isa_parser.py (3419:8d92cb467ce4) isa_parser.py (3735:86a7cf4dcc11)
1# Copyright (c) 2003-2005 The Regents of The University of Michigan
2# All rights reserved.
3#
4# Redistribution and use in source and binary forms, with or without
5# modification, are permitted provided that the following conditions are
6# met: redistributions of source code must retain the above copyright
7# notice, this list of conditions and the following disclaimer;
8# redistributions in binary form must reproduce the above copyright
9# notice, this list of conditions and the following disclaimer in the
10# documentation and/or other materials provided with the distribution;
11# neither the name of the copyright holders nor the names of its
12# contributors may be used to endorse or promote products derived from
13# this software without specific prior written permission.
14#
15# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26#
27# Authors: Steve Reinhardt
28# Korey Sewell
29
30import os
31import sys
32import re
33import string
34import traceback
35# get type names
36from types import *
37
38# Prepend the directory where the PLY lex & yacc modules are found
39# to the search path. Assumes we're compiling in a subdirectory
40# of 'build' in the current tree.
41sys.path[0:0] = [os.environ['M5_PLY']]
42
43import lex
44import yacc
45
46#####################################################################
47#
48# Lexer
49#
50# The PLY lexer module takes two things as input:
51# - A list of token names (the string list 'tokens')
52# - A regular expression describing a match for each token. The
53# regexp for token FOO can be provided in two ways:
54# - as a string variable named t_FOO
55# - as the doc string for a function named t_FOO. In this case,
56# the function is also executed, allowing an action to be
57# associated with each token match.
58#
59#####################################################################
60
61# Reserved words. These are listed separately as they are matched
62# using the same regexp as generic IDs, but distinguished in the
63# t_ID() function. The PLY documentation suggests this approach.
64reserved = (
65 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
66 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
67 'OUTPUT', 'SIGNED', 'TEMPLATE'
68 )
69
70# List of tokens. The lex module requires this.
71tokens = reserved + (
72 # identifier
73 'ID',
74
75 # integer literal
76 'INTLIT',
77
78 # string literal
79 'STRLIT',
80
81 # code literal
82 'CODELIT',
83
84 # ( ) [ ] { } < > , ; : :: *
85 'LPAREN', 'RPAREN',
86 'LBRACKET', 'RBRACKET',
87 'LBRACE', 'RBRACE',
88 'LESS', 'GREATER', 'EQUALS',
89 'COMMA', 'SEMI', 'COLON', 'DBLCOLON',
90 'ASTERISK',
91
92 # C preprocessor directives
93 'CPPDIRECTIVE'
94
95# The following are matched but never returned. commented out to
96# suppress PLY warning
97 # newfile directive
98# 'NEWFILE',
99
100 # endfile directive
101# 'ENDFILE'
102)
103
104# Regular expressions for token matching
105t_LPAREN = r'\('
106t_RPAREN = r'\)'
107t_LBRACKET = r'\['
108t_RBRACKET = r'\]'
109t_LBRACE = r'\{'
110t_RBRACE = r'\}'
111t_LESS = r'\<'
112t_GREATER = r'\>'
113t_EQUALS = r'='
114t_COMMA = r','
115t_SEMI = r';'
116t_COLON = r':'
117t_DBLCOLON = r'::'
118t_ASTERISK = r'\*'
119
120# Identifiers and reserved words
121reserved_map = { }
122for r in reserved:
123 reserved_map[r.lower()] = r
124
125def t_ID(t):
126 r'[A-Za-z_]\w*'
127 t.type = reserved_map.get(t.value,'ID')
128 return t
129
130# Integer literal
131def t_INTLIT(t):
132 r'(0x[\da-fA-F]+)|\d+'
133 try:
134 t.value = int(t.value,0)
135 except ValueError:
136 error(t.lineno, 'Integer value "%s" too large' % t.value)
137 t.value = 0
138 return t
139
140# String literal. Note that these use only single quotes, and
141# can span multiple lines.
142def t_STRLIT(t):
143 r"(?m)'([^'])+'"
144 # strip off quotes
145 t.value = t.value[1:-1]
146 t.lineno += t.value.count('\n')
147 return t
148
149
150# "Code literal"... like a string literal, but delimiters are
151# '{{' and '}}' so they get formatted nicely under emacs c-mode
152def t_CODELIT(t):
153 r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
154 # strip off {{ & }}
155 t.value = t.value[2:-2]
156 t.lineno += t.value.count('\n')
157 return t
158
159def t_CPPDIRECTIVE(t):
160 r'^\#[^\#].*\n'
161 t.lineno += t.value.count('\n')
162 return t
163
164def t_NEWFILE(t):
165 r'^\#\#newfile\s+"[\w/.-]*"'
166 fileNameStack.push((t.value[11:-1], t.lineno))
167 t.lineno = 0
168
169def t_ENDFILE(t):
170 r'^\#\#endfile'
171 (old_filename, t.lineno) = fileNameStack.pop()
172
173#
174# The functions t_NEWLINE, t_ignore, and t_error are
175# special for the lex module.
176#
177
178# Newlines
179def t_NEWLINE(t):
180 r'\n+'
181 t.lineno += t.value.count('\n')
182
183# Comments
184def t_comment(t):
185 r'//.*'
186
187# Completely ignored characters
188t_ignore = ' \t\x0c'
189
190# Error handler
191def t_error(t):
192 error(t.lineno, "illegal character '%s'" % t.value[0])
193 t.skip(1)
194
195# Build the lexer
196lex.lex()
197
198#####################################################################
199#
200# Parser
201#
202# Every function whose name starts with 'p_' defines a grammar rule.
203# The rule is encoded in the function's doc string, while the
204# function body provides the action taken when the rule is matched.
205# The argument to each function is a list of the values of the
206# rule's symbols: t[0] for the LHS, and t[1..n] for the symbols
207# on the RHS. For tokens, the value is copied from the t.value
208# attribute provided by the lexer. For non-terminals, the value
209# is assigned by the producing rule; i.e., the job of the grammar
210# rule function is to set the value for the non-terminal on the LHS
211# (by assigning to t[0]).
212#####################################################################
213
214# The LHS of the first grammar rule is used as the start symbol
215# (in this case, 'specification'). Note that this rule enforces
216# that there will be exactly one namespace declaration, with 0 or more
217# global defs/decls before and after it. The defs & decls before
218# the namespace decl will be outside the namespace; those after
219# will be inside. The decoder function is always inside the namespace.
220def p_specification(t):
221 'specification : opt_defs_and_outputs name_decl opt_defs_and_outputs decode_block'
222 global_code = t[1]
223 isa_name = t[2]
224 namespace = isa_name + "Inst"
225 # wrap the decode block as a function definition
226 t[4].wrap_decode_block('''
227StaticInstPtr
228%(isa_name)s::decodeInst(%(isa_name)s::ExtMachInst machInst)
229{
230 using namespace %(namespace)s;
231''' % vars(), '}')
232 # both the latter output blocks and the decode block are in the namespace
233 namespace_code = t[3] + t[4]
234 # pass it all back to the caller of yacc.parse()
235 t[0] = (isa_name, namespace, global_code, namespace_code)
236
237# ISA name declaration looks like "namespace <foo>;"
238def p_name_decl(t):
239 'name_decl : NAMESPACE ID SEMI'
240 t[0] = t[2]
241
242# 'opt_defs_and_outputs' is a possibly empty sequence of
243# def and/or output statements.
244def p_opt_defs_and_outputs_0(t):
245 'opt_defs_and_outputs : empty'
246 t[0] = GenCode()
247
248def p_opt_defs_and_outputs_1(t):
249 'opt_defs_and_outputs : defs_and_outputs'
250 t[0] = t[1]
251
252def p_defs_and_outputs_0(t):
253 'defs_and_outputs : def_or_output'
254 t[0] = t[1]
255
256def p_defs_and_outputs_1(t):
257 'defs_and_outputs : defs_and_outputs def_or_output'
258 t[0] = t[1] + t[2]
259
260# The list of possible definition/output statements.
261def p_def_or_output(t):
262 '''def_or_output : def_format
263 | def_bitfield
264 | def_template
265 | def_operand_types
266 | def_operands
267 | output_header
268 | output_decoder
269 | output_exec
270 | global_let'''
271 t[0] = t[1]
272
273# Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
274# directly to the appropriate output section.
275
276
277# Protect any non-dict-substitution '%'s in a format string
278# (i.e. those not followed by '(')
279def protect_non_subst_percents(s):
280 return re.sub(r'%(?!\()', '%%', s)
281
282# Massage output block by substituting in template definitions and bit
283# operators. We handle '%'s embedded in the string that don't
284# indicate template substitutions (or CPU-specific symbols, which get
285# handled in GenCode) by doubling them first so that the format
286# operation will reduce them back to single '%'s.
287def process_output(s):
288 s = protect_non_subst_percents(s)
289 # protects cpu-specific symbols too
290 s = protect_cpu_symbols(s)
291 return substBitOps(s % templateMap)
292
293def p_output_header(t):
294 'output_header : OUTPUT HEADER CODELIT SEMI'
295 t[0] = GenCode(header_output = process_output(t[3]))
296
297def p_output_decoder(t):
298 'output_decoder : OUTPUT DECODER CODELIT SEMI'
299 t[0] = GenCode(decoder_output = process_output(t[3]))
300
301def p_output_exec(t):
302 'output_exec : OUTPUT EXEC CODELIT SEMI'
303 t[0] = GenCode(exec_output = process_output(t[3]))
304
305# global let blocks 'let {{...}}' (Python code blocks) are executed
306# directly when seen. Note that these execute in a special variable
307# context 'exportContext' to prevent the code from polluting this
308# script's namespace.
309def p_global_let(t):
310 'global_let : LET CODELIT SEMI'
311 updateExportContext()
312 try:
313 exec fixPythonIndentation(t[2]) in exportContext
314 except Exception, exc:
315 error(t.lineno(1),
316 'error: %s in global let block "%s".' % (exc, t[2]))
317 t[0] = GenCode() # contributes nothing to the output C++ file
318
319# Define the mapping from operand type extensions to C++ types and bit
320# widths (stored in operandTypeMap).
321def p_def_operand_types(t):
322 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
323 try:
324 userDict = eval('{' + t[3] + '}')
325 except Exception, exc:
326 error(t.lineno(1),
327 'error: %s in def operand_types block "%s".' % (exc, t[3]))
328 buildOperandTypeMap(userDict, t.lineno(1))
329 t[0] = GenCode() # contributes nothing to the output C++ file
330
331# Define the mapping from operand names to operand classes and other
332# traits. Stored in operandNameMap.
333def p_def_operands(t):
334 'def_operands : DEF OPERANDS CODELIT SEMI'
335 if not globals().has_key('operandTypeMap'):
336 error(t.lineno(1),
337 'error: operand types must be defined before operands')
338 try:
339 userDict = eval('{' + t[3] + '}')
340 except Exception, exc:
341 error(t.lineno(1),
342 'error: %s in def operands block "%s".' % (exc, t[3]))
343 buildOperandNameMap(userDict, t.lineno(1))
344 t[0] = GenCode() # contributes nothing to the output C++ file
345
346# A bitfield definition looks like:
347# 'def [signed] bitfield <ID> [<first>:<last>]'
348# This generates a preprocessor macro in the output file.
349def p_def_bitfield_0(t):
350 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
351 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
352 if (t[2] == 'signed'):
353 expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
354 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
355 t[0] = GenCode(header_output = hash_define)
356
357# alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
358def p_def_bitfield_1(t):
359 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
360 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
361 if (t[2] == 'signed'):
362 expr = 'sext<%d>(%s)' % (1, expr)
363 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
364 t[0] = GenCode(header_output = hash_define)
365
366def p_opt_signed_0(t):
367 'opt_signed : SIGNED'
368 t[0] = t[1]
369
370def p_opt_signed_1(t):
371 'opt_signed : empty'
372 t[0] = ''
373
374# Global map variable to hold templates
375templateMap = {}
376
377def p_def_template(t):
378 'def_template : DEF TEMPLATE ID CODELIT SEMI'
379 templateMap[t[3]] = Template(t[4])
380 t[0] = GenCode()
381
382# An instruction format definition looks like
383# "def format <fmt>(<params>) {{...}};"
384def p_def_format(t):
385 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
386 (id, params, code) = (t[3], t[5], t[7])
387 defFormat(id, params, code, t.lineno(1))
388 t[0] = GenCode()
389
390# The formal parameter list for an instruction format is a possibly
391# empty list of comma-separated parameters. Positional (standard,
392# non-keyword) parameters must come first, followed by keyword
393# parameters, followed by a '*foo' parameter that gets excess
394# positional arguments (as in Python). Each of these three parameter
395# categories is optional.
396#
397# Note that we do not support the '**foo' parameter for collecting
398# otherwise undefined keyword args. Otherwise the parameter list is
399# (I believe) identical to what is supported in Python.
400#
401# The param list generates a tuple, where the first element is a list of
402# the positional params and the second element is a dict containing the
403# keyword params.
404def p_param_list_0(t):
405 'param_list : positional_param_list COMMA nonpositional_param_list'
406 t[0] = t[1] + t[3]
407
408def p_param_list_1(t):
409 '''param_list : positional_param_list
410 | nonpositional_param_list'''
411 t[0] = t[1]
412
413def p_positional_param_list_0(t):
414 'positional_param_list : empty'
415 t[0] = []
416
417def p_positional_param_list_1(t):
418 'positional_param_list : ID'
419 t[0] = [t[1]]
420
421def p_positional_param_list_2(t):
422 'positional_param_list : positional_param_list COMMA ID'
423 t[0] = t[1] + [t[3]]
424
425def p_nonpositional_param_list_0(t):
426 'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
427 t[0] = t[1] + t[3]
428
429def p_nonpositional_param_list_1(t):
430 '''nonpositional_param_list : keyword_param_list
431 | excess_args_param'''
432 t[0] = t[1]
433
434def p_keyword_param_list_0(t):
435 'keyword_param_list : keyword_param'
436 t[0] = [t[1]]
437
438def p_keyword_param_list_1(t):
439 'keyword_param_list : keyword_param_list COMMA keyword_param'
440 t[0] = t[1] + [t[3]]
441
442def p_keyword_param(t):
443 'keyword_param : ID EQUALS expr'
444 t[0] = t[1] + ' = ' + t[3].__repr__()
445
446def p_excess_args_param(t):
447 'excess_args_param : ASTERISK ID'
448 # Just concatenate them: '*ID'. Wrap in list to be consistent
449 # with positional_param_list and keyword_param_list.
450 t[0] = [t[1] + t[2]]
451
452# End of format definition-related rules.
453##############
454
455#
456# A decode block looks like:
457# decode <field1> [, <field2>]* [default <inst>] { ... }
458#
459def p_decode_block(t):
460 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
461 default_defaults = defaultStack.pop()
462 codeObj = t[5]
463 # use the "default defaults" only if there was no explicit
464 # default statement in decode_stmt_list
465 if not codeObj.has_decode_default:
466 codeObj += default_defaults
467 codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
468 t[0] = codeObj
469
470# The opt_default statement serves only to push the "default defaults"
471# onto defaultStack. This value will be used by nested decode blocks,
472# and used and popped off when the current decode_block is processed
473# (in p_decode_block() above).
474def p_opt_default_0(t):
475 'opt_default : empty'
476 # no default specified: reuse the one currently at the top of the stack
477 defaultStack.push(defaultStack.top())
478 # no meaningful value returned
479 t[0] = None
480
481def p_opt_default_1(t):
482 'opt_default : DEFAULT inst'
483 # push the new default
484 codeObj = t[2]
485 codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
486 defaultStack.push(codeObj)
487 # no meaningful value returned
488 t[0] = None
489
490def p_decode_stmt_list_0(t):
491 'decode_stmt_list : decode_stmt'
492 t[0] = t[1]
493
494def p_decode_stmt_list_1(t):
495 'decode_stmt_list : decode_stmt decode_stmt_list'
496 if (t[1].has_decode_default and t[2].has_decode_default):
497 error(t.lineno(1), 'Two default cases in decode block')
498 t[0] = t[1] + t[2]
499
500#
501# Decode statement rules
502#
503# There are four types of statements allowed in a decode block:
504# 1. Format blocks 'format <foo> { ... }'
505# 2. Nested decode blocks
506# 3. Instruction definitions.
507# 4. C preprocessor directives.
508
509
510# Preprocessor directives found in a decode statement list are passed
511# through to the output, replicated to all of the output code
512# streams. This works well for ifdefs, so we can ifdef out both the
513# declarations and the decode cases generated by an instruction
514# definition. Handling them as part of the grammar makes it easy to
515# keep them in the right place with respect to the code generated by
516# the other statements.
517def p_decode_stmt_cpp(t):
518 'decode_stmt : CPPDIRECTIVE'
519 t[0] = GenCode(t[1], t[1], t[1], t[1])
520
521# A format block 'format <foo> { ... }' sets the default instruction
522# format used to handle instruction definitions inside the block.
523# This format can be overridden by using an explicit format on the
524# instruction definition or with a nested format block.
525def p_decode_stmt_format(t):
526 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
527 # The format will be pushed on the stack when 'push_format_id' is
528 # processed (see below). Once the parser has recognized the full
529 # production (though the right brace), we're done with the format,
530 # so now we can pop it.
531 formatStack.pop()
532 t[0] = t[4]
533
534# This rule exists so we can set the current format (& push the stack)
535# when we recognize the format name part of the format block.
536def p_push_format_id(t):
537 'push_format_id : ID'
538 try:
539 formatStack.push(formatMap[t[1]])
540 t[0] = ('', '// format %s' % t[1])
541 except KeyError:
542 error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
543
544# Nested decode block: if the value of the current field matches the
545# specified constant, do a nested decode on some other field.
546def p_decode_stmt_decode(t):
547 'decode_stmt : case_label COLON decode_block'
548 label = t[1]
549 codeObj = t[3]
550 # just wrap the decoding code from the block as a case in the
551 # outer switch statement.
552 codeObj.wrap_decode_block('\n%s:\n' % label)
553 codeObj.has_decode_default = (label == 'default')
554 t[0] = codeObj
555
556# Instruction definition (finally!).
557def p_decode_stmt_inst(t):
558 'decode_stmt : case_label COLON inst SEMI'
559 label = t[1]
560 codeObj = t[3]
561 codeObj.wrap_decode_block('\n%s:' % label, 'break;\n')
562 codeObj.has_decode_default = (label == 'default')
563 t[0] = codeObj
564
565# The case label is either a list of one or more constants or 'default'
566def p_case_label_0(t):
567 'case_label : intlit_list'
568 t[0] = ': '.join(map(lambda a: 'case %#x' % a, t[1]))
569
570def p_case_label_1(t):
571 'case_label : DEFAULT'
572 t[0] = 'default'
573
574#
575# The constant list for a decode case label must be non-empty, but may have
576# one or more comma-separated integer literals in it.
577#
578def p_intlit_list_0(t):
579 'intlit_list : INTLIT'
580 t[0] = [t[1]]
581
582def p_intlit_list_1(t):
583 'intlit_list : intlit_list COMMA INTLIT'
584 t[0] = t[1]
585 t[0].append(t[3])
586
587# Define an instruction using the current instruction format (specified
588# by an enclosing format block).
589# "<mnemonic>(<args>)"
590def p_inst_0(t):
591 'inst : ID LPAREN arg_list RPAREN'
592 # Pass the ID and arg list to the current format class to deal with.
593 currentFormat = formatStack.top()
594 codeObj = currentFormat.defineInst(t[1], t[3], t.lineno(1))
595 args = ','.join(map(str, t[3]))
596 args = re.sub('(?m)^', '//', args)
597 args = re.sub('^//', '', args)
598 comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
599 codeObj.prepend_all(comment)
600 t[0] = codeObj
601
602# Define an instruction using an explicitly specified format:
603# "<fmt>::<mnemonic>(<args>)"
604def p_inst_1(t):
605 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
606 try:
607 format = formatMap[t[1]]
608 except KeyError:
609 error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
610 codeObj = format.defineInst(t[3], t[5], t.lineno(1))
611 comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
612 codeObj.prepend_all(comment)
613 t[0] = codeObj
614
615# The arg list generates a tuple, where the first element is a list of
616# the positional args and the second element is a dict containing the
617# keyword args.
618def p_arg_list_0(t):
619 'arg_list : positional_arg_list COMMA keyword_arg_list'
620 t[0] = ( t[1], t[3] )
621
622def p_arg_list_1(t):
623 'arg_list : positional_arg_list'
624 t[0] = ( t[1], {} )
625
626def p_arg_list_2(t):
627 'arg_list : keyword_arg_list'
628 t[0] = ( [], t[1] )
629
630def p_positional_arg_list_0(t):
631 'positional_arg_list : empty'
632 t[0] = []
633
634def p_positional_arg_list_1(t):
635 'positional_arg_list : expr'
636 t[0] = [t[1]]
637
638def p_positional_arg_list_2(t):
639 'positional_arg_list : positional_arg_list COMMA expr'
640 t[0] = t[1] + [t[3]]
641
642def p_keyword_arg_list_0(t):
643 'keyword_arg_list : keyword_arg'
644 t[0] = t[1]
645
646def p_keyword_arg_list_1(t):
647 'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
648 t[0] = t[1]
649 t[0].update(t[3])
650
651def p_keyword_arg(t):
652 'keyword_arg : ID EQUALS expr'
653 t[0] = { t[1] : t[3] }
654
655#
656# Basic expressions. These constitute the argument values of
657# "function calls" (i.e. instruction definitions in the decode block)
658# and default values for formal parameters of format functions.
659#
660# Right now, these are either strings, integers, or (recursively)
661# lists of exprs (using Python square-bracket list syntax). Note that
662# bare identifiers are trated as string constants here (since there
663# isn't really a variable namespace to refer to).
664#
665def p_expr_0(t):
666 '''expr : ID
667 | INTLIT
668 | STRLIT
669 | CODELIT'''
670 t[0] = t[1]
671
672def p_expr_1(t):
673 '''expr : LBRACKET list_expr RBRACKET'''
674 t[0] = t[2]
675
676def p_list_expr_0(t):
677 'list_expr : expr'
678 t[0] = [t[1]]
679
680def p_list_expr_1(t):
681 'list_expr : list_expr COMMA expr'
682 t[0] = t[1] + [t[3]]
683
684def p_list_expr_2(t):
685 'list_expr : empty'
686 t[0] = []
687
688#
689# Empty production... use in other rules for readability.
690#
691def p_empty(t):
692 'empty :'
693 pass
694
695# Parse error handler. Note that the argument here is the offending
696# *token*, not a grammar symbol (hence the need to use t.value)
697def p_error(t):
698 if t:
699 error(t.lineno, "syntax error at '%s'" % t.value)
700 else:
701 error(0, "unknown syntax error", True)
702
703# END OF GRAMMAR RULES
704#
705# Now build the parser.
706yacc.yacc()
707
708
709#####################################################################
710#
711# Support Classes
712#
713#####################################################################
714
715# Expand template with CPU-specific references into a dictionary with
716# an entry for each CPU model name. The entry key is the model name
717# and the corresponding value is the template with the CPU-specific
718# refs substituted for that model.
719def expand_cpu_symbols_to_dict(template):
720 # Protect '%'s that don't go with CPU-specific terms
721 t = re.sub(r'%(?!\(CPU_)', '%%', template)
722 result = {}
723 for cpu in cpu_models:
724 result[cpu.name] = t % cpu.strings
725 return result
726
727# *If* the template has CPU-specific references, return a single
728# string containing a copy of the template for each CPU model with the
729# corresponding values substituted in. If the template has no
730# CPU-specific references, it is returned unmodified.
731def expand_cpu_symbols_to_string(template):
732 if template.find('%(CPU_') != -1:
733 return reduce(lambda x,y: x+y,
734 expand_cpu_symbols_to_dict(template).values())
735 else:
736 return template
737
738# Protect CPU-specific references by doubling the corresponding '%'s
739# (in preparation for substituting a different set of references into
740# the template).
741def protect_cpu_symbols(template):
742 return re.sub(r'%(?=\(CPU_)', '%%', template)
743
744###############
745# GenCode class
746#
747# The GenCode class encapsulates generated code destined for various
748# output files. The header_output and decoder_output attributes are
749# strings containing code destined for decoder.hh and decoder.cc
750# respectively. The decode_block attribute contains code to be
751# incorporated in the decode function itself (that will also end up in
752# decoder.cc). The exec_output attribute is a dictionary with a key
753# for each CPU model name; the value associated with a particular key
754# is the string of code for that CPU model's exec.cc file. The
755# has_decode_default attribute is used in the decode block to allow
756# explicit default clauses to override default default clauses.
757
758class GenCode:
759 # Constructor. At this point we substitute out all CPU-specific
760 # symbols. For the exec output, these go into the per-model
761 # dictionary. For all other output types they get collapsed into
762 # a single string.
763 def __init__(self,
764 header_output = '', decoder_output = '', exec_output = '',
765 decode_block = '', has_decode_default = False):
766 self.header_output = expand_cpu_symbols_to_string(header_output)
767 self.decoder_output = expand_cpu_symbols_to_string(decoder_output)
768 if isinstance(exec_output, dict):
769 self.exec_output = exec_output
770 elif isinstance(exec_output, str):
771 # If the exec_output arg is a single string, we replicate
772 # it for each of the CPU models, substituting and
773 # %(CPU_foo)s params appropriately.
774 self.exec_output = expand_cpu_symbols_to_dict(exec_output)
775 self.decode_block = expand_cpu_symbols_to_string(decode_block)
776 self.has_decode_default = has_decode_default
777
778 # Override '+' operator: generate a new GenCode object that
779 # concatenates all the individual strings in the operands.
780 def __add__(self, other):
781 exec_output = {}
782 for cpu in cpu_models:
783 n = cpu.name
784 exec_output[n] = self.exec_output[n] + other.exec_output[n]
785 return GenCode(self.header_output + other.header_output,
786 self.decoder_output + other.decoder_output,
787 exec_output,
788 self.decode_block + other.decode_block,
789 self.has_decode_default or other.has_decode_default)
790
791 # Prepend a string (typically a comment) to all the strings.
792 def prepend_all(self, pre):
793 self.header_output = pre + self.header_output
794 self.decoder_output = pre + self.decoder_output
795 self.decode_block = pre + self.decode_block
796 for cpu in cpu_models:
797 self.exec_output[cpu.name] = pre + self.exec_output[cpu.name]
798
799 # Wrap the decode block in a pair of strings (e.g., 'case foo:'
800 # and 'break;'). Used to build the big nested switch statement.
801 def wrap_decode_block(self, pre, post = ''):
802 self.decode_block = pre + indent(self.decode_block) + post
803
804################
805# Format object.
806#
807# A format object encapsulates an instruction format. It must provide
808# a defineInst() method that generates the code for an instruction
809# definition.
810
811exportContextSymbols = ('InstObjParams', 'CodeBlock',
812 'makeList', 're', 'string')
813
814exportContext = {}
815
816def updateExportContext():
817 exportContext.update(exportDict(*exportContextSymbols))
818 exportContext.update(templateMap)
819
820def exportDict(*symNames):
821 return dict([(s, eval(s)) for s in symNames])
822
823
824class Format:
825 def __init__(self, id, params, code):
826 # constructor: just save away arguments
827 self.id = id
828 self.params = params
829 label = 'def format ' + id
830 self.user_code = compile(fixPythonIndentation(code), label, 'exec')
831 param_list = string.join(params, ", ")
832 f = '''def defInst(_code, _context, %s):
833 my_locals = vars().copy()
834 exec _code in _context, my_locals
835 return my_locals\n''' % param_list
836 c = compile(f, label + ' wrapper', 'exec')
837 exec c
838 self.func = defInst
839
840 def defineInst(self, name, args, lineno):
841 context = {}
842 updateExportContext()
843 context.update(exportContext)
844 context.update({ 'name': name, 'Name': string.capitalize(name) })
845 try:
846 vars = self.func(self.user_code, context, *args[0], **args[1])
847 except Exception, exc:
848 error(lineno, 'error defining "%s": %s.' % (name, exc))
849 for k in vars.keys():
850 if k not in ('header_output', 'decoder_output',
851 'exec_output', 'decode_block'):
852 del vars[k]
853 return GenCode(**vars)
854
855# Special null format to catch an implicit-format instruction
856# definition outside of any format block.
857class NoFormat:
858 def __init__(self):
859 self.defaultInst = ''
860
861 def defineInst(self, name, args, lineno):
862 error(lineno,
863 'instruction definition "%s" with no active format!' % name)
864
865# This dictionary maps format name strings to Format objects.
866formatMap = {}
867
868# Define a new format
869def defFormat(id, params, code, lineno):
870 # make sure we haven't already defined this one
871 if formatMap.get(id, None) != None:
872 error(lineno, 'format %s redefined.' % id)
873 # create new object and store in global map
874 formatMap[id] = Format(id, params, code)
875
876
877##############
878# Stack: a simple stack object. Used for both formats (formatStack)
879# and default cases (defaultStack). Simply wraps a list to give more
880# stack-like syntax and enable initialization with an argument list
881# (as opposed to an argument that's a list).
882
883class Stack(list):
884 def __init__(self, *items):
885 list.__init__(self, items)
886
887 def push(self, item):
888 self.append(item);
889
890 def top(self):
891 return self[-1]
892
893# The global format stack.
894formatStack = Stack(NoFormat())
895
896# The global default case stack.
897defaultStack = Stack( None )
898
899# Global stack that tracks current file and line number.
900# Each element is a tuple (filename, lineno) that records the
901# *current* filename and the line number in the *previous* file where
902# it was included.
903fileNameStack = Stack()
904
905###################
906# Utility functions
907
908#
909# Indent every line in string 's' by two spaces
910# (except preprocessor directives).
911# Used to make nested code blocks look pretty.
912#
913def indent(s):
914 return re.sub(r'(?m)^(?!#)', ' ', s)
915
916#
917# Munge a somewhat arbitrarily formatted piece of Python code
918# (e.g. from a format 'let' block) into something whose indentation
919# will get by the Python parser.
920#
921# The two keys here are that Python will give a syntax error if
922# there's any whitespace at the beginning of the first line, and that
923# all lines at the same lexical nesting level must have identical
924# indentation. Unfortunately the way code literals work, an entire
925# let block tends to have some initial indentation. Rather than
926# trying to figure out what that is and strip it off, we prepend 'if
927# 1:' to make the let code the nested block inside the if (and have
928# the parser automatically deal with the indentation for us).
929#
930# We don't want to do this if (1) the code block is empty or (2) the
931# first line of the block doesn't have any whitespace at the front.
932
933def fixPythonIndentation(s):
934 # get rid of blank lines first
935 s = re.sub(r'(?m)^\s*\n', '', s);
936 if (s != '' and re.match(r'[ \t]', s[0])):
937 s = 'if 1:\n' + s
938 return s
939
940# Error handler. Just call exit. Output formatted to work under
941# Emacs compile-mode. Optional 'print_traceback' arg, if set to True,
942# prints a Python stack backtrace too (can be handy when trying to
943# debug the parser itself).
944def error(lineno, string, print_traceback = False):
945 spaces = ""
946 for (filename, line) in fileNameStack[0:-1]:
947 print spaces + "In file included from " + filename + ":"
948 spaces += " "
949 # Print a Python stack backtrace if requested.
950 if (print_traceback):
951 traceback.print_exc()
952 if lineno != 0:
953 line_str = "%d:" % lineno
954 else:
955 line_str = ""
956 sys.exit(spaces + "%s:%s %s" % (fileNameStack[-1][0], line_str, string))
957
958
959#####################################################################
960#
961# Bitfield Operator Support
962#
963#####################################################################
964
965bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
966
967bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
968bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
969
970def substBitOps(code):
971 # first convert single-bit selectors to two-index form
972 # i.e., <n> --> <n:n>
973 code = bitOp1ArgRE.sub(r'<\1:\1>', code)
974 # simple case: selector applied to ID (name)
975 # i.e., foo<a:b> --> bits(foo, a, b)
976 code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
977 # if selector is applied to expression (ending in ')'),
978 # we need to search backward for matching '('
979 match = bitOpExprRE.search(code)
980 while match:
981 exprEnd = match.start()
982 here = exprEnd - 1
983 nestLevel = 1
984 while nestLevel > 0:
985 if code[here] == '(':
986 nestLevel -= 1
987 elif code[here] == ')':
988 nestLevel += 1
989 here -= 1
990 if here < 0:
991 sys.exit("Didn't find '('!")
992 exprStart = here+1
993 newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
994 match.group(1), match.group(2))
995 code = code[:exprStart] + newExpr + code[match.end():]
996 match = bitOpExprRE.search(code)
997 return code
998
999
1000####################
1001# Template objects.
1002#
1003# Template objects are format strings that allow substitution from
1004# the attribute spaces of other objects (e.g. InstObjParams instances).
1005
1006class Template:
1007 def __init__(self, t):
1008 self.template = t
1009
1010 def subst(self, d):
1011 # Start with the template namespace. Make a copy since we're
1012 # going to modify it.
1013 myDict = templateMap.copy()
1014 # if the argument is a dictionary, we just use it.
1015 if isinstance(d, dict):
1016 myDict.update(d)
1017 # if the argument is an object, we use its attribute map.
1018 elif hasattr(d, '__dict__'):
1019 myDict.update(d.__dict__)
1020 else:
1021 raise TypeError, "Template.subst() arg must be or have dictionary"
1022 # Protect non-Python-dict substitutions (e.g. if there's a printf
1023 # in the templated C++ code)
1024 template = protect_non_subst_percents(self.template)
1025 # CPU-model-specific substitutions are handled later (in GenCode).
1026 template = protect_cpu_symbols(template)
1027 return template % myDict
1028
1029 # Convert to string. This handles the case when a template with a
1030 # CPU-specific term gets interpolated into another template or into
1031 # an output block.
1032 def __str__(self):
1033 return expand_cpu_symbols_to_string(self.template)
1034
1035#####################################################################
1036#
1037# Code Parser
1038#
1039# The remaining code is the support for automatically extracting
1040# instruction characteristics from pseudocode.
1041#
1042#####################################################################
1043
1044# Force the argument to be a list. Useful for flags, where a caller
1045# can specify a singleton flag or a list of flags. Also usful for
1046# converting tuples to lists so they can be modified.
1047def makeList(arg):
1048 if isinstance(arg, list):
1049 return arg
1050 elif isinstance(arg, tuple):
1051 return list(arg)
1052 elif not arg:
1053 return []
1054 else:
1055 return [ arg ]
1056
1057# Generate operandTypeMap from the user's 'def operand_types'
1058# statement.
1059def buildOperandTypeMap(userDict, lineno):
1060 global operandTypeMap
1061 operandTypeMap = {}
1062 for (ext, (desc, size)) in userDict.iteritems():
1063 if desc == 'signed int':
1064 ctype = 'int%d_t' % size
1065 is_signed = 1
1066 elif desc == 'unsigned int':
1067 ctype = 'uint%d_t' % size
1068 is_signed = 0
1069 elif desc == 'float':
1070 is_signed = 1 # shouldn't really matter
1071 if size == 32:
1072 ctype = 'float'
1073 elif size == 64:
1074 ctype = 'double'
1075 if ctype == '':
1076 error(lineno, 'Unrecognized type description "%s" in userDict')
1077 operandTypeMap[ext] = (size, ctype, is_signed)
1078
1079#
1080#
1081#
1082# Base class for operand descriptors. An instance of this class (or
1083# actually a class derived from this one) represents a specific
1084# operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
1085# derived classes encapsulates the traits of a particular operand type
1086# (e.g., "32-bit integer register").
1087#
1088class Operand(object):
1089 def __init__(self, full_name, ext, is_src, is_dest):
1090 self.full_name = full_name
1091 self.ext = ext
1092 self.is_src = is_src
1093 self.is_dest = is_dest
1094 # The 'effective extension' (eff_ext) is either the actual
1095 # extension, if one was explicitly provided, or the default.
1096 if ext:
1097 self.eff_ext = ext
1098 else:
1099 self.eff_ext = self.dflt_ext
1100
1101 (self.size, self.ctype, self.is_signed) = operandTypeMap[self.eff_ext]
1102
1103 # note that mem_acc_size is undefined for non-mem operands...
1104 # template must be careful not to use it if it doesn't apply.
1105 if self.isMem():
1106 self.mem_acc_size = self.makeAccSize()
1107 self.mem_acc_type = self.ctype
1108
1109 # Finalize additional fields (primarily code fields). This step
1110 # is done separately since some of these fields may depend on the
1111 # register index enumeration that hasn't been performed yet at the
1112 # time of __init__().
1113 def finalize(self):
1114 self.flags = self.getFlags()
1115 self.constructor = self.makeConstructor()
1116 self.op_decl = self.makeDecl()
1117
1118 if self.is_src:
1119 self.op_rd = self.makeRead()
1120 self.op_src_decl = self.makeDecl()
1121 else:
1122 self.op_rd = ''
1123 self.op_src_decl = ''
1124
1125 if self.is_dest:
1126 self.op_wb = self.makeWrite()
1127 self.op_dest_decl = self.makeDecl()
1128 else:
1129 self.op_wb = ''
1130 self.op_dest_decl = ''
1131
1132 def isMem(self):
1133 return 0
1134
1135 def isReg(self):
1136 return 0
1137
1138 def isFloatReg(self):
1139 return 0
1140
1141 def isIntReg(self):
1142 return 0
1143
1144 def isControlReg(self):
1145 return 0
1146
1147 def getFlags(self):
1148 # note the empty slice '[:]' gives us a copy of self.flags[0]
1149 # instead of a reference to it
1150 my_flags = self.flags[0][:]
1151 if self.is_src:
1152 my_flags += self.flags[1]
1153 if self.is_dest:
1154 my_flags += self.flags[2]
1155 return my_flags
1156
1157 def makeDecl(self):
1158 # Note that initializations in the declarations are solely
1159 # to avoid 'uninitialized variable' errors from the compiler.
1160 return self.ctype + ' ' + self.base_name + ' = 0;\n';
1161
1162class IntRegOperand(Operand):
1163 def isReg(self):
1164 return 1
1165
1166 def isIntReg(self):
1167 return 1
1168
1169 def makeConstructor(self):
1170 c = ''
1171 if self.is_src:
1172 c += '\n\t_srcRegIdx[%d] = %s;' % \
1173 (self.src_reg_idx, self.reg_spec)
1174 if self.is_dest:
1175 c += '\n\t_destRegIdx[%d] = %s;' % \
1176 (self.dest_reg_idx, self.reg_spec)
1177 return c
1178
1179 def makeRead(self):
1180 if (self.ctype == 'float' or self.ctype == 'double'):
1181 error(0, 'Attempt to read integer register as FP')
1182 if (self.size == self.dflt_size):
1# Copyright (c) 2003-2005 The Regents of The University of Michigan
2# All rights reserved.
3#
4# Redistribution and use in source and binary forms, with or without
5# modification, are permitted provided that the following conditions are
6# met: redistributions of source code must retain the above copyright
7# notice, this list of conditions and the following disclaimer;
8# redistributions in binary form must reproduce the above copyright
9# notice, this list of conditions and the following disclaimer in the
10# documentation and/or other materials provided with the distribution;
11# neither the name of the copyright holders nor the names of its
12# contributors may be used to endorse or promote products derived from
13# this software without specific prior written permission.
14#
15# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26#
27# Authors: Steve Reinhardt
28# Korey Sewell
29
30import os
31import sys
32import re
33import string
34import traceback
35# get type names
36from types import *
37
38# Prepend the directory where the PLY lex & yacc modules are found
39# to the search path. Assumes we're compiling in a subdirectory
40# of 'build' in the current tree.
41sys.path[0:0] = [os.environ['M5_PLY']]
42
43import lex
44import yacc
45
46#####################################################################
47#
48# Lexer
49#
50# The PLY lexer module takes two things as input:
51# - A list of token names (the string list 'tokens')
52# - A regular expression describing a match for each token. The
53# regexp for token FOO can be provided in two ways:
54# - as a string variable named t_FOO
55# - as the doc string for a function named t_FOO. In this case,
56# the function is also executed, allowing an action to be
57# associated with each token match.
58#
59#####################################################################
60
61# Reserved words. These are listed separately as they are matched
62# using the same regexp as generic IDs, but distinguished in the
63# t_ID() function. The PLY documentation suggests this approach.
64reserved = (
65 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
66 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
67 'OUTPUT', 'SIGNED', 'TEMPLATE'
68 )
69
70# List of tokens. The lex module requires this.
71tokens = reserved + (
72 # identifier
73 'ID',
74
75 # integer literal
76 'INTLIT',
77
78 # string literal
79 'STRLIT',
80
81 # code literal
82 'CODELIT',
83
84 # ( ) [ ] { } < > , ; : :: *
85 'LPAREN', 'RPAREN',
86 'LBRACKET', 'RBRACKET',
87 'LBRACE', 'RBRACE',
88 'LESS', 'GREATER', 'EQUALS',
89 'COMMA', 'SEMI', 'COLON', 'DBLCOLON',
90 'ASTERISK',
91
92 # C preprocessor directives
93 'CPPDIRECTIVE'
94
95# The following are matched but never returned. commented out to
96# suppress PLY warning
97 # newfile directive
98# 'NEWFILE',
99
100 # endfile directive
101# 'ENDFILE'
102)
103
104# Regular expressions for token matching
105t_LPAREN = r'\('
106t_RPAREN = r'\)'
107t_LBRACKET = r'\['
108t_RBRACKET = r'\]'
109t_LBRACE = r'\{'
110t_RBRACE = r'\}'
111t_LESS = r'\<'
112t_GREATER = r'\>'
113t_EQUALS = r'='
114t_COMMA = r','
115t_SEMI = r';'
116t_COLON = r':'
117t_DBLCOLON = r'::'
118t_ASTERISK = r'\*'
119
120# Identifiers and reserved words
121reserved_map = { }
122for r in reserved:
123 reserved_map[r.lower()] = r
124
125def t_ID(t):
126 r'[A-Za-z_]\w*'
127 t.type = reserved_map.get(t.value,'ID')
128 return t
129
130# Integer literal
131def t_INTLIT(t):
132 r'(0x[\da-fA-F]+)|\d+'
133 try:
134 t.value = int(t.value,0)
135 except ValueError:
136 error(t.lineno, 'Integer value "%s" too large' % t.value)
137 t.value = 0
138 return t
139
140# String literal. Note that these use only single quotes, and
141# can span multiple lines.
142def t_STRLIT(t):
143 r"(?m)'([^'])+'"
144 # strip off quotes
145 t.value = t.value[1:-1]
146 t.lineno += t.value.count('\n')
147 return t
148
149
150# "Code literal"... like a string literal, but delimiters are
151# '{{' and '}}' so they get formatted nicely under emacs c-mode
152def t_CODELIT(t):
153 r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
154 # strip off {{ & }}
155 t.value = t.value[2:-2]
156 t.lineno += t.value.count('\n')
157 return t
158
159def t_CPPDIRECTIVE(t):
160 r'^\#[^\#].*\n'
161 t.lineno += t.value.count('\n')
162 return t
163
164def t_NEWFILE(t):
165 r'^\#\#newfile\s+"[\w/.-]*"'
166 fileNameStack.push((t.value[11:-1], t.lineno))
167 t.lineno = 0
168
169def t_ENDFILE(t):
170 r'^\#\#endfile'
171 (old_filename, t.lineno) = fileNameStack.pop()
172
173#
174# The functions t_NEWLINE, t_ignore, and t_error are
175# special for the lex module.
176#
177
178# Newlines
179def t_NEWLINE(t):
180 r'\n+'
181 t.lineno += t.value.count('\n')
182
183# Comments
184def t_comment(t):
185 r'//.*'
186
187# Completely ignored characters
188t_ignore = ' \t\x0c'
189
190# Error handler
191def t_error(t):
192 error(t.lineno, "illegal character '%s'" % t.value[0])
193 t.skip(1)
194
195# Build the lexer
196lex.lex()
197
198#####################################################################
199#
200# Parser
201#
202# Every function whose name starts with 'p_' defines a grammar rule.
203# The rule is encoded in the function's doc string, while the
204# function body provides the action taken when the rule is matched.
205# The argument to each function is a list of the values of the
206# rule's symbols: t[0] for the LHS, and t[1..n] for the symbols
207# on the RHS. For tokens, the value is copied from the t.value
208# attribute provided by the lexer. For non-terminals, the value
209# is assigned by the producing rule; i.e., the job of the grammar
210# rule function is to set the value for the non-terminal on the LHS
211# (by assigning to t[0]).
212#####################################################################
213
214# The LHS of the first grammar rule is used as the start symbol
215# (in this case, 'specification'). Note that this rule enforces
216# that there will be exactly one namespace declaration, with 0 or more
217# global defs/decls before and after it. The defs & decls before
218# the namespace decl will be outside the namespace; those after
219# will be inside. The decoder function is always inside the namespace.
220def p_specification(t):
221 'specification : opt_defs_and_outputs name_decl opt_defs_and_outputs decode_block'
222 global_code = t[1]
223 isa_name = t[2]
224 namespace = isa_name + "Inst"
225 # wrap the decode block as a function definition
226 t[4].wrap_decode_block('''
227StaticInstPtr
228%(isa_name)s::decodeInst(%(isa_name)s::ExtMachInst machInst)
229{
230 using namespace %(namespace)s;
231''' % vars(), '}')
232 # both the latter output blocks and the decode block are in the namespace
233 namespace_code = t[3] + t[4]
234 # pass it all back to the caller of yacc.parse()
235 t[0] = (isa_name, namespace, global_code, namespace_code)
236
237# ISA name declaration looks like "namespace <foo>;"
238def p_name_decl(t):
239 'name_decl : NAMESPACE ID SEMI'
240 t[0] = t[2]
241
242# 'opt_defs_and_outputs' is a possibly empty sequence of
243# def and/or output statements.
244def p_opt_defs_and_outputs_0(t):
245 'opt_defs_and_outputs : empty'
246 t[0] = GenCode()
247
248def p_opt_defs_and_outputs_1(t):
249 'opt_defs_and_outputs : defs_and_outputs'
250 t[0] = t[1]
251
252def p_defs_and_outputs_0(t):
253 'defs_and_outputs : def_or_output'
254 t[0] = t[1]
255
256def p_defs_and_outputs_1(t):
257 'defs_and_outputs : defs_and_outputs def_or_output'
258 t[0] = t[1] + t[2]
259
260# The list of possible definition/output statements.
261def p_def_or_output(t):
262 '''def_or_output : def_format
263 | def_bitfield
264 | def_template
265 | def_operand_types
266 | def_operands
267 | output_header
268 | output_decoder
269 | output_exec
270 | global_let'''
271 t[0] = t[1]
272
273# Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
274# directly to the appropriate output section.
275
276
277# Protect any non-dict-substitution '%'s in a format string
278# (i.e. those not followed by '(')
279def protect_non_subst_percents(s):
280 return re.sub(r'%(?!\()', '%%', s)
281
282# Massage output block by substituting in template definitions and bit
283# operators. We handle '%'s embedded in the string that don't
284# indicate template substitutions (or CPU-specific symbols, which get
285# handled in GenCode) by doubling them first so that the format
286# operation will reduce them back to single '%'s.
287def process_output(s):
288 s = protect_non_subst_percents(s)
289 # protects cpu-specific symbols too
290 s = protect_cpu_symbols(s)
291 return substBitOps(s % templateMap)
292
293def p_output_header(t):
294 'output_header : OUTPUT HEADER CODELIT SEMI'
295 t[0] = GenCode(header_output = process_output(t[3]))
296
297def p_output_decoder(t):
298 'output_decoder : OUTPUT DECODER CODELIT SEMI'
299 t[0] = GenCode(decoder_output = process_output(t[3]))
300
301def p_output_exec(t):
302 'output_exec : OUTPUT EXEC CODELIT SEMI'
303 t[0] = GenCode(exec_output = process_output(t[3]))
304
305# global let blocks 'let {{...}}' (Python code blocks) are executed
306# directly when seen. Note that these execute in a special variable
307# context 'exportContext' to prevent the code from polluting this
308# script's namespace.
309def p_global_let(t):
310 'global_let : LET CODELIT SEMI'
311 updateExportContext()
312 try:
313 exec fixPythonIndentation(t[2]) in exportContext
314 except Exception, exc:
315 error(t.lineno(1),
316 'error: %s in global let block "%s".' % (exc, t[2]))
317 t[0] = GenCode() # contributes nothing to the output C++ file
318
319# Define the mapping from operand type extensions to C++ types and bit
320# widths (stored in operandTypeMap).
321def p_def_operand_types(t):
322 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
323 try:
324 userDict = eval('{' + t[3] + '}')
325 except Exception, exc:
326 error(t.lineno(1),
327 'error: %s in def operand_types block "%s".' % (exc, t[3]))
328 buildOperandTypeMap(userDict, t.lineno(1))
329 t[0] = GenCode() # contributes nothing to the output C++ file
330
331# Define the mapping from operand names to operand classes and other
332# traits. Stored in operandNameMap.
333def p_def_operands(t):
334 'def_operands : DEF OPERANDS CODELIT SEMI'
335 if not globals().has_key('operandTypeMap'):
336 error(t.lineno(1),
337 'error: operand types must be defined before operands')
338 try:
339 userDict = eval('{' + t[3] + '}')
340 except Exception, exc:
341 error(t.lineno(1),
342 'error: %s in def operands block "%s".' % (exc, t[3]))
343 buildOperandNameMap(userDict, t.lineno(1))
344 t[0] = GenCode() # contributes nothing to the output C++ file
345
346# A bitfield definition looks like:
347# 'def [signed] bitfield <ID> [<first>:<last>]'
348# This generates a preprocessor macro in the output file.
349def p_def_bitfield_0(t):
350 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
351 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
352 if (t[2] == 'signed'):
353 expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
354 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
355 t[0] = GenCode(header_output = hash_define)
356
357# alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
358def p_def_bitfield_1(t):
359 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
360 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
361 if (t[2] == 'signed'):
362 expr = 'sext<%d>(%s)' % (1, expr)
363 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
364 t[0] = GenCode(header_output = hash_define)
365
366def p_opt_signed_0(t):
367 'opt_signed : SIGNED'
368 t[0] = t[1]
369
370def p_opt_signed_1(t):
371 'opt_signed : empty'
372 t[0] = ''
373
374# Global map variable to hold templates
375templateMap = {}
376
377def p_def_template(t):
378 'def_template : DEF TEMPLATE ID CODELIT SEMI'
379 templateMap[t[3]] = Template(t[4])
380 t[0] = GenCode()
381
382# An instruction format definition looks like
383# "def format <fmt>(<params>) {{...}};"
384def p_def_format(t):
385 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
386 (id, params, code) = (t[3], t[5], t[7])
387 defFormat(id, params, code, t.lineno(1))
388 t[0] = GenCode()
389
390# The formal parameter list for an instruction format is a possibly
391# empty list of comma-separated parameters. Positional (standard,
392# non-keyword) parameters must come first, followed by keyword
393# parameters, followed by a '*foo' parameter that gets excess
394# positional arguments (as in Python). Each of these three parameter
395# categories is optional.
396#
397# Note that we do not support the '**foo' parameter for collecting
398# otherwise undefined keyword args. Otherwise the parameter list is
399# (I believe) identical to what is supported in Python.
400#
401# The param list generates a tuple, where the first element is a list of
402# the positional params and the second element is a dict containing the
403# keyword params.
404def p_param_list_0(t):
405 'param_list : positional_param_list COMMA nonpositional_param_list'
406 t[0] = t[1] + t[3]
407
408def p_param_list_1(t):
409 '''param_list : positional_param_list
410 | nonpositional_param_list'''
411 t[0] = t[1]
412
413def p_positional_param_list_0(t):
414 'positional_param_list : empty'
415 t[0] = []
416
417def p_positional_param_list_1(t):
418 'positional_param_list : ID'
419 t[0] = [t[1]]
420
421def p_positional_param_list_2(t):
422 'positional_param_list : positional_param_list COMMA ID'
423 t[0] = t[1] + [t[3]]
424
425def p_nonpositional_param_list_0(t):
426 'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
427 t[0] = t[1] + t[3]
428
429def p_nonpositional_param_list_1(t):
430 '''nonpositional_param_list : keyword_param_list
431 | excess_args_param'''
432 t[0] = t[1]
433
434def p_keyword_param_list_0(t):
435 'keyword_param_list : keyword_param'
436 t[0] = [t[1]]
437
438def p_keyword_param_list_1(t):
439 'keyword_param_list : keyword_param_list COMMA keyword_param'
440 t[0] = t[1] + [t[3]]
441
442def p_keyword_param(t):
443 'keyword_param : ID EQUALS expr'
444 t[0] = t[1] + ' = ' + t[3].__repr__()
445
446def p_excess_args_param(t):
447 'excess_args_param : ASTERISK ID'
448 # Just concatenate them: '*ID'. Wrap in list to be consistent
449 # with positional_param_list and keyword_param_list.
450 t[0] = [t[1] + t[2]]
451
452# End of format definition-related rules.
453##############
454
455#
456# A decode block looks like:
457# decode <field1> [, <field2>]* [default <inst>] { ... }
458#
459def p_decode_block(t):
460 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
461 default_defaults = defaultStack.pop()
462 codeObj = t[5]
463 # use the "default defaults" only if there was no explicit
464 # default statement in decode_stmt_list
465 if not codeObj.has_decode_default:
466 codeObj += default_defaults
467 codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
468 t[0] = codeObj
469
470# The opt_default statement serves only to push the "default defaults"
471# onto defaultStack. This value will be used by nested decode blocks,
472# and used and popped off when the current decode_block is processed
473# (in p_decode_block() above).
474def p_opt_default_0(t):
475 'opt_default : empty'
476 # no default specified: reuse the one currently at the top of the stack
477 defaultStack.push(defaultStack.top())
478 # no meaningful value returned
479 t[0] = None
480
481def p_opt_default_1(t):
482 'opt_default : DEFAULT inst'
483 # push the new default
484 codeObj = t[2]
485 codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
486 defaultStack.push(codeObj)
487 # no meaningful value returned
488 t[0] = None
489
490def p_decode_stmt_list_0(t):
491 'decode_stmt_list : decode_stmt'
492 t[0] = t[1]
493
494def p_decode_stmt_list_1(t):
495 'decode_stmt_list : decode_stmt decode_stmt_list'
496 if (t[1].has_decode_default and t[2].has_decode_default):
497 error(t.lineno(1), 'Two default cases in decode block')
498 t[0] = t[1] + t[2]
499
500#
501# Decode statement rules
502#
503# There are four types of statements allowed in a decode block:
504# 1. Format blocks 'format <foo> { ... }'
505# 2. Nested decode blocks
506# 3. Instruction definitions.
507# 4. C preprocessor directives.
508
509
510# Preprocessor directives found in a decode statement list are passed
511# through to the output, replicated to all of the output code
512# streams. This works well for ifdefs, so we can ifdef out both the
513# declarations and the decode cases generated by an instruction
514# definition. Handling them as part of the grammar makes it easy to
515# keep them in the right place with respect to the code generated by
516# the other statements.
517def p_decode_stmt_cpp(t):
518 'decode_stmt : CPPDIRECTIVE'
519 t[0] = GenCode(t[1], t[1], t[1], t[1])
520
521# A format block 'format <foo> { ... }' sets the default instruction
522# format used to handle instruction definitions inside the block.
523# This format can be overridden by using an explicit format on the
524# instruction definition or with a nested format block.
525def p_decode_stmt_format(t):
526 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
527 # The format will be pushed on the stack when 'push_format_id' is
528 # processed (see below). Once the parser has recognized the full
529 # production (though the right brace), we're done with the format,
530 # so now we can pop it.
531 formatStack.pop()
532 t[0] = t[4]
533
534# This rule exists so we can set the current format (& push the stack)
535# when we recognize the format name part of the format block.
536def p_push_format_id(t):
537 'push_format_id : ID'
538 try:
539 formatStack.push(formatMap[t[1]])
540 t[0] = ('', '// format %s' % t[1])
541 except KeyError:
542 error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
543
544# Nested decode block: if the value of the current field matches the
545# specified constant, do a nested decode on some other field.
546def p_decode_stmt_decode(t):
547 'decode_stmt : case_label COLON decode_block'
548 label = t[1]
549 codeObj = t[3]
550 # just wrap the decoding code from the block as a case in the
551 # outer switch statement.
552 codeObj.wrap_decode_block('\n%s:\n' % label)
553 codeObj.has_decode_default = (label == 'default')
554 t[0] = codeObj
555
556# Instruction definition (finally!).
557def p_decode_stmt_inst(t):
558 'decode_stmt : case_label COLON inst SEMI'
559 label = t[1]
560 codeObj = t[3]
561 codeObj.wrap_decode_block('\n%s:' % label, 'break;\n')
562 codeObj.has_decode_default = (label == 'default')
563 t[0] = codeObj
564
565# The case label is either a list of one or more constants or 'default'
566def p_case_label_0(t):
567 'case_label : intlit_list'
568 t[0] = ': '.join(map(lambda a: 'case %#x' % a, t[1]))
569
570def p_case_label_1(t):
571 'case_label : DEFAULT'
572 t[0] = 'default'
573
574#
575# The constant list for a decode case label must be non-empty, but may have
576# one or more comma-separated integer literals in it.
577#
578def p_intlit_list_0(t):
579 'intlit_list : INTLIT'
580 t[0] = [t[1]]
581
582def p_intlit_list_1(t):
583 'intlit_list : intlit_list COMMA INTLIT'
584 t[0] = t[1]
585 t[0].append(t[3])
586
587# Define an instruction using the current instruction format (specified
588# by an enclosing format block).
589# "<mnemonic>(<args>)"
590def p_inst_0(t):
591 'inst : ID LPAREN arg_list RPAREN'
592 # Pass the ID and arg list to the current format class to deal with.
593 currentFormat = formatStack.top()
594 codeObj = currentFormat.defineInst(t[1], t[3], t.lineno(1))
595 args = ','.join(map(str, t[3]))
596 args = re.sub('(?m)^', '//', args)
597 args = re.sub('^//', '', args)
598 comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
599 codeObj.prepend_all(comment)
600 t[0] = codeObj
601
602# Define an instruction using an explicitly specified format:
603# "<fmt>::<mnemonic>(<args>)"
604def p_inst_1(t):
605 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
606 try:
607 format = formatMap[t[1]]
608 except KeyError:
609 error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
610 codeObj = format.defineInst(t[3], t[5], t.lineno(1))
611 comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
612 codeObj.prepend_all(comment)
613 t[0] = codeObj
614
615# The arg list generates a tuple, where the first element is a list of
616# the positional args and the second element is a dict containing the
617# keyword args.
618def p_arg_list_0(t):
619 'arg_list : positional_arg_list COMMA keyword_arg_list'
620 t[0] = ( t[1], t[3] )
621
622def p_arg_list_1(t):
623 'arg_list : positional_arg_list'
624 t[0] = ( t[1], {} )
625
626def p_arg_list_2(t):
627 'arg_list : keyword_arg_list'
628 t[0] = ( [], t[1] )
629
630def p_positional_arg_list_0(t):
631 'positional_arg_list : empty'
632 t[0] = []
633
634def p_positional_arg_list_1(t):
635 'positional_arg_list : expr'
636 t[0] = [t[1]]
637
638def p_positional_arg_list_2(t):
639 'positional_arg_list : positional_arg_list COMMA expr'
640 t[0] = t[1] + [t[3]]
641
642def p_keyword_arg_list_0(t):
643 'keyword_arg_list : keyword_arg'
644 t[0] = t[1]
645
646def p_keyword_arg_list_1(t):
647 'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
648 t[0] = t[1]
649 t[0].update(t[3])
650
651def p_keyword_arg(t):
652 'keyword_arg : ID EQUALS expr'
653 t[0] = { t[1] : t[3] }
654
655#
656# Basic expressions. These constitute the argument values of
657# "function calls" (i.e. instruction definitions in the decode block)
658# and default values for formal parameters of format functions.
659#
660# Right now, these are either strings, integers, or (recursively)
661# lists of exprs (using Python square-bracket list syntax). Note that
662# bare identifiers are trated as string constants here (since there
663# isn't really a variable namespace to refer to).
664#
665def p_expr_0(t):
666 '''expr : ID
667 | INTLIT
668 | STRLIT
669 | CODELIT'''
670 t[0] = t[1]
671
672def p_expr_1(t):
673 '''expr : LBRACKET list_expr RBRACKET'''
674 t[0] = t[2]
675
676def p_list_expr_0(t):
677 'list_expr : expr'
678 t[0] = [t[1]]
679
680def p_list_expr_1(t):
681 'list_expr : list_expr COMMA expr'
682 t[0] = t[1] + [t[3]]
683
684def p_list_expr_2(t):
685 'list_expr : empty'
686 t[0] = []
687
688#
689# Empty production... use in other rules for readability.
690#
691def p_empty(t):
692 'empty :'
693 pass
694
695# Parse error handler. Note that the argument here is the offending
696# *token*, not a grammar symbol (hence the need to use t.value)
697def p_error(t):
698 if t:
699 error(t.lineno, "syntax error at '%s'" % t.value)
700 else:
701 error(0, "unknown syntax error", True)
702
703# END OF GRAMMAR RULES
704#
705# Now build the parser.
706yacc.yacc()
707
708
709#####################################################################
710#
711# Support Classes
712#
713#####################################################################
714
715# Expand template with CPU-specific references into a dictionary with
716# an entry for each CPU model name. The entry key is the model name
717# and the corresponding value is the template with the CPU-specific
718# refs substituted for that model.
719def expand_cpu_symbols_to_dict(template):
720 # Protect '%'s that don't go with CPU-specific terms
721 t = re.sub(r'%(?!\(CPU_)', '%%', template)
722 result = {}
723 for cpu in cpu_models:
724 result[cpu.name] = t % cpu.strings
725 return result
726
727# *If* the template has CPU-specific references, return a single
728# string containing a copy of the template for each CPU model with the
729# corresponding values substituted in. If the template has no
730# CPU-specific references, it is returned unmodified.
731def expand_cpu_symbols_to_string(template):
732 if template.find('%(CPU_') != -1:
733 return reduce(lambda x,y: x+y,
734 expand_cpu_symbols_to_dict(template).values())
735 else:
736 return template
737
738# Protect CPU-specific references by doubling the corresponding '%'s
739# (in preparation for substituting a different set of references into
740# the template).
741def protect_cpu_symbols(template):
742 return re.sub(r'%(?=\(CPU_)', '%%', template)
743
744###############
745# GenCode class
746#
747# The GenCode class encapsulates generated code destined for various
748# output files. The header_output and decoder_output attributes are
749# strings containing code destined for decoder.hh and decoder.cc
750# respectively. The decode_block attribute contains code to be
751# incorporated in the decode function itself (that will also end up in
752# decoder.cc). The exec_output attribute is a dictionary with a key
753# for each CPU model name; the value associated with a particular key
754# is the string of code for that CPU model's exec.cc file. The
755# has_decode_default attribute is used in the decode block to allow
756# explicit default clauses to override default default clauses.
757
758class GenCode:
759 # Constructor. At this point we substitute out all CPU-specific
760 # symbols. For the exec output, these go into the per-model
761 # dictionary. For all other output types they get collapsed into
762 # a single string.
763 def __init__(self,
764 header_output = '', decoder_output = '', exec_output = '',
765 decode_block = '', has_decode_default = False):
766 self.header_output = expand_cpu_symbols_to_string(header_output)
767 self.decoder_output = expand_cpu_symbols_to_string(decoder_output)
768 if isinstance(exec_output, dict):
769 self.exec_output = exec_output
770 elif isinstance(exec_output, str):
771 # If the exec_output arg is a single string, we replicate
772 # it for each of the CPU models, substituting and
773 # %(CPU_foo)s params appropriately.
774 self.exec_output = expand_cpu_symbols_to_dict(exec_output)
775 self.decode_block = expand_cpu_symbols_to_string(decode_block)
776 self.has_decode_default = has_decode_default
777
778 # Override '+' operator: generate a new GenCode object that
779 # concatenates all the individual strings in the operands.
780 def __add__(self, other):
781 exec_output = {}
782 for cpu in cpu_models:
783 n = cpu.name
784 exec_output[n] = self.exec_output[n] + other.exec_output[n]
785 return GenCode(self.header_output + other.header_output,
786 self.decoder_output + other.decoder_output,
787 exec_output,
788 self.decode_block + other.decode_block,
789 self.has_decode_default or other.has_decode_default)
790
791 # Prepend a string (typically a comment) to all the strings.
792 def prepend_all(self, pre):
793 self.header_output = pre + self.header_output
794 self.decoder_output = pre + self.decoder_output
795 self.decode_block = pre + self.decode_block
796 for cpu in cpu_models:
797 self.exec_output[cpu.name] = pre + self.exec_output[cpu.name]
798
799 # Wrap the decode block in a pair of strings (e.g., 'case foo:'
800 # and 'break;'). Used to build the big nested switch statement.
801 def wrap_decode_block(self, pre, post = ''):
802 self.decode_block = pre + indent(self.decode_block) + post
803
804################
805# Format object.
806#
807# A format object encapsulates an instruction format. It must provide
808# a defineInst() method that generates the code for an instruction
809# definition.
810
811exportContextSymbols = ('InstObjParams', 'CodeBlock',
812 'makeList', 're', 'string')
813
814exportContext = {}
815
816def updateExportContext():
817 exportContext.update(exportDict(*exportContextSymbols))
818 exportContext.update(templateMap)
819
820def exportDict(*symNames):
821 return dict([(s, eval(s)) for s in symNames])
822
823
824class Format:
825 def __init__(self, id, params, code):
826 # constructor: just save away arguments
827 self.id = id
828 self.params = params
829 label = 'def format ' + id
830 self.user_code = compile(fixPythonIndentation(code), label, 'exec')
831 param_list = string.join(params, ", ")
832 f = '''def defInst(_code, _context, %s):
833 my_locals = vars().copy()
834 exec _code in _context, my_locals
835 return my_locals\n''' % param_list
836 c = compile(f, label + ' wrapper', 'exec')
837 exec c
838 self.func = defInst
839
840 def defineInst(self, name, args, lineno):
841 context = {}
842 updateExportContext()
843 context.update(exportContext)
844 context.update({ 'name': name, 'Name': string.capitalize(name) })
845 try:
846 vars = self.func(self.user_code, context, *args[0], **args[1])
847 except Exception, exc:
848 error(lineno, 'error defining "%s": %s.' % (name, exc))
849 for k in vars.keys():
850 if k not in ('header_output', 'decoder_output',
851 'exec_output', 'decode_block'):
852 del vars[k]
853 return GenCode(**vars)
854
855# Special null format to catch an implicit-format instruction
856# definition outside of any format block.
857class NoFormat:
858 def __init__(self):
859 self.defaultInst = ''
860
861 def defineInst(self, name, args, lineno):
862 error(lineno,
863 'instruction definition "%s" with no active format!' % name)
864
865# This dictionary maps format name strings to Format objects.
866formatMap = {}
867
868# Define a new format
869def defFormat(id, params, code, lineno):
870 # make sure we haven't already defined this one
871 if formatMap.get(id, None) != None:
872 error(lineno, 'format %s redefined.' % id)
873 # create new object and store in global map
874 formatMap[id] = Format(id, params, code)
875
876
877##############
878# Stack: a simple stack object. Used for both formats (formatStack)
879# and default cases (defaultStack). Simply wraps a list to give more
880# stack-like syntax and enable initialization with an argument list
881# (as opposed to an argument that's a list).
882
883class Stack(list):
884 def __init__(self, *items):
885 list.__init__(self, items)
886
887 def push(self, item):
888 self.append(item);
889
890 def top(self):
891 return self[-1]
892
893# The global format stack.
894formatStack = Stack(NoFormat())
895
896# The global default case stack.
897defaultStack = Stack( None )
898
899# Global stack that tracks current file and line number.
900# Each element is a tuple (filename, lineno) that records the
901# *current* filename and the line number in the *previous* file where
902# it was included.
903fileNameStack = Stack()
904
905###################
906# Utility functions
907
908#
909# Indent every line in string 's' by two spaces
910# (except preprocessor directives).
911# Used to make nested code blocks look pretty.
912#
913def indent(s):
914 return re.sub(r'(?m)^(?!#)', ' ', s)
915
916#
917# Munge a somewhat arbitrarily formatted piece of Python code
918# (e.g. from a format 'let' block) into something whose indentation
919# will get by the Python parser.
920#
921# The two keys here are that Python will give a syntax error if
922# there's any whitespace at the beginning of the first line, and that
923# all lines at the same lexical nesting level must have identical
924# indentation. Unfortunately the way code literals work, an entire
925# let block tends to have some initial indentation. Rather than
926# trying to figure out what that is and strip it off, we prepend 'if
927# 1:' to make the let code the nested block inside the if (and have
928# the parser automatically deal with the indentation for us).
929#
930# We don't want to do this if (1) the code block is empty or (2) the
931# first line of the block doesn't have any whitespace at the front.
932
933def fixPythonIndentation(s):
934 # get rid of blank lines first
935 s = re.sub(r'(?m)^\s*\n', '', s);
936 if (s != '' and re.match(r'[ \t]', s[0])):
937 s = 'if 1:\n' + s
938 return s
939
940# Error handler. Just call exit. Output formatted to work under
941# Emacs compile-mode. Optional 'print_traceback' arg, if set to True,
942# prints a Python stack backtrace too (can be handy when trying to
943# debug the parser itself).
944def error(lineno, string, print_traceback = False):
945 spaces = ""
946 for (filename, line) in fileNameStack[0:-1]:
947 print spaces + "In file included from " + filename + ":"
948 spaces += " "
949 # Print a Python stack backtrace if requested.
950 if (print_traceback):
951 traceback.print_exc()
952 if lineno != 0:
953 line_str = "%d:" % lineno
954 else:
955 line_str = ""
956 sys.exit(spaces + "%s:%s %s" % (fileNameStack[-1][0], line_str, string))
957
958
959#####################################################################
960#
961# Bitfield Operator Support
962#
963#####################################################################
964
965bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
966
967bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
968bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
969
970def substBitOps(code):
971 # first convert single-bit selectors to two-index form
972 # i.e., <n> --> <n:n>
973 code = bitOp1ArgRE.sub(r'<\1:\1>', code)
974 # simple case: selector applied to ID (name)
975 # i.e., foo<a:b> --> bits(foo, a, b)
976 code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
977 # if selector is applied to expression (ending in ')'),
978 # we need to search backward for matching '('
979 match = bitOpExprRE.search(code)
980 while match:
981 exprEnd = match.start()
982 here = exprEnd - 1
983 nestLevel = 1
984 while nestLevel > 0:
985 if code[here] == '(':
986 nestLevel -= 1
987 elif code[here] == ')':
988 nestLevel += 1
989 here -= 1
990 if here < 0:
991 sys.exit("Didn't find '('!")
992 exprStart = here+1
993 newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
994 match.group(1), match.group(2))
995 code = code[:exprStart] + newExpr + code[match.end():]
996 match = bitOpExprRE.search(code)
997 return code
998
999
1000####################
1001# Template objects.
1002#
1003# Template objects are format strings that allow substitution from
1004# the attribute spaces of other objects (e.g. InstObjParams instances).
1005
1006class Template:
1007 def __init__(self, t):
1008 self.template = t
1009
1010 def subst(self, d):
1011 # Start with the template namespace. Make a copy since we're
1012 # going to modify it.
1013 myDict = templateMap.copy()
1014 # if the argument is a dictionary, we just use it.
1015 if isinstance(d, dict):
1016 myDict.update(d)
1017 # if the argument is an object, we use its attribute map.
1018 elif hasattr(d, '__dict__'):
1019 myDict.update(d.__dict__)
1020 else:
1021 raise TypeError, "Template.subst() arg must be or have dictionary"
1022 # Protect non-Python-dict substitutions (e.g. if there's a printf
1023 # in the templated C++ code)
1024 template = protect_non_subst_percents(self.template)
1025 # CPU-model-specific substitutions are handled later (in GenCode).
1026 template = protect_cpu_symbols(template)
1027 return template % myDict
1028
1029 # Convert to string. This handles the case when a template with a
1030 # CPU-specific term gets interpolated into another template or into
1031 # an output block.
1032 def __str__(self):
1033 return expand_cpu_symbols_to_string(self.template)
1034
1035#####################################################################
1036#
1037# Code Parser
1038#
1039# The remaining code is the support for automatically extracting
1040# instruction characteristics from pseudocode.
1041#
1042#####################################################################
1043
1044# Force the argument to be a list. Useful for flags, where a caller
1045# can specify a singleton flag or a list of flags. Also usful for
1046# converting tuples to lists so they can be modified.
1047def makeList(arg):
1048 if isinstance(arg, list):
1049 return arg
1050 elif isinstance(arg, tuple):
1051 return list(arg)
1052 elif not arg:
1053 return []
1054 else:
1055 return [ arg ]
1056
1057# Generate operandTypeMap from the user's 'def operand_types'
1058# statement.
1059def buildOperandTypeMap(userDict, lineno):
1060 global operandTypeMap
1061 operandTypeMap = {}
1062 for (ext, (desc, size)) in userDict.iteritems():
1063 if desc == 'signed int':
1064 ctype = 'int%d_t' % size
1065 is_signed = 1
1066 elif desc == 'unsigned int':
1067 ctype = 'uint%d_t' % size
1068 is_signed = 0
1069 elif desc == 'float':
1070 is_signed = 1 # shouldn't really matter
1071 if size == 32:
1072 ctype = 'float'
1073 elif size == 64:
1074 ctype = 'double'
1075 if ctype == '':
1076 error(lineno, 'Unrecognized type description "%s" in userDict')
1077 operandTypeMap[ext] = (size, ctype, is_signed)
1078
1079#
1080#
1081#
1082# Base class for operand descriptors. An instance of this class (or
1083# actually a class derived from this one) represents a specific
1084# operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
1085# derived classes encapsulates the traits of a particular operand type
1086# (e.g., "32-bit integer register").
1087#
1088class Operand(object):
1089 def __init__(self, full_name, ext, is_src, is_dest):
1090 self.full_name = full_name
1091 self.ext = ext
1092 self.is_src = is_src
1093 self.is_dest = is_dest
1094 # The 'effective extension' (eff_ext) is either the actual
1095 # extension, if one was explicitly provided, or the default.
1096 if ext:
1097 self.eff_ext = ext
1098 else:
1099 self.eff_ext = self.dflt_ext
1100
1101 (self.size, self.ctype, self.is_signed) = operandTypeMap[self.eff_ext]
1102
1103 # note that mem_acc_size is undefined for non-mem operands...
1104 # template must be careful not to use it if it doesn't apply.
1105 if self.isMem():
1106 self.mem_acc_size = self.makeAccSize()
1107 self.mem_acc_type = self.ctype
1108
1109 # Finalize additional fields (primarily code fields). This step
1110 # is done separately since some of these fields may depend on the
1111 # register index enumeration that hasn't been performed yet at the
1112 # time of __init__().
1113 def finalize(self):
1114 self.flags = self.getFlags()
1115 self.constructor = self.makeConstructor()
1116 self.op_decl = self.makeDecl()
1117
1118 if self.is_src:
1119 self.op_rd = self.makeRead()
1120 self.op_src_decl = self.makeDecl()
1121 else:
1122 self.op_rd = ''
1123 self.op_src_decl = ''
1124
1125 if self.is_dest:
1126 self.op_wb = self.makeWrite()
1127 self.op_dest_decl = self.makeDecl()
1128 else:
1129 self.op_wb = ''
1130 self.op_dest_decl = ''
1131
1132 def isMem(self):
1133 return 0
1134
1135 def isReg(self):
1136 return 0
1137
1138 def isFloatReg(self):
1139 return 0
1140
1141 def isIntReg(self):
1142 return 0
1143
1144 def isControlReg(self):
1145 return 0
1146
1147 def getFlags(self):
1148 # note the empty slice '[:]' gives us a copy of self.flags[0]
1149 # instead of a reference to it
1150 my_flags = self.flags[0][:]
1151 if self.is_src:
1152 my_flags += self.flags[1]
1153 if self.is_dest:
1154 my_flags += self.flags[2]
1155 return my_flags
1156
1157 def makeDecl(self):
1158 # Note that initializations in the declarations are solely
1159 # to avoid 'uninitialized variable' errors from the compiler.
1160 return self.ctype + ' ' + self.base_name + ' = 0;\n';
1161
1162class IntRegOperand(Operand):
1163 def isReg(self):
1164 return 1
1165
1166 def isIntReg(self):
1167 return 1
1168
1169 def makeConstructor(self):
1170 c = ''
1171 if self.is_src:
1172 c += '\n\t_srcRegIdx[%d] = %s;' % \
1173 (self.src_reg_idx, self.reg_spec)
1174 if self.is_dest:
1175 c += '\n\t_destRegIdx[%d] = %s;' % \
1176 (self.dest_reg_idx, self.reg_spec)
1177 return c
1178
1179 def makeRead(self):
1180 if (self.ctype == 'float' or self.ctype == 'double'):
1181 error(0, 'Attempt to read integer register as FP')
1182 if (self.size == self.dflt_size):
1183 return '%s = xc->readIntReg(this, %d);\n' % \
1183 return '%s = xc->readIntRegOperand(this, %d);\n' % \
1184 (self.base_name, self.src_reg_idx)
1185 elif (self.size > self.dflt_size):
1184 (self.base_name, self.src_reg_idx)
1185 elif (self.size > self.dflt_size):
1186 int_reg_val = 'xc->readIntReg(this, %d)' % (self.src_reg_idx)
1186 int_reg_val = 'xc->readIntRegOperand(this, %d)' % \
1187 (self.src_reg_idx)
1187 if (self.is_signed):
1188 int_reg_val = 'sext<%d>(%s)' % (self.dflt_size, int_reg_val)
1189 return '%s = %s;\n' % (self.base_name, int_reg_val)
1190 else:
1188 if (self.is_signed):
1189 int_reg_val = 'sext<%d>(%s)' % (self.dflt_size, int_reg_val)
1190 return '%s = %s;\n' % (self.base_name, int_reg_val)
1191 else:
1191 return '%s = bits(xc->readIntReg(this, %d), %d, 0);\n' % \
1192 return '%s = bits(xc->readIntRegOperand(this, %d), %d, 0);\n' % \
1192 (self.base_name, self.src_reg_idx, self.size-1)
1193
1194 def makeWrite(self):
1195 if (self.ctype == 'float' or self.ctype == 'double'):
1196 error(0, 'Attempt to write integer register as FP')
1197 if (self.size != self.dflt_size and self.is_signed):
1198 final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
1199 else:
1200 final_val = self.base_name
1201 wb = '''
1202 {
1203 %s final_val = %s;
1193 (self.base_name, self.src_reg_idx, self.size-1)
1194
1195 def makeWrite(self):
1196 if (self.ctype == 'float' or self.ctype == 'double'):
1197 error(0, 'Attempt to write integer register as FP')
1198 if (self.size != self.dflt_size and self.is_signed):
1199 final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
1200 else:
1201 final_val = self.base_name
1202 wb = '''
1203 {
1204 %s final_val = %s;
1204 xc->setIntReg(this, %d, final_val);\n
1205 xc->setIntRegOperand(this, %d, final_val);\n
1205 if (traceData) { traceData->setData(final_val); }
1206 }''' % (self.dflt_ctype, final_val, self.dest_reg_idx)
1207 return wb
1208
1209class FloatRegOperand(Operand):
1210 def isReg(self):
1211 return 1
1212
1213 def isFloatReg(self):
1214 return 1
1215
1216 def makeConstructor(self):
1217 c = ''
1218 if self.is_src:
1219 c += '\n\t_srcRegIdx[%d] = %s + FP_Base_DepTag;' % \
1220 (self.src_reg_idx, self.reg_spec)
1221 if self.is_dest:
1222 c += '\n\t_destRegIdx[%d] = %s + FP_Base_DepTag;' % \
1223 (self.dest_reg_idx, self.reg_spec)
1224 return c
1225
1226 def makeRead(self):
1227 bit_select = 0
1228 width = 0;
1229 if (self.ctype == 'float'):
1206 if (traceData) { traceData->setData(final_val); }
1207 }''' % (self.dflt_ctype, final_val, self.dest_reg_idx)
1208 return wb
1209
1210class FloatRegOperand(Operand):
1211 def isReg(self):
1212 return 1
1213
1214 def isFloatReg(self):
1215 return 1
1216
1217 def makeConstructor(self):
1218 c = ''
1219 if self.is_src:
1220 c += '\n\t_srcRegIdx[%d] = %s + FP_Base_DepTag;' % \
1221 (self.src_reg_idx, self.reg_spec)
1222 if self.is_dest:
1223 c += '\n\t_destRegIdx[%d] = %s + FP_Base_DepTag;' % \
1224 (self.dest_reg_idx, self.reg_spec)
1225 return c
1226
1227 def makeRead(self):
1228 bit_select = 0
1229 width = 0;
1230 if (self.ctype == 'float'):
1230 func = 'readFloatReg'
1231 func = 'readFloatRegOperand'
1231 width = 32;
1232 elif (self.ctype == 'double'):
1232 width = 32;
1233 elif (self.ctype == 'double'):
1233 func = 'readFloatReg'
1234 func = 'readFloatRegOperand'
1234 width = 64;
1235 else:
1235 width = 64;
1236 else:
1236 func = 'readFloatRegBits'
1237 func = 'readFloatRegOperandBits'
1237 if (self.ctype == 'uint32_t'):
1238 width = 32;
1239 elif (self.ctype == 'uint64_t'):
1240 width = 64;
1241 if (self.size != self.dflt_size):
1242 bit_select = 1
1243 if width:
1244 base = 'xc->%s(this, %d, %d)' % \
1245 (func, self.src_reg_idx, width)
1246 else:
1247 base = 'xc->%s(this, %d)' % \
1248 (func, self.src_reg_idx)
1249 if bit_select:
1250 return '%s = bits(%s, %d, 0);\n' % \
1251 (self.base_name, base, self.size-1)
1252 else:
1253 return '%s = %s;\n' % (self.base_name, base)
1254
1255 def makeWrite(self):
1256 final_val = self.base_name
1257 final_ctype = self.ctype
1258 widthSpecifier = ''
1259 width = 0
1260 if (self.ctype == 'float'):
1261 width = 32
1238 if (self.ctype == 'uint32_t'):
1239 width = 32;
1240 elif (self.ctype == 'uint64_t'):
1241 width = 64;
1242 if (self.size != self.dflt_size):
1243 bit_select = 1
1244 if width:
1245 base = 'xc->%s(this, %d, %d)' % \
1246 (func, self.src_reg_idx, width)
1247 else:
1248 base = 'xc->%s(this, %d)' % \
1249 (func, self.src_reg_idx)
1250 if bit_select:
1251 return '%s = bits(%s, %d, 0);\n' % \
1252 (self.base_name, base, self.size-1)
1253 else:
1254 return '%s = %s;\n' % (self.base_name, base)
1255
1256 def makeWrite(self):
1257 final_val = self.base_name
1258 final_ctype = self.ctype
1259 widthSpecifier = ''
1260 width = 0
1261 if (self.ctype == 'float'):
1262 width = 32
1262 func = 'setFloatReg'
1263 func = 'setFloatRegOperand'
1263 elif (self.ctype == 'double'):
1264 width = 64
1264 elif (self.ctype == 'double'):
1265 width = 64
1265 func = 'setFloatReg'
1266 func = 'setFloatRegOperand'
1266 elif (self.ctype == 'uint32_t'):
1267 elif (self.ctype == 'uint32_t'):
1267 func = 'setFloatRegBits'
1268 func = 'setFloatRegOperandBits'
1268 width = 32
1269 elif (self.ctype == 'uint64_t'):
1269 width = 32
1270 elif (self.ctype == 'uint64_t'):
1270 func = 'setFloatRegBits'
1271 func = 'setFloatRegOperandBits'
1271 width = 64
1272 else:
1272 width = 64
1273 else:
1273 func = 'setFloatRegBits'
1274 func = 'setFloatRegOperandBits'
1274 final_ctype = 'uint%d_t' % self.dflt_size
1275 if (self.size != self.dflt_size and self.is_signed):
1276 final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
1277 if width:
1278 widthSpecifier = ', %d' % width
1279 wb = '''
1280 {
1281 %s final_val = %s;
1282 xc->%s(this, %d, final_val%s);\n
1283 if (traceData) { traceData->setData(final_val); }
1284 }''' % (final_ctype, final_val, func, self.dest_reg_idx,
1285 widthSpecifier)
1286 return wb
1287
1288class ControlRegOperand(Operand):
1289 def isReg(self):
1290 return 1
1291
1292 def isControlReg(self):
1293 return 1
1294
1295 def makeConstructor(self):
1296 c = ''
1297 if self.is_src:
1298 c += '\n\t_srcRegIdx[%d] = %s;' % \
1299 (self.src_reg_idx, self.reg_spec)
1300 if self.is_dest:
1301 c += '\n\t_destRegIdx[%d] = %s;' % \
1302 (self.dest_reg_idx, self.reg_spec)
1303 return c
1304
1305 def makeRead(self):
1306 bit_select = 0
1307 if (self.ctype == 'float' or self.ctype == 'double'):
1308 error(0, 'Attempt to read control register as FP')
1309 base = 'xc->readMiscReg(%s)' % self.reg_spec
1310 if self.size == self.dflt_size:
1311 return '%s = %s;\n' % (self.base_name, base)
1312 else:
1313 return '%s = bits(%s, %d, 0);\n' % \
1314 (self.base_name, base, self.size-1)
1315
1316 def makeWrite(self):
1317 if (self.ctype == 'float' or self.ctype == 'double'):
1318 error(0, 'Attempt to write control register as FP')
1319 wb = 'xc->setMiscRegWithEffect(%s, %s);\n' % (self.reg_spec, self.base_name)
1320 wb += 'if (traceData) { traceData->setData(%s); }' % \
1321 self.base_name
1322 return wb
1323
1324class MemOperand(Operand):
1325 def isMem(self):
1326 return 1
1327
1328 def makeConstructor(self):
1329 return ''
1330
1331 def makeDecl(self):
1332 # Note that initializations in the declarations are solely
1333 # to avoid 'uninitialized variable' errors from the compiler.
1334 # Declare memory data variable.
1335 c = '%s %s = 0;\n' % (self.ctype, self.base_name)
1336 return c
1337
1338 def makeRead(self):
1339 return ''
1340
1341 def makeWrite(self):
1342 return ''
1343
1344 # Return the memory access size *in bits*, suitable for
1345 # forming a type via "uint%d_t". Divide by 8 if you want bytes.
1346 def makeAccSize(self):
1347 return self.size
1348
1349
1350class NPCOperand(Operand):
1351 def makeConstructor(self):
1352 return ''
1353
1354 def makeRead(self):
1355 return '%s = xc->readNextPC();\n' % self.base_name
1356
1357 def makeWrite(self):
1358 return 'xc->setNextPC(%s);\n' % self.base_name
1359
1360class NNPCOperand(Operand):
1361 def makeConstructor(self):
1362 return ''
1363
1364 def makeRead(self):
1365 return '%s = xc->readNextNPC();\n' % self.base_name
1366
1367 def makeWrite(self):
1368 return 'xc->setNextNPC(%s);\n' % self.base_name
1369
1370def buildOperandNameMap(userDict, lineno):
1371 global operandNameMap
1372 operandNameMap = {}
1373 for (op_name, val) in userDict.iteritems():
1374 (base_cls_name, dflt_ext, reg_spec, flags, sort_pri) = val
1375 (dflt_size, dflt_ctype, dflt_is_signed) = operandTypeMap[dflt_ext]
1376 # Canonical flag structure is a triple of lists, where each list
1377 # indicates the set of flags implied by this operand always, when
1378 # used as a source, and when used as a dest, respectively.
1379 # For simplicity this can be initialized using a variety of fairly
1380 # obvious shortcuts; we convert these to canonical form here.
1381 if not flags:
1382 # no flags specified (e.g., 'None')
1383 flags = ( [], [], [] )
1384 elif isinstance(flags, str):
1385 # a single flag: assumed to be unconditional
1386 flags = ( [ flags ], [], [] )
1387 elif isinstance(flags, list):
1388 # a list of flags: also assumed to be unconditional
1389 flags = ( flags, [], [] )
1390 elif isinstance(flags, tuple):
1391 # it's a tuple: it should be a triple,
1392 # but each item could be a single string or a list
1393 (uncond_flags, src_flags, dest_flags) = flags
1394 flags = (makeList(uncond_flags),
1395 makeList(src_flags), makeList(dest_flags))
1396 # Accumulate attributes of new operand class in tmp_dict
1397 tmp_dict = {}
1398 for attr in ('dflt_ext', 'reg_spec', 'flags', 'sort_pri',
1399 'dflt_size', 'dflt_ctype', 'dflt_is_signed'):
1400 tmp_dict[attr] = eval(attr)
1401 tmp_dict['base_name'] = op_name
1402 # New class name will be e.g. "IntReg_Ra"
1403 cls_name = base_cls_name + '_' + op_name
1404 # Evaluate string arg to get class object. Note that the
1405 # actual base class for "IntReg" is "IntRegOperand", i.e. we
1406 # have to append "Operand".
1407 try:
1408 base_cls = eval(base_cls_name + 'Operand')
1409 except NameError:
1410 error(lineno,
1411 'error: unknown operand base class "%s"' % base_cls_name)
1412 # The following statement creates a new class called
1413 # <cls_name> as a subclass of <base_cls> with the attributes
1414 # in tmp_dict, just as if we evaluated a class declaration.
1415 operandNameMap[op_name] = type(cls_name, (base_cls,), tmp_dict)
1416
1417 # Define operand variables.
1418 operands = userDict.keys()
1419
1420 operandsREString = (r'''
1421 (?<![\w\.]) # neg. lookbehind assertion: prevent partial matches
1422 ((%s)(?:\.(\w+))?) # match: operand with optional '.' then suffix
1423 (?![\w\.]) # neg. lookahead assertion: prevent partial matches
1424 '''
1425 % string.join(operands, '|'))
1426
1427 global operandsRE
1428 operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
1429
1430 # Same as operandsREString, but extension is mandatory, and only two
1431 # groups are returned (base and ext, not full name as above).
1432 # Used for subtituting '_' for '.' to make C++ identifiers.
1433 operandsWithExtREString = (r'(?<![\w\.])(%s)\.(\w+)(?![\w\.])'
1434 % string.join(operands, '|'))
1435
1436 global operandsWithExtRE
1437 operandsWithExtRE = re.compile(operandsWithExtREString, re.MULTILINE)
1438
1439
1440class OperandList:
1441
1442 # Find all the operands in the given code block. Returns an operand
1443 # descriptor list (instance of class OperandList).
1444 def __init__(self, code):
1445 self.items = []
1446 self.bases = {}
1447 # delete comments so we don't match on reg specifiers inside
1448 code = commentRE.sub('', code)
1449 # search for operands
1450 next_pos = 0
1451 while 1:
1452 match = operandsRE.search(code, next_pos)
1453 if not match:
1454 # no more matches: we're done
1455 break
1456 op = match.groups()
1457 # regexp groups are operand full name, base, and extension
1458 (op_full, op_base, op_ext) = op
1459 # if the token following the operand is an assignment, this is
1460 # a destination (LHS), else it's a source (RHS)
1461 is_dest = (assignRE.match(code, match.end()) != None)
1462 is_src = not is_dest
1463 # see if we've already seen this one
1464 op_desc = self.find_base(op_base)
1465 if op_desc:
1466 if op_desc.ext != op_ext:
1467 error(0, 'Inconsistent extensions for operand %s' % \
1468 op_base)
1469 op_desc.is_src = op_desc.is_src or is_src
1470 op_desc.is_dest = op_desc.is_dest or is_dest
1471 else:
1472 # new operand: create new descriptor
1473 op_desc = operandNameMap[op_base](op_full, op_ext,
1474 is_src, is_dest)
1475 self.append(op_desc)
1476 # start next search after end of current match
1477 next_pos = match.end()
1478 self.sort()
1479 # enumerate source & dest register operands... used in building
1480 # constructor later
1481 self.numSrcRegs = 0
1482 self.numDestRegs = 0
1483 self.numFPDestRegs = 0
1484 self.numIntDestRegs = 0
1485 self.memOperand = None
1486 for op_desc in self.items:
1487 if op_desc.isReg():
1488 if op_desc.is_src:
1489 op_desc.src_reg_idx = self.numSrcRegs
1490 self.numSrcRegs += 1
1491 if op_desc.is_dest:
1492 op_desc.dest_reg_idx = self.numDestRegs
1493 self.numDestRegs += 1
1494 if op_desc.isFloatReg():
1495 self.numFPDestRegs += 1
1496 elif op_desc.isIntReg():
1497 self.numIntDestRegs += 1
1498 elif op_desc.isMem():
1499 if self.memOperand:
1500 error(0, "Code block has more than one memory operand.")
1501 self.memOperand = op_desc
1502 # now make a final pass to finalize op_desc fields that may depend
1503 # on the register enumeration
1504 for op_desc in self.items:
1505 op_desc.finalize()
1506
1507 def __len__(self):
1508 return len(self.items)
1509
1510 def __getitem__(self, index):
1511 return self.items[index]
1512
1513 def append(self, op_desc):
1514 self.items.append(op_desc)
1515 self.bases[op_desc.base_name] = op_desc
1516
1517 def find_base(self, base_name):
1518 # like self.bases[base_name], but returns None if not found
1519 # (rather than raising exception)
1520 return self.bases.get(base_name)
1521
1522 # internal helper function for concat[Some]Attr{Strings|Lists}
1523 def __internalConcatAttrs(self, attr_name, filter, result):
1524 for op_desc in self.items:
1525 if filter(op_desc):
1526 result += getattr(op_desc, attr_name)
1527 return result
1528
1529 # return a single string that is the concatenation of the (string)
1530 # values of the specified attribute for all operands
1531 def concatAttrStrings(self, attr_name):
1532 return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
1533
1534 # like concatAttrStrings, but only include the values for the operands
1535 # for which the provided filter function returns true
1536 def concatSomeAttrStrings(self, filter, attr_name):
1537 return self.__internalConcatAttrs(attr_name, filter, '')
1538
1539 # return a single list that is the concatenation of the (list)
1540 # values of the specified attribute for all operands
1541 def concatAttrLists(self, attr_name):
1542 return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
1543
1544 # like concatAttrLists, but only include the values for the operands
1545 # for which the provided filter function returns true
1546 def concatSomeAttrLists(self, filter, attr_name):
1547 return self.__internalConcatAttrs(attr_name, filter, [])
1548
1549 def sort(self):
1550 self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
1551
1552# Regular expression object to match C++ comments
1553# (used in findOperands())
1554commentRE = re.compile(r'//.*\n')
1555
1556# Regular expression object to match assignment statements
1557# (used in findOperands())
1558assignRE = re.compile(r'\s*=(?!=)', re.MULTILINE)
1559
1560# Munge operand names in code string to make legal C++ variable names.
1561# This means getting rid of the type extension if any.
1562# (Will match base_name attribute of Operand object.)
1563def substMungedOpNames(code):
1564 return operandsWithExtRE.sub(r'\1', code)
1565
1566def joinLists(t):
1567 return map(string.join, t)
1568
1569def makeFlagConstructor(flag_list):
1570 if len(flag_list) == 0:
1571 return ''
1572 # filter out repeated flags
1573 flag_list.sort()
1574 i = 1
1575 while i < len(flag_list):
1576 if flag_list[i] == flag_list[i-1]:
1577 del flag_list[i]
1578 else:
1579 i += 1
1580 pre = '\n\tflags['
1581 post = '] = true;'
1582 code = pre + string.join(flag_list, post + pre) + post
1583 return code
1584
1585class CodeBlock:
1586 def __init__(self, code):
1587 self.orig_code = code
1588 self.operands = OperandList(code)
1589 self.code = substMungedOpNames(substBitOps(code))
1590 self.constructor = self.operands.concatAttrStrings('constructor')
1591 self.constructor += \
1592 '\n\t_numSrcRegs = %d;' % self.operands.numSrcRegs
1593 self.constructor += \
1594 '\n\t_numDestRegs = %d;' % self.operands.numDestRegs
1595 self.constructor += \
1596 '\n\t_numFPDestRegs = %d;' % self.operands.numFPDestRegs
1597 self.constructor += \
1598 '\n\t_numIntDestRegs = %d;' % self.operands.numIntDestRegs
1599
1600 self.op_decl = self.operands.concatAttrStrings('op_decl')
1601
1602 is_src = lambda op: op.is_src
1603 is_dest = lambda op: op.is_dest
1604
1605 self.op_src_decl = \
1606 self.operands.concatSomeAttrStrings(is_src, 'op_src_decl')
1607 self.op_dest_decl = \
1608 self.operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
1609
1610 self.op_rd = self.operands.concatAttrStrings('op_rd')
1611 self.op_wb = self.operands.concatAttrStrings('op_wb')
1612
1613 self.flags = self.operands.concatAttrLists('flags')
1614
1615 if self.operands.memOperand:
1616 self.mem_acc_size = self.operands.memOperand.mem_acc_size
1617 self.mem_acc_type = self.operands.memOperand.mem_acc_type
1618
1619 # Make a basic guess on the operand class (function unit type).
1620 # These are good enough for most cases, and will be overridden
1621 # later otherwise.
1622 if 'IsStore' in self.flags:
1623 self.op_class = 'MemWriteOp'
1624 elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
1625 self.op_class = 'MemReadOp'
1626 elif 'IsFloating' in self.flags:
1627 self.op_class = 'FloatAddOp'
1628 else:
1629 self.op_class = 'IntAluOp'
1630
1631# Assume all instruction flags are of the form 'IsFoo'
1632instFlagRE = re.compile(r'Is.*')
1633
1634# OpClass constants end in 'Op' except No_OpClass
1635opClassRE = re.compile(r'.*Op|No_OpClass')
1636
1637class InstObjParams:
1638 def __init__(self, mnem, class_name, base_class = '',
1639 code = None, opt_args = [], extras = {}):
1640 self.mnemonic = mnem
1641 self.class_name = class_name
1642 self.base_class = base_class
1643 if code:
1644 #If the user already made a CodeBlock, pick the parts from it
1645 if isinstance(code, CodeBlock):
1646 origCode = code.orig_code
1647 codeBlock = code
1648 else:
1649 origCode = code
1650 codeBlock = CodeBlock(code)
1651 stringExtras = {}
1652 otherExtras = {}
1653 for (k, v) in extras.items():
1654 if type(v) == str:
1655 stringExtras[k] = v
1656 else:
1657 otherExtras[k] = v
1658 compositeCode = "\n".join([origCode] + stringExtras.values())
1659 # compositeCode = '\n'.join([origCode] +
1660 # [pair[1] for pair in extras])
1661 compositeBlock = CodeBlock(compositeCode)
1662 for code_attr in compositeBlock.__dict__.keys():
1663 setattr(self, code_attr, getattr(compositeBlock, code_attr))
1664 for (key, snippet) in stringExtras.items():
1665 setattr(self, key, CodeBlock(snippet).code)
1666 for (key, item) in otherExtras.items():
1667 setattr(self, key, item)
1668 self.code = codeBlock.code
1669 self.orig_code = origCode
1670 else:
1671 self.constructor = ''
1672 self.flags = []
1673 # Optional arguments are assumed to be either StaticInst flags
1674 # or an OpClass value. To avoid having to import a complete
1675 # list of these values to match against, we do it ad-hoc
1676 # with regexps.
1677 for oa in opt_args:
1678 if instFlagRE.match(oa):
1679 self.flags.append(oa)
1680 elif opClassRE.match(oa):
1681 self.op_class = oa
1682 else:
1683 error(0, 'InstObjParams: optional arg "%s" not recognized '
1684 'as StaticInst::Flag or OpClass.' % oa)
1685
1686 # add flag initialization to contructor here to include
1687 # any flags added via opt_args
1688 self.constructor += makeFlagConstructor(self.flags)
1689
1690 # if 'IsFloating' is set, add call to the FP enable check
1691 # function (which should be provided by isa_desc via a declare)
1692 if 'IsFloating' in self.flags:
1693 self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
1694 else:
1695 self.fp_enable_check = ''
1696
1697#######################
1698#
1699# Output file template
1700#
1701
1702file_template = '''
1703/*
1704 * DO NOT EDIT THIS FILE!!!
1705 *
1706 * It was automatically generated from the ISA description in %(filename)s
1707 */
1708
1709%(includes)s
1710
1711%(global_output)s
1712
1713namespace %(namespace)s {
1714
1715%(namespace_output)s
1716
1717} // namespace %(namespace)s
1718
1719%(decode_function)s
1720'''
1721
1722
1723# Update the output file only if the new contents are different from
1724# the current contents. Minimizes the files that need to be rebuilt
1725# after minor changes.
1726def update_if_needed(file, contents):
1727 update = False
1728 if os.access(file, os.R_OK):
1729 f = open(file, 'r')
1730 old_contents = f.read()
1731 f.close()
1732 if contents != old_contents:
1733 print 'Updating', file
1734 os.remove(file) # in case it's write-protected
1735 update = True
1736 else:
1737 print 'File', file, 'is unchanged'
1738 else:
1739 print 'Generating', file
1740 update = True
1741 if update:
1742 f = open(file, 'w')
1743 f.write(contents)
1744 f.close()
1745
1746# This regular expression matches '##include' directives
1747includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[\w/.-]*)".*$',
1748 re.MULTILINE)
1749
1750# Function to replace a matched '##include' directive with the
1751# contents of the specified file (with nested ##includes replaced
1752# recursively). 'matchobj' is an re match object (from a match of
1753# includeRE) and 'dirname' is the directory relative to which the file
1754# path should be resolved.
1755def replace_include(matchobj, dirname):
1756 fname = matchobj.group('filename')
1757 full_fname = os.path.normpath(os.path.join(dirname, fname))
1758 contents = '##newfile "%s"\n%s\n##endfile\n' % \
1759 (full_fname, read_and_flatten(full_fname))
1760 return contents
1761
1762# Read a file and recursively flatten nested '##include' files.
1763def read_and_flatten(filename):
1764 current_dir = os.path.dirname(filename)
1765 try:
1766 contents = open(filename).read()
1767 except IOError:
1768 error(0, 'Error including file "%s"' % filename)
1769 fileNameStack.push((filename, 0))
1770 # Find any includes and include them
1771 contents = includeRE.sub(lambda m: replace_include(m, current_dir),
1772 contents)
1773 fileNameStack.pop()
1774 return contents
1775
1776#
1777# Read in and parse the ISA description.
1778#
1779def parse_isa_desc(isa_desc_file, output_dir):
1780 # Read file and (recursively) all included files into a string.
1781 # PLY requires that the input be in a single string so we have to
1782 # do this up front.
1783 isa_desc = read_and_flatten(isa_desc_file)
1784
1785 # Initialize filename stack with outer file.
1786 fileNameStack.push((isa_desc_file, 0))
1787
1788 # Parse it.
1789 (isa_name, namespace, global_code, namespace_code) = yacc.parse(isa_desc)
1790
1791 # grab the last three path components of isa_desc_file to put in
1792 # the output
1793 filename = '/'.join(isa_desc_file.split('/')[-3:])
1794
1795 # generate decoder.hh
1796 includes = '#include "base/bitfield.hh" // for bitfield support'
1797 global_output = global_code.header_output
1798 namespace_output = namespace_code.header_output
1799 decode_function = ''
1800 update_if_needed(output_dir + '/decoder.hh', file_template % vars())
1801
1802 # generate decoder.cc
1803 includes = '#include "decoder.hh"'
1804 global_output = global_code.decoder_output
1805 namespace_output = namespace_code.decoder_output
1806 # namespace_output += namespace_code.decode_block
1807 decode_function = namespace_code.decode_block
1808 update_if_needed(output_dir + '/decoder.cc', file_template % vars())
1809
1810 # generate per-cpu exec files
1811 for cpu in cpu_models:
1812 includes = '#include "decoder.hh"\n'
1813 includes += cpu.includes
1814 global_output = global_code.exec_output[cpu.name]
1815 namespace_output = namespace_code.exec_output[cpu.name]
1816 decode_function = ''
1817 update_if_needed(output_dir + '/' + cpu.filename,
1818 file_template % vars())
1819
1820# global list of CpuModel objects (see cpu_models.py)
1821cpu_models = []
1822
1823# Called as script: get args from command line.
1824# Args are: <path to cpu_models.py> <isa desc file> <output dir> <cpu models>
1825if __name__ == '__main__':
1826 execfile(sys.argv[1]) # read in CpuModel definitions
1827 cpu_models = [CpuModel.dict[cpu] for cpu in sys.argv[4:]]
1828 parse_isa_desc(sys.argv[2], sys.argv[3])
1275 final_ctype = 'uint%d_t' % self.dflt_size
1276 if (self.size != self.dflt_size and self.is_signed):
1277 final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
1278 if width:
1279 widthSpecifier = ', %d' % width
1280 wb = '''
1281 {
1282 %s final_val = %s;
1283 xc->%s(this, %d, final_val%s);\n
1284 if (traceData) { traceData->setData(final_val); }
1285 }''' % (final_ctype, final_val, func, self.dest_reg_idx,
1286 widthSpecifier)
1287 return wb
1288
1289class ControlRegOperand(Operand):
1290 def isReg(self):
1291 return 1
1292
1293 def isControlReg(self):
1294 return 1
1295
1296 def makeConstructor(self):
1297 c = ''
1298 if self.is_src:
1299 c += '\n\t_srcRegIdx[%d] = %s;' % \
1300 (self.src_reg_idx, self.reg_spec)
1301 if self.is_dest:
1302 c += '\n\t_destRegIdx[%d] = %s;' % \
1303 (self.dest_reg_idx, self.reg_spec)
1304 return c
1305
1306 def makeRead(self):
1307 bit_select = 0
1308 if (self.ctype == 'float' or self.ctype == 'double'):
1309 error(0, 'Attempt to read control register as FP')
1310 base = 'xc->readMiscReg(%s)' % self.reg_spec
1311 if self.size == self.dflt_size:
1312 return '%s = %s;\n' % (self.base_name, base)
1313 else:
1314 return '%s = bits(%s, %d, 0);\n' % \
1315 (self.base_name, base, self.size-1)
1316
1317 def makeWrite(self):
1318 if (self.ctype == 'float' or self.ctype == 'double'):
1319 error(0, 'Attempt to write control register as FP')
1320 wb = 'xc->setMiscRegWithEffect(%s, %s);\n' % (self.reg_spec, self.base_name)
1321 wb += 'if (traceData) { traceData->setData(%s); }' % \
1322 self.base_name
1323 return wb
1324
1325class MemOperand(Operand):
1326 def isMem(self):
1327 return 1
1328
1329 def makeConstructor(self):
1330 return ''
1331
1332 def makeDecl(self):
1333 # Note that initializations in the declarations are solely
1334 # to avoid 'uninitialized variable' errors from the compiler.
1335 # Declare memory data variable.
1336 c = '%s %s = 0;\n' % (self.ctype, self.base_name)
1337 return c
1338
1339 def makeRead(self):
1340 return ''
1341
1342 def makeWrite(self):
1343 return ''
1344
1345 # Return the memory access size *in bits*, suitable for
1346 # forming a type via "uint%d_t". Divide by 8 if you want bytes.
1347 def makeAccSize(self):
1348 return self.size
1349
1350
1351class NPCOperand(Operand):
1352 def makeConstructor(self):
1353 return ''
1354
1355 def makeRead(self):
1356 return '%s = xc->readNextPC();\n' % self.base_name
1357
1358 def makeWrite(self):
1359 return 'xc->setNextPC(%s);\n' % self.base_name
1360
1361class NNPCOperand(Operand):
1362 def makeConstructor(self):
1363 return ''
1364
1365 def makeRead(self):
1366 return '%s = xc->readNextNPC();\n' % self.base_name
1367
1368 def makeWrite(self):
1369 return 'xc->setNextNPC(%s);\n' % self.base_name
1370
1371def buildOperandNameMap(userDict, lineno):
1372 global operandNameMap
1373 operandNameMap = {}
1374 for (op_name, val) in userDict.iteritems():
1375 (base_cls_name, dflt_ext, reg_spec, flags, sort_pri) = val
1376 (dflt_size, dflt_ctype, dflt_is_signed) = operandTypeMap[dflt_ext]
1377 # Canonical flag structure is a triple of lists, where each list
1378 # indicates the set of flags implied by this operand always, when
1379 # used as a source, and when used as a dest, respectively.
1380 # For simplicity this can be initialized using a variety of fairly
1381 # obvious shortcuts; we convert these to canonical form here.
1382 if not flags:
1383 # no flags specified (e.g., 'None')
1384 flags = ( [], [], [] )
1385 elif isinstance(flags, str):
1386 # a single flag: assumed to be unconditional
1387 flags = ( [ flags ], [], [] )
1388 elif isinstance(flags, list):
1389 # a list of flags: also assumed to be unconditional
1390 flags = ( flags, [], [] )
1391 elif isinstance(flags, tuple):
1392 # it's a tuple: it should be a triple,
1393 # but each item could be a single string or a list
1394 (uncond_flags, src_flags, dest_flags) = flags
1395 flags = (makeList(uncond_flags),
1396 makeList(src_flags), makeList(dest_flags))
1397 # Accumulate attributes of new operand class in tmp_dict
1398 tmp_dict = {}
1399 for attr in ('dflt_ext', 'reg_spec', 'flags', 'sort_pri',
1400 'dflt_size', 'dflt_ctype', 'dflt_is_signed'):
1401 tmp_dict[attr] = eval(attr)
1402 tmp_dict['base_name'] = op_name
1403 # New class name will be e.g. "IntReg_Ra"
1404 cls_name = base_cls_name + '_' + op_name
1405 # Evaluate string arg to get class object. Note that the
1406 # actual base class for "IntReg" is "IntRegOperand", i.e. we
1407 # have to append "Operand".
1408 try:
1409 base_cls = eval(base_cls_name + 'Operand')
1410 except NameError:
1411 error(lineno,
1412 'error: unknown operand base class "%s"' % base_cls_name)
1413 # The following statement creates a new class called
1414 # <cls_name> as a subclass of <base_cls> with the attributes
1415 # in tmp_dict, just as if we evaluated a class declaration.
1416 operandNameMap[op_name] = type(cls_name, (base_cls,), tmp_dict)
1417
1418 # Define operand variables.
1419 operands = userDict.keys()
1420
1421 operandsREString = (r'''
1422 (?<![\w\.]) # neg. lookbehind assertion: prevent partial matches
1423 ((%s)(?:\.(\w+))?) # match: operand with optional '.' then suffix
1424 (?![\w\.]) # neg. lookahead assertion: prevent partial matches
1425 '''
1426 % string.join(operands, '|'))
1427
1428 global operandsRE
1429 operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
1430
1431 # Same as operandsREString, but extension is mandatory, and only two
1432 # groups are returned (base and ext, not full name as above).
1433 # Used for subtituting '_' for '.' to make C++ identifiers.
1434 operandsWithExtREString = (r'(?<![\w\.])(%s)\.(\w+)(?![\w\.])'
1435 % string.join(operands, '|'))
1436
1437 global operandsWithExtRE
1438 operandsWithExtRE = re.compile(operandsWithExtREString, re.MULTILINE)
1439
1440
1441class OperandList:
1442
1443 # Find all the operands in the given code block. Returns an operand
1444 # descriptor list (instance of class OperandList).
1445 def __init__(self, code):
1446 self.items = []
1447 self.bases = {}
1448 # delete comments so we don't match on reg specifiers inside
1449 code = commentRE.sub('', code)
1450 # search for operands
1451 next_pos = 0
1452 while 1:
1453 match = operandsRE.search(code, next_pos)
1454 if not match:
1455 # no more matches: we're done
1456 break
1457 op = match.groups()
1458 # regexp groups are operand full name, base, and extension
1459 (op_full, op_base, op_ext) = op
1460 # if the token following the operand is an assignment, this is
1461 # a destination (LHS), else it's a source (RHS)
1462 is_dest = (assignRE.match(code, match.end()) != None)
1463 is_src = not is_dest
1464 # see if we've already seen this one
1465 op_desc = self.find_base(op_base)
1466 if op_desc:
1467 if op_desc.ext != op_ext:
1468 error(0, 'Inconsistent extensions for operand %s' % \
1469 op_base)
1470 op_desc.is_src = op_desc.is_src or is_src
1471 op_desc.is_dest = op_desc.is_dest or is_dest
1472 else:
1473 # new operand: create new descriptor
1474 op_desc = operandNameMap[op_base](op_full, op_ext,
1475 is_src, is_dest)
1476 self.append(op_desc)
1477 # start next search after end of current match
1478 next_pos = match.end()
1479 self.sort()
1480 # enumerate source & dest register operands... used in building
1481 # constructor later
1482 self.numSrcRegs = 0
1483 self.numDestRegs = 0
1484 self.numFPDestRegs = 0
1485 self.numIntDestRegs = 0
1486 self.memOperand = None
1487 for op_desc in self.items:
1488 if op_desc.isReg():
1489 if op_desc.is_src:
1490 op_desc.src_reg_idx = self.numSrcRegs
1491 self.numSrcRegs += 1
1492 if op_desc.is_dest:
1493 op_desc.dest_reg_idx = self.numDestRegs
1494 self.numDestRegs += 1
1495 if op_desc.isFloatReg():
1496 self.numFPDestRegs += 1
1497 elif op_desc.isIntReg():
1498 self.numIntDestRegs += 1
1499 elif op_desc.isMem():
1500 if self.memOperand:
1501 error(0, "Code block has more than one memory operand.")
1502 self.memOperand = op_desc
1503 # now make a final pass to finalize op_desc fields that may depend
1504 # on the register enumeration
1505 for op_desc in self.items:
1506 op_desc.finalize()
1507
1508 def __len__(self):
1509 return len(self.items)
1510
1511 def __getitem__(self, index):
1512 return self.items[index]
1513
1514 def append(self, op_desc):
1515 self.items.append(op_desc)
1516 self.bases[op_desc.base_name] = op_desc
1517
1518 def find_base(self, base_name):
1519 # like self.bases[base_name], but returns None if not found
1520 # (rather than raising exception)
1521 return self.bases.get(base_name)
1522
1523 # internal helper function for concat[Some]Attr{Strings|Lists}
1524 def __internalConcatAttrs(self, attr_name, filter, result):
1525 for op_desc in self.items:
1526 if filter(op_desc):
1527 result += getattr(op_desc, attr_name)
1528 return result
1529
1530 # return a single string that is the concatenation of the (string)
1531 # values of the specified attribute for all operands
1532 def concatAttrStrings(self, attr_name):
1533 return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
1534
1535 # like concatAttrStrings, but only include the values for the operands
1536 # for which the provided filter function returns true
1537 def concatSomeAttrStrings(self, filter, attr_name):
1538 return self.__internalConcatAttrs(attr_name, filter, '')
1539
1540 # return a single list that is the concatenation of the (list)
1541 # values of the specified attribute for all operands
1542 def concatAttrLists(self, attr_name):
1543 return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
1544
1545 # like concatAttrLists, but only include the values for the operands
1546 # for which the provided filter function returns true
1547 def concatSomeAttrLists(self, filter, attr_name):
1548 return self.__internalConcatAttrs(attr_name, filter, [])
1549
1550 def sort(self):
1551 self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
1552
1553# Regular expression object to match C++ comments
1554# (used in findOperands())
1555commentRE = re.compile(r'//.*\n')
1556
1557# Regular expression object to match assignment statements
1558# (used in findOperands())
1559assignRE = re.compile(r'\s*=(?!=)', re.MULTILINE)
1560
1561# Munge operand names in code string to make legal C++ variable names.
1562# This means getting rid of the type extension if any.
1563# (Will match base_name attribute of Operand object.)
1564def substMungedOpNames(code):
1565 return operandsWithExtRE.sub(r'\1', code)
1566
1567def joinLists(t):
1568 return map(string.join, t)
1569
1570def makeFlagConstructor(flag_list):
1571 if len(flag_list) == 0:
1572 return ''
1573 # filter out repeated flags
1574 flag_list.sort()
1575 i = 1
1576 while i < len(flag_list):
1577 if flag_list[i] == flag_list[i-1]:
1578 del flag_list[i]
1579 else:
1580 i += 1
1581 pre = '\n\tflags['
1582 post = '] = true;'
1583 code = pre + string.join(flag_list, post + pre) + post
1584 return code
1585
1586class CodeBlock:
1587 def __init__(self, code):
1588 self.orig_code = code
1589 self.operands = OperandList(code)
1590 self.code = substMungedOpNames(substBitOps(code))
1591 self.constructor = self.operands.concatAttrStrings('constructor')
1592 self.constructor += \
1593 '\n\t_numSrcRegs = %d;' % self.operands.numSrcRegs
1594 self.constructor += \
1595 '\n\t_numDestRegs = %d;' % self.operands.numDestRegs
1596 self.constructor += \
1597 '\n\t_numFPDestRegs = %d;' % self.operands.numFPDestRegs
1598 self.constructor += \
1599 '\n\t_numIntDestRegs = %d;' % self.operands.numIntDestRegs
1600
1601 self.op_decl = self.operands.concatAttrStrings('op_decl')
1602
1603 is_src = lambda op: op.is_src
1604 is_dest = lambda op: op.is_dest
1605
1606 self.op_src_decl = \
1607 self.operands.concatSomeAttrStrings(is_src, 'op_src_decl')
1608 self.op_dest_decl = \
1609 self.operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
1610
1611 self.op_rd = self.operands.concatAttrStrings('op_rd')
1612 self.op_wb = self.operands.concatAttrStrings('op_wb')
1613
1614 self.flags = self.operands.concatAttrLists('flags')
1615
1616 if self.operands.memOperand:
1617 self.mem_acc_size = self.operands.memOperand.mem_acc_size
1618 self.mem_acc_type = self.operands.memOperand.mem_acc_type
1619
1620 # Make a basic guess on the operand class (function unit type).
1621 # These are good enough for most cases, and will be overridden
1622 # later otherwise.
1623 if 'IsStore' in self.flags:
1624 self.op_class = 'MemWriteOp'
1625 elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
1626 self.op_class = 'MemReadOp'
1627 elif 'IsFloating' in self.flags:
1628 self.op_class = 'FloatAddOp'
1629 else:
1630 self.op_class = 'IntAluOp'
1631
1632# Assume all instruction flags are of the form 'IsFoo'
1633instFlagRE = re.compile(r'Is.*')
1634
1635# OpClass constants end in 'Op' except No_OpClass
1636opClassRE = re.compile(r'.*Op|No_OpClass')
1637
1638class InstObjParams:
1639 def __init__(self, mnem, class_name, base_class = '',
1640 code = None, opt_args = [], extras = {}):
1641 self.mnemonic = mnem
1642 self.class_name = class_name
1643 self.base_class = base_class
1644 if code:
1645 #If the user already made a CodeBlock, pick the parts from it
1646 if isinstance(code, CodeBlock):
1647 origCode = code.orig_code
1648 codeBlock = code
1649 else:
1650 origCode = code
1651 codeBlock = CodeBlock(code)
1652 stringExtras = {}
1653 otherExtras = {}
1654 for (k, v) in extras.items():
1655 if type(v) == str:
1656 stringExtras[k] = v
1657 else:
1658 otherExtras[k] = v
1659 compositeCode = "\n".join([origCode] + stringExtras.values())
1660 # compositeCode = '\n'.join([origCode] +
1661 # [pair[1] for pair in extras])
1662 compositeBlock = CodeBlock(compositeCode)
1663 for code_attr in compositeBlock.__dict__.keys():
1664 setattr(self, code_attr, getattr(compositeBlock, code_attr))
1665 for (key, snippet) in stringExtras.items():
1666 setattr(self, key, CodeBlock(snippet).code)
1667 for (key, item) in otherExtras.items():
1668 setattr(self, key, item)
1669 self.code = codeBlock.code
1670 self.orig_code = origCode
1671 else:
1672 self.constructor = ''
1673 self.flags = []
1674 # Optional arguments are assumed to be either StaticInst flags
1675 # or an OpClass value. To avoid having to import a complete
1676 # list of these values to match against, we do it ad-hoc
1677 # with regexps.
1678 for oa in opt_args:
1679 if instFlagRE.match(oa):
1680 self.flags.append(oa)
1681 elif opClassRE.match(oa):
1682 self.op_class = oa
1683 else:
1684 error(0, 'InstObjParams: optional arg "%s" not recognized '
1685 'as StaticInst::Flag or OpClass.' % oa)
1686
1687 # add flag initialization to contructor here to include
1688 # any flags added via opt_args
1689 self.constructor += makeFlagConstructor(self.flags)
1690
1691 # if 'IsFloating' is set, add call to the FP enable check
1692 # function (which should be provided by isa_desc via a declare)
1693 if 'IsFloating' in self.flags:
1694 self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
1695 else:
1696 self.fp_enable_check = ''
1697
1698#######################
1699#
1700# Output file template
1701#
1702
1703file_template = '''
1704/*
1705 * DO NOT EDIT THIS FILE!!!
1706 *
1707 * It was automatically generated from the ISA description in %(filename)s
1708 */
1709
1710%(includes)s
1711
1712%(global_output)s
1713
1714namespace %(namespace)s {
1715
1716%(namespace_output)s
1717
1718} // namespace %(namespace)s
1719
1720%(decode_function)s
1721'''
1722
1723
1724# Update the output file only if the new contents are different from
1725# the current contents. Minimizes the files that need to be rebuilt
1726# after minor changes.
1727def update_if_needed(file, contents):
1728 update = False
1729 if os.access(file, os.R_OK):
1730 f = open(file, 'r')
1731 old_contents = f.read()
1732 f.close()
1733 if contents != old_contents:
1734 print 'Updating', file
1735 os.remove(file) # in case it's write-protected
1736 update = True
1737 else:
1738 print 'File', file, 'is unchanged'
1739 else:
1740 print 'Generating', file
1741 update = True
1742 if update:
1743 f = open(file, 'w')
1744 f.write(contents)
1745 f.close()
1746
1747# This regular expression matches '##include' directives
1748includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[\w/.-]*)".*$',
1749 re.MULTILINE)
1750
1751# Function to replace a matched '##include' directive with the
1752# contents of the specified file (with nested ##includes replaced
1753# recursively). 'matchobj' is an re match object (from a match of
1754# includeRE) and 'dirname' is the directory relative to which the file
1755# path should be resolved.
1756def replace_include(matchobj, dirname):
1757 fname = matchobj.group('filename')
1758 full_fname = os.path.normpath(os.path.join(dirname, fname))
1759 contents = '##newfile "%s"\n%s\n##endfile\n' % \
1760 (full_fname, read_and_flatten(full_fname))
1761 return contents
1762
1763# Read a file and recursively flatten nested '##include' files.
1764def read_and_flatten(filename):
1765 current_dir = os.path.dirname(filename)
1766 try:
1767 contents = open(filename).read()
1768 except IOError:
1769 error(0, 'Error including file "%s"' % filename)
1770 fileNameStack.push((filename, 0))
1771 # Find any includes and include them
1772 contents = includeRE.sub(lambda m: replace_include(m, current_dir),
1773 contents)
1774 fileNameStack.pop()
1775 return contents
1776
1777#
1778# Read in and parse the ISA description.
1779#
1780def parse_isa_desc(isa_desc_file, output_dir):
1781 # Read file and (recursively) all included files into a string.
1782 # PLY requires that the input be in a single string so we have to
1783 # do this up front.
1784 isa_desc = read_and_flatten(isa_desc_file)
1785
1786 # Initialize filename stack with outer file.
1787 fileNameStack.push((isa_desc_file, 0))
1788
1789 # Parse it.
1790 (isa_name, namespace, global_code, namespace_code) = yacc.parse(isa_desc)
1791
1792 # grab the last three path components of isa_desc_file to put in
1793 # the output
1794 filename = '/'.join(isa_desc_file.split('/')[-3:])
1795
1796 # generate decoder.hh
1797 includes = '#include "base/bitfield.hh" // for bitfield support'
1798 global_output = global_code.header_output
1799 namespace_output = namespace_code.header_output
1800 decode_function = ''
1801 update_if_needed(output_dir + '/decoder.hh', file_template % vars())
1802
1803 # generate decoder.cc
1804 includes = '#include "decoder.hh"'
1805 global_output = global_code.decoder_output
1806 namespace_output = namespace_code.decoder_output
1807 # namespace_output += namespace_code.decode_block
1808 decode_function = namespace_code.decode_block
1809 update_if_needed(output_dir + '/decoder.cc', file_template % vars())
1810
1811 # generate per-cpu exec files
1812 for cpu in cpu_models:
1813 includes = '#include "decoder.hh"\n'
1814 includes += cpu.includes
1815 global_output = global_code.exec_output[cpu.name]
1816 namespace_output = namespace_code.exec_output[cpu.name]
1817 decode_function = ''
1818 update_if_needed(output_dir + '/' + cpu.filename,
1819 file_template % vars())
1820
1821# global list of CpuModel objects (see cpu_models.py)
1822cpu_models = []
1823
1824# Called as script: get args from command line.
1825# Args are: <path to cpu_models.py> <isa desc file> <output dir> <cpu models>
1826if __name__ == '__main__':
1827 execfile(sys.argv[1]) # read in CpuModel definitions
1828 cpu_models = [CpuModel.dict[cpu] for cpu in sys.argv[4:]]
1829 parse_isa_desc(sys.argv[2], sys.argv[3])