize();
68
69 // Set up region for mmaps. Start it 1GB above the top of the heap.
70 Addr mmap_end = brk_point + 0x40000000L;
71
63 const Addr mem_base = 0x80000000;
64 const Addr stack_base = mem_base;
65 const Addr max_stack_size = PageBytes * 64;
66 const Addr next_thread_stack_base = stack_base - max_stack_size;
67 const Addr brk_point = roundUp(objFile->bssBase() + objFile->bssSize(),
68 PageBytes);
69 const Addr mmap_end = mem_base;
72 memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
70 memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
73 next_thread_stack_base, mmap_end);
71 next_thread_stack_base, mmap_end);
74}
75
76void
77RiscvProcess::initState()
78{
79 Process::initState();
80
81 argsInit<uint64_t>(PageBytes);
82}
83
84template<class IntType> void
85RiscvProcess::argsInit(int pageSize)
86{
87 updateBias();
72}
73
74void
75RiscvProcess::initState()
76{
77 Process::initState();
78
79 argsInit<uint64_t>(PageBytes);
80}
81
82template<class IntType> void
83RiscvProcess::argsInit(int pageSize)
84{
85 updateBias();
88
89 // load object file into target memory
90 objFile->loadSections(initVirtMem);
86 objFile->loadSections(initVirtMem);
87 ElfObject* elfObject = dynamic_cast<ElfObject*>(objFile);
88 memState->setStackMin(memState->getStackBase());
91
89
92 typedef AuxVector<IntType> auxv_t;
93 vector<auxv_t> auxv;
94 ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
95 if (elfObject) {
96 // Set the system page size
97 auxv.push_back(auxv_t(M5_AT_PAGESZ, RiscvISA::PageBytes));
98 // Set the frequency at which time() increments
99 auxv.push_back(auxv_t(M5_AT_CLKTCK, 100));
100 // For statically linked executables, this is the virtual
101 // address of the program header tables if they appear in the
102 // executable image.
103 auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
104 DPRINTF(Loader, "auxv at PHDR %08p\n",
105 elfObject->programHeaderTable());
106 // This is the size of a program header entry from the elf file.
107 auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
108 // This is the number of program headers from the original elf file.
109 auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
110 auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
111 //The entry point to the program
112 auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
113 //Different user and group IDs
114 auxv.push_back(auxv_t(M5_AT_UID, uid()));
115 auxv.push_back(auxv_t(M5_AT_EUID, euid()));
116 auxv.push_back(auxv_t(M5_AT_GID, gid()));
117 auxv.push_back(auxv_t(M5_AT_EGID, egid()));
90 // Determine stack size and populate auxv
91 Addr stack_top = memState->getStackMin();
92 for (const string& arg: argv)
93 stack_top -= arg.size() + 1;
94 for (const string& env: envp)
95 stack_top -= env.size() + 1;
96 stack_top &= -sizeof(Addr);
97
98 vector<AuxVector<IntType>> auxv;
99 if (elfObject != nullptr) {
100 auxv.push_back({M5_AT_ENTRY, objFile->entryPoint()});
101 auxv.push_back({M5_AT_PHNUM, elfObject->programHeaderCount()});
102 auxv.push_back({M5_AT_PHENT, elfObject->programHeaderSize()});
103 auxv.push_back({M5_AT_PHDR, elfObject->programHeaderTable()});
104 auxv.push_back({M5_AT_PAGESZ, PageBytes});
105 auxv.push_back({M5_AT_SECURE, 0});
106 auxv.push_back({M5_AT_RANDOM, stack_top});
107 auxv.push_back({M5_AT_NULL, 0});
118 }
108 }
109 stack_top -= (1 + argv.size()) * sizeof(Addr) +
110 (1 + envp.size()) * sizeof(Addr) +
111 sizeof(Addr) + 2 * sizeof(IntType) * auxv.size();
112 stack_top &= -2*sizeof(Addr);
113 memState->setStackSize(memState->getStackBase() - stack_top);
114 allocateMem(roundDown(stack_top, pageSize),
115 roundUp(memState->getStackSize(), pageSize));
119
116
120 const IntType zero = 0;
121 IntType argc = htog((IntType)argv.size());
122 int argv_array_size = sizeof(Addr) * argv.size();
123 int arg_data_size = 0;
124 for (string arg: argv)
125 arg_data_size += arg.size() + 1;
126 int envp_array_size = sizeof(Addr) * envp.size();
127 int env_data_size = 0;
128 for (string env: envp)
129 env_data_size += env.size() + 1;
130 int auxv_array_size = 2 * sizeof(IntType)*auxv.size();
117 // Copy argv to stack
118 vector<Addr> argPointers;
119 for (const string& arg: argv) {
120 memState->setStackMin(memState->getStackMin() - (arg.size() + 1));
121 initVirtMem.writeString(memState->getStackMin(), arg.c_str());
122 argPointers.push_back(memState->getStackMin());
123 if (DTRACE(Stack)) {
124 string wrote;
125 initVirtMem.readString(wrote, argPointers.back());
126 DPRINTFN("Wrote arg \"%s\" to address %p\n",
127 wrote, (void*)memState->getStackMin());
128 }
129 }
130 argPointers.push_back(0);
131
131
132 Addr stack_size = sizeof(IntType) + argv_array_size + 2 * sizeof(Addr) +
133 sizeof(Addr) + arg_data_size + 2 * sizeof(Addr);
134 if (!envp.empty()) {
135 stack_size += 2 * sizeof(Addr) + envp_array_size + 2 *
136 sizeof(Addr) + env_data_size;
132 // Copy envp to stack
133 vector<Addr> envPointers;
134 for (const string& env: envp) {
135 memState->setStackMin(memState->getStackMin() - (env.size() + 1));
136 initVirtMem.writeString(memState->getStackMin(), env.c_str());
137 envPointers.push_back(memState->getStackMin());
138 DPRINTF(Stack, "Wrote env \"%s\" to address %p\n",
139 env, (void*)memState->getStackMin());
137 }
140 }
138 if (!auxv.empty())
139 stack_size += 2 * sizeof(Addr) + auxv_array_size;
141 envPointers.push_back(0);
140
142
141 memState->setStackSize(stack_size);
143 // Align stack
144 memState->setStackMin(memState->getStackMin() & -sizeof(Addr));
142
145
143 Addr stack_min = roundDown(memState->getStackBase() -
144 stack_size, pageSize);
145 allocateMem(stack_min, roundUp(memState->getStackSize(), pageSize));
146 // Calculate bottom of stack
147 memState->setStackMin(memState->getStackMin() -
148 ((1 + argv.size()) * sizeof(Addr) +
149 (1 + envp.size()) * sizeof(Addr) +
150 sizeof(Addr) + 2 * sizeof(IntType) * auxv.size()));
151 memState->setStackMin(memState->getStackMin() & -2*sizeof(Addr));
152 Addr sp = memState->getStackMin();
153 const auto pushOntoStack =
154 [this, &sp](const uint8_t* data, const size_t size) {
155 initVirtMem.writeBlob(sp, data, size);
156 sp += size;
157 };
146
158
147 memState->setStackMin(stack_min);
148
149 Addr argv_array_base = memState->getStackMin() + sizeof(IntType);
150 Addr arg_data_base = argv_array_base + argv_array_size + 2 * sizeof(Addr);
151 Addr envp_array_base = arg_data_base + arg_data_size;
152 if (!envp.empty())
153 envp_array_base += 2 * sizeof(Addr);
154 Addr env_data_base = envp_array_base + envp_array_size;
155 if (!envp.empty())
156 env_data_base += 2 * sizeof(Addr);
157
158 vector<Addr> arg_pointers;
159 if (!argv.empty()) {
160 arg_pointers.push_back(arg_data_base);
161 for (int i = 0; i < argv.size() - 1; i++) {
162 arg_pointers.push_back(arg_pointers[i] + argv[i].size() + 1);
163 }
159 // Push argc and argv pointers onto stack
160 IntType argc = htog((IntType)argv.size());
161 DPRINTF(Stack, "Wrote argc %d to address %p\n",
162 argv.size(), (void*)sp);
163 pushOntoStack((uint8_t*)&argc, sizeof(IntType));
164 for (const Addr& argPointer: argPointers) {
165 DPRINTF(Stack, "Wrote argv pointer %p to address %p\n",
166 (void*)argPointer, (void*)sp);
167 pushOntoStack((uint8_t*)&argPointer, sizeof(Addr));
164 }
165
168 }
169
166 vector<Addr> env_pointers;
167 if (!envp.empty()) {
168 env_pointers.push_back(env_data_base);
169 for (int i = 0; i < envp.size() - 1; i++) {
170 env_pointers.push_back(env_pointers[i] + envp[i].size() + 1);
171 }
170 // Push env pointers onto stack
171 for (const Addr& envPointer: envPointers) {
172 DPRINTF(Stack, "Wrote envp pointer %p to address %p\n",
173 (void*)envPointer, (void*)sp);
174 pushOntoStack((uint8_t*)&envPointer, sizeof(Addr));
172 }
173
175 }
176
174 Addr sp = memState->getStackMin();
175 initVirtMem.writeBlob(sp, (uint8_t *)&argc, sizeof(IntType));
176 sp += sizeof(IntType);
177 for (Addr arg_pointer: arg_pointers) {
178 initVirtMem.writeBlob(sp, (uint8_t *)&arg_pointer, sizeof(Addr));
179 sp += sizeof(Addr);
177 // Push aux vector onto stack
178 std::map<IntType, string> aux_keys = {
179 {M5_AT_ENTRY, "M5_AT_ENTRY"},
180 {M5_AT_PHNUM, "M5_AT_PHNUM"},
181 {M5_AT_PHENT, "M5_AT_PHENT"},
182 {M5_AT_PHDR, "M5_AT_PHDR"},
183 {M5_AT_PAGESZ, "M5_AT_PAGESZ"},
184 {M5_AT_SECURE, "M5_AT_SECURE"},
185 {M5_AT_RANDOM, "M5_AT_RANDOM"},
186 {M5_AT_NULL, "M5_AT_NULL"}
187 };
188 for (const AuxVector<IntType>& aux: auxv) {
189 DPRINTF(Stack, "Wrote aux key %s to address %p\n",
190 aux_keys[aux.a_type], (void*)sp);
191 pushOntoStack((uint8_t*)&aux.a_type, sizeof(IntType));
192 DPRINTF(Stack, "Wrote aux value %x to address %p\n",
193 aux.a_val, (void*)sp);
194 pushOntoStack((uint8_t*)&aux.a_val, sizeof(IntType));
180 }
195 }
181 for (int i = 0; i < 2; i++) {
182 initVirtMem.writeBlob(sp, (uint8_t *)&zero, sizeof(Addr));
183 sp += sizeof(Addr);
184 }
185 for (int i = 0; i < argv.size(); i++) {
186 initVirtMem.writeString(sp, argv[i].c_str());
187 sp += argv[i].size() + 1;
188 }
189 if (!envp.empty()) {
190 for (int i = 0; i < 2; i++) {
191 initVirtMem.writeBlob(sp, (uint8_t *)&zero, sizeof(Addr));
192 sp += sizeof(Addr);
193 }
194 }
195 for (Addr env_pointer: env_pointers)
196 initVirtMem.writeBlob(sp, (uint8_t *)&env_pointer, sizeof(Addr));
197 if (!envp.empty()) {
198 for (int i = 0; i < 2; i++) {
199 initVirtMem.writeBlob(sp, (uint8_t *)&zero, sizeof(Addr));
200 sp += sizeof(Addr);
201 }
202 }
203 for (int i = 0; i < envp.size(); i++) {
204 initVirtMem.writeString(sp, envp[i].c_str());
205 sp += envp[i].size() + 1;
206 }
207 if (!auxv.empty()) {
208 for (int i = 0; i < 2; i++) {
209 initVirtMem.writeBlob(sp, (uint8_t *)&zero, sizeof(Addr));
210 sp += sizeof(Addr);
211 }
212 }
213 for (auxv_t aux: auxv) {
214 initVirtMem.writeBlob(sp, (uint8_t *)&aux.a_type, sizeof(IntType));
215 initVirtMem.writeBlob(sp + sizeof(IntType), (uint8_t *)&aux.a_val,
216 sizeof(IntType));
217 sp += 2 * sizeof(IntType);
218 }
219 for (int i = 0; i < 2; i++) {
220 initVirtMem.writeBlob(sp, (uint8_t *)&zero, sizeof(Addr));
221 sp += sizeof(Addr);
222 }
223
224 ThreadContext *tc = system->getThreadContext(contextIds[0]);
225 tc->setIntReg(StackPointerReg, memState->getStackMin());
226 tc->pcState(getStartPC());
196
197 ThreadContext *tc = system->getThreadContext(contextIds[0]);
198 tc->setIntReg(StackPointerReg, memState->getStackMin());
199 tc->pcState(getStartPC());
200
201 memState->setStackMin(roundDown(memState->getStackMin(), pageSize));
227}
228
229RiscvISA::IntReg
230RiscvProcess::getSyscallArg(ThreadContext *tc, int &i)
231{
232 // RISC-V only has four system call argument registers by convention, so
233 // if a larger index is requested return 0
234 RiscvISA::IntReg retval = 0;

--- 23 unchanged lines hidden ---
202}
203
204RiscvISA::IntReg
205RiscvProcess::getSyscallArg(ThreadContext *tc, int &i)
206{
207 // RISC-V only has four system call argument registers by convention, so
208 // if a larger index is requested return 0
209 RiscvISA::IntReg retval = 0;

--- 23 unchanged lines hidden ---