process.cc (12432:2480d8b432f5) process.cc (12441:ece14e2e8c0a)
1/*
2 * Copyright (c) 2007-2008 The Florida State University
3 * Copyright (c) 2009 The University of Edinburgh
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met: redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer;
10 * redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution;
13 * neither the name of the copyright holders nor the names of its
14 * contributors may be used to endorse or promote products derived from
15 * this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * Authors: Stephen Hines
30 * Timothy M. Jones
31 */
32
33#include "arch/power/process.hh"
34
35#include "arch/power/isa_traits.hh"
36#include "arch/power/types.hh"
37#include "base/loader/elf_object.hh"
38#include "base/loader/object_file.hh"
39#include "base/logging.hh"
40#include "cpu/thread_context.hh"
41#include "debug/Stack.hh"
42#include "mem/page_table.hh"
43#include "params/Process.hh"
44#include "sim/aux_vector.hh"
45#include "sim/process_impl.hh"
46#include "sim/syscall_return.hh"
47#include "sim/system.hh"
48
49using namespace std;
50using namespace PowerISA;
51
52PowerProcess::PowerProcess(ProcessParams *params, ObjectFile *objFile)
53 : Process(params, new FuncPageTable(params->name, params->pid, PageBytes),
54 objFile)
55{
1/*
2 * Copyright (c) 2007-2008 The Florida State University
3 * Copyright (c) 2009 The University of Edinburgh
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met: redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer;
10 * redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution;
13 * neither the name of the copyright holders nor the names of its
14 * contributors may be used to endorse or promote products derived from
15 * this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * Authors: Stephen Hines
30 * Timothy M. Jones
31 */
32
33#include "arch/power/process.hh"
34
35#include "arch/power/isa_traits.hh"
36#include "arch/power/types.hh"
37#include "base/loader/elf_object.hh"
38#include "base/loader/object_file.hh"
39#include "base/logging.hh"
40#include "cpu/thread_context.hh"
41#include "debug/Stack.hh"
42#include "mem/page_table.hh"
43#include "params/Process.hh"
44#include "sim/aux_vector.hh"
45#include "sim/process_impl.hh"
46#include "sim/syscall_return.hh"
47#include "sim/system.hh"
48
49using namespace std;
50using namespace PowerISA;
51
52PowerProcess::PowerProcess(ProcessParams *params, ObjectFile *objFile)
53 : Process(params, new FuncPageTable(params->name, params->pid, PageBytes),
54 objFile)
55{
56 fatal_if(!params->useArchPT, "Arch page tables not implemented.");
56 fatal_if(params->useArchPT, "Arch page tables not implemented.");
57 // Set up break point (Top of Heap)
58 Addr brk_point = objFile->dataBase() + objFile->dataSize() +
59 objFile->bssSize();
60 brk_point = roundUp(brk_point, PageBytes);
61
62 Addr stack_base = 0xbf000000L;
63
64 Addr max_stack_size = 8 * 1024 * 1024;
65
66 // Set pointer for next thread stack. Reserve 8M for main stack.
67 Addr next_thread_stack_base = stack_base - max_stack_size;
68
69 // Set up region for mmaps. For now, start at bottom of kuseg space.
70 Addr mmap_end = 0x70000000L;
71
72 memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
73 next_thread_stack_base, mmap_end);
74}
75
76void
77PowerProcess::initState()
78{
79 Process::initState();
80
81 argsInit(MachineBytes, PageBytes);
82}
83
84void
85PowerProcess::argsInit(int intSize, int pageSize)
86{
87 typedef AuxVector<uint32_t> auxv_t;
88 std::vector<auxv_t> auxv;
89
90 string filename;
91 if (argv.size() < 1)
92 filename = "";
93 else
94 filename = argv[0];
95
96 //We want 16 byte alignment
97 uint64_t align = 16;
98
99 // Patch the ld_bias for dynamic executables.
100 updateBias();
101
102 // load object file into target memory
103 objFile->loadSections(initVirtMem);
104
105 //Setup the auxilliary vectors. These will already have endian conversion.
106 //Auxilliary vectors are loaded only for elf formatted executables.
107 ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
108 if (elfObject) {
109 uint32_t features = 0;
110
111 //Bits which describe the system hardware capabilities
112 //XXX Figure out what these should be
113 auxv.push_back(auxv_t(M5_AT_HWCAP, features));
114 //The system page size
115 auxv.push_back(auxv_t(M5_AT_PAGESZ, PowerISA::PageBytes));
116 //Frequency at which times() increments
117 auxv.push_back(auxv_t(M5_AT_CLKTCK, 0x64));
118 // For statically linked executables, this is the virtual address of the
119 // program header tables if they appear in the executable image
120 auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
121 // This is the size of a program header entry from the elf file.
122 auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
123 // This is the number of program headers from the original elf file.
124 auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
125 // This is the base address of the ELF interpreter; it should be
126 // zero for static executables or contain the base address for
127 // dynamic executables.
128 auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
129 //XXX Figure out what this should be.
130 auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
131 //The entry point to the program
132 auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
133 //Different user and group IDs
134 auxv.push_back(auxv_t(M5_AT_UID, uid()));
135 auxv.push_back(auxv_t(M5_AT_EUID, euid()));
136 auxv.push_back(auxv_t(M5_AT_GID, gid()));
137 auxv.push_back(auxv_t(M5_AT_EGID, egid()));
138 //Whether to enable "secure mode" in the executable
139 auxv.push_back(auxv_t(M5_AT_SECURE, 0));
140 //The filename of the program
141 auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
142 //The string "v51" with unknown meaning
143 auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
144 }
145
146 //Figure out how big the initial stack nedes to be
147
148 // A sentry NULL void pointer at the top of the stack.
149 int sentry_size = intSize;
150
151 string platform = "v51";
152 int platform_size = platform.size() + 1;
153
154 // The aux vectors are put on the stack in two groups. The first group are
155 // the vectors that are generated as the elf is loaded. The second group
156 // are the ones that were computed ahead of time and include the platform
157 // string.
158 int aux_data_size = filename.size() + 1;
159
160 int env_data_size = 0;
161 for (int i = 0; i < envp.size(); ++i) {
162 env_data_size += envp[i].size() + 1;
163 }
164 int arg_data_size = 0;
165 for (int i = 0; i < argv.size(); ++i) {
166 arg_data_size += argv[i].size() + 1;
167 }
168
169 int info_block_size =
170 sentry_size + env_data_size + arg_data_size +
171 aux_data_size + platform_size;
172
173 //Each auxilliary vector is two 4 byte words
174 int aux_array_size = intSize * 2 * (auxv.size() + 1);
175
176 int envp_array_size = intSize * (envp.size() + 1);
177 int argv_array_size = intSize * (argv.size() + 1);
178
179 int argc_size = intSize;
180
181 //Figure out the size of the contents of the actual initial frame
182 int frame_size =
183 info_block_size +
184 aux_array_size +
185 envp_array_size +
186 argv_array_size +
187 argc_size;
188
189 //There needs to be padding after the auxiliary vector data so that the
190 //very bottom of the stack is aligned properly.
191 int partial_size = frame_size;
192 int aligned_partial_size = roundUp(partial_size, align);
193 int aux_padding = aligned_partial_size - partial_size;
194
195 int space_needed = frame_size + aux_padding;
196
197 Addr stack_min = memState->getStackBase() - space_needed;
198 stack_min = roundDown(stack_min, align);
199
200 memState->setStackSize(memState->getStackBase() - stack_min);
201
202 // map memory
203 allocateMem(roundDown(stack_min, pageSize),
204 roundUp(memState->getStackSize(), pageSize));
205
206 // map out initial stack contents
207 uint32_t sentry_base = memState->getStackBase() - sentry_size;
208 uint32_t aux_data_base = sentry_base - aux_data_size;
209 uint32_t env_data_base = aux_data_base - env_data_size;
210 uint32_t arg_data_base = env_data_base - arg_data_size;
211 uint32_t platform_base = arg_data_base - platform_size;
212 uint32_t auxv_array_base = platform_base - aux_array_size - aux_padding;
213 uint32_t envp_array_base = auxv_array_base - envp_array_size;
214 uint32_t argv_array_base = envp_array_base - argv_array_size;
215 uint32_t argc_base = argv_array_base - argc_size;
216
217 DPRINTF(Stack, "The addresses of items on the initial stack:\n");
218 DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
219 DPRINTF(Stack, "0x%x - env data\n", env_data_base);
220 DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
221 DPRINTF(Stack, "0x%x - platform base\n", platform_base);
222 DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
223 DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
224 DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
225 DPRINTF(Stack, "0x%x - argc \n", argc_base);
226 DPRINTF(Stack, "0x%x - stack min\n", stack_min);
227
228 // write contents to stack
229
230 // figure out argc
231 uint32_t argc = argv.size();
232 uint32_t guestArgc = PowerISA::htog(argc);
233
234 //Write out the sentry void *
235 uint32_t sentry_NULL = 0;
236 initVirtMem.writeBlob(sentry_base,
237 (uint8_t*)&sentry_NULL, sentry_size);
238
239 //Fix up the aux vectors which point to other data
240 for (int i = auxv.size() - 1; i >= 0; i--) {
241 if (auxv[i].a_type == M5_AT_PLATFORM) {
242 auxv[i].a_val = platform_base;
243 initVirtMem.writeString(platform_base, platform.c_str());
244 } else if (auxv[i].a_type == M5_AT_EXECFN) {
245 auxv[i].a_val = aux_data_base;
246 initVirtMem.writeString(aux_data_base, filename.c_str());
247 }
248 }
249
250 //Copy the aux stuff
251 for (int x = 0; x < auxv.size(); x++)
252 {
253 initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
254 (uint8_t*)&(auxv[x].a_type), intSize);
255 initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
256 (uint8_t*)&(auxv[x].a_val), intSize);
257 }
258 //Write out the terminating zeroed auxilliary vector
259 const uint64_t zero = 0;
260 initVirtMem.writeBlob(auxv_array_base + 2 * intSize * auxv.size(),
261 (uint8_t*)&zero, 2 * intSize);
262
263 copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
264 copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
265
266 initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
267
268 ThreadContext *tc = system->getThreadContext(contextIds[0]);
269
270 //Set the stack pointer register
271 tc->setIntReg(StackPointerReg, stack_min);
272
273 tc->pcState(getStartPC());
274
275 //Align the "stack_min" to a page boundary.
276 memState->setStackMin(roundDown(stack_min, pageSize));
277}
278
279PowerISA::IntReg
280PowerProcess::getSyscallArg(ThreadContext *tc, int &i)
281{
282 assert(i < 5);
283 return tc->readIntReg(ArgumentReg0 + i++);
284}
285
286void
287PowerProcess::setSyscallArg(ThreadContext *tc, int i, PowerISA::IntReg val)
288{
289 assert(i < 5);
290 tc->setIntReg(ArgumentReg0 + i, val);
291}
292
293void
294PowerProcess::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
295{
296 Cr cr = tc->readIntReg(INTREG_CR);
297 if (sysret.successful()) {
298 cr.cr0.so = 0;
299 } else {
300 cr.cr0.so = 1;
301 }
302 tc->setIntReg(INTREG_CR, cr);
303 tc->setIntReg(ReturnValueReg, sysret.encodedValue());
304}
57 // Set up break point (Top of Heap)
58 Addr brk_point = objFile->dataBase() + objFile->dataSize() +
59 objFile->bssSize();
60 brk_point = roundUp(brk_point, PageBytes);
61
62 Addr stack_base = 0xbf000000L;
63
64 Addr max_stack_size = 8 * 1024 * 1024;
65
66 // Set pointer for next thread stack. Reserve 8M for main stack.
67 Addr next_thread_stack_base = stack_base - max_stack_size;
68
69 // Set up region for mmaps. For now, start at bottom of kuseg space.
70 Addr mmap_end = 0x70000000L;
71
72 memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
73 next_thread_stack_base, mmap_end);
74}
75
76void
77PowerProcess::initState()
78{
79 Process::initState();
80
81 argsInit(MachineBytes, PageBytes);
82}
83
84void
85PowerProcess::argsInit(int intSize, int pageSize)
86{
87 typedef AuxVector<uint32_t> auxv_t;
88 std::vector<auxv_t> auxv;
89
90 string filename;
91 if (argv.size() < 1)
92 filename = "";
93 else
94 filename = argv[0];
95
96 //We want 16 byte alignment
97 uint64_t align = 16;
98
99 // Patch the ld_bias for dynamic executables.
100 updateBias();
101
102 // load object file into target memory
103 objFile->loadSections(initVirtMem);
104
105 //Setup the auxilliary vectors. These will already have endian conversion.
106 //Auxilliary vectors are loaded only for elf formatted executables.
107 ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
108 if (elfObject) {
109 uint32_t features = 0;
110
111 //Bits which describe the system hardware capabilities
112 //XXX Figure out what these should be
113 auxv.push_back(auxv_t(M5_AT_HWCAP, features));
114 //The system page size
115 auxv.push_back(auxv_t(M5_AT_PAGESZ, PowerISA::PageBytes));
116 //Frequency at which times() increments
117 auxv.push_back(auxv_t(M5_AT_CLKTCK, 0x64));
118 // For statically linked executables, this is the virtual address of the
119 // program header tables if they appear in the executable image
120 auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
121 // This is the size of a program header entry from the elf file.
122 auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
123 // This is the number of program headers from the original elf file.
124 auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
125 // This is the base address of the ELF interpreter; it should be
126 // zero for static executables or contain the base address for
127 // dynamic executables.
128 auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
129 //XXX Figure out what this should be.
130 auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
131 //The entry point to the program
132 auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
133 //Different user and group IDs
134 auxv.push_back(auxv_t(M5_AT_UID, uid()));
135 auxv.push_back(auxv_t(M5_AT_EUID, euid()));
136 auxv.push_back(auxv_t(M5_AT_GID, gid()));
137 auxv.push_back(auxv_t(M5_AT_EGID, egid()));
138 //Whether to enable "secure mode" in the executable
139 auxv.push_back(auxv_t(M5_AT_SECURE, 0));
140 //The filename of the program
141 auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
142 //The string "v51" with unknown meaning
143 auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
144 }
145
146 //Figure out how big the initial stack nedes to be
147
148 // A sentry NULL void pointer at the top of the stack.
149 int sentry_size = intSize;
150
151 string platform = "v51";
152 int platform_size = platform.size() + 1;
153
154 // The aux vectors are put on the stack in two groups. The first group are
155 // the vectors that are generated as the elf is loaded. The second group
156 // are the ones that were computed ahead of time and include the platform
157 // string.
158 int aux_data_size = filename.size() + 1;
159
160 int env_data_size = 0;
161 for (int i = 0; i < envp.size(); ++i) {
162 env_data_size += envp[i].size() + 1;
163 }
164 int arg_data_size = 0;
165 for (int i = 0; i < argv.size(); ++i) {
166 arg_data_size += argv[i].size() + 1;
167 }
168
169 int info_block_size =
170 sentry_size + env_data_size + arg_data_size +
171 aux_data_size + platform_size;
172
173 //Each auxilliary vector is two 4 byte words
174 int aux_array_size = intSize * 2 * (auxv.size() + 1);
175
176 int envp_array_size = intSize * (envp.size() + 1);
177 int argv_array_size = intSize * (argv.size() + 1);
178
179 int argc_size = intSize;
180
181 //Figure out the size of the contents of the actual initial frame
182 int frame_size =
183 info_block_size +
184 aux_array_size +
185 envp_array_size +
186 argv_array_size +
187 argc_size;
188
189 //There needs to be padding after the auxiliary vector data so that the
190 //very bottom of the stack is aligned properly.
191 int partial_size = frame_size;
192 int aligned_partial_size = roundUp(partial_size, align);
193 int aux_padding = aligned_partial_size - partial_size;
194
195 int space_needed = frame_size + aux_padding;
196
197 Addr stack_min = memState->getStackBase() - space_needed;
198 stack_min = roundDown(stack_min, align);
199
200 memState->setStackSize(memState->getStackBase() - stack_min);
201
202 // map memory
203 allocateMem(roundDown(stack_min, pageSize),
204 roundUp(memState->getStackSize(), pageSize));
205
206 // map out initial stack contents
207 uint32_t sentry_base = memState->getStackBase() - sentry_size;
208 uint32_t aux_data_base = sentry_base - aux_data_size;
209 uint32_t env_data_base = aux_data_base - env_data_size;
210 uint32_t arg_data_base = env_data_base - arg_data_size;
211 uint32_t platform_base = arg_data_base - platform_size;
212 uint32_t auxv_array_base = platform_base - aux_array_size - aux_padding;
213 uint32_t envp_array_base = auxv_array_base - envp_array_size;
214 uint32_t argv_array_base = envp_array_base - argv_array_size;
215 uint32_t argc_base = argv_array_base - argc_size;
216
217 DPRINTF(Stack, "The addresses of items on the initial stack:\n");
218 DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
219 DPRINTF(Stack, "0x%x - env data\n", env_data_base);
220 DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
221 DPRINTF(Stack, "0x%x - platform base\n", platform_base);
222 DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
223 DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
224 DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
225 DPRINTF(Stack, "0x%x - argc \n", argc_base);
226 DPRINTF(Stack, "0x%x - stack min\n", stack_min);
227
228 // write contents to stack
229
230 // figure out argc
231 uint32_t argc = argv.size();
232 uint32_t guestArgc = PowerISA::htog(argc);
233
234 //Write out the sentry void *
235 uint32_t sentry_NULL = 0;
236 initVirtMem.writeBlob(sentry_base,
237 (uint8_t*)&sentry_NULL, sentry_size);
238
239 //Fix up the aux vectors which point to other data
240 for (int i = auxv.size() - 1; i >= 0; i--) {
241 if (auxv[i].a_type == M5_AT_PLATFORM) {
242 auxv[i].a_val = platform_base;
243 initVirtMem.writeString(platform_base, platform.c_str());
244 } else if (auxv[i].a_type == M5_AT_EXECFN) {
245 auxv[i].a_val = aux_data_base;
246 initVirtMem.writeString(aux_data_base, filename.c_str());
247 }
248 }
249
250 //Copy the aux stuff
251 for (int x = 0; x < auxv.size(); x++)
252 {
253 initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
254 (uint8_t*)&(auxv[x].a_type), intSize);
255 initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
256 (uint8_t*)&(auxv[x].a_val), intSize);
257 }
258 //Write out the terminating zeroed auxilliary vector
259 const uint64_t zero = 0;
260 initVirtMem.writeBlob(auxv_array_base + 2 * intSize * auxv.size(),
261 (uint8_t*)&zero, 2 * intSize);
262
263 copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
264 copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
265
266 initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
267
268 ThreadContext *tc = system->getThreadContext(contextIds[0]);
269
270 //Set the stack pointer register
271 tc->setIntReg(StackPointerReg, stack_min);
272
273 tc->pcState(getStartPC());
274
275 //Align the "stack_min" to a page boundary.
276 memState->setStackMin(roundDown(stack_min, pageSize));
277}
278
279PowerISA::IntReg
280PowerProcess::getSyscallArg(ThreadContext *tc, int &i)
281{
282 assert(i < 5);
283 return tc->readIntReg(ArgumentReg0 + i++);
284}
285
286void
287PowerProcess::setSyscallArg(ThreadContext *tc, int i, PowerISA::IntReg val)
288{
289 assert(i < 5);
290 tc->setIntReg(ArgumentReg0 + i, val);
291}
292
293void
294PowerProcess::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
295{
296 Cr cr = tc->readIntReg(INTREG_CR);
297 if (sysret.successful()) {
298 cr.cr0.so = 0;
299 } else {
300 cr.cr0.so = 1;
301 }
302 tc->setIntReg(INTREG_CR, cr);
303 tc->setIntReg(ReturnValueReg, sysret.encodedValue());
304}