process.cc (11793:ef606668d247) process.cc (11800:54436a1784dc)
1/*
2 * Copyright (c) 2007-2008 The Florida State University
3 * Copyright (c) 2009 The University of Edinburgh
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met: redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer;
10 * redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution;
13 * neither the name of the copyright holders nor the names of its
14 * contributors may be used to endorse or promote products derived from
15 * this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * Authors: Stephen Hines
30 * Timothy M. Jones
31 */
32
33#include "arch/power/process.hh"
34
35#include "arch/power/isa_traits.hh"
36#include "arch/power/types.hh"
37#include "base/loader/elf_object.hh"
38#include "base/loader/object_file.hh"
39#include "base/misc.hh"
40#include "cpu/thread_context.hh"
41#include "debug/Stack.hh"
42#include "mem/page_table.hh"
43#include "sim/process_impl.hh"
1/*
2 * Copyright (c) 2007-2008 The Florida State University
3 * Copyright (c) 2009 The University of Edinburgh
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met: redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer;
10 * redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution;
13 * neither the name of the copyright holders nor the names of its
14 * contributors may be used to endorse or promote products derived from
15 * this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * Authors: Stephen Hines
30 * Timothy M. Jones
31 */
32
33#include "arch/power/process.hh"
34
35#include "arch/power/isa_traits.hh"
36#include "arch/power/types.hh"
37#include "base/loader/elf_object.hh"
38#include "base/loader/object_file.hh"
39#include "base/misc.hh"
40#include "cpu/thread_context.hh"
41#include "debug/Stack.hh"
42#include "mem/page_table.hh"
43#include "sim/process_impl.hh"
44#include "sim/syscall_return.hh"
44#include "sim/system.hh"
45
46using namespace std;
47using namespace PowerISA;
48
49PowerLiveProcess::PowerLiveProcess(LiveProcessParams *params,
50 ObjectFile *objFile)
51 : LiveProcess(params, objFile)
52{
53 stack_base = 0xbf000000L;
54
55 // Set pointer for next thread stack. Reserve 8M for main stack.
56 next_thread_stack_base = stack_base - (8 * 1024 * 1024);
57
58 // Set up break point (Top of Heap)
59 brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize();
60 brk_point = roundUp(brk_point, PageBytes);
61
62 // Set up region for mmaps. For now, start at bottom of kuseg space.
63 mmap_end = 0x70000000L;
64}
65
66void
67PowerLiveProcess::initState()
68{
69 Process::initState();
70
71 argsInit(MachineBytes, PageBytes);
72}
73
74void
75PowerLiveProcess::argsInit(int intSize, int pageSize)
76{
77 typedef AuxVector<uint32_t> auxv_t;
78 std::vector<auxv_t> auxv;
79
80 string filename;
81 if (argv.size() < 1)
82 filename = "";
83 else
84 filename = argv[0];
85
86 //We want 16 byte alignment
87 uint64_t align = 16;
88
89 // Patch the ld_bias for dynamic executables.
90 updateBias();
91
92 // load object file into target memory
93 objFile->loadSections(initVirtMem);
94
95 //Setup the auxilliary vectors. These will already have endian conversion.
96 //Auxilliary vectors are loaded only for elf formatted executables.
97 ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
98 if (elfObject) {
99 uint32_t features = 0;
100
101 //Bits which describe the system hardware capabilities
102 //XXX Figure out what these should be
103 auxv.push_back(auxv_t(M5_AT_HWCAP, features));
104 //The system page size
105 auxv.push_back(auxv_t(M5_AT_PAGESZ, PowerISA::PageBytes));
106 //Frequency at which times() increments
107 auxv.push_back(auxv_t(M5_AT_CLKTCK, 0x64));
108 // For statically linked executables, this is the virtual address of the
109 // program header tables if they appear in the executable image
110 auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
111 // This is the size of a program header entry from the elf file.
112 auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
113 // This is the number of program headers from the original elf file.
114 auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
115 // This is the base address of the ELF interpreter; it should be
116 // zero for static executables or contain the base address for
117 // dynamic executables.
118 auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
119 //XXX Figure out what this should be.
120 auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
121 //The entry point to the program
122 auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
123 //Different user and group IDs
124 auxv.push_back(auxv_t(M5_AT_UID, uid()));
125 auxv.push_back(auxv_t(M5_AT_EUID, euid()));
126 auxv.push_back(auxv_t(M5_AT_GID, gid()));
127 auxv.push_back(auxv_t(M5_AT_EGID, egid()));
128 //Whether to enable "secure mode" in the executable
129 auxv.push_back(auxv_t(M5_AT_SECURE, 0));
130 //The filename of the program
131 auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
132 //The string "v51" with unknown meaning
133 auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
134 }
135
136 //Figure out how big the initial stack nedes to be
137
138 // A sentry NULL void pointer at the top of the stack.
139 int sentry_size = intSize;
140
141 string platform = "v51";
142 int platform_size = platform.size() + 1;
143
144 // The aux vectors are put on the stack in two groups. The first group are
145 // the vectors that are generated as the elf is loaded. The second group
146 // are the ones that were computed ahead of time and include the platform
147 // string.
148 int aux_data_size = filename.size() + 1;
149
150 int env_data_size = 0;
151 for (int i = 0; i < envp.size(); ++i) {
152 env_data_size += envp[i].size() + 1;
153 }
154 int arg_data_size = 0;
155 for (int i = 0; i < argv.size(); ++i) {
156 arg_data_size += argv[i].size() + 1;
157 }
158
159 int info_block_size =
160 sentry_size + env_data_size + arg_data_size +
161 aux_data_size + platform_size;
162
163 //Each auxilliary vector is two 4 byte words
164 int aux_array_size = intSize * 2 * (auxv.size() + 1);
165
166 int envp_array_size = intSize * (envp.size() + 1);
167 int argv_array_size = intSize * (argv.size() + 1);
168
169 int argc_size = intSize;
170
171 //Figure out the size of the contents of the actual initial frame
172 int frame_size =
173 info_block_size +
174 aux_array_size +
175 envp_array_size +
176 argv_array_size +
177 argc_size;
178
179 //There needs to be padding after the auxiliary vector data so that the
180 //very bottom of the stack is aligned properly.
181 int partial_size = frame_size;
182 int aligned_partial_size = roundUp(partial_size, align);
183 int aux_padding = aligned_partial_size - partial_size;
184
185 int space_needed = frame_size + aux_padding;
186
187 stack_min = stack_base - space_needed;
188 stack_min = roundDown(stack_min, align);
189 stack_size = stack_base - stack_min;
190
191 // map memory
192 allocateMem(roundDown(stack_min, pageSize), roundUp(stack_size, pageSize));
193
194 // map out initial stack contents
195 uint32_t sentry_base = stack_base - sentry_size;
196 uint32_t aux_data_base = sentry_base - aux_data_size;
197 uint32_t env_data_base = aux_data_base - env_data_size;
198 uint32_t arg_data_base = env_data_base - arg_data_size;
199 uint32_t platform_base = arg_data_base - platform_size;
200 uint32_t auxv_array_base = platform_base - aux_array_size - aux_padding;
201 uint32_t envp_array_base = auxv_array_base - envp_array_size;
202 uint32_t argv_array_base = envp_array_base - argv_array_size;
203 uint32_t argc_base = argv_array_base - argc_size;
204
205 DPRINTF(Stack, "The addresses of items on the initial stack:\n");
206 DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
207 DPRINTF(Stack, "0x%x - env data\n", env_data_base);
208 DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
209 DPRINTF(Stack, "0x%x - platform base\n", platform_base);
210 DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
211 DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
212 DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
213 DPRINTF(Stack, "0x%x - argc \n", argc_base);
214 DPRINTF(Stack, "0x%x - stack min\n", stack_min);
215
216 // write contents to stack
217
218 // figure out argc
219 uint32_t argc = argv.size();
220 uint32_t guestArgc = PowerISA::htog(argc);
221
222 //Write out the sentry void *
223 uint32_t sentry_NULL = 0;
224 initVirtMem.writeBlob(sentry_base,
225 (uint8_t*)&sentry_NULL, sentry_size);
226
227 //Fix up the aux vectors which point to other data
228 for (int i = auxv.size() - 1; i >= 0; i--) {
229 if (auxv[i].a_type == M5_AT_PLATFORM) {
230 auxv[i].a_val = platform_base;
231 initVirtMem.writeString(platform_base, platform.c_str());
232 } else if (auxv[i].a_type == M5_AT_EXECFN) {
233 auxv[i].a_val = aux_data_base;
234 initVirtMem.writeString(aux_data_base, filename.c_str());
235 }
236 }
237
238 //Copy the aux stuff
239 for (int x = 0; x < auxv.size(); x++)
240 {
241 initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
242 (uint8_t*)&(auxv[x].a_type), intSize);
243 initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
244 (uint8_t*)&(auxv[x].a_val), intSize);
245 }
246 //Write out the terminating zeroed auxilliary vector
247 const uint64_t zero = 0;
248 initVirtMem.writeBlob(auxv_array_base + 2 * intSize * auxv.size(),
249 (uint8_t*)&zero, 2 * intSize);
250
251 copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
252 copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
253
254 initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
255
256 ThreadContext *tc = system->getThreadContext(contextIds[0]);
257
258 //Set the stack pointer register
259 tc->setIntReg(StackPointerReg, stack_min);
260
261 tc->pcState(getStartPC());
262
263 //Align the "stack_min" to a page boundary.
264 stack_min = roundDown(stack_min, pageSize);
265}
266
267PowerISA::IntReg
268PowerLiveProcess::getSyscallArg(ThreadContext *tc, int &i)
269{
270 assert(i < 5);
271 return tc->readIntReg(ArgumentReg0 + i++);
272}
273
274void
275PowerLiveProcess::setSyscallArg(ThreadContext *tc,
276 int i, PowerISA::IntReg val)
277{
278 assert(i < 5);
279 tc->setIntReg(ArgumentReg0 + i, val);
280}
281
282void
283PowerLiveProcess::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
284{
285 Cr cr = tc->readIntReg(INTREG_CR);
286 if (sysret.successful()) {
287 cr.cr0.so = 0;
288 } else {
289 cr.cr0.so = 1;
290 }
291 tc->setIntReg(INTREG_CR, cr);
292 tc->setIntReg(ReturnValueReg, sysret.encodedValue());
293}
45#include "sim/system.hh"
46
47using namespace std;
48using namespace PowerISA;
49
50PowerLiveProcess::PowerLiveProcess(LiveProcessParams *params,
51 ObjectFile *objFile)
52 : LiveProcess(params, objFile)
53{
54 stack_base = 0xbf000000L;
55
56 // Set pointer for next thread stack. Reserve 8M for main stack.
57 next_thread_stack_base = stack_base - (8 * 1024 * 1024);
58
59 // Set up break point (Top of Heap)
60 brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize();
61 brk_point = roundUp(brk_point, PageBytes);
62
63 // Set up region for mmaps. For now, start at bottom of kuseg space.
64 mmap_end = 0x70000000L;
65}
66
67void
68PowerLiveProcess::initState()
69{
70 Process::initState();
71
72 argsInit(MachineBytes, PageBytes);
73}
74
75void
76PowerLiveProcess::argsInit(int intSize, int pageSize)
77{
78 typedef AuxVector<uint32_t> auxv_t;
79 std::vector<auxv_t> auxv;
80
81 string filename;
82 if (argv.size() < 1)
83 filename = "";
84 else
85 filename = argv[0];
86
87 //We want 16 byte alignment
88 uint64_t align = 16;
89
90 // Patch the ld_bias for dynamic executables.
91 updateBias();
92
93 // load object file into target memory
94 objFile->loadSections(initVirtMem);
95
96 //Setup the auxilliary vectors. These will already have endian conversion.
97 //Auxilliary vectors are loaded only for elf formatted executables.
98 ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
99 if (elfObject) {
100 uint32_t features = 0;
101
102 //Bits which describe the system hardware capabilities
103 //XXX Figure out what these should be
104 auxv.push_back(auxv_t(M5_AT_HWCAP, features));
105 //The system page size
106 auxv.push_back(auxv_t(M5_AT_PAGESZ, PowerISA::PageBytes));
107 //Frequency at which times() increments
108 auxv.push_back(auxv_t(M5_AT_CLKTCK, 0x64));
109 // For statically linked executables, this is the virtual address of the
110 // program header tables if they appear in the executable image
111 auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
112 // This is the size of a program header entry from the elf file.
113 auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
114 // This is the number of program headers from the original elf file.
115 auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
116 // This is the base address of the ELF interpreter; it should be
117 // zero for static executables or contain the base address for
118 // dynamic executables.
119 auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
120 //XXX Figure out what this should be.
121 auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
122 //The entry point to the program
123 auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
124 //Different user and group IDs
125 auxv.push_back(auxv_t(M5_AT_UID, uid()));
126 auxv.push_back(auxv_t(M5_AT_EUID, euid()));
127 auxv.push_back(auxv_t(M5_AT_GID, gid()));
128 auxv.push_back(auxv_t(M5_AT_EGID, egid()));
129 //Whether to enable "secure mode" in the executable
130 auxv.push_back(auxv_t(M5_AT_SECURE, 0));
131 //The filename of the program
132 auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
133 //The string "v51" with unknown meaning
134 auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
135 }
136
137 //Figure out how big the initial stack nedes to be
138
139 // A sentry NULL void pointer at the top of the stack.
140 int sentry_size = intSize;
141
142 string platform = "v51";
143 int platform_size = platform.size() + 1;
144
145 // The aux vectors are put on the stack in two groups. The first group are
146 // the vectors that are generated as the elf is loaded. The second group
147 // are the ones that were computed ahead of time and include the platform
148 // string.
149 int aux_data_size = filename.size() + 1;
150
151 int env_data_size = 0;
152 for (int i = 0; i < envp.size(); ++i) {
153 env_data_size += envp[i].size() + 1;
154 }
155 int arg_data_size = 0;
156 for (int i = 0; i < argv.size(); ++i) {
157 arg_data_size += argv[i].size() + 1;
158 }
159
160 int info_block_size =
161 sentry_size + env_data_size + arg_data_size +
162 aux_data_size + platform_size;
163
164 //Each auxilliary vector is two 4 byte words
165 int aux_array_size = intSize * 2 * (auxv.size() + 1);
166
167 int envp_array_size = intSize * (envp.size() + 1);
168 int argv_array_size = intSize * (argv.size() + 1);
169
170 int argc_size = intSize;
171
172 //Figure out the size of the contents of the actual initial frame
173 int frame_size =
174 info_block_size +
175 aux_array_size +
176 envp_array_size +
177 argv_array_size +
178 argc_size;
179
180 //There needs to be padding after the auxiliary vector data so that the
181 //very bottom of the stack is aligned properly.
182 int partial_size = frame_size;
183 int aligned_partial_size = roundUp(partial_size, align);
184 int aux_padding = aligned_partial_size - partial_size;
185
186 int space_needed = frame_size + aux_padding;
187
188 stack_min = stack_base - space_needed;
189 stack_min = roundDown(stack_min, align);
190 stack_size = stack_base - stack_min;
191
192 // map memory
193 allocateMem(roundDown(stack_min, pageSize), roundUp(stack_size, pageSize));
194
195 // map out initial stack contents
196 uint32_t sentry_base = stack_base - sentry_size;
197 uint32_t aux_data_base = sentry_base - aux_data_size;
198 uint32_t env_data_base = aux_data_base - env_data_size;
199 uint32_t arg_data_base = env_data_base - arg_data_size;
200 uint32_t platform_base = arg_data_base - platform_size;
201 uint32_t auxv_array_base = platform_base - aux_array_size - aux_padding;
202 uint32_t envp_array_base = auxv_array_base - envp_array_size;
203 uint32_t argv_array_base = envp_array_base - argv_array_size;
204 uint32_t argc_base = argv_array_base - argc_size;
205
206 DPRINTF(Stack, "The addresses of items on the initial stack:\n");
207 DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
208 DPRINTF(Stack, "0x%x - env data\n", env_data_base);
209 DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
210 DPRINTF(Stack, "0x%x - platform base\n", platform_base);
211 DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
212 DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
213 DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
214 DPRINTF(Stack, "0x%x - argc \n", argc_base);
215 DPRINTF(Stack, "0x%x - stack min\n", stack_min);
216
217 // write contents to stack
218
219 // figure out argc
220 uint32_t argc = argv.size();
221 uint32_t guestArgc = PowerISA::htog(argc);
222
223 //Write out the sentry void *
224 uint32_t sentry_NULL = 0;
225 initVirtMem.writeBlob(sentry_base,
226 (uint8_t*)&sentry_NULL, sentry_size);
227
228 //Fix up the aux vectors which point to other data
229 for (int i = auxv.size() - 1; i >= 0; i--) {
230 if (auxv[i].a_type == M5_AT_PLATFORM) {
231 auxv[i].a_val = platform_base;
232 initVirtMem.writeString(platform_base, platform.c_str());
233 } else if (auxv[i].a_type == M5_AT_EXECFN) {
234 auxv[i].a_val = aux_data_base;
235 initVirtMem.writeString(aux_data_base, filename.c_str());
236 }
237 }
238
239 //Copy the aux stuff
240 for (int x = 0; x < auxv.size(); x++)
241 {
242 initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
243 (uint8_t*)&(auxv[x].a_type), intSize);
244 initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
245 (uint8_t*)&(auxv[x].a_val), intSize);
246 }
247 //Write out the terminating zeroed auxilliary vector
248 const uint64_t zero = 0;
249 initVirtMem.writeBlob(auxv_array_base + 2 * intSize * auxv.size(),
250 (uint8_t*)&zero, 2 * intSize);
251
252 copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
253 copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
254
255 initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
256
257 ThreadContext *tc = system->getThreadContext(contextIds[0]);
258
259 //Set the stack pointer register
260 tc->setIntReg(StackPointerReg, stack_min);
261
262 tc->pcState(getStartPC());
263
264 //Align the "stack_min" to a page boundary.
265 stack_min = roundDown(stack_min, pageSize);
266}
267
268PowerISA::IntReg
269PowerLiveProcess::getSyscallArg(ThreadContext *tc, int &i)
270{
271 assert(i < 5);
272 return tc->readIntReg(ArgumentReg0 + i++);
273}
274
275void
276PowerLiveProcess::setSyscallArg(ThreadContext *tc,
277 int i, PowerISA::IntReg val)
278{
279 assert(i < 5);
280 tc->setIntReg(ArgumentReg0 + i, val);
281}
282
283void
284PowerLiveProcess::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
285{
286 Cr cr = tc->readIntReg(INTREG_CR);
287 if (sysret.successful()) {
288 cr.cr0.so = 0;
289 } else {
290 cr.cr0.so = 1;
291 }
292 tc->setIntReg(INTREG_CR, cr);
293 tc->setIntReg(ReturnValueReg, sysret.encodedValue());
294}