isa_parser.py (12104:edd63f9c6184) isa_parser.py (12109:f29e9c5418aa)
1# Copyright (c) 2014 ARM Limited
1# Copyright (c) 2014, 2016 ARM Limited
2# All rights reserved
3#
4# The license below extends only to copyright in the software and shall
5# not be construed as granting a license to any other intellectual
6# property including but not limited to intellectual property relating
7# to a hardware implementation of the functionality of the software
8# licensed hereunder. You may use the software subject to the license
9# terms below provided that you ensure that this notice is replicated
10# unmodified and in its entirety in all distributions of the software,
11# modified or unmodified, in source code or in binary form.
12#
13# Copyright (c) 2003-2005 The Regents of The University of Michigan
14# Copyright (c) 2013,2015 Advanced Micro Devices, Inc.
15# All rights reserved.
16#
17# Redistribution and use in source and binary forms, with or without
18# modification, are permitted provided that the following conditions are
19# met: redistributions of source code must retain the above copyright
20# notice, this list of conditions and the following disclaimer;
21# redistributions in binary form must reproduce the above copyright
22# notice, this list of conditions and the following disclaimer in the
23# documentation and/or other materials provided with the distribution;
24# neither the name of the copyright holders nor the names of its
25# contributors may be used to endorse or promote products derived from
26# this software without specific prior written permission.
27#
28# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39#
40# Authors: Steve Reinhardt
41
42from __future__ import with_statement
43import os
44import sys
45import re
46import string
47import inspect, traceback
48# get type names
49from types import *
50
51from m5.util.grammar import Grammar
52
53debug=False
54
55###################
56# Utility functions
57
58#
59# Indent every line in string 's' by two spaces
60# (except preprocessor directives).
61# Used to make nested code blocks look pretty.
62#
63def indent(s):
64 return re.sub(r'(?m)^(?!#)', ' ', s)
65
66#
67# Munge a somewhat arbitrarily formatted piece of Python code
68# (e.g. from a format 'let' block) into something whose indentation
69# will get by the Python parser.
70#
71# The two keys here are that Python will give a syntax error if
72# there's any whitespace at the beginning of the first line, and that
73# all lines at the same lexical nesting level must have identical
74# indentation. Unfortunately the way code literals work, an entire
75# let block tends to have some initial indentation. Rather than
76# trying to figure out what that is and strip it off, we prepend 'if
77# 1:' to make the let code the nested block inside the if (and have
78# the parser automatically deal with the indentation for us).
79#
80# We don't want to do this if (1) the code block is empty or (2) the
81# first line of the block doesn't have any whitespace at the front.
82
83def fixPythonIndentation(s):
84 # get rid of blank lines first
85 s = re.sub(r'(?m)^\s*\n', '', s);
86 if (s != '' and re.match(r'[ \t]', s[0])):
87 s = 'if 1:\n' + s
88 return s
89
90class ISAParserError(Exception):
91 """Exception class for parser errors"""
92 def __init__(self, first, second=None):
93 if second is None:
94 self.lineno = 0
95 self.string = first
96 else:
97 self.lineno = first
98 self.string = second
99
100 def __str__(self):
101 return self.string
102
103def error(*args):
104 raise ISAParserError(*args)
105
106####################
107# Template objects.
108#
109# Template objects are format strings that allow substitution from
110# the attribute spaces of other objects (e.g. InstObjParams instances).
111
112labelRE = re.compile(r'(?<!%)%\(([^\)]+)\)[sd]')
113
114class Template(object):
115 def __init__(self, parser, t):
116 self.parser = parser
117 self.template = t
118
119 def subst(self, d):
120 myDict = None
121
122 # Protect non-Python-dict substitutions (e.g. if there's a printf
123 # in the templated C++ code)
124 template = self.parser.protectNonSubstPercents(self.template)
125 # CPU-model-specific substitutions are handled later (in GenCode).
126 template = self.parser.protectCpuSymbols(template)
127
128 # Build a dict ('myDict') to use for the template substitution.
129 # Start with the template namespace. Make a copy since we're
130 # going to modify it.
131 myDict = self.parser.templateMap.copy()
132
133 if isinstance(d, InstObjParams):
134 # If we're dealing with an InstObjParams object, we need
135 # to be a little more sophisticated. The instruction-wide
136 # parameters are already formed, but the parameters which
137 # are only function wide still need to be generated.
138 compositeCode = ''
139
140 myDict.update(d.__dict__)
141 # The "operands" and "snippets" attributes of the InstObjParams
142 # objects are for internal use and not substitution.
143 del myDict['operands']
144 del myDict['snippets']
145
146 snippetLabels = [l for l in labelRE.findall(template)
147 if d.snippets.has_key(l)]
148
149 snippets = dict([(s, self.parser.mungeSnippet(d.snippets[s]))
150 for s in snippetLabels])
151
152 myDict.update(snippets)
153
154 compositeCode = ' '.join(map(str, snippets.values()))
155
156 # Add in template itself in case it references any
157 # operands explicitly (like Mem)
158 compositeCode += ' ' + template
159
160 operands = SubOperandList(self.parser, compositeCode, d.operands)
161
162 myDict['op_decl'] = operands.concatAttrStrings('op_decl')
163 if operands.readPC or operands.setPC:
164 myDict['op_decl'] += 'TheISA::PCState __parserAutoPCState;\n'
165
166 # In case there are predicated register reads and write, declare
167 # the variables for register indicies. It is being assumed that
168 # all the operands in the OperandList are also in the
169 # SubOperandList and in the same order. Otherwise, it is
170 # expected that predication would not be used for the operands.
171 if operands.predRead:
172 myDict['op_decl'] += 'uint8_t _sourceIndex = 0;\n'
173 if operands.predWrite:
174 myDict['op_decl'] += 'uint8_t M5_VAR_USED _destIndex = 0;\n'
175
176 is_src = lambda op: op.is_src
177 is_dest = lambda op: op.is_dest
178
179 myDict['op_src_decl'] = \
180 operands.concatSomeAttrStrings(is_src, 'op_src_decl')
181 myDict['op_dest_decl'] = \
182 operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
183 if operands.readPC:
184 myDict['op_src_decl'] += \
185 'TheISA::PCState __parserAutoPCState;\n'
186 if operands.setPC:
187 myDict['op_dest_decl'] += \
188 'TheISA::PCState __parserAutoPCState;\n'
189
190 myDict['op_rd'] = operands.concatAttrStrings('op_rd')
191 if operands.readPC:
192 myDict['op_rd'] = '__parserAutoPCState = xc->pcState();\n' + \
193 myDict['op_rd']
194
195 # Compose the op_wb string. If we're going to write back the
196 # PC state because we changed some of its elements, we'll need to
197 # do that as early as possible. That allows later uncoordinated
198 # modifications to the PC to layer appropriately.
199 reordered = list(operands.items)
200 reordered.reverse()
201 op_wb_str = ''
202 pcWbStr = 'xc->pcState(__parserAutoPCState);\n'
203 for op_desc in reordered:
204 if op_desc.isPCPart() and op_desc.is_dest:
205 op_wb_str = op_desc.op_wb + pcWbStr + op_wb_str
206 pcWbStr = ''
207 else:
208 op_wb_str = op_desc.op_wb + op_wb_str
209 myDict['op_wb'] = op_wb_str
210
211 elif isinstance(d, dict):
212 # if the argument is a dictionary, we just use it.
213 myDict.update(d)
214 elif hasattr(d, '__dict__'):
215 # if the argument is an object, we use its attribute map.
216 myDict.update(d.__dict__)
217 else:
218 raise TypeError, "Template.subst() arg must be or have dictionary"
219 return template % myDict
220
221 # Convert to string. This handles the case when a template with a
222 # CPU-specific term gets interpolated into another template or into
223 # an output block.
224 def __str__(self):
225 return self.parser.expandCpuSymbolsToString(self.template)
226
227################
228# Format object.
229#
230# A format object encapsulates an instruction format. It must provide
231# a defineInst() method that generates the code for an instruction
232# definition.
233
234class Format(object):
235 def __init__(self, id, params, code):
236 self.id = id
237 self.params = params
238 label = 'def format ' + id
239 self.user_code = compile(fixPythonIndentation(code), label, 'exec')
240 param_list = string.join(params, ", ")
241 f = '''def defInst(_code, _context, %s):
242 my_locals = vars().copy()
243 exec _code in _context, my_locals
244 return my_locals\n''' % param_list
245 c = compile(f, label + ' wrapper', 'exec')
246 exec c
247 self.func = defInst
248
249 def defineInst(self, parser, name, args, lineno):
250 parser.updateExportContext()
251 context = parser.exportContext.copy()
252 if len(name):
253 Name = name[0].upper()
254 if len(name) > 1:
255 Name += name[1:]
256 context.update({ 'name' : name, 'Name' : Name })
257 try:
258 vars = self.func(self.user_code, context, *args[0], **args[1])
259 except Exception, exc:
260 if debug:
261 raise
262 error(lineno, 'error defining "%s": %s.' % (name, exc))
263 for k in vars.keys():
264 if k not in ('header_output', 'decoder_output',
265 'exec_output', 'decode_block'):
266 del vars[k]
267 return GenCode(parser, **vars)
268
269# Special null format to catch an implicit-format instruction
270# definition outside of any format block.
271class NoFormat(object):
272 def __init__(self):
273 self.defaultInst = ''
274
275 def defineInst(self, parser, name, args, lineno):
276 error(lineno,
277 'instruction definition "%s" with no active format!' % name)
278
279###############
280# GenCode class
281#
282# The GenCode class encapsulates generated code destined for various
283# output files. The header_output and decoder_output attributes are
284# strings containing code destined for decoder.hh and decoder.cc
285# respectively. The decode_block attribute contains code to be
286# incorporated in the decode function itself (that will also end up in
287# decoder.cc). The exec_output attribute is a dictionary with a key
288# for each CPU model name; the value associated with a particular key
289# is the string of code for that CPU model's exec.cc file. The
290# has_decode_default attribute is used in the decode block to allow
291# explicit default clauses to override default default clauses.
292
293class GenCode(object):
294 # Constructor. At this point we substitute out all CPU-specific
295 # symbols. For the exec output, these go into the per-model
296 # dictionary. For all other output types they get collapsed into
297 # a single string.
298 def __init__(self, parser,
299 header_output = '', decoder_output = '', exec_output = '',
300 decode_block = '', has_decode_default = False):
301 self.parser = parser
302 self.header_output = parser.expandCpuSymbolsToString(header_output)
303 self.decoder_output = parser.expandCpuSymbolsToString(decoder_output)
304 self.exec_output = exec_output
305 self.decode_block = decode_block
306 self.has_decode_default = has_decode_default
307
308 # Write these code chunks out to the filesystem. They will be properly
309 # interwoven by the write_top_level_files().
310 def emit(self):
311 if self.header_output:
312 self.parser.get_file('header').write(self.header_output)
313 if self.decoder_output:
314 self.parser.get_file('decoder').write(self.decoder_output)
315 if self.exec_output:
316 self.parser.get_file('exec').write(self.exec_output)
317 if self.decode_block:
318 self.parser.get_file('decode_block').write(self.decode_block)
319
320 # Override '+' operator: generate a new GenCode object that
321 # concatenates all the individual strings in the operands.
322 def __add__(self, other):
323 return GenCode(self.parser,
324 self.header_output + other.header_output,
325 self.decoder_output + other.decoder_output,
326 self.exec_output + other.exec_output,
327 self.decode_block + other.decode_block,
328 self.has_decode_default or other.has_decode_default)
329
330 # Prepend a string (typically a comment) to all the strings.
331 def prepend_all(self, pre):
332 self.header_output = pre + self.header_output
333 self.decoder_output = pre + self.decoder_output
334 self.decode_block = pre + self.decode_block
335 self.exec_output = pre + self.exec_output
336
337 # Wrap the decode block in a pair of strings (e.g., 'case foo:'
338 # and 'break;'). Used to build the big nested switch statement.
339 def wrap_decode_block(self, pre, post = ''):
340 self.decode_block = pre + indent(self.decode_block) + post
341
342#####################################################################
343#
344# Bitfield Operator Support
345#
346#####################################################################
347
348bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
349
350bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
351bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
352
353def substBitOps(code):
354 # first convert single-bit selectors to two-index form
355 # i.e., <n> --> <n:n>
356 code = bitOp1ArgRE.sub(r'<\1:\1>', code)
357 # simple case: selector applied to ID (name)
358 # i.e., foo<a:b> --> bits(foo, a, b)
359 code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
360 # if selector is applied to expression (ending in ')'),
361 # we need to search backward for matching '('
362 match = bitOpExprRE.search(code)
363 while match:
364 exprEnd = match.start()
365 here = exprEnd - 1
366 nestLevel = 1
367 while nestLevel > 0:
368 if code[here] == '(':
369 nestLevel -= 1
370 elif code[here] == ')':
371 nestLevel += 1
372 here -= 1
373 if here < 0:
374 sys.exit("Didn't find '('!")
375 exprStart = here+1
376 newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
377 match.group(1), match.group(2))
378 code = code[:exprStart] + newExpr + code[match.end():]
379 match = bitOpExprRE.search(code)
380 return code
381
382
383#####################################################################
384#
385# Code Parser
386#
387# The remaining code is the support for automatically extracting
388# instruction characteristics from pseudocode.
389#
390#####################################################################
391
392# Force the argument to be a list. Useful for flags, where a caller
393# can specify a singleton flag or a list of flags. Also usful for
394# converting tuples to lists so they can be modified.
395def makeList(arg):
396 if isinstance(arg, list):
397 return arg
398 elif isinstance(arg, tuple):
399 return list(arg)
400 elif not arg:
401 return []
402 else:
403 return [ arg ]
404
405class Operand(object):
406 '''Base class for operand descriptors. An instance of this class
407 (or actually a class derived from this one) represents a specific
408 operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
409 derived classes encapsulates the traits of a particular operand
410 type (e.g., "32-bit integer register").'''
411
412 def buildReadCode(self, func = None):
413 subst_dict = {"name": self.base_name,
414 "func": func,
415 "reg_idx": self.reg_spec,
416 "ctype": self.ctype}
417 if hasattr(self, 'src_reg_idx'):
418 subst_dict['op_idx'] = self.src_reg_idx
419 code = self.read_code % subst_dict
420 return '%s = %s;\n' % (self.base_name, code)
421
422 def buildWriteCode(self, func = None):
423 subst_dict = {"name": self.base_name,
424 "func": func,
425 "reg_idx": self.reg_spec,
426 "ctype": self.ctype,
427 "final_val": self.base_name}
428 if hasattr(self, 'dest_reg_idx'):
429 subst_dict['op_idx'] = self.dest_reg_idx
430 code = self.write_code % subst_dict
431 return '''
432 {
433 %s final_val = %s;
434 %s;
435 if (traceData) { traceData->setData(final_val); }
436 }''' % (self.dflt_ctype, self.base_name, code)
437
438 def __init__(self, parser, full_name, ext, is_src, is_dest):
439 self.full_name = full_name
440 self.ext = ext
441 self.is_src = is_src
442 self.is_dest = is_dest
443 # The 'effective extension' (eff_ext) is either the actual
444 # extension, if one was explicitly provided, or the default.
445 if ext:
446 self.eff_ext = ext
447 elif hasattr(self, 'dflt_ext'):
448 self.eff_ext = self.dflt_ext
449
450 if hasattr(self, 'eff_ext'):
451 self.ctype = parser.operandTypeMap[self.eff_ext]
452
453 # Finalize additional fields (primarily code fields). This step
454 # is done separately since some of these fields may depend on the
455 # register index enumeration that hasn't been performed yet at the
456 # time of __init__(). The register index enumeration is affected
457 # by predicated register reads/writes. Hence, we forward the flags
458 # that indicate whether or not predication is in use.
459 def finalize(self, predRead, predWrite):
460 self.flags = self.getFlags()
461 self.constructor = self.makeConstructor(predRead, predWrite)
462 self.op_decl = self.makeDecl()
463
464 if self.is_src:
465 self.op_rd = self.makeRead(predRead)
466 self.op_src_decl = self.makeDecl()
467 else:
468 self.op_rd = ''
469 self.op_src_decl = ''
470
471 if self.is_dest:
472 self.op_wb = self.makeWrite(predWrite)
473 self.op_dest_decl = self.makeDecl()
474 else:
475 self.op_wb = ''
476 self.op_dest_decl = ''
477
478 def isMem(self):
479 return 0
480
481 def isReg(self):
482 return 0
483
484 def isFloatReg(self):
485 return 0
486
487 def isIntReg(self):
488 return 0
489
490 def isCCReg(self):
491 return 0
492
493 def isControlReg(self):
494 return 0
495
496 def isPCState(self):
497 return 0
498
499 def isPCPart(self):
500 return self.isPCState() and self.reg_spec
501
502 def hasReadPred(self):
503 return self.read_predicate != None
504
505 def hasWritePred(self):
506 return self.write_predicate != None
507
508 def getFlags(self):
509 # note the empty slice '[:]' gives us a copy of self.flags[0]
510 # instead of a reference to it
511 my_flags = self.flags[0][:]
512 if self.is_src:
513 my_flags += self.flags[1]
514 if self.is_dest:
515 my_flags += self.flags[2]
516 return my_flags
517
518 def makeDecl(self):
519 # Note that initializations in the declarations are solely
520 # to avoid 'uninitialized variable' errors from the compiler.
521 return self.ctype + ' ' + self.base_name + ' = 0;\n';
522
523
524src_reg_constructor = '\n\t_srcRegIdx[_numSrcRegs++] = RegId(%s, %s);'
525dst_reg_constructor = '\n\t_destRegIdx[_numDestRegs++] = RegId(%s, %s);'
526
527
528class IntRegOperand(Operand):
529 reg_class = 'IntRegClass'
530
531 def isReg(self):
532 return 1
533
534 def isIntReg(self):
535 return 1
536
537 def makeConstructor(self, predRead, predWrite):
538 c_src = ''
539 c_dest = ''
540
541 if self.is_src:
542 c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
543 if self.hasReadPred():
544 c_src = '\n\tif (%s) {%s\n\t}' % \
545 (self.read_predicate, c_src)
546
547 if self.is_dest:
548 c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
549 c_dest += '\n\t_numIntDestRegs++;'
550 if self.hasWritePred():
551 c_dest = '\n\tif (%s) {%s\n\t}' % \
552 (self.write_predicate, c_dest)
553
554 return c_src + c_dest
555
556 def makeRead(self, predRead):
557 if (self.ctype == 'float' or self.ctype == 'double'):
558 error('Attempt to read integer register as FP')
559 if self.read_code != None:
560 return self.buildReadCode('readIntRegOperand')
561
562 int_reg_val = ''
563 if predRead:
564 int_reg_val = 'xc->readIntRegOperand(this, _sourceIndex++)'
565 if self.hasReadPred():
566 int_reg_val = '(%s) ? %s : 0' % \
567 (self.read_predicate, int_reg_val)
568 else:
569 int_reg_val = 'xc->readIntRegOperand(this, %d)' % self.src_reg_idx
570
571 return '%s = %s;\n' % (self.base_name, int_reg_val)
572
573 def makeWrite(self, predWrite):
574 if (self.ctype == 'float' or self.ctype == 'double'):
575 error('Attempt to write integer register as FP')
576 if self.write_code != None:
577 return self.buildWriteCode('setIntRegOperand')
578
579 if predWrite:
580 wp = 'true'
581 if self.hasWritePred():
582 wp = self.write_predicate
583
584 wcond = 'if (%s)' % (wp)
585 windex = '_destIndex++'
586 else:
587 wcond = ''
588 windex = '%d' % self.dest_reg_idx
589
590 wb = '''
591 %s
592 {
593 %s final_val = %s;
594 xc->setIntRegOperand(this, %s, final_val);\n
595 if (traceData) { traceData->setData(final_val); }
596 }''' % (wcond, self.ctype, self.base_name, windex)
597
598 return wb
599
600class FloatRegOperand(Operand):
601 reg_class = 'FloatRegClass'
602
603 def isReg(self):
604 return 1
605
606 def isFloatReg(self):
607 return 1
608
609 def makeConstructor(self, predRead, predWrite):
610 c_src = ''
611 c_dest = ''
612
613 if self.is_src:
614 c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
615
616 if self.is_dest:
617 c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
618 c_dest += '\n\t_numFPDestRegs++;'
619
620 return c_src + c_dest
621
622 def makeRead(self, predRead):
623 bit_select = 0
624 if (self.ctype == 'float' or self.ctype == 'double'):
625 func = 'readFloatRegOperand'
626 else:
627 func = 'readFloatRegOperandBits'
628 if self.read_code != None:
629 return self.buildReadCode(func)
630
631 if predRead:
632 rindex = '_sourceIndex++'
633 else:
634 rindex = '%d' % self.src_reg_idx
635
636 return '%s = xc->%s(this, %s);\n' % \
637 (self.base_name, func, rindex)
638
639 def makeWrite(self, predWrite):
640 if (self.ctype == 'float' or self.ctype == 'double'):
641 func = 'setFloatRegOperand'
642 else:
643 func = 'setFloatRegOperandBits'
644 if self.write_code != None:
645 return self.buildWriteCode(func)
646
647 if predWrite:
648 wp = '_destIndex++'
649 else:
650 wp = '%d' % self.dest_reg_idx
651 wp = 'xc->%s(this, %s, final_val);' % (func, wp)
652
653 wb = '''
654 {
655 %s final_val = %s;
656 %s\n
657 if (traceData) { traceData->setData(final_val); }
658 }''' % (self.ctype, self.base_name, wp)
659 return wb
660
661class CCRegOperand(Operand):
662 reg_class = 'CCRegClass'
663
664 def isReg(self):
665 return 1
666
667 def isCCReg(self):
668 return 1
669
670 def makeConstructor(self, predRead, predWrite):
671 c_src = ''
672 c_dest = ''
673
674 if self.is_src:
675 c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
676 if self.hasReadPred():
677 c_src = '\n\tif (%s) {%s\n\t}' % \
678 (self.read_predicate, c_src)
679
680 if self.is_dest:
681 c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
682 c_dest += '\n\t_numCCDestRegs++;'
683 if self.hasWritePred():
684 c_dest = '\n\tif (%s) {%s\n\t}' % \
685 (self.write_predicate, c_dest)
686
687 return c_src + c_dest
688
689 def makeRead(self, predRead):
690 if (self.ctype == 'float' or self.ctype == 'double'):
691 error('Attempt to read condition-code register as FP')
692 if self.read_code != None:
693 return self.buildReadCode('readCCRegOperand')
694
695 int_reg_val = ''
696 if predRead:
697 int_reg_val = 'xc->readCCRegOperand(this, _sourceIndex++)'
698 if self.hasReadPred():
699 int_reg_val = '(%s) ? %s : 0' % \
700 (self.read_predicate, int_reg_val)
701 else:
702 int_reg_val = 'xc->readCCRegOperand(this, %d)' % self.src_reg_idx
703
704 return '%s = %s;\n' % (self.base_name, int_reg_val)
705
706 def makeWrite(self, predWrite):
707 if (self.ctype == 'float' or self.ctype == 'double'):
708 error('Attempt to write condition-code register as FP')
709 if self.write_code != None:
710 return self.buildWriteCode('setCCRegOperand')
711
712 if predWrite:
713 wp = 'true'
714 if self.hasWritePred():
715 wp = self.write_predicate
716
717 wcond = 'if (%s)' % (wp)
718 windex = '_destIndex++'
719 else:
720 wcond = ''
721 windex = '%d' % self.dest_reg_idx
722
723 wb = '''
724 %s
725 {
726 %s final_val = %s;
727 xc->setCCRegOperand(this, %s, final_val);\n
728 if (traceData) { traceData->setData(final_val); }
729 }''' % (wcond, self.ctype, self.base_name, windex)
730
731 return wb
732
733class ControlRegOperand(Operand):
734 reg_class = 'MiscRegClass'
735
736 def isReg(self):
737 return 1
738
739 def isControlReg(self):
740 return 1
741
742 def makeConstructor(self, predRead, predWrite):
743 c_src = ''
744 c_dest = ''
745
746 if self.is_src:
747 c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
748
749 if self.is_dest:
750 c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
751
752 return c_src + c_dest
753
754 def makeRead(self, predRead):
755 bit_select = 0
756 if (self.ctype == 'float' or self.ctype == 'double'):
757 error('Attempt to read control register as FP')
758 if self.read_code != None:
759 return self.buildReadCode('readMiscRegOperand')
760
761 if predRead:
762 rindex = '_sourceIndex++'
763 else:
764 rindex = '%d' % self.src_reg_idx
765
766 return '%s = xc->readMiscRegOperand(this, %s);\n' % \
767 (self.base_name, rindex)
768
769 def makeWrite(self, predWrite):
770 if (self.ctype == 'float' or self.ctype == 'double'):
771 error('Attempt to write control register as FP')
772 if self.write_code != None:
773 return self.buildWriteCode('setMiscRegOperand')
774
775 if predWrite:
776 windex = '_destIndex++'
777 else:
778 windex = '%d' % self.dest_reg_idx
779
780 wb = 'xc->setMiscRegOperand(this, %s, %s);\n' % \
781 (windex, self.base_name)
782 wb += 'if (traceData) { traceData->setData(%s); }' % \
783 self.base_name
784
785 return wb
786
787class MemOperand(Operand):
788 def isMem(self):
789 return 1
790
791 def makeConstructor(self, predRead, predWrite):
792 return ''
793
794 def makeDecl(self):
795 # Declare memory data variable.
796 return '%s %s;\n' % (self.ctype, self.base_name)
797
798 def makeRead(self, predRead):
799 if self.read_code != None:
800 return self.buildReadCode()
801 return ''
802
803 def makeWrite(self, predWrite):
804 if self.write_code != None:
805 return self.buildWriteCode()
806 return ''
807
808class PCStateOperand(Operand):
809 def makeConstructor(self, predRead, predWrite):
810 return ''
811
812 def makeRead(self, predRead):
813 if self.reg_spec:
814 # A component of the PC state.
815 return '%s = __parserAutoPCState.%s();\n' % \
816 (self.base_name, self.reg_spec)
817 else:
818 # The whole PC state itself.
819 return '%s = xc->pcState();\n' % self.base_name
820
821 def makeWrite(self, predWrite):
822 if self.reg_spec:
823 # A component of the PC state.
824 return '__parserAutoPCState.%s(%s);\n' % \
825 (self.reg_spec, self.base_name)
826 else:
827 # The whole PC state itself.
828 return 'xc->pcState(%s);\n' % self.base_name
829
830 def makeDecl(self):
831 ctype = 'TheISA::PCState'
832 if self.isPCPart():
833 ctype = self.ctype
834 # Note that initializations in the declarations are solely
835 # to avoid 'uninitialized variable' errors from the compiler.
836 return '%s %s = 0;\n' % (ctype, self.base_name)
837
838 def isPCState(self):
839 return 1
840
841class OperandList(object):
842 '''Find all the operands in the given code block. Returns an operand
843 descriptor list (instance of class OperandList).'''
844 def __init__(self, parser, code):
845 self.items = []
846 self.bases = {}
847 # delete strings and comments so we don't match on operands inside
848 for regEx in (stringRE, commentRE):
849 code = regEx.sub('', code)
850 # search for operands
851 next_pos = 0
852 while 1:
853 match = parser.operandsRE.search(code, next_pos)
854 if not match:
855 # no more matches: we're done
856 break
857 op = match.groups()
858 # regexp groups are operand full name, base, and extension
859 (op_full, op_base, op_ext) = op
860 # if the token following the operand is an assignment, this is
861 # a destination (LHS), else it's a source (RHS)
862 is_dest = (assignRE.match(code, match.end()) != None)
863 is_src = not is_dest
864 # see if we've already seen this one
865 op_desc = self.find_base(op_base)
866 if op_desc:
867 if op_desc.ext != op_ext:
2# All rights reserved
3#
4# The license below extends only to copyright in the software and shall
5# not be construed as granting a license to any other intellectual
6# property including but not limited to intellectual property relating
7# to a hardware implementation of the functionality of the software
8# licensed hereunder. You may use the software subject to the license
9# terms below provided that you ensure that this notice is replicated
10# unmodified and in its entirety in all distributions of the software,
11# modified or unmodified, in source code or in binary form.
12#
13# Copyright (c) 2003-2005 The Regents of The University of Michigan
14# Copyright (c) 2013,2015 Advanced Micro Devices, Inc.
15# All rights reserved.
16#
17# Redistribution and use in source and binary forms, with or without
18# modification, are permitted provided that the following conditions are
19# met: redistributions of source code must retain the above copyright
20# notice, this list of conditions and the following disclaimer;
21# redistributions in binary form must reproduce the above copyright
22# notice, this list of conditions and the following disclaimer in the
23# documentation and/or other materials provided with the distribution;
24# neither the name of the copyright holders nor the names of its
25# contributors may be used to endorse or promote products derived from
26# this software without specific prior written permission.
27#
28# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39#
40# Authors: Steve Reinhardt
41
42from __future__ import with_statement
43import os
44import sys
45import re
46import string
47import inspect, traceback
48# get type names
49from types import *
50
51from m5.util.grammar import Grammar
52
53debug=False
54
55###################
56# Utility functions
57
58#
59# Indent every line in string 's' by two spaces
60# (except preprocessor directives).
61# Used to make nested code blocks look pretty.
62#
63def indent(s):
64 return re.sub(r'(?m)^(?!#)', ' ', s)
65
66#
67# Munge a somewhat arbitrarily formatted piece of Python code
68# (e.g. from a format 'let' block) into something whose indentation
69# will get by the Python parser.
70#
71# The two keys here are that Python will give a syntax error if
72# there's any whitespace at the beginning of the first line, and that
73# all lines at the same lexical nesting level must have identical
74# indentation. Unfortunately the way code literals work, an entire
75# let block tends to have some initial indentation. Rather than
76# trying to figure out what that is and strip it off, we prepend 'if
77# 1:' to make the let code the nested block inside the if (and have
78# the parser automatically deal with the indentation for us).
79#
80# We don't want to do this if (1) the code block is empty or (2) the
81# first line of the block doesn't have any whitespace at the front.
82
83def fixPythonIndentation(s):
84 # get rid of blank lines first
85 s = re.sub(r'(?m)^\s*\n', '', s);
86 if (s != '' and re.match(r'[ \t]', s[0])):
87 s = 'if 1:\n' + s
88 return s
89
90class ISAParserError(Exception):
91 """Exception class for parser errors"""
92 def __init__(self, first, second=None):
93 if second is None:
94 self.lineno = 0
95 self.string = first
96 else:
97 self.lineno = first
98 self.string = second
99
100 def __str__(self):
101 return self.string
102
103def error(*args):
104 raise ISAParserError(*args)
105
106####################
107# Template objects.
108#
109# Template objects are format strings that allow substitution from
110# the attribute spaces of other objects (e.g. InstObjParams instances).
111
112labelRE = re.compile(r'(?<!%)%\(([^\)]+)\)[sd]')
113
114class Template(object):
115 def __init__(self, parser, t):
116 self.parser = parser
117 self.template = t
118
119 def subst(self, d):
120 myDict = None
121
122 # Protect non-Python-dict substitutions (e.g. if there's a printf
123 # in the templated C++ code)
124 template = self.parser.protectNonSubstPercents(self.template)
125 # CPU-model-specific substitutions are handled later (in GenCode).
126 template = self.parser.protectCpuSymbols(template)
127
128 # Build a dict ('myDict') to use for the template substitution.
129 # Start with the template namespace. Make a copy since we're
130 # going to modify it.
131 myDict = self.parser.templateMap.copy()
132
133 if isinstance(d, InstObjParams):
134 # If we're dealing with an InstObjParams object, we need
135 # to be a little more sophisticated. The instruction-wide
136 # parameters are already formed, but the parameters which
137 # are only function wide still need to be generated.
138 compositeCode = ''
139
140 myDict.update(d.__dict__)
141 # The "operands" and "snippets" attributes of the InstObjParams
142 # objects are for internal use and not substitution.
143 del myDict['operands']
144 del myDict['snippets']
145
146 snippetLabels = [l for l in labelRE.findall(template)
147 if d.snippets.has_key(l)]
148
149 snippets = dict([(s, self.parser.mungeSnippet(d.snippets[s]))
150 for s in snippetLabels])
151
152 myDict.update(snippets)
153
154 compositeCode = ' '.join(map(str, snippets.values()))
155
156 # Add in template itself in case it references any
157 # operands explicitly (like Mem)
158 compositeCode += ' ' + template
159
160 operands = SubOperandList(self.parser, compositeCode, d.operands)
161
162 myDict['op_decl'] = operands.concatAttrStrings('op_decl')
163 if operands.readPC or operands.setPC:
164 myDict['op_decl'] += 'TheISA::PCState __parserAutoPCState;\n'
165
166 # In case there are predicated register reads and write, declare
167 # the variables for register indicies. It is being assumed that
168 # all the operands in the OperandList are also in the
169 # SubOperandList and in the same order. Otherwise, it is
170 # expected that predication would not be used for the operands.
171 if operands.predRead:
172 myDict['op_decl'] += 'uint8_t _sourceIndex = 0;\n'
173 if operands.predWrite:
174 myDict['op_decl'] += 'uint8_t M5_VAR_USED _destIndex = 0;\n'
175
176 is_src = lambda op: op.is_src
177 is_dest = lambda op: op.is_dest
178
179 myDict['op_src_decl'] = \
180 operands.concatSomeAttrStrings(is_src, 'op_src_decl')
181 myDict['op_dest_decl'] = \
182 operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
183 if operands.readPC:
184 myDict['op_src_decl'] += \
185 'TheISA::PCState __parserAutoPCState;\n'
186 if operands.setPC:
187 myDict['op_dest_decl'] += \
188 'TheISA::PCState __parserAutoPCState;\n'
189
190 myDict['op_rd'] = operands.concatAttrStrings('op_rd')
191 if operands.readPC:
192 myDict['op_rd'] = '__parserAutoPCState = xc->pcState();\n' + \
193 myDict['op_rd']
194
195 # Compose the op_wb string. If we're going to write back the
196 # PC state because we changed some of its elements, we'll need to
197 # do that as early as possible. That allows later uncoordinated
198 # modifications to the PC to layer appropriately.
199 reordered = list(operands.items)
200 reordered.reverse()
201 op_wb_str = ''
202 pcWbStr = 'xc->pcState(__parserAutoPCState);\n'
203 for op_desc in reordered:
204 if op_desc.isPCPart() and op_desc.is_dest:
205 op_wb_str = op_desc.op_wb + pcWbStr + op_wb_str
206 pcWbStr = ''
207 else:
208 op_wb_str = op_desc.op_wb + op_wb_str
209 myDict['op_wb'] = op_wb_str
210
211 elif isinstance(d, dict):
212 # if the argument is a dictionary, we just use it.
213 myDict.update(d)
214 elif hasattr(d, '__dict__'):
215 # if the argument is an object, we use its attribute map.
216 myDict.update(d.__dict__)
217 else:
218 raise TypeError, "Template.subst() arg must be or have dictionary"
219 return template % myDict
220
221 # Convert to string. This handles the case when a template with a
222 # CPU-specific term gets interpolated into another template or into
223 # an output block.
224 def __str__(self):
225 return self.parser.expandCpuSymbolsToString(self.template)
226
227################
228# Format object.
229#
230# A format object encapsulates an instruction format. It must provide
231# a defineInst() method that generates the code for an instruction
232# definition.
233
234class Format(object):
235 def __init__(self, id, params, code):
236 self.id = id
237 self.params = params
238 label = 'def format ' + id
239 self.user_code = compile(fixPythonIndentation(code), label, 'exec')
240 param_list = string.join(params, ", ")
241 f = '''def defInst(_code, _context, %s):
242 my_locals = vars().copy()
243 exec _code in _context, my_locals
244 return my_locals\n''' % param_list
245 c = compile(f, label + ' wrapper', 'exec')
246 exec c
247 self.func = defInst
248
249 def defineInst(self, parser, name, args, lineno):
250 parser.updateExportContext()
251 context = parser.exportContext.copy()
252 if len(name):
253 Name = name[0].upper()
254 if len(name) > 1:
255 Name += name[1:]
256 context.update({ 'name' : name, 'Name' : Name })
257 try:
258 vars = self.func(self.user_code, context, *args[0], **args[1])
259 except Exception, exc:
260 if debug:
261 raise
262 error(lineno, 'error defining "%s": %s.' % (name, exc))
263 for k in vars.keys():
264 if k not in ('header_output', 'decoder_output',
265 'exec_output', 'decode_block'):
266 del vars[k]
267 return GenCode(parser, **vars)
268
269# Special null format to catch an implicit-format instruction
270# definition outside of any format block.
271class NoFormat(object):
272 def __init__(self):
273 self.defaultInst = ''
274
275 def defineInst(self, parser, name, args, lineno):
276 error(lineno,
277 'instruction definition "%s" with no active format!' % name)
278
279###############
280# GenCode class
281#
282# The GenCode class encapsulates generated code destined for various
283# output files. The header_output and decoder_output attributes are
284# strings containing code destined for decoder.hh and decoder.cc
285# respectively. The decode_block attribute contains code to be
286# incorporated in the decode function itself (that will also end up in
287# decoder.cc). The exec_output attribute is a dictionary with a key
288# for each CPU model name; the value associated with a particular key
289# is the string of code for that CPU model's exec.cc file. The
290# has_decode_default attribute is used in the decode block to allow
291# explicit default clauses to override default default clauses.
292
293class GenCode(object):
294 # Constructor. At this point we substitute out all CPU-specific
295 # symbols. For the exec output, these go into the per-model
296 # dictionary. For all other output types they get collapsed into
297 # a single string.
298 def __init__(self, parser,
299 header_output = '', decoder_output = '', exec_output = '',
300 decode_block = '', has_decode_default = False):
301 self.parser = parser
302 self.header_output = parser.expandCpuSymbolsToString(header_output)
303 self.decoder_output = parser.expandCpuSymbolsToString(decoder_output)
304 self.exec_output = exec_output
305 self.decode_block = decode_block
306 self.has_decode_default = has_decode_default
307
308 # Write these code chunks out to the filesystem. They will be properly
309 # interwoven by the write_top_level_files().
310 def emit(self):
311 if self.header_output:
312 self.parser.get_file('header').write(self.header_output)
313 if self.decoder_output:
314 self.parser.get_file('decoder').write(self.decoder_output)
315 if self.exec_output:
316 self.parser.get_file('exec').write(self.exec_output)
317 if self.decode_block:
318 self.parser.get_file('decode_block').write(self.decode_block)
319
320 # Override '+' operator: generate a new GenCode object that
321 # concatenates all the individual strings in the operands.
322 def __add__(self, other):
323 return GenCode(self.parser,
324 self.header_output + other.header_output,
325 self.decoder_output + other.decoder_output,
326 self.exec_output + other.exec_output,
327 self.decode_block + other.decode_block,
328 self.has_decode_default or other.has_decode_default)
329
330 # Prepend a string (typically a comment) to all the strings.
331 def prepend_all(self, pre):
332 self.header_output = pre + self.header_output
333 self.decoder_output = pre + self.decoder_output
334 self.decode_block = pre + self.decode_block
335 self.exec_output = pre + self.exec_output
336
337 # Wrap the decode block in a pair of strings (e.g., 'case foo:'
338 # and 'break;'). Used to build the big nested switch statement.
339 def wrap_decode_block(self, pre, post = ''):
340 self.decode_block = pre + indent(self.decode_block) + post
341
342#####################################################################
343#
344# Bitfield Operator Support
345#
346#####################################################################
347
348bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
349
350bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
351bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
352
353def substBitOps(code):
354 # first convert single-bit selectors to two-index form
355 # i.e., <n> --> <n:n>
356 code = bitOp1ArgRE.sub(r'<\1:\1>', code)
357 # simple case: selector applied to ID (name)
358 # i.e., foo<a:b> --> bits(foo, a, b)
359 code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
360 # if selector is applied to expression (ending in ')'),
361 # we need to search backward for matching '('
362 match = bitOpExprRE.search(code)
363 while match:
364 exprEnd = match.start()
365 here = exprEnd - 1
366 nestLevel = 1
367 while nestLevel > 0:
368 if code[here] == '(':
369 nestLevel -= 1
370 elif code[here] == ')':
371 nestLevel += 1
372 here -= 1
373 if here < 0:
374 sys.exit("Didn't find '('!")
375 exprStart = here+1
376 newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
377 match.group(1), match.group(2))
378 code = code[:exprStart] + newExpr + code[match.end():]
379 match = bitOpExprRE.search(code)
380 return code
381
382
383#####################################################################
384#
385# Code Parser
386#
387# The remaining code is the support for automatically extracting
388# instruction characteristics from pseudocode.
389#
390#####################################################################
391
392# Force the argument to be a list. Useful for flags, where a caller
393# can specify a singleton flag or a list of flags. Also usful for
394# converting tuples to lists so they can be modified.
395def makeList(arg):
396 if isinstance(arg, list):
397 return arg
398 elif isinstance(arg, tuple):
399 return list(arg)
400 elif not arg:
401 return []
402 else:
403 return [ arg ]
404
405class Operand(object):
406 '''Base class for operand descriptors. An instance of this class
407 (or actually a class derived from this one) represents a specific
408 operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
409 derived classes encapsulates the traits of a particular operand
410 type (e.g., "32-bit integer register").'''
411
412 def buildReadCode(self, func = None):
413 subst_dict = {"name": self.base_name,
414 "func": func,
415 "reg_idx": self.reg_spec,
416 "ctype": self.ctype}
417 if hasattr(self, 'src_reg_idx'):
418 subst_dict['op_idx'] = self.src_reg_idx
419 code = self.read_code % subst_dict
420 return '%s = %s;\n' % (self.base_name, code)
421
422 def buildWriteCode(self, func = None):
423 subst_dict = {"name": self.base_name,
424 "func": func,
425 "reg_idx": self.reg_spec,
426 "ctype": self.ctype,
427 "final_val": self.base_name}
428 if hasattr(self, 'dest_reg_idx'):
429 subst_dict['op_idx'] = self.dest_reg_idx
430 code = self.write_code % subst_dict
431 return '''
432 {
433 %s final_val = %s;
434 %s;
435 if (traceData) { traceData->setData(final_val); }
436 }''' % (self.dflt_ctype, self.base_name, code)
437
438 def __init__(self, parser, full_name, ext, is_src, is_dest):
439 self.full_name = full_name
440 self.ext = ext
441 self.is_src = is_src
442 self.is_dest = is_dest
443 # The 'effective extension' (eff_ext) is either the actual
444 # extension, if one was explicitly provided, or the default.
445 if ext:
446 self.eff_ext = ext
447 elif hasattr(self, 'dflt_ext'):
448 self.eff_ext = self.dflt_ext
449
450 if hasattr(self, 'eff_ext'):
451 self.ctype = parser.operandTypeMap[self.eff_ext]
452
453 # Finalize additional fields (primarily code fields). This step
454 # is done separately since some of these fields may depend on the
455 # register index enumeration that hasn't been performed yet at the
456 # time of __init__(). The register index enumeration is affected
457 # by predicated register reads/writes. Hence, we forward the flags
458 # that indicate whether or not predication is in use.
459 def finalize(self, predRead, predWrite):
460 self.flags = self.getFlags()
461 self.constructor = self.makeConstructor(predRead, predWrite)
462 self.op_decl = self.makeDecl()
463
464 if self.is_src:
465 self.op_rd = self.makeRead(predRead)
466 self.op_src_decl = self.makeDecl()
467 else:
468 self.op_rd = ''
469 self.op_src_decl = ''
470
471 if self.is_dest:
472 self.op_wb = self.makeWrite(predWrite)
473 self.op_dest_decl = self.makeDecl()
474 else:
475 self.op_wb = ''
476 self.op_dest_decl = ''
477
478 def isMem(self):
479 return 0
480
481 def isReg(self):
482 return 0
483
484 def isFloatReg(self):
485 return 0
486
487 def isIntReg(self):
488 return 0
489
490 def isCCReg(self):
491 return 0
492
493 def isControlReg(self):
494 return 0
495
496 def isPCState(self):
497 return 0
498
499 def isPCPart(self):
500 return self.isPCState() and self.reg_spec
501
502 def hasReadPred(self):
503 return self.read_predicate != None
504
505 def hasWritePred(self):
506 return self.write_predicate != None
507
508 def getFlags(self):
509 # note the empty slice '[:]' gives us a copy of self.flags[0]
510 # instead of a reference to it
511 my_flags = self.flags[0][:]
512 if self.is_src:
513 my_flags += self.flags[1]
514 if self.is_dest:
515 my_flags += self.flags[2]
516 return my_flags
517
518 def makeDecl(self):
519 # Note that initializations in the declarations are solely
520 # to avoid 'uninitialized variable' errors from the compiler.
521 return self.ctype + ' ' + self.base_name + ' = 0;\n';
522
523
524src_reg_constructor = '\n\t_srcRegIdx[_numSrcRegs++] = RegId(%s, %s);'
525dst_reg_constructor = '\n\t_destRegIdx[_numDestRegs++] = RegId(%s, %s);'
526
527
528class IntRegOperand(Operand):
529 reg_class = 'IntRegClass'
530
531 def isReg(self):
532 return 1
533
534 def isIntReg(self):
535 return 1
536
537 def makeConstructor(self, predRead, predWrite):
538 c_src = ''
539 c_dest = ''
540
541 if self.is_src:
542 c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
543 if self.hasReadPred():
544 c_src = '\n\tif (%s) {%s\n\t}' % \
545 (self.read_predicate, c_src)
546
547 if self.is_dest:
548 c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
549 c_dest += '\n\t_numIntDestRegs++;'
550 if self.hasWritePred():
551 c_dest = '\n\tif (%s) {%s\n\t}' % \
552 (self.write_predicate, c_dest)
553
554 return c_src + c_dest
555
556 def makeRead(self, predRead):
557 if (self.ctype == 'float' or self.ctype == 'double'):
558 error('Attempt to read integer register as FP')
559 if self.read_code != None:
560 return self.buildReadCode('readIntRegOperand')
561
562 int_reg_val = ''
563 if predRead:
564 int_reg_val = 'xc->readIntRegOperand(this, _sourceIndex++)'
565 if self.hasReadPred():
566 int_reg_val = '(%s) ? %s : 0' % \
567 (self.read_predicate, int_reg_val)
568 else:
569 int_reg_val = 'xc->readIntRegOperand(this, %d)' % self.src_reg_idx
570
571 return '%s = %s;\n' % (self.base_name, int_reg_val)
572
573 def makeWrite(self, predWrite):
574 if (self.ctype == 'float' or self.ctype == 'double'):
575 error('Attempt to write integer register as FP')
576 if self.write_code != None:
577 return self.buildWriteCode('setIntRegOperand')
578
579 if predWrite:
580 wp = 'true'
581 if self.hasWritePred():
582 wp = self.write_predicate
583
584 wcond = 'if (%s)' % (wp)
585 windex = '_destIndex++'
586 else:
587 wcond = ''
588 windex = '%d' % self.dest_reg_idx
589
590 wb = '''
591 %s
592 {
593 %s final_val = %s;
594 xc->setIntRegOperand(this, %s, final_val);\n
595 if (traceData) { traceData->setData(final_val); }
596 }''' % (wcond, self.ctype, self.base_name, windex)
597
598 return wb
599
600class FloatRegOperand(Operand):
601 reg_class = 'FloatRegClass'
602
603 def isReg(self):
604 return 1
605
606 def isFloatReg(self):
607 return 1
608
609 def makeConstructor(self, predRead, predWrite):
610 c_src = ''
611 c_dest = ''
612
613 if self.is_src:
614 c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
615
616 if self.is_dest:
617 c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
618 c_dest += '\n\t_numFPDestRegs++;'
619
620 return c_src + c_dest
621
622 def makeRead(self, predRead):
623 bit_select = 0
624 if (self.ctype == 'float' or self.ctype == 'double'):
625 func = 'readFloatRegOperand'
626 else:
627 func = 'readFloatRegOperandBits'
628 if self.read_code != None:
629 return self.buildReadCode(func)
630
631 if predRead:
632 rindex = '_sourceIndex++'
633 else:
634 rindex = '%d' % self.src_reg_idx
635
636 return '%s = xc->%s(this, %s);\n' % \
637 (self.base_name, func, rindex)
638
639 def makeWrite(self, predWrite):
640 if (self.ctype == 'float' or self.ctype == 'double'):
641 func = 'setFloatRegOperand'
642 else:
643 func = 'setFloatRegOperandBits'
644 if self.write_code != None:
645 return self.buildWriteCode(func)
646
647 if predWrite:
648 wp = '_destIndex++'
649 else:
650 wp = '%d' % self.dest_reg_idx
651 wp = 'xc->%s(this, %s, final_val);' % (func, wp)
652
653 wb = '''
654 {
655 %s final_val = %s;
656 %s\n
657 if (traceData) { traceData->setData(final_val); }
658 }''' % (self.ctype, self.base_name, wp)
659 return wb
660
661class CCRegOperand(Operand):
662 reg_class = 'CCRegClass'
663
664 def isReg(self):
665 return 1
666
667 def isCCReg(self):
668 return 1
669
670 def makeConstructor(self, predRead, predWrite):
671 c_src = ''
672 c_dest = ''
673
674 if self.is_src:
675 c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
676 if self.hasReadPred():
677 c_src = '\n\tif (%s) {%s\n\t}' % \
678 (self.read_predicate, c_src)
679
680 if self.is_dest:
681 c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
682 c_dest += '\n\t_numCCDestRegs++;'
683 if self.hasWritePred():
684 c_dest = '\n\tif (%s) {%s\n\t}' % \
685 (self.write_predicate, c_dest)
686
687 return c_src + c_dest
688
689 def makeRead(self, predRead):
690 if (self.ctype == 'float' or self.ctype == 'double'):
691 error('Attempt to read condition-code register as FP')
692 if self.read_code != None:
693 return self.buildReadCode('readCCRegOperand')
694
695 int_reg_val = ''
696 if predRead:
697 int_reg_val = 'xc->readCCRegOperand(this, _sourceIndex++)'
698 if self.hasReadPred():
699 int_reg_val = '(%s) ? %s : 0' % \
700 (self.read_predicate, int_reg_val)
701 else:
702 int_reg_val = 'xc->readCCRegOperand(this, %d)' % self.src_reg_idx
703
704 return '%s = %s;\n' % (self.base_name, int_reg_val)
705
706 def makeWrite(self, predWrite):
707 if (self.ctype == 'float' or self.ctype == 'double'):
708 error('Attempt to write condition-code register as FP')
709 if self.write_code != None:
710 return self.buildWriteCode('setCCRegOperand')
711
712 if predWrite:
713 wp = 'true'
714 if self.hasWritePred():
715 wp = self.write_predicate
716
717 wcond = 'if (%s)' % (wp)
718 windex = '_destIndex++'
719 else:
720 wcond = ''
721 windex = '%d' % self.dest_reg_idx
722
723 wb = '''
724 %s
725 {
726 %s final_val = %s;
727 xc->setCCRegOperand(this, %s, final_val);\n
728 if (traceData) { traceData->setData(final_val); }
729 }''' % (wcond, self.ctype, self.base_name, windex)
730
731 return wb
732
733class ControlRegOperand(Operand):
734 reg_class = 'MiscRegClass'
735
736 def isReg(self):
737 return 1
738
739 def isControlReg(self):
740 return 1
741
742 def makeConstructor(self, predRead, predWrite):
743 c_src = ''
744 c_dest = ''
745
746 if self.is_src:
747 c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
748
749 if self.is_dest:
750 c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
751
752 return c_src + c_dest
753
754 def makeRead(self, predRead):
755 bit_select = 0
756 if (self.ctype == 'float' or self.ctype == 'double'):
757 error('Attempt to read control register as FP')
758 if self.read_code != None:
759 return self.buildReadCode('readMiscRegOperand')
760
761 if predRead:
762 rindex = '_sourceIndex++'
763 else:
764 rindex = '%d' % self.src_reg_idx
765
766 return '%s = xc->readMiscRegOperand(this, %s);\n' % \
767 (self.base_name, rindex)
768
769 def makeWrite(self, predWrite):
770 if (self.ctype == 'float' or self.ctype == 'double'):
771 error('Attempt to write control register as FP')
772 if self.write_code != None:
773 return self.buildWriteCode('setMiscRegOperand')
774
775 if predWrite:
776 windex = '_destIndex++'
777 else:
778 windex = '%d' % self.dest_reg_idx
779
780 wb = 'xc->setMiscRegOperand(this, %s, %s);\n' % \
781 (windex, self.base_name)
782 wb += 'if (traceData) { traceData->setData(%s); }' % \
783 self.base_name
784
785 return wb
786
787class MemOperand(Operand):
788 def isMem(self):
789 return 1
790
791 def makeConstructor(self, predRead, predWrite):
792 return ''
793
794 def makeDecl(self):
795 # Declare memory data variable.
796 return '%s %s;\n' % (self.ctype, self.base_name)
797
798 def makeRead(self, predRead):
799 if self.read_code != None:
800 return self.buildReadCode()
801 return ''
802
803 def makeWrite(self, predWrite):
804 if self.write_code != None:
805 return self.buildWriteCode()
806 return ''
807
808class PCStateOperand(Operand):
809 def makeConstructor(self, predRead, predWrite):
810 return ''
811
812 def makeRead(self, predRead):
813 if self.reg_spec:
814 # A component of the PC state.
815 return '%s = __parserAutoPCState.%s();\n' % \
816 (self.base_name, self.reg_spec)
817 else:
818 # The whole PC state itself.
819 return '%s = xc->pcState();\n' % self.base_name
820
821 def makeWrite(self, predWrite):
822 if self.reg_spec:
823 # A component of the PC state.
824 return '__parserAutoPCState.%s(%s);\n' % \
825 (self.reg_spec, self.base_name)
826 else:
827 # The whole PC state itself.
828 return 'xc->pcState(%s);\n' % self.base_name
829
830 def makeDecl(self):
831 ctype = 'TheISA::PCState'
832 if self.isPCPart():
833 ctype = self.ctype
834 # Note that initializations in the declarations are solely
835 # to avoid 'uninitialized variable' errors from the compiler.
836 return '%s %s = 0;\n' % (ctype, self.base_name)
837
838 def isPCState(self):
839 return 1
840
841class OperandList(object):
842 '''Find all the operands in the given code block. Returns an operand
843 descriptor list (instance of class OperandList).'''
844 def __init__(self, parser, code):
845 self.items = []
846 self.bases = {}
847 # delete strings and comments so we don't match on operands inside
848 for regEx in (stringRE, commentRE):
849 code = regEx.sub('', code)
850 # search for operands
851 next_pos = 0
852 while 1:
853 match = parser.operandsRE.search(code, next_pos)
854 if not match:
855 # no more matches: we're done
856 break
857 op = match.groups()
858 # regexp groups are operand full name, base, and extension
859 (op_full, op_base, op_ext) = op
860 # if the token following the operand is an assignment, this is
861 # a destination (LHS), else it's a source (RHS)
862 is_dest = (assignRE.match(code, match.end()) != None)
863 is_src = not is_dest
864 # see if we've already seen this one
865 op_desc = self.find_base(op_base)
866 if op_desc:
867 if op_desc.ext != op_ext:
868 error('Inconsistent extensions for operand %s' % \
869 op_base)
868 error ('Inconsistent extensions for operand %s' % \
869 op_base)
870 op_desc.is_src = op_desc.is_src or is_src
871 op_desc.is_dest = op_desc.is_dest or is_dest
872 else:
873 # new operand: create new descriptor
874 op_desc = parser.operandNameMap[op_base](parser,
875 op_full, op_ext, is_src, is_dest)
876 self.append(op_desc)
877 # start next search after end of current match
878 next_pos = match.end()
879 self.sort()
880 # enumerate source & dest register operands... used in building
881 # constructor later
882 self.numSrcRegs = 0
883 self.numDestRegs = 0
884 self.numFPDestRegs = 0
885 self.numIntDestRegs = 0
886 self.numCCDestRegs = 0
887 self.numMiscDestRegs = 0
888 self.memOperand = None
889
890 # Flags to keep track if one or more operands are to be read/written
891 # conditionally.
892 self.predRead = False
893 self.predWrite = False
894
895 for op_desc in self.items:
896 if op_desc.isReg():
897 if op_desc.is_src:
898 op_desc.src_reg_idx = self.numSrcRegs
899 self.numSrcRegs += 1
900 if op_desc.is_dest:
901 op_desc.dest_reg_idx = self.numDestRegs
902 self.numDestRegs += 1
903 if op_desc.isFloatReg():
904 self.numFPDestRegs += 1
905 elif op_desc.isIntReg():
906 self.numIntDestRegs += 1
907 elif op_desc.isCCReg():
908 self.numCCDestRegs += 1
909 elif op_desc.isControlReg():
910 self.numMiscDestRegs += 1
911 elif op_desc.isMem():
912 if self.memOperand:
913 error("Code block has more than one memory operand.")
914 self.memOperand = op_desc
915
916 # Check if this operand has read/write predication. If true, then
917 # the microop will dynamically index source/dest registers.
918 self.predRead = self.predRead or op_desc.hasReadPred()
919 self.predWrite = self.predWrite or op_desc.hasWritePred()
920
921 if parser.maxInstSrcRegs < self.numSrcRegs:
922 parser.maxInstSrcRegs = self.numSrcRegs
923 if parser.maxInstDestRegs < self.numDestRegs:
924 parser.maxInstDestRegs = self.numDestRegs
925 if parser.maxMiscDestRegs < self.numMiscDestRegs:
926 parser.maxMiscDestRegs = self.numMiscDestRegs
927
928 # now make a final pass to finalize op_desc fields that may depend
929 # on the register enumeration
930 for op_desc in self.items:
931 op_desc.finalize(self.predRead, self.predWrite)
932
933 def __len__(self):
934 return len(self.items)
935
936 def __getitem__(self, index):
937 return self.items[index]
938
939 def append(self, op_desc):
940 self.items.append(op_desc)
941 self.bases[op_desc.base_name] = op_desc
942
943 def find_base(self, base_name):
944 # like self.bases[base_name], but returns None if not found
945 # (rather than raising exception)
946 return self.bases.get(base_name)
947
948 # internal helper function for concat[Some]Attr{Strings|Lists}
949 def __internalConcatAttrs(self, attr_name, filter, result):
950 for op_desc in self.items:
951 if filter(op_desc):
952 result += getattr(op_desc, attr_name)
953 return result
954
955 # return a single string that is the concatenation of the (string)
956 # values of the specified attribute for all operands
957 def concatAttrStrings(self, attr_name):
958 return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
959
960 # like concatAttrStrings, but only include the values for the operands
961 # for which the provided filter function returns true
962 def concatSomeAttrStrings(self, filter, attr_name):
963 return self.__internalConcatAttrs(attr_name, filter, '')
964
965 # return a single list that is the concatenation of the (list)
966 # values of the specified attribute for all operands
967 def concatAttrLists(self, attr_name):
968 return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
969
970 # like concatAttrLists, but only include the values for the operands
971 # for which the provided filter function returns true
972 def concatSomeAttrLists(self, filter, attr_name):
973 return self.__internalConcatAttrs(attr_name, filter, [])
974
975 def sort(self):
976 self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
977
978class SubOperandList(OperandList):
979 '''Find all the operands in the given code block. Returns an operand
980 descriptor list (instance of class OperandList).'''
981 def __init__(self, parser, code, master_list):
982 self.items = []
983 self.bases = {}
984 # delete strings and comments so we don't match on operands inside
985 for regEx in (stringRE, commentRE):
986 code = regEx.sub('', code)
987 # search for operands
988 next_pos = 0
989 while 1:
990 match = parser.operandsRE.search(code, next_pos)
991 if not match:
992 # no more matches: we're done
993 break
994 op = match.groups()
995 # regexp groups are operand full name, base, and extension
996 (op_full, op_base, op_ext) = op
997 # find this op in the master list
998 op_desc = master_list.find_base(op_base)
999 if not op_desc:
1000 error('Found operand %s which is not in the master list!'
1001 % op_base)
1002 else:
1003 # See if we've already found this operand
1004 op_desc = self.find_base(op_base)
1005 if not op_desc:
1006 # if not, add a reference to it to this sub list
1007 self.append(master_list.bases[op_base])
1008
1009 # start next search after end of current match
1010 next_pos = match.end()
1011 self.sort()
1012 self.memOperand = None
1013 # Whether the whole PC needs to be read so parts of it can be accessed
1014 self.readPC = False
1015 # Whether the whole PC needs to be written after parts of it were
1016 # changed
1017 self.setPC = False
1018 # Whether this instruction manipulates the whole PC or parts of it.
1019 # Mixing the two is a bad idea and flagged as an error.
1020 self.pcPart = None
1021
1022 # Flags to keep track if one or more operands are to be read/written
1023 # conditionally.
1024 self.predRead = False
1025 self.predWrite = False
1026
1027 for op_desc in self.items:
1028 if op_desc.isPCPart():
1029 self.readPC = True
1030 if op_desc.is_dest:
1031 self.setPC = True
1032
1033 if op_desc.isPCState():
1034 if self.pcPart is not None:
1035 if self.pcPart and not op_desc.isPCPart() or \
1036 not self.pcPart and op_desc.isPCPart():
1037 error("Mixed whole and partial PC state operands.")
1038 self.pcPart = op_desc.isPCPart()
1039
1040 if op_desc.isMem():
1041 if self.memOperand:
1042 error("Code block has more than one memory operand.")
1043 self.memOperand = op_desc
1044
1045 # Check if this operand has read/write predication. If true, then
1046 # the microop will dynamically index source/dest registers.
1047 self.predRead = self.predRead or op_desc.hasReadPred()
1048 self.predWrite = self.predWrite or op_desc.hasWritePred()
1049
1050# Regular expression object to match C++ strings
1051stringRE = re.compile(r'"([^"\\]|\\.)*"')
1052
1053# Regular expression object to match C++ comments
1054# (used in findOperands())
1055commentRE = re.compile(r'(^)?[^\S\n]*/(?:\*(.*?)\*/[^\S\n]*|/[^\n]*)($)?',
1056 re.DOTALL | re.MULTILINE)
1057
1058# Regular expression object to match assignment statements (used in
1059# findOperands()). If the code immediately following the first
1060# appearance of the operand matches this regex, then the operand
1061# appears to be on the LHS of an assignment, and is thus a
1062# destination. basically we're looking for an '=' that's not '=='.
1063# The heinous tangle before that handles the case where the operand
1064# has an array subscript.
1065assignRE = re.compile(r'(\[[^\]]+\])?\s*=(?!=)', re.MULTILINE)
1066
1067def makeFlagConstructor(flag_list):
1068 if len(flag_list) == 0:
1069 return ''
1070 # filter out repeated flags
1071 flag_list.sort()
1072 i = 1
1073 while i < len(flag_list):
1074 if flag_list[i] == flag_list[i-1]:
1075 del flag_list[i]
1076 else:
1077 i += 1
1078 pre = '\n\tflags['
1079 post = '] = true;'
1080 code = pre + string.join(flag_list, post + pre) + post
1081 return code
1082
1083# Assume all instruction flags are of the form 'IsFoo'
1084instFlagRE = re.compile(r'Is.*')
1085
1086# OpClass constants end in 'Op' except No_OpClass
1087opClassRE = re.compile(r'.*Op|No_OpClass')
1088
1089class InstObjParams(object):
1090 def __init__(self, parser, mnem, class_name, base_class = '',
1091 snippets = {}, opt_args = []):
1092 self.mnemonic = mnem
1093 self.class_name = class_name
1094 self.base_class = base_class
1095 if not isinstance(snippets, dict):
1096 snippets = {'code' : snippets}
1097 compositeCode = ' '.join(map(str, snippets.values()))
1098 self.snippets = snippets
1099
1100 self.operands = OperandList(parser, compositeCode)
1101
1102 # The header of the constructor declares the variables to be used
1103 # in the body of the constructor.
1104 header = ''
1105 header += '\n\t_numSrcRegs = 0;'
1106 header += '\n\t_numDestRegs = 0;'
1107 header += '\n\t_numFPDestRegs = 0;'
1108 header += '\n\t_numIntDestRegs = 0;'
1109 header += '\n\t_numCCDestRegs = 0;'
1110
1111 self.constructor = header + \
1112 self.operands.concatAttrStrings('constructor')
1113
1114 self.flags = self.operands.concatAttrLists('flags')
1115
1116 self.op_class = None
1117
1118 # Optional arguments are assumed to be either StaticInst flags
1119 # or an OpClass value. To avoid having to import a complete
1120 # list of these values to match against, we do it ad-hoc
1121 # with regexps.
1122 for oa in opt_args:
1123 if instFlagRE.match(oa):
1124 self.flags.append(oa)
1125 elif opClassRE.match(oa):
1126 self.op_class = oa
1127 else:
1128 error('InstObjParams: optional arg "%s" not recognized '
1129 'as StaticInst::Flag or OpClass.' % oa)
1130
1131 # Make a basic guess on the operand class if not set.
1132 # These are good enough for most cases.
1133 if not self.op_class:
1134 if 'IsStore' in self.flags:
1135 # The order matters here: 'IsFloating' and 'IsInteger' are
1136 # usually set in FP instructions because of the base
1137 # register
1138 if 'IsFloating' in self.flags:
1139 self.op_class = 'FloatMemWriteOp'
1140 else:
1141 self.op_class = 'MemWriteOp'
1142 elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
1143 # The order matters here: 'IsFloating' and 'IsInteger' are
1144 # usually set in FP instructions because of the base
1145 # register
1146 if 'IsFloating' in self.flags:
1147 self.op_class = 'FloatMemReadOp'
1148 else:
1149 self.op_class = 'MemReadOp'
1150 elif 'IsFloating' in self.flags:
1151 self.op_class = 'FloatAddOp'
1152 else:
1153 self.op_class = 'IntAluOp'
1154
1155 # add flag initialization to contructor here to include
1156 # any flags added via opt_args
1157 self.constructor += makeFlagConstructor(self.flags)
1158
1159 # if 'IsFloating' is set, add call to the FP enable check
1160 # function (which should be provided by isa_desc via a declare)
1161 if 'IsFloating' in self.flags:
1162 self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
1163 else:
1164 self.fp_enable_check = ''
1165
1166##############
1167# Stack: a simple stack object. Used for both formats (formatStack)
1168# and default cases (defaultStack). Simply wraps a list to give more
1169# stack-like syntax and enable initialization with an argument list
1170# (as opposed to an argument that's a list).
1171
1172class Stack(list):
1173 def __init__(self, *items):
1174 list.__init__(self, items)
1175
1176 def push(self, item):
1177 self.append(item);
1178
1179 def top(self):
1180 return self[-1]
1181
1182# Format a file include stack backtrace as a string
1183def backtrace(filename_stack):
1184 fmt = "In file included from %s:"
1185 return "\n".join([fmt % f for f in filename_stack])
1186
1187
1188#######################
1189#
1190# LineTracker: track filenames along with line numbers in PLY lineno fields
1191# PLY explicitly doesn't do anything with 'lineno' except propagate
1192# it. This class lets us tie filenames with the line numbers with a
1193# minimum of disruption to existing increment code.
1194#
1195
1196class LineTracker(object):
1197 def __init__(self, filename, lineno=1):
1198 self.filename = filename
1199 self.lineno = lineno
1200
1201 # Overload '+=' for increments. We need to create a new object on
1202 # each update else every token ends up referencing the same
1203 # constantly incrementing instance.
1204 def __iadd__(self, incr):
1205 return LineTracker(self.filename, self.lineno + incr)
1206
1207 def __str__(self):
1208 return "%s:%d" % (self.filename, self.lineno)
1209
1210 # In case there are places where someone really expects a number
1211 def __int__(self):
1212 return self.lineno
1213
1214
1215#######################
1216#
1217# ISA Parser
1218# parses ISA DSL and emits C++ headers and source
1219#
1220
1221class ISAParser(Grammar):
1222 class CpuModel(object):
1223 def __init__(self, name, filename, includes, strings):
1224 self.name = name
1225 self.filename = filename
1226 self.includes = includes
1227 self.strings = strings
1228
1229 def __init__(self, output_dir):
1230 super(ISAParser, self).__init__()
1231 self.output_dir = output_dir
1232
1233 self.filename = None # for output file watermarking/scaremongering
1234
1235 self.cpuModels = [
1236 ISAParser.CpuModel('ExecContext',
1237 'generic_cpu_exec.cc',
1238 '#include "cpu/exec_context.hh"',
1239 { "CPU_exec_context" : "ExecContext" }),
1240 ]
1241
1242 # variable to hold templates
1243 self.templateMap = {}
1244
1245 # This dictionary maps format name strings to Format objects.
1246 self.formatMap = {}
1247
1248 # Track open files and, if applicable, how many chunks it has been
1249 # split into so far.
1250 self.files = {}
1251 self.splits = {}
1252
1253 # isa_name / namespace identifier from namespace declaration.
1254 # before the namespace declaration, None.
1255 self.isa_name = None
1256 self.namespace = None
1257
1258 # The format stack.
1259 self.formatStack = Stack(NoFormat())
1260
1261 # The default case stack.
1262 self.defaultStack = Stack(None)
1263
1264 # Stack that tracks current file and line number. Each
1265 # element is a tuple (filename, lineno) that records the
1266 # *current* filename and the line number in the *previous*
1267 # file where it was included.
1268 self.fileNameStack = Stack()
1269
1270 symbols = ('makeList', 're', 'string')
1271 self.exportContext = dict([(s, eval(s)) for s in symbols])
1272
1273 self.maxInstSrcRegs = 0
1274 self.maxInstDestRegs = 0
1275 self.maxMiscDestRegs = 0
1276
1277 def __getitem__(self, i): # Allow object (self) to be
1278 return getattr(self, i) # passed to %-substitutions
1279
1280 # Change the file suffix of a base filename:
1281 # (e.g.) decoder.cc -> decoder-g.cc.inc for 'global' outputs
1282 def suffixize(self, s, sec):
1283 extn = re.compile('(\.[^\.]+)$') # isolate extension
1284 if self.namespace:
1285 return extn.sub(r'-ns\1.inc', s) # insert some text on either side
1286 else:
1287 return extn.sub(r'-g\1.inc', s)
1288
1289 # Get the file object for emitting code into the specified section
1290 # (header, decoder, exec, decode_block).
1291 def get_file(self, section):
1292 if section == 'decode_block':
1293 filename = 'decode-method.cc.inc'
1294 else:
1295 if section == 'header':
1296 file = 'decoder.hh'
1297 else:
1298 file = '%s.cc' % section
1299 filename = self.suffixize(file, section)
1300 try:
1301 return self.files[filename]
1302 except KeyError: pass
1303
1304 f = self.open(filename)
1305 self.files[filename] = f
1306
1307 # The splittable files are the ones with many independent
1308 # per-instruction functions - the decoder's instruction constructors
1309 # and the instruction execution (execute()) methods. These both have
1310 # the suffix -ns.cc.inc, meaning they are within the namespace part
1311 # of the ISA, contain object-emitting C++ source, and are included
1312 # into other top-level files. These are the files that need special
1313 # #define's to allow parts of them to be compiled separately. Rather
1314 # than splitting the emissions into separate files, the monolithic
1315 # output of the ISA parser is maintained, but the value (or lack
1316 # thereof) of the __SPLIT definition during C preprocessing will
1317 # select the different chunks. If no 'split' directives are used,
1318 # the cpp emissions have no effect.
1319 if re.search('-ns.cc.inc$', filename):
1320 print >>f, '#if !defined(__SPLIT) || (__SPLIT == 1)'
1321 self.splits[f] = 1
1322 # ensure requisite #include's
1323 elif filename == 'decoder-g.hh.inc':
1324 print >>f, '#include "base/bitfield.hh"'
1325
1326 return f
1327
1328 # Weave together the parts of the different output sections by
1329 # #include'ing them into some very short top-level .cc/.hh files.
1330 # These small files make it much clearer how this tool works, since
1331 # you directly see the chunks emitted as files that are #include'd.
1332 def write_top_level_files(self):
1333 dep = self.open('inc.d', bare=True)
1334
1335 # decoder header - everything depends on this
1336 file = 'decoder.hh'
1337 with self.open(file) as f:
1338 inc = []
1339
1340 fn = 'decoder-g.hh.inc'
1341 assert(fn in self.files)
1342 f.write('#include "%s"\n' % fn)
1343 inc.append(fn)
1344
1345 fn = 'decoder-ns.hh.inc'
1346 assert(fn in self.files)
1347 f.write('namespace %s {\n#include "%s"\n}\n'
1348 % (self.namespace, fn))
1349 inc.append(fn)
1350
1351 print >>dep, file+':', ' '.join(inc)
1352
1353 # decoder method - cannot be split
1354 file = 'decoder.cc'
1355 with self.open(file) as f:
1356 inc = []
1357
1358 fn = 'decoder-g.cc.inc'
1359 assert(fn in self.files)
1360 f.write('#include "%s"\n' % fn)
1361 inc.append(fn)
1362
1363 fn = 'decoder.hh'
1364 f.write('#include "%s"\n' % fn)
1365 inc.append(fn)
1366
1367 fn = 'decode-method.cc.inc'
1368 # is guaranteed to have been written for parse to complete
1369 f.write('#include "%s"\n' % fn)
1370 inc.append(fn)
1371
1372 print >>dep, file+':', ' '.join(inc)
1373
1374 extn = re.compile('(\.[^\.]+)$')
1375
1376 # instruction constructors
1377 splits = self.splits[self.get_file('decoder')]
1378 file_ = 'inst-constrs.cc'
1379 for i in range(1, splits+1):
1380 if splits > 1:
1381 file = extn.sub(r'-%d\1' % i, file_)
1382 else:
1383 file = file_
1384 with self.open(file) as f:
1385 inc = []
1386
1387 fn = 'decoder-g.cc.inc'
1388 assert(fn in self.files)
1389 f.write('#include "%s"\n' % fn)
1390 inc.append(fn)
1391
1392 fn = 'decoder.hh'
1393 f.write('#include "%s"\n' % fn)
1394 inc.append(fn)
1395
1396 fn = 'decoder-ns.cc.inc'
1397 assert(fn in self.files)
1398 print >>f, 'namespace %s {' % self.namespace
1399 if splits > 1:
1400 print >>f, '#define __SPLIT %u' % i
1401 print >>f, '#include "%s"' % fn
1402 print >>f, '}'
1403 inc.append(fn)
1404
1405 print >>dep, file+':', ' '.join(inc)
1406
1407 # instruction execution per-CPU model
1408 splits = self.splits[self.get_file('exec')]
1409 for cpu in self.cpuModels:
1410 for i in range(1, splits+1):
1411 if splits > 1:
1412 file = extn.sub(r'_%d\1' % i, cpu.filename)
1413 else:
1414 file = cpu.filename
1415 with self.open(file) as f:
1416 inc = []
1417
1418 fn = 'exec-g.cc.inc'
1419 assert(fn in self.files)
1420 f.write('#include "%s"\n' % fn)
1421 inc.append(fn)
1422
1423 f.write(cpu.includes+"\n")
1424
1425 fn = 'decoder.hh'
1426 f.write('#include "%s"\n' % fn)
1427 inc.append(fn)
1428
1429 fn = 'exec-ns.cc.inc'
1430 assert(fn in self.files)
1431 print >>f, 'namespace %s {' % self.namespace
1432 print >>f, '#define CPU_EXEC_CONTEXT %s' \
1433 % cpu.strings['CPU_exec_context']
1434 if splits > 1:
1435 print >>f, '#define __SPLIT %u' % i
1436 print >>f, '#include "%s"' % fn
1437 print >>f, '}'
1438 inc.append(fn)
1439
1440 inc.append("decoder.hh")
1441 print >>dep, file+':', ' '.join(inc)
1442
1443 # max_inst_regs.hh
1444 self.update('max_inst_regs.hh',
1445 '''namespace %(namespace)s {
1446 const int MaxInstSrcRegs = %(maxInstSrcRegs)d;
1447 const int MaxInstDestRegs = %(maxInstDestRegs)d;
1448 const int MaxMiscDestRegs = %(maxMiscDestRegs)d;\n}\n''' % self)
1449 print >>dep, 'max_inst_regs.hh:'
1450
1451 dep.close()
1452
1453
1454 scaremonger_template ='''// DO NOT EDIT
1455// This file was automatically generated from an ISA description:
1456// %(filename)s
1457
1458''';
1459
1460 #####################################################################
1461 #
1462 # Lexer
1463 #
1464 # The PLY lexer module takes two things as input:
1465 # - A list of token names (the string list 'tokens')
1466 # - A regular expression describing a match for each token. The
1467 # regexp for token FOO can be provided in two ways:
1468 # - as a string variable named t_FOO
1469 # - as the doc string for a function named t_FOO. In this case,
1470 # the function is also executed, allowing an action to be
1471 # associated with each token match.
1472 #
1473 #####################################################################
1474
1475 # Reserved words. These are listed separately as they are matched
1476 # using the same regexp as generic IDs, but distinguished in the
1477 # t_ID() function. The PLY documentation suggests this approach.
1478 reserved = (
1479 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
1480 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
1481 'OUTPUT', 'SIGNED', 'SPLIT', 'TEMPLATE'
1482 )
1483
1484 # List of tokens. The lex module requires this.
1485 tokens = reserved + (
1486 # identifier
1487 'ID',
1488
1489 # integer literal
1490 'INTLIT',
1491
1492 # string literal
1493 'STRLIT',
1494
1495 # code literal
1496 'CODELIT',
1497
1498 # ( ) [ ] { } < > , ; . : :: *
1499 'LPAREN', 'RPAREN',
1500 'LBRACKET', 'RBRACKET',
1501 'LBRACE', 'RBRACE',
1502 'LESS', 'GREATER', 'EQUALS',
1503 'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON',
1504 'ASTERISK',
1505
1506 # C preprocessor directives
1507 'CPPDIRECTIVE'
1508
1509 # The following are matched but never returned. commented out to
1510 # suppress PLY warning
1511 # newfile directive
1512 # 'NEWFILE',
1513
1514 # endfile directive
1515 # 'ENDFILE'
1516 )
1517
1518 # Regular expressions for token matching
1519 t_LPAREN = r'\('
1520 t_RPAREN = r'\)'
1521 t_LBRACKET = r'\['
1522 t_RBRACKET = r'\]'
1523 t_LBRACE = r'\{'
1524 t_RBRACE = r'\}'
1525 t_LESS = r'\<'
1526 t_GREATER = r'\>'
1527 t_EQUALS = r'='
1528 t_COMMA = r','
1529 t_SEMI = r';'
1530 t_DOT = r'\.'
1531 t_COLON = r':'
1532 t_DBLCOLON = r'::'
1533 t_ASTERISK = r'\*'
1534
1535 # Identifiers and reserved words
1536 reserved_map = { }
1537 for r in reserved:
1538 reserved_map[r.lower()] = r
1539
1540 def t_ID(self, t):
1541 r'[A-Za-z_]\w*'
1542 t.type = self.reserved_map.get(t.value, 'ID')
1543 return t
1544
1545 # Integer literal
1546 def t_INTLIT(self, t):
1547 r'-?(0x[\da-fA-F]+)|\d+'
1548 try:
1549 t.value = int(t.value,0)
1550 except ValueError:
1551 error(t.lexer.lineno, 'Integer value "%s" too large' % t.value)
1552 t.value = 0
1553 return t
1554
1555 # String literal. Note that these use only single quotes, and
1556 # can span multiple lines.
1557 def t_STRLIT(self, t):
1558 r"(?m)'([^'])+'"
1559 # strip off quotes
1560 t.value = t.value[1:-1]
1561 t.lexer.lineno += t.value.count('\n')
1562 return t
1563
1564
1565 # "Code literal"... like a string literal, but delimiters are
1566 # '{{' and '}}' so they get formatted nicely under emacs c-mode
1567 def t_CODELIT(self, t):
1568 r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
1569 # strip off {{ & }}
1570 t.value = t.value[2:-2]
1571 t.lexer.lineno += t.value.count('\n')
1572 return t
1573
1574 def t_CPPDIRECTIVE(self, t):
1575 r'^\#[^\#].*\n'
1576 t.lexer.lineno += t.value.count('\n')
1577 return t
1578
1579 def t_NEWFILE(self, t):
1580 r'^\#\#newfile\s+"[^"]*"\n'
1581 self.fileNameStack.push(t.lexer.lineno)
1582 t.lexer.lineno = LineTracker(t.value[11:-2])
1583
1584 def t_ENDFILE(self, t):
1585 r'^\#\#endfile\n'
1586 t.lexer.lineno = self.fileNameStack.pop()
1587
1588 #
1589 # The functions t_NEWLINE, t_ignore, and t_error are
1590 # special for the lex module.
1591 #
1592
1593 # Newlines
1594 def t_NEWLINE(self, t):
1595 r'\n+'
1596 t.lexer.lineno += t.value.count('\n')
1597
1598 # Comments
1599 def t_comment(self, t):
1600 r'//.*'
1601
1602 # Completely ignored characters
1603 t_ignore = ' \t\x0c'
1604
1605 # Error handler
1606 def t_error(self, t):
1607 error(t.lexer.lineno, "illegal character '%s'" % t.value[0])
1608 t.skip(1)
1609
1610 #####################################################################
1611 #
1612 # Parser
1613 #
1614 # Every function whose name starts with 'p_' defines a grammar
1615 # rule. The rule is encoded in the function's doc string, while
1616 # the function body provides the action taken when the rule is
1617 # matched. The argument to each function is a list of the values
1618 # of the rule's symbols: t[0] for the LHS, and t[1..n] for the
1619 # symbols on the RHS. For tokens, the value is copied from the
1620 # t.value attribute provided by the lexer. For non-terminals, the
1621 # value is assigned by the producing rule; i.e., the job of the
1622 # grammar rule function is to set the value for the non-terminal
1623 # on the LHS (by assigning to t[0]).
1624 #####################################################################
1625
1626 # The LHS of the first grammar rule is used as the start symbol
1627 # (in this case, 'specification'). Note that this rule enforces
1628 # that there will be exactly one namespace declaration, with 0 or
1629 # more global defs/decls before and after it. The defs & decls
1630 # before the namespace decl will be outside the namespace; those
1631 # after will be inside. The decoder function is always inside the
1632 # namespace.
1633 def p_specification(self, t):
1634 'specification : opt_defs_and_outputs top_level_decode_block'
1635
1636 for f in self.splits.iterkeys():
1637 f.write('\n#endif\n')
1638
1639 for f in self.files.itervalues(): # close ALL the files;
1640 f.close() # not doing so can cause compilation to fail
1641
1642 self.write_top_level_files()
1643
1644 t[0] = True
1645
1646 # 'opt_defs_and_outputs' is a possibly empty sequence of def and/or
1647 # output statements. Its productions do the hard work of eventually
1648 # instantiating a GenCode, which are generally emitted (written to disk)
1649 # as soon as possible, except for the decode_block, which has to be
1650 # accumulated into one large function of nested switch/case blocks.
1651 def p_opt_defs_and_outputs_0(self, t):
1652 'opt_defs_and_outputs : empty'
1653
1654 def p_opt_defs_and_outputs_1(self, t):
1655 'opt_defs_and_outputs : defs_and_outputs'
1656
1657 def p_defs_and_outputs_0(self, t):
1658 'defs_and_outputs : def_or_output'
1659
1660 def p_defs_and_outputs_1(self, t):
1661 'defs_and_outputs : defs_and_outputs def_or_output'
1662
1663 # The list of possible definition/output statements.
1664 # They are all processed as they are seen.
1665 def p_def_or_output(self, t):
1666 '''def_or_output : name_decl
1667 | def_format
1668 | def_bitfield
1669 | def_bitfield_struct
1670 | def_template
1671 | def_operand_types
1672 | def_operands
1673 | output
1674 | global_let
1675 | split'''
1676
1677 # Utility function used by both invocations of splitting - explicit
1678 # 'split' keyword and split() function inside "let {{ }};" blocks.
1679 def split(self, sec, write=False):
1680 assert(sec != 'header' and "header cannot be split")
1681
1682 f = self.get_file(sec)
1683 self.splits[f] += 1
1684 s = '\n#endif\n#if __SPLIT == %u\n' % self.splits[f]
1685 if write:
1686 f.write(s)
1687 else:
1688 return s
1689
1690 # split output file to reduce compilation time
1691 def p_split(self, t):
1692 'split : SPLIT output_type SEMI'
1693 assert(self.isa_name and "'split' not allowed before namespace decl")
1694
1695 self.split(t[2], True)
1696
1697 def p_output_type(self, t):
1698 '''output_type : DECODER
1699 | HEADER
1700 | EXEC'''
1701 t[0] = t[1]
1702
1703 # ISA name declaration looks like "namespace <foo>;"
1704 def p_name_decl(self, t):
1705 'name_decl : NAMESPACE ID SEMI'
1706 assert(self.isa_name == None and "Only 1 namespace decl permitted")
1707 self.isa_name = t[2]
1708 self.namespace = t[2] + 'Inst'
1709
1710 # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
1711 # directly to the appropriate output section.
1712
1713 # Massage output block by substituting in template definitions and
1714 # bit operators. We handle '%'s embedded in the string that don't
1715 # indicate template substitutions (or CPU-specific symbols, which
1716 # get handled in GenCode) by doubling them first so that the
1717 # format operation will reduce them back to single '%'s.
1718 def process_output(self, s):
1719 s = self.protectNonSubstPercents(s)
1720 # protects cpu-specific symbols too
1721 s = self.protectCpuSymbols(s)
1722 return substBitOps(s % self.templateMap)
1723
1724 def p_output(self, t):
1725 'output : OUTPUT output_type CODELIT SEMI'
1726 kwargs = { t[2]+'_output' : self.process_output(t[3]) }
1727 GenCode(self, **kwargs).emit()
1728
1729 # global let blocks 'let {{...}}' (Python code blocks) are
1730 # executed directly when seen. Note that these execute in a
1731 # special variable context 'exportContext' to prevent the code
1732 # from polluting this script's namespace.
1733 def p_global_let(self, t):
1734 'global_let : LET CODELIT SEMI'
1735 def _split(sec):
1736 return self.split(sec)
1737 self.updateExportContext()
1738 self.exportContext["header_output"] = ''
1739 self.exportContext["decoder_output"] = ''
1740 self.exportContext["exec_output"] = ''
1741 self.exportContext["decode_block"] = ''
1742 self.exportContext["split"] = _split
1743 split_setup = '''
1744def wrap(func):
1745 def split(sec):
1746 globals()[sec + '_output'] += func(sec)
1747 return split
1748split = wrap(split)
1749del wrap
1750'''
1751 # This tricky setup (immediately above) allows us to just write
1752 # (e.g.) "split('exec')" in the Python code and the split #ifdef's
1753 # will automatically be added to the exec_output variable. The inner
1754 # Python execution environment doesn't know about the split points,
1755 # so we carefully inject and wrap a closure that can retrieve the
1756 # next split's #define from the parser and add it to the current
1757 # emission-in-progress.
1758 try:
1759 exec split_setup+fixPythonIndentation(t[2]) in self.exportContext
1760 except Exception, exc:
1761 if debug:
1762 raise
1763 error(t.lineno(1), 'In global let block: %s' % exc)
1764 GenCode(self,
1765 header_output=self.exportContext["header_output"],
1766 decoder_output=self.exportContext["decoder_output"],
1767 exec_output=self.exportContext["exec_output"],
1768 decode_block=self.exportContext["decode_block"]).emit()
1769
1770 # Define the mapping from operand type extensions to C++ types and
1771 # bit widths (stored in operandTypeMap).
1772 def p_def_operand_types(self, t):
1773 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
1774 try:
1775 self.operandTypeMap = eval('{' + t[3] + '}')
1776 except Exception, exc:
1777 if debug:
1778 raise
1779 error(t.lineno(1),
1780 'In def operand_types: %s' % exc)
1781
1782 # Define the mapping from operand names to operand classes and
1783 # other traits. Stored in operandNameMap.
1784 def p_def_operands(self, t):
1785 'def_operands : DEF OPERANDS CODELIT SEMI'
1786 if not hasattr(self, 'operandTypeMap'):
1787 error(t.lineno(1),
1788 'error: operand types must be defined before operands')
1789 try:
1790 user_dict = eval('{' + t[3] + '}', self.exportContext)
1791 except Exception, exc:
1792 if debug:
1793 raise
1794 error(t.lineno(1), 'In def operands: %s' % exc)
1795 self.buildOperandNameMap(user_dict, t.lexer.lineno)
1796
1797 # A bitfield definition looks like:
1798 # 'def [signed] bitfield <ID> [<first>:<last>]'
1799 # This generates a preprocessor macro in the output file.
1800 def p_def_bitfield_0(self, t):
1801 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
1802 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
1803 if (t[2] == 'signed'):
1804 expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
1805 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1806 GenCode(self, header_output=hash_define).emit()
1807
1808 # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
1809 def p_def_bitfield_1(self, t):
1810 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
1811 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
1812 if (t[2] == 'signed'):
1813 expr = 'sext<%d>(%s)' % (1, expr)
1814 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1815 GenCode(self, header_output=hash_define).emit()
1816
1817 # alternate form for structure member: 'def bitfield <ID> <ID>'
1818 def p_def_bitfield_struct(self, t):
1819 'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI'
1820 if (t[2] != ''):
1821 error(t.lineno(1),
1822 'error: structure bitfields are always unsigned.')
1823 expr = 'machInst.%s' % t[5]
1824 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1825 GenCode(self, header_output=hash_define).emit()
1826
1827 def p_id_with_dot_0(self, t):
1828 'id_with_dot : ID'
1829 t[0] = t[1]
1830
1831 def p_id_with_dot_1(self, t):
1832 'id_with_dot : ID DOT id_with_dot'
1833 t[0] = t[1] + t[2] + t[3]
1834
1835 def p_opt_signed_0(self, t):
1836 'opt_signed : SIGNED'
1837 t[0] = t[1]
1838
1839 def p_opt_signed_1(self, t):
1840 'opt_signed : empty'
1841 t[0] = ''
1842
1843 def p_def_template(self, t):
1844 'def_template : DEF TEMPLATE ID CODELIT SEMI'
1845 if t[3] in self.templateMap:
1846 print "warning: template %s already defined" % t[3]
1847 self.templateMap[t[3]] = Template(self, t[4])
1848
1849 # An instruction format definition looks like
1850 # "def format <fmt>(<params>) {{...}};"
1851 def p_def_format(self, t):
1852 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
1853 (id, params, code) = (t[3], t[5], t[7])
1854 self.defFormat(id, params, code, t.lexer.lineno)
1855
1856 # The formal parameter list for an instruction format is a
1857 # possibly empty list of comma-separated parameters. Positional
1858 # (standard, non-keyword) parameters must come first, followed by
1859 # keyword parameters, followed by a '*foo' parameter that gets
1860 # excess positional arguments (as in Python). Each of these three
1861 # parameter categories is optional.
1862 #
1863 # Note that we do not support the '**foo' parameter for collecting
1864 # otherwise undefined keyword args. Otherwise the parameter list
1865 # is (I believe) identical to what is supported in Python.
1866 #
1867 # The param list generates a tuple, where the first element is a
1868 # list of the positional params and the second element is a dict
1869 # containing the keyword params.
1870 def p_param_list_0(self, t):
1871 'param_list : positional_param_list COMMA nonpositional_param_list'
1872 t[0] = t[1] + t[3]
1873
1874 def p_param_list_1(self, t):
1875 '''param_list : positional_param_list
1876 | nonpositional_param_list'''
1877 t[0] = t[1]
1878
1879 def p_positional_param_list_0(self, t):
1880 'positional_param_list : empty'
1881 t[0] = []
1882
1883 def p_positional_param_list_1(self, t):
1884 'positional_param_list : ID'
1885 t[0] = [t[1]]
1886
1887 def p_positional_param_list_2(self, t):
1888 'positional_param_list : positional_param_list COMMA ID'
1889 t[0] = t[1] + [t[3]]
1890
1891 def p_nonpositional_param_list_0(self, t):
1892 'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
1893 t[0] = t[1] + t[3]
1894
1895 def p_nonpositional_param_list_1(self, t):
1896 '''nonpositional_param_list : keyword_param_list
1897 | excess_args_param'''
1898 t[0] = t[1]
1899
1900 def p_keyword_param_list_0(self, t):
1901 'keyword_param_list : keyword_param'
1902 t[0] = [t[1]]
1903
1904 def p_keyword_param_list_1(self, t):
1905 'keyword_param_list : keyword_param_list COMMA keyword_param'
1906 t[0] = t[1] + [t[3]]
1907
1908 def p_keyword_param(self, t):
1909 'keyword_param : ID EQUALS expr'
1910 t[0] = t[1] + ' = ' + t[3].__repr__()
1911
1912 def p_excess_args_param(self, t):
1913 'excess_args_param : ASTERISK ID'
1914 # Just concatenate them: '*ID'. Wrap in list to be consistent
1915 # with positional_param_list and keyword_param_list.
1916 t[0] = [t[1] + t[2]]
1917
1918 # End of format definition-related rules.
1919 ##############
1920
1921 #
1922 # A decode block looks like:
1923 # decode <field1> [, <field2>]* [default <inst>] { ... }
1924 #
1925 def p_top_level_decode_block(self, t):
1926 'top_level_decode_block : decode_block'
1927 codeObj = t[1]
1928 codeObj.wrap_decode_block('''
1929StaticInstPtr
1930%(isa_name)s::Decoder::decodeInst(%(isa_name)s::ExtMachInst machInst)
1931{
1932 using namespace %(namespace)s;
1933''' % self, '}')
1934
1935 codeObj.emit()
1936
1937 def p_decode_block(self, t):
1938 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
1939 default_defaults = self.defaultStack.pop()
1940 codeObj = t[5]
1941 # use the "default defaults" only if there was no explicit
1942 # default statement in decode_stmt_list
1943 if not codeObj.has_decode_default:
1944 codeObj += default_defaults
1945 codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
1946 t[0] = codeObj
1947
1948 # The opt_default statement serves only to push the "default
1949 # defaults" onto defaultStack. This value will be used by nested
1950 # decode blocks, and used and popped off when the current
1951 # decode_block is processed (in p_decode_block() above).
1952 def p_opt_default_0(self, t):
1953 'opt_default : empty'
1954 # no default specified: reuse the one currently at the top of
1955 # the stack
1956 self.defaultStack.push(self.defaultStack.top())
1957 # no meaningful value returned
1958 t[0] = None
1959
1960 def p_opt_default_1(self, t):
1961 'opt_default : DEFAULT inst'
1962 # push the new default
1963 codeObj = t[2]
1964 codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
1965 self.defaultStack.push(codeObj)
1966 # no meaningful value returned
1967 t[0] = None
1968
1969 def p_decode_stmt_list_0(self, t):
1970 'decode_stmt_list : decode_stmt'
1971 t[0] = t[1]
1972
1973 def p_decode_stmt_list_1(self, t):
1974 'decode_stmt_list : decode_stmt decode_stmt_list'
1975 if (t[1].has_decode_default and t[2].has_decode_default):
1976 error(t.lineno(1), 'Two default cases in decode block')
1977 t[0] = t[1] + t[2]
1978
1979 #
1980 # Decode statement rules
1981 #
1982 # There are four types of statements allowed in a decode block:
1983 # 1. Format blocks 'format <foo> { ... }'
1984 # 2. Nested decode blocks
1985 # 3. Instruction definitions.
1986 # 4. C preprocessor directives.
1987
1988
1989 # Preprocessor directives found in a decode statement list are
1990 # passed through to the output, replicated to all of the output
1991 # code streams. This works well for ifdefs, so we can ifdef out
1992 # both the declarations and the decode cases generated by an
1993 # instruction definition. Handling them as part of the grammar
1994 # makes it easy to keep them in the right place with respect to
1995 # the code generated by the other statements.
1996 def p_decode_stmt_cpp(self, t):
1997 'decode_stmt : CPPDIRECTIVE'
1998 t[0] = GenCode(self, t[1], t[1], t[1], t[1])
1999
2000 # A format block 'format <foo> { ... }' sets the default
2001 # instruction format used to handle instruction definitions inside
2002 # the block. This format can be overridden by using an explicit
2003 # format on the instruction definition or with a nested format
2004 # block.
2005 def p_decode_stmt_format(self, t):
2006 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
2007 # The format will be pushed on the stack when 'push_format_id'
2008 # is processed (see below). Once the parser has recognized
2009 # the full production (though the right brace), we're done
2010 # with the format, so now we can pop it.
2011 self.formatStack.pop()
2012 t[0] = t[4]
2013
2014 # This rule exists so we can set the current format (& push the
2015 # stack) when we recognize the format name part of the format
2016 # block.
2017 def p_push_format_id(self, t):
2018 'push_format_id : ID'
2019 try:
2020 self.formatStack.push(self.formatMap[t[1]])
2021 t[0] = ('', '// format %s' % t[1])
2022 except KeyError:
2023 error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
2024
2025 # Nested decode block: if the value of the current field matches
2026 # the specified constant(s), do a nested decode on some other field.
2027 def p_decode_stmt_decode(self, t):
2028 'decode_stmt : case_list COLON decode_block'
2029 case_list = t[1]
2030 codeObj = t[3]
2031 # just wrap the decoding code from the block as a case in the
2032 # outer switch statement.
2033 codeObj.wrap_decode_block('\n%s\n' % ''.join(case_list))
2034 codeObj.has_decode_default = (case_list == ['default:'])
2035 t[0] = codeObj
2036
2037 # Instruction definition (finally!).
2038 def p_decode_stmt_inst(self, t):
2039 'decode_stmt : case_list COLON inst SEMI'
2040 case_list = t[1]
2041 codeObj = t[3]
2042 codeObj.wrap_decode_block('\n%s' % ''.join(case_list), 'break;\n')
2043 codeObj.has_decode_default = (case_list == ['default:'])
2044 t[0] = codeObj
2045
2046 # The constant list for a decode case label must be non-empty, and must
2047 # either be the keyword 'default', or made up of one or more
2048 # comma-separated integer literals or strings which evaluate to
2049 # constants when compiled as C++.
2050 def p_case_list_0(self, t):
2051 'case_list : DEFAULT'
2052 t[0] = ['default:']
2053
2054 def prep_int_lit_case_label(self, lit):
2055 if lit >= 2**32:
2056 return 'case ULL(%#x): ' % lit
2057 else:
2058 return 'case %#x: ' % lit
2059
2060 def prep_str_lit_case_label(self, lit):
2061 return 'case %s: ' % lit
2062
2063 def p_case_list_1(self, t):
2064 'case_list : INTLIT'
2065 t[0] = [self.prep_int_lit_case_label(t[1])]
2066
2067 def p_case_list_2(self, t):
2068 'case_list : STRLIT'
2069 t[0] = [self.prep_str_lit_case_label(t[1])]
2070
2071 def p_case_list_3(self, t):
2072 'case_list : case_list COMMA INTLIT'
2073 t[0] = t[1]
2074 t[0].append(self.prep_int_lit_case_label(t[3]))
2075
2076 def p_case_list_4(self, t):
2077 'case_list : case_list COMMA STRLIT'
2078 t[0] = t[1]
2079 t[0].append(self.prep_str_lit_case_label(t[3]))
2080
2081 # Define an instruction using the current instruction format
2082 # (specified by an enclosing format block).
2083 # "<mnemonic>(<args>)"
2084 def p_inst_0(self, t):
2085 'inst : ID LPAREN arg_list RPAREN'
2086 # Pass the ID and arg list to the current format class to deal with.
2087 currentFormat = self.formatStack.top()
2088 codeObj = currentFormat.defineInst(self, t[1], t[3], t.lexer.lineno)
2089 args = ','.join(map(str, t[3]))
2090 args = re.sub('(?m)^', '//', args)
2091 args = re.sub('^//', '', args)
2092 comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
2093 codeObj.prepend_all(comment)
2094 t[0] = codeObj
2095
2096 # Define an instruction using an explicitly specified format:
2097 # "<fmt>::<mnemonic>(<args>)"
2098 def p_inst_1(self, t):
2099 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
2100 try:
2101 format = self.formatMap[t[1]]
2102 except KeyError:
2103 error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
2104
2105 codeObj = format.defineInst(self, t[3], t[5], t.lexer.lineno)
2106 comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
2107 codeObj.prepend_all(comment)
2108 t[0] = codeObj
2109
2110 # The arg list generates a tuple, where the first element is a
2111 # list of the positional args and the second element is a dict
2112 # containing the keyword args.
2113 def p_arg_list_0(self, t):
2114 'arg_list : positional_arg_list COMMA keyword_arg_list'
2115 t[0] = ( t[1], t[3] )
2116
2117 def p_arg_list_1(self, t):
2118 'arg_list : positional_arg_list'
2119 t[0] = ( t[1], {} )
2120
2121 def p_arg_list_2(self, t):
2122 'arg_list : keyword_arg_list'
2123 t[0] = ( [], t[1] )
2124
2125 def p_positional_arg_list_0(self, t):
2126 'positional_arg_list : empty'
2127 t[0] = []
2128
2129 def p_positional_arg_list_1(self, t):
2130 'positional_arg_list : expr'
2131 t[0] = [t[1]]
2132
2133 def p_positional_arg_list_2(self, t):
2134 'positional_arg_list : positional_arg_list COMMA expr'
2135 t[0] = t[1] + [t[3]]
2136
2137 def p_keyword_arg_list_0(self, t):
2138 'keyword_arg_list : keyword_arg'
2139 t[0] = t[1]
2140
2141 def p_keyword_arg_list_1(self, t):
2142 'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
2143 t[0] = t[1]
2144 t[0].update(t[3])
2145
2146 def p_keyword_arg(self, t):
2147 'keyword_arg : ID EQUALS expr'
2148 t[0] = { t[1] : t[3] }
2149
2150 #
2151 # Basic expressions. These constitute the argument values of
2152 # "function calls" (i.e. instruction definitions in the decode
2153 # block) and default values for formal parameters of format
2154 # functions.
2155 #
2156 # Right now, these are either strings, integers, or (recursively)
2157 # lists of exprs (using Python square-bracket list syntax). Note
2158 # that bare identifiers are trated as string constants here (since
2159 # there isn't really a variable namespace to refer to).
2160 #
2161 def p_expr_0(self, t):
2162 '''expr : ID
2163 | INTLIT
2164 | STRLIT
2165 | CODELIT'''
2166 t[0] = t[1]
2167
2168 def p_expr_1(self, t):
2169 '''expr : LBRACKET list_expr RBRACKET'''
2170 t[0] = t[2]
2171
2172 def p_list_expr_0(self, t):
2173 'list_expr : expr'
2174 t[0] = [t[1]]
2175
2176 def p_list_expr_1(self, t):
2177 'list_expr : list_expr COMMA expr'
2178 t[0] = t[1] + [t[3]]
2179
2180 def p_list_expr_2(self, t):
2181 'list_expr : empty'
2182 t[0] = []
2183
2184 #
2185 # Empty production... use in other rules for readability.
2186 #
2187 def p_empty(self, t):
2188 'empty :'
2189 pass
2190
2191 # Parse error handler. Note that the argument here is the
2192 # offending *token*, not a grammar symbol (hence the need to use
2193 # t.value)
2194 def p_error(self, t):
2195 if t:
2196 error(t.lexer.lineno, "syntax error at '%s'" % t.value)
2197 else:
2198 error("unknown syntax error")
2199
2200 # END OF GRAMMAR RULES
2201
2202 def updateExportContext(self):
2203
2204 # create a continuation that allows us to grab the current parser
2205 def wrapInstObjParams(*args):
2206 return InstObjParams(self, *args)
2207 self.exportContext['InstObjParams'] = wrapInstObjParams
2208 self.exportContext.update(self.templateMap)
2209
2210 def defFormat(self, id, params, code, lineno):
2211 '''Define a new format'''
2212
2213 # make sure we haven't already defined this one
2214 if id in self.formatMap:
2215 error(lineno, 'format %s redefined.' % id)
2216
2217 # create new object and store in global map
2218 self.formatMap[id] = Format(id, params, code)
2219
2220 def expandCpuSymbolsToDict(self, template):
2221 '''Expand template with CPU-specific references into a
2222 dictionary with an entry for each CPU model name. The entry
2223 key is the model name and the corresponding value is the
2224 template with the CPU-specific refs substituted for that
2225 model.'''
2226
2227 # Protect '%'s that don't go with CPU-specific terms
2228 t = re.sub(r'%(?!\(CPU_)', '%%', template)
2229 result = {}
2230 for cpu in self.cpuModels:
2231 result[cpu.name] = t % cpu.strings
2232 return result
2233
2234 def expandCpuSymbolsToString(self, template):
2235 '''*If* the template has CPU-specific references, return a
2236 single string containing a copy of the template for each CPU
2237 model with the corresponding values substituted in. If the
2238 template has no CPU-specific references, it is returned
2239 unmodified.'''
2240
2241 if template.find('%(CPU_') != -1:
2242 return reduce(lambda x,y: x+y,
2243 self.expandCpuSymbolsToDict(template).values())
2244 else:
2245 return template
2246
2247 def protectCpuSymbols(self, template):
2248 '''Protect CPU-specific references by doubling the
2249 corresponding '%'s (in preparation for substituting a different
2250 set of references into the template).'''
2251
2252 return re.sub(r'%(?=\(CPU_)', '%%', template)
2253
2254 def protectNonSubstPercents(self, s):
2255 '''Protect any non-dict-substitution '%'s in a format string
2256 (i.e. those not followed by '(')'''
2257
2258 return re.sub(r'%(?!\()', '%%', s)
2259
2260 def buildOperandNameMap(self, user_dict, lineno):
2261 operand_name = {}
2262 for op_name, val in user_dict.iteritems():
2263
2264 # Check if extra attributes have been specified.
2265 if len(val) > 9:
2266 error(lineno, 'error: too many attributes for operand "%s"' %
2267 base_cls_name)
2268
2269 # Pad val with None in case optional args are missing
2270 val += (None, None, None, None)
2271 base_cls_name, dflt_ext, reg_spec, flags, sort_pri, \
2272 read_code, write_code, read_predicate, write_predicate = val[:9]
2273
2274 # Canonical flag structure is a triple of lists, where each list
2275 # indicates the set of flags implied by this operand always, when
2276 # used as a source, and when used as a dest, respectively.
2277 # For simplicity this can be initialized using a variety of fairly
2278 # obvious shortcuts; we convert these to canonical form here.
2279 if not flags:
2280 # no flags specified (e.g., 'None')
2281 flags = ( [], [], [] )
2282 elif isinstance(flags, str):
2283 # a single flag: assumed to be unconditional
2284 flags = ( [ flags ], [], [] )
2285 elif isinstance(flags, list):
2286 # a list of flags: also assumed to be unconditional
2287 flags = ( flags, [], [] )
2288 elif isinstance(flags, tuple):
2289 # it's a tuple: it should be a triple,
2290 # but each item could be a single string or a list
2291 (uncond_flags, src_flags, dest_flags) = flags
2292 flags = (makeList(uncond_flags),
2293 makeList(src_flags), makeList(dest_flags))
2294
2295 # Accumulate attributes of new operand class in tmp_dict
2296 tmp_dict = {}
2297 attrList = ['reg_spec', 'flags', 'sort_pri',
2298 'read_code', 'write_code',
2299 'read_predicate', 'write_predicate']
2300 if dflt_ext:
2301 dflt_ctype = self.operandTypeMap[dflt_ext]
2302 attrList.extend(['dflt_ctype', 'dflt_ext'])
2303 for attr in attrList:
2304 tmp_dict[attr] = eval(attr)
2305 tmp_dict['base_name'] = op_name
2306
2307 # New class name will be e.g. "IntReg_Ra"
2308 cls_name = base_cls_name + '_' + op_name
2309 # Evaluate string arg to get class object. Note that the
2310 # actual base class for "IntReg" is "IntRegOperand", i.e. we
2311 # have to append "Operand".
2312 try:
2313 base_cls = eval(base_cls_name + 'Operand')
2314 except NameError:
2315 error(lineno,
2316 'error: unknown operand base class "%s"' % base_cls_name)
2317 # The following statement creates a new class called
2318 # <cls_name> as a subclass of <base_cls> with the attributes
2319 # in tmp_dict, just as if we evaluated a class declaration.
2320 operand_name[op_name] = type(cls_name, (base_cls,), tmp_dict)
2321
2322 self.operandNameMap = operand_name
2323
2324 # Define operand variables.
2325 operands = user_dict.keys()
2326 extensions = self.operandTypeMap.keys()
2327
2328 operandsREString = r'''
2329 (?<!\w) # neg. lookbehind assertion: prevent partial matches
2330 ((%s)(?:_(%s))?) # match: operand with optional '_' then suffix
2331 (?!\w) # neg. lookahead assertion: prevent partial matches
2332 ''' % (string.join(operands, '|'), string.join(extensions, '|'))
2333
2334 self.operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
2335
2336 # Same as operandsREString, but extension is mandatory, and only two
2337 # groups are returned (base and ext, not full name as above).
2338 # Used for subtituting '_' for '.' to make C++ identifiers.
2339 operandsWithExtREString = r'(?<!\w)(%s)_(%s)(?!\w)' \
2340 % (string.join(operands, '|'), string.join(extensions, '|'))
2341
2342 self.operandsWithExtRE = \
2343 re.compile(operandsWithExtREString, re.MULTILINE)
2344
2345 def substMungedOpNames(self, code):
2346 '''Munge operand names in code string to make legal C++
2347 variable names. This means getting rid of the type extension
2348 if any. Will match base_name attribute of Operand object.)'''
2349 return self.operandsWithExtRE.sub(r'\1', code)
2350
2351 def mungeSnippet(self, s):
2352 '''Fix up code snippets for final substitution in templates.'''
2353 if isinstance(s, str):
2354 return self.substMungedOpNames(substBitOps(s))
2355 else:
2356 return s
2357
2358 def open(self, name, bare=False):
2359 '''Open the output file for writing and include scary warning.'''
2360 filename = os.path.join(self.output_dir, name)
2361 f = open(filename, 'w')
2362 if f:
2363 if not bare:
2364 f.write(ISAParser.scaremonger_template % self)
2365 return f
2366
2367 def update(self, file, contents):
2368 '''Update the output file only. Scons should handle the case when
2369 the new contents are unchanged using its built-in hash feature.'''
2370 f = self.open(file)
2371 f.write(contents)
2372 f.close()
2373
2374 # This regular expression matches '##include' directives
2375 includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[^"]*)".*$',
2376 re.MULTILINE)
2377
2378 def replace_include(self, matchobj, dirname):
2379 """Function to replace a matched '##include' directive with the
2380 contents of the specified file (with nested ##includes
2381 replaced recursively). 'matchobj' is an re match object
2382 (from a match of includeRE) and 'dirname' is the directory
2383 relative to which the file path should be resolved."""
2384
2385 fname = matchobj.group('filename')
2386 full_fname = os.path.normpath(os.path.join(dirname, fname))
2387 contents = '##newfile "%s"\n%s\n##endfile\n' % \
2388 (full_fname, self.read_and_flatten(full_fname))
2389 return contents
2390
2391 def read_and_flatten(self, filename):
2392 """Read a file and recursively flatten nested '##include' files."""
2393
2394 current_dir = os.path.dirname(filename)
2395 try:
2396 contents = open(filename).read()
2397 except IOError:
2398 error('Error including file "%s"' % filename)
2399
2400 self.fileNameStack.push(LineTracker(filename))
2401
2402 # Find any includes and include them
2403 def replace(matchobj):
2404 return self.replace_include(matchobj, current_dir)
2405 contents = self.includeRE.sub(replace, contents)
2406
2407 self.fileNameStack.pop()
2408 return contents
2409
2410 AlreadyGenerated = {}
2411
2412 def _parse_isa_desc(self, isa_desc_file):
2413 '''Read in and parse the ISA description.'''
2414
2415 # The build system can end up running the ISA parser twice: once to
2416 # finalize the build dependencies, and then to actually generate
2417 # the files it expects (in src/arch/$ARCH/generated). This code
2418 # doesn't do anything different either time, however; the SCons
2419 # invocations just expect different things. Since this code runs
2420 # within SCons, we can just remember that we've already run and
2421 # not perform a completely unnecessary run, since the ISA parser's
2422 # effect is idempotent.
2423 if isa_desc_file in ISAParser.AlreadyGenerated:
2424 return
2425
2426 # grab the last three path components of isa_desc_file
2427 self.filename = '/'.join(isa_desc_file.split('/')[-3:])
2428
2429 # Read file and (recursively) all included files into a string.
2430 # PLY requires that the input be in a single string so we have to
2431 # do this up front.
2432 isa_desc = self.read_and_flatten(isa_desc_file)
2433
2434 # Initialize lineno tracker
2435 self.lex.lineno = LineTracker(isa_desc_file)
2436
2437 # Parse.
2438 self.parse_string(isa_desc)
2439
2440 ISAParser.AlreadyGenerated[isa_desc_file] = None
2441
2442 def parse_isa_desc(self, *args, **kwargs):
2443 try:
2444 self._parse_isa_desc(*args, **kwargs)
2445 except ISAParserError, e:
2446 print backtrace(self.fileNameStack)
2447 print "At %s:" % e.lineno
2448 print e
2449 sys.exit(1)
2450
2451# Called as script: get args from command line.
2452# Args are: <isa desc file> <output dir>
2453if __name__ == '__main__':
2454 ISAParser(sys.argv[2]).parse_isa_desc(sys.argv[1])
870 op_desc.is_src = op_desc.is_src or is_src
871 op_desc.is_dest = op_desc.is_dest or is_dest
872 else:
873 # new operand: create new descriptor
874 op_desc = parser.operandNameMap[op_base](parser,
875 op_full, op_ext, is_src, is_dest)
876 self.append(op_desc)
877 # start next search after end of current match
878 next_pos = match.end()
879 self.sort()
880 # enumerate source & dest register operands... used in building
881 # constructor later
882 self.numSrcRegs = 0
883 self.numDestRegs = 0
884 self.numFPDestRegs = 0
885 self.numIntDestRegs = 0
886 self.numCCDestRegs = 0
887 self.numMiscDestRegs = 0
888 self.memOperand = None
889
890 # Flags to keep track if one or more operands are to be read/written
891 # conditionally.
892 self.predRead = False
893 self.predWrite = False
894
895 for op_desc in self.items:
896 if op_desc.isReg():
897 if op_desc.is_src:
898 op_desc.src_reg_idx = self.numSrcRegs
899 self.numSrcRegs += 1
900 if op_desc.is_dest:
901 op_desc.dest_reg_idx = self.numDestRegs
902 self.numDestRegs += 1
903 if op_desc.isFloatReg():
904 self.numFPDestRegs += 1
905 elif op_desc.isIntReg():
906 self.numIntDestRegs += 1
907 elif op_desc.isCCReg():
908 self.numCCDestRegs += 1
909 elif op_desc.isControlReg():
910 self.numMiscDestRegs += 1
911 elif op_desc.isMem():
912 if self.memOperand:
913 error("Code block has more than one memory operand.")
914 self.memOperand = op_desc
915
916 # Check if this operand has read/write predication. If true, then
917 # the microop will dynamically index source/dest registers.
918 self.predRead = self.predRead or op_desc.hasReadPred()
919 self.predWrite = self.predWrite or op_desc.hasWritePred()
920
921 if parser.maxInstSrcRegs < self.numSrcRegs:
922 parser.maxInstSrcRegs = self.numSrcRegs
923 if parser.maxInstDestRegs < self.numDestRegs:
924 parser.maxInstDestRegs = self.numDestRegs
925 if parser.maxMiscDestRegs < self.numMiscDestRegs:
926 parser.maxMiscDestRegs = self.numMiscDestRegs
927
928 # now make a final pass to finalize op_desc fields that may depend
929 # on the register enumeration
930 for op_desc in self.items:
931 op_desc.finalize(self.predRead, self.predWrite)
932
933 def __len__(self):
934 return len(self.items)
935
936 def __getitem__(self, index):
937 return self.items[index]
938
939 def append(self, op_desc):
940 self.items.append(op_desc)
941 self.bases[op_desc.base_name] = op_desc
942
943 def find_base(self, base_name):
944 # like self.bases[base_name], but returns None if not found
945 # (rather than raising exception)
946 return self.bases.get(base_name)
947
948 # internal helper function for concat[Some]Attr{Strings|Lists}
949 def __internalConcatAttrs(self, attr_name, filter, result):
950 for op_desc in self.items:
951 if filter(op_desc):
952 result += getattr(op_desc, attr_name)
953 return result
954
955 # return a single string that is the concatenation of the (string)
956 # values of the specified attribute for all operands
957 def concatAttrStrings(self, attr_name):
958 return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
959
960 # like concatAttrStrings, but only include the values for the operands
961 # for which the provided filter function returns true
962 def concatSomeAttrStrings(self, filter, attr_name):
963 return self.__internalConcatAttrs(attr_name, filter, '')
964
965 # return a single list that is the concatenation of the (list)
966 # values of the specified attribute for all operands
967 def concatAttrLists(self, attr_name):
968 return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
969
970 # like concatAttrLists, but only include the values for the operands
971 # for which the provided filter function returns true
972 def concatSomeAttrLists(self, filter, attr_name):
973 return self.__internalConcatAttrs(attr_name, filter, [])
974
975 def sort(self):
976 self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
977
978class SubOperandList(OperandList):
979 '''Find all the operands in the given code block. Returns an operand
980 descriptor list (instance of class OperandList).'''
981 def __init__(self, parser, code, master_list):
982 self.items = []
983 self.bases = {}
984 # delete strings and comments so we don't match on operands inside
985 for regEx in (stringRE, commentRE):
986 code = regEx.sub('', code)
987 # search for operands
988 next_pos = 0
989 while 1:
990 match = parser.operandsRE.search(code, next_pos)
991 if not match:
992 # no more matches: we're done
993 break
994 op = match.groups()
995 # regexp groups are operand full name, base, and extension
996 (op_full, op_base, op_ext) = op
997 # find this op in the master list
998 op_desc = master_list.find_base(op_base)
999 if not op_desc:
1000 error('Found operand %s which is not in the master list!'
1001 % op_base)
1002 else:
1003 # See if we've already found this operand
1004 op_desc = self.find_base(op_base)
1005 if not op_desc:
1006 # if not, add a reference to it to this sub list
1007 self.append(master_list.bases[op_base])
1008
1009 # start next search after end of current match
1010 next_pos = match.end()
1011 self.sort()
1012 self.memOperand = None
1013 # Whether the whole PC needs to be read so parts of it can be accessed
1014 self.readPC = False
1015 # Whether the whole PC needs to be written after parts of it were
1016 # changed
1017 self.setPC = False
1018 # Whether this instruction manipulates the whole PC or parts of it.
1019 # Mixing the two is a bad idea and flagged as an error.
1020 self.pcPart = None
1021
1022 # Flags to keep track if one or more operands are to be read/written
1023 # conditionally.
1024 self.predRead = False
1025 self.predWrite = False
1026
1027 for op_desc in self.items:
1028 if op_desc.isPCPart():
1029 self.readPC = True
1030 if op_desc.is_dest:
1031 self.setPC = True
1032
1033 if op_desc.isPCState():
1034 if self.pcPart is not None:
1035 if self.pcPart and not op_desc.isPCPart() or \
1036 not self.pcPart and op_desc.isPCPart():
1037 error("Mixed whole and partial PC state operands.")
1038 self.pcPart = op_desc.isPCPart()
1039
1040 if op_desc.isMem():
1041 if self.memOperand:
1042 error("Code block has more than one memory operand.")
1043 self.memOperand = op_desc
1044
1045 # Check if this operand has read/write predication. If true, then
1046 # the microop will dynamically index source/dest registers.
1047 self.predRead = self.predRead or op_desc.hasReadPred()
1048 self.predWrite = self.predWrite or op_desc.hasWritePred()
1049
1050# Regular expression object to match C++ strings
1051stringRE = re.compile(r'"([^"\\]|\\.)*"')
1052
1053# Regular expression object to match C++ comments
1054# (used in findOperands())
1055commentRE = re.compile(r'(^)?[^\S\n]*/(?:\*(.*?)\*/[^\S\n]*|/[^\n]*)($)?',
1056 re.DOTALL | re.MULTILINE)
1057
1058# Regular expression object to match assignment statements (used in
1059# findOperands()). If the code immediately following the first
1060# appearance of the operand matches this regex, then the operand
1061# appears to be on the LHS of an assignment, and is thus a
1062# destination. basically we're looking for an '=' that's not '=='.
1063# The heinous tangle before that handles the case where the operand
1064# has an array subscript.
1065assignRE = re.compile(r'(\[[^\]]+\])?\s*=(?!=)', re.MULTILINE)
1066
1067def makeFlagConstructor(flag_list):
1068 if len(flag_list) == 0:
1069 return ''
1070 # filter out repeated flags
1071 flag_list.sort()
1072 i = 1
1073 while i < len(flag_list):
1074 if flag_list[i] == flag_list[i-1]:
1075 del flag_list[i]
1076 else:
1077 i += 1
1078 pre = '\n\tflags['
1079 post = '] = true;'
1080 code = pre + string.join(flag_list, post + pre) + post
1081 return code
1082
1083# Assume all instruction flags are of the form 'IsFoo'
1084instFlagRE = re.compile(r'Is.*')
1085
1086# OpClass constants end in 'Op' except No_OpClass
1087opClassRE = re.compile(r'.*Op|No_OpClass')
1088
1089class InstObjParams(object):
1090 def __init__(self, parser, mnem, class_name, base_class = '',
1091 snippets = {}, opt_args = []):
1092 self.mnemonic = mnem
1093 self.class_name = class_name
1094 self.base_class = base_class
1095 if not isinstance(snippets, dict):
1096 snippets = {'code' : snippets}
1097 compositeCode = ' '.join(map(str, snippets.values()))
1098 self.snippets = snippets
1099
1100 self.operands = OperandList(parser, compositeCode)
1101
1102 # The header of the constructor declares the variables to be used
1103 # in the body of the constructor.
1104 header = ''
1105 header += '\n\t_numSrcRegs = 0;'
1106 header += '\n\t_numDestRegs = 0;'
1107 header += '\n\t_numFPDestRegs = 0;'
1108 header += '\n\t_numIntDestRegs = 0;'
1109 header += '\n\t_numCCDestRegs = 0;'
1110
1111 self.constructor = header + \
1112 self.operands.concatAttrStrings('constructor')
1113
1114 self.flags = self.operands.concatAttrLists('flags')
1115
1116 self.op_class = None
1117
1118 # Optional arguments are assumed to be either StaticInst flags
1119 # or an OpClass value. To avoid having to import a complete
1120 # list of these values to match against, we do it ad-hoc
1121 # with regexps.
1122 for oa in opt_args:
1123 if instFlagRE.match(oa):
1124 self.flags.append(oa)
1125 elif opClassRE.match(oa):
1126 self.op_class = oa
1127 else:
1128 error('InstObjParams: optional arg "%s" not recognized '
1129 'as StaticInst::Flag or OpClass.' % oa)
1130
1131 # Make a basic guess on the operand class if not set.
1132 # These are good enough for most cases.
1133 if not self.op_class:
1134 if 'IsStore' in self.flags:
1135 # The order matters here: 'IsFloating' and 'IsInteger' are
1136 # usually set in FP instructions because of the base
1137 # register
1138 if 'IsFloating' in self.flags:
1139 self.op_class = 'FloatMemWriteOp'
1140 else:
1141 self.op_class = 'MemWriteOp'
1142 elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
1143 # The order matters here: 'IsFloating' and 'IsInteger' are
1144 # usually set in FP instructions because of the base
1145 # register
1146 if 'IsFloating' in self.flags:
1147 self.op_class = 'FloatMemReadOp'
1148 else:
1149 self.op_class = 'MemReadOp'
1150 elif 'IsFloating' in self.flags:
1151 self.op_class = 'FloatAddOp'
1152 else:
1153 self.op_class = 'IntAluOp'
1154
1155 # add flag initialization to contructor here to include
1156 # any flags added via opt_args
1157 self.constructor += makeFlagConstructor(self.flags)
1158
1159 # if 'IsFloating' is set, add call to the FP enable check
1160 # function (which should be provided by isa_desc via a declare)
1161 if 'IsFloating' in self.flags:
1162 self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
1163 else:
1164 self.fp_enable_check = ''
1165
1166##############
1167# Stack: a simple stack object. Used for both formats (formatStack)
1168# and default cases (defaultStack). Simply wraps a list to give more
1169# stack-like syntax and enable initialization with an argument list
1170# (as opposed to an argument that's a list).
1171
1172class Stack(list):
1173 def __init__(self, *items):
1174 list.__init__(self, items)
1175
1176 def push(self, item):
1177 self.append(item);
1178
1179 def top(self):
1180 return self[-1]
1181
1182# Format a file include stack backtrace as a string
1183def backtrace(filename_stack):
1184 fmt = "In file included from %s:"
1185 return "\n".join([fmt % f for f in filename_stack])
1186
1187
1188#######################
1189#
1190# LineTracker: track filenames along with line numbers in PLY lineno fields
1191# PLY explicitly doesn't do anything with 'lineno' except propagate
1192# it. This class lets us tie filenames with the line numbers with a
1193# minimum of disruption to existing increment code.
1194#
1195
1196class LineTracker(object):
1197 def __init__(self, filename, lineno=1):
1198 self.filename = filename
1199 self.lineno = lineno
1200
1201 # Overload '+=' for increments. We need to create a new object on
1202 # each update else every token ends up referencing the same
1203 # constantly incrementing instance.
1204 def __iadd__(self, incr):
1205 return LineTracker(self.filename, self.lineno + incr)
1206
1207 def __str__(self):
1208 return "%s:%d" % (self.filename, self.lineno)
1209
1210 # In case there are places where someone really expects a number
1211 def __int__(self):
1212 return self.lineno
1213
1214
1215#######################
1216#
1217# ISA Parser
1218# parses ISA DSL and emits C++ headers and source
1219#
1220
1221class ISAParser(Grammar):
1222 class CpuModel(object):
1223 def __init__(self, name, filename, includes, strings):
1224 self.name = name
1225 self.filename = filename
1226 self.includes = includes
1227 self.strings = strings
1228
1229 def __init__(self, output_dir):
1230 super(ISAParser, self).__init__()
1231 self.output_dir = output_dir
1232
1233 self.filename = None # for output file watermarking/scaremongering
1234
1235 self.cpuModels = [
1236 ISAParser.CpuModel('ExecContext',
1237 'generic_cpu_exec.cc',
1238 '#include "cpu/exec_context.hh"',
1239 { "CPU_exec_context" : "ExecContext" }),
1240 ]
1241
1242 # variable to hold templates
1243 self.templateMap = {}
1244
1245 # This dictionary maps format name strings to Format objects.
1246 self.formatMap = {}
1247
1248 # Track open files and, if applicable, how many chunks it has been
1249 # split into so far.
1250 self.files = {}
1251 self.splits = {}
1252
1253 # isa_name / namespace identifier from namespace declaration.
1254 # before the namespace declaration, None.
1255 self.isa_name = None
1256 self.namespace = None
1257
1258 # The format stack.
1259 self.formatStack = Stack(NoFormat())
1260
1261 # The default case stack.
1262 self.defaultStack = Stack(None)
1263
1264 # Stack that tracks current file and line number. Each
1265 # element is a tuple (filename, lineno) that records the
1266 # *current* filename and the line number in the *previous*
1267 # file where it was included.
1268 self.fileNameStack = Stack()
1269
1270 symbols = ('makeList', 're', 'string')
1271 self.exportContext = dict([(s, eval(s)) for s in symbols])
1272
1273 self.maxInstSrcRegs = 0
1274 self.maxInstDestRegs = 0
1275 self.maxMiscDestRegs = 0
1276
1277 def __getitem__(self, i): # Allow object (self) to be
1278 return getattr(self, i) # passed to %-substitutions
1279
1280 # Change the file suffix of a base filename:
1281 # (e.g.) decoder.cc -> decoder-g.cc.inc for 'global' outputs
1282 def suffixize(self, s, sec):
1283 extn = re.compile('(\.[^\.]+)$') # isolate extension
1284 if self.namespace:
1285 return extn.sub(r'-ns\1.inc', s) # insert some text on either side
1286 else:
1287 return extn.sub(r'-g\1.inc', s)
1288
1289 # Get the file object for emitting code into the specified section
1290 # (header, decoder, exec, decode_block).
1291 def get_file(self, section):
1292 if section == 'decode_block':
1293 filename = 'decode-method.cc.inc'
1294 else:
1295 if section == 'header':
1296 file = 'decoder.hh'
1297 else:
1298 file = '%s.cc' % section
1299 filename = self.suffixize(file, section)
1300 try:
1301 return self.files[filename]
1302 except KeyError: pass
1303
1304 f = self.open(filename)
1305 self.files[filename] = f
1306
1307 # The splittable files are the ones with many independent
1308 # per-instruction functions - the decoder's instruction constructors
1309 # and the instruction execution (execute()) methods. These both have
1310 # the suffix -ns.cc.inc, meaning they are within the namespace part
1311 # of the ISA, contain object-emitting C++ source, and are included
1312 # into other top-level files. These are the files that need special
1313 # #define's to allow parts of them to be compiled separately. Rather
1314 # than splitting the emissions into separate files, the monolithic
1315 # output of the ISA parser is maintained, but the value (or lack
1316 # thereof) of the __SPLIT definition during C preprocessing will
1317 # select the different chunks. If no 'split' directives are used,
1318 # the cpp emissions have no effect.
1319 if re.search('-ns.cc.inc$', filename):
1320 print >>f, '#if !defined(__SPLIT) || (__SPLIT == 1)'
1321 self.splits[f] = 1
1322 # ensure requisite #include's
1323 elif filename == 'decoder-g.hh.inc':
1324 print >>f, '#include "base/bitfield.hh"'
1325
1326 return f
1327
1328 # Weave together the parts of the different output sections by
1329 # #include'ing them into some very short top-level .cc/.hh files.
1330 # These small files make it much clearer how this tool works, since
1331 # you directly see the chunks emitted as files that are #include'd.
1332 def write_top_level_files(self):
1333 dep = self.open('inc.d', bare=True)
1334
1335 # decoder header - everything depends on this
1336 file = 'decoder.hh'
1337 with self.open(file) as f:
1338 inc = []
1339
1340 fn = 'decoder-g.hh.inc'
1341 assert(fn in self.files)
1342 f.write('#include "%s"\n' % fn)
1343 inc.append(fn)
1344
1345 fn = 'decoder-ns.hh.inc'
1346 assert(fn in self.files)
1347 f.write('namespace %s {\n#include "%s"\n}\n'
1348 % (self.namespace, fn))
1349 inc.append(fn)
1350
1351 print >>dep, file+':', ' '.join(inc)
1352
1353 # decoder method - cannot be split
1354 file = 'decoder.cc'
1355 with self.open(file) as f:
1356 inc = []
1357
1358 fn = 'decoder-g.cc.inc'
1359 assert(fn in self.files)
1360 f.write('#include "%s"\n' % fn)
1361 inc.append(fn)
1362
1363 fn = 'decoder.hh'
1364 f.write('#include "%s"\n' % fn)
1365 inc.append(fn)
1366
1367 fn = 'decode-method.cc.inc'
1368 # is guaranteed to have been written for parse to complete
1369 f.write('#include "%s"\n' % fn)
1370 inc.append(fn)
1371
1372 print >>dep, file+':', ' '.join(inc)
1373
1374 extn = re.compile('(\.[^\.]+)$')
1375
1376 # instruction constructors
1377 splits = self.splits[self.get_file('decoder')]
1378 file_ = 'inst-constrs.cc'
1379 for i in range(1, splits+1):
1380 if splits > 1:
1381 file = extn.sub(r'-%d\1' % i, file_)
1382 else:
1383 file = file_
1384 with self.open(file) as f:
1385 inc = []
1386
1387 fn = 'decoder-g.cc.inc'
1388 assert(fn in self.files)
1389 f.write('#include "%s"\n' % fn)
1390 inc.append(fn)
1391
1392 fn = 'decoder.hh'
1393 f.write('#include "%s"\n' % fn)
1394 inc.append(fn)
1395
1396 fn = 'decoder-ns.cc.inc'
1397 assert(fn in self.files)
1398 print >>f, 'namespace %s {' % self.namespace
1399 if splits > 1:
1400 print >>f, '#define __SPLIT %u' % i
1401 print >>f, '#include "%s"' % fn
1402 print >>f, '}'
1403 inc.append(fn)
1404
1405 print >>dep, file+':', ' '.join(inc)
1406
1407 # instruction execution per-CPU model
1408 splits = self.splits[self.get_file('exec')]
1409 for cpu in self.cpuModels:
1410 for i in range(1, splits+1):
1411 if splits > 1:
1412 file = extn.sub(r'_%d\1' % i, cpu.filename)
1413 else:
1414 file = cpu.filename
1415 with self.open(file) as f:
1416 inc = []
1417
1418 fn = 'exec-g.cc.inc'
1419 assert(fn in self.files)
1420 f.write('#include "%s"\n' % fn)
1421 inc.append(fn)
1422
1423 f.write(cpu.includes+"\n")
1424
1425 fn = 'decoder.hh'
1426 f.write('#include "%s"\n' % fn)
1427 inc.append(fn)
1428
1429 fn = 'exec-ns.cc.inc'
1430 assert(fn in self.files)
1431 print >>f, 'namespace %s {' % self.namespace
1432 print >>f, '#define CPU_EXEC_CONTEXT %s' \
1433 % cpu.strings['CPU_exec_context']
1434 if splits > 1:
1435 print >>f, '#define __SPLIT %u' % i
1436 print >>f, '#include "%s"' % fn
1437 print >>f, '}'
1438 inc.append(fn)
1439
1440 inc.append("decoder.hh")
1441 print >>dep, file+':', ' '.join(inc)
1442
1443 # max_inst_regs.hh
1444 self.update('max_inst_regs.hh',
1445 '''namespace %(namespace)s {
1446 const int MaxInstSrcRegs = %(maxInstSrcRegs)d;
1447 const int MaxInstDestRegs = %(maxInstDestRegs)d;
1448 const int MaxMiscDestRegs = %(maxMiscDestRegs)d;\n}\n''' % self)
1449 print >>dep, 'max_inst_regs.hh:'
1450
1451 dep.close()
1452
1453
1454 scaremonger_template ='''// DO NOT EDIT
1455// This file was automatically generated from an ISA description:
1456// %(filename)s
1457
1458''';
1459
1460 #####################################################################
1461 #
1462 # Lexer
1463 #
1464 # The PLY lexer module takes two things as input:
1465 # - A list of token names (the string list 'tokens')
1466 # - A regular expression describing a match for each token. The
1467 # regexp for token FOO can be provided in two ways:
1468 # - as a string variable named t_FOO
1469 # - as the doc string for a function named t_FOO. In this case,
1470 # the function is also executed, allowing an action to be
1471 # associated with each token match.
1472 #
1473 #####################################################################
1474
1475 # Reserved words. These are listed separately as they are matched
1476 # using the same regexp as generic IDs, but distinguished in the
1477 # t_ID() function. The PLY documentation suggests this approach.
1478 reserved = (
1479 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
1480 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
1481 'OUTPUT', 'SIGNED', 'SPLIT', 'TEMPLATE'
1482 )
1483
1484 # List of tokens. The lex module requires this.
1485 tokens = reserved + (
1486 # identifier
1487 'ID',
1488
1489 # integer literal
1490 'INTLIT',
1491
1492 # string literal
1493 'STRLIT',
1494
1495 # code literal
1496 'CODELIT',
1497
1498 # ( ) [ ] { } < > , ; . : :: *
1499 'LPAREN', 'RPAREN',
1500 'LBRACKET', 'RBRACKET',
1501 'LBRACE', 'RBRACE',
1502 'LESS', 'GREATER', 'EQUALS',
1503 'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON',
1504 'ASTERISK',
1505
1506 # C preprocessor directives
1507 'CPPDIRECTIVE'
1508
1509 # The following are matched but never returned. commented out to
1510 # suppress PLY warning
1511 # newfile directive
1512 # 'NEWFILE',
1513
1514 # endfile directive
1515 # 'ENDFILE'
1516 )
1517
1518 # Regular expressions for token matching
1519 t_LPAREN = r'\('
1520 t_RPAREN = r'\)'
1521 t_LBRACKET = r'\['
1522 t_RBRACKET = r'\]'
1523 t_LBRACE = r'\{'
1524 t_RBRACE = r'\}'
1525 t_LESS = r'\<'
1526 t_GREATER = r'\>'
1527 t_EQUALS = r'='
1528 t_COMMA = r','
1529 t_SEMI = r';'
1530 t_DOT = r'\.'
1531 t_COLON = r':'
1532 t_DBLCOLON = r'::'
1533 t_ASTERISK = r'\*'
1534
1535 # Identifiers and reserved words
1536 reserved_map = { }
1537 for r in reserved:
1538 reserved_map[r.lower()] = r
1539
1540 def t_ID(self, t):
1541 r'[A-Za-z_]\w*'
1542 t.type = self.reserved_map.get(t.value, 'ID')
1543 return t
1544
1545 # Integer literal
1546 def t_INTLIT(self, t):
1547 r'-?(0x[\da-fA-F]+)|\d+'
1548 try:
1549 t.value = int(t.value,0)
1550 except ValueError:
1551 error(t.lexer.lineno, 'Integer value "%s" too large' % t.value)
1552 t.value = 0
1553 return t
1554
1555 # String literal. Note that these use only single quotes, and
1556 # can span multiple lines.
1557 def t_STRLIT(self, t):
1558 r"(?m)'([^'])+'"
1559 # strip off quotes
1560 t.value = t.value[1:-1]
1561 t.lexer.lineno += t.value.count('\n')
1562 return t
1563
1564
1565 # "Code literal"... like a string literal, but delimiters are
1566 # '{{' and '}}' so they get formatted nicely under emacs c-mode
1567 def t_CODELIT(self, t):
1568 r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
1569 # strip off {{ & }}
1570 t.value = t.value[2:-2]
1571 t.lexer.lineno += t.value.count('\n')
1572 return t
1573
1574 def t_CPPDIRECTIVE(self, t):
1575 r'^\#[^\#].*\n'
1576 t.lexer.lineno += t.value.count('\n')
1577 return t
1578
1579 def t_NEWFILE(self, t):
1580 r'^\#\#newfile\s+"[^"]*"\n'
1581 self.fileNameStack.push(t.lexer.lineno)
1582 t.lexer.lineno = LineTracker(t.value[11:-2])
1583
1584 def t_ENDFILE(self, t):
1585 r'^\#\#endfile\n'
1586 t.lexer.lineno = self.fileNameStack.pop()
1587
1588 #
1589 # The functions t_NEWLINE, t_ignore, and t_error are
1590 # special for the lex module.
1591 #
1592
1593 # Newlines
1594 def t_NEWLINE(self, t):
1595 r'\n+'
1596 t.lexer.lineno += t.value.count('\n')
1597
1598 # Comments
1599 def t_comment(self, t):
1600 r'//.*'
1601
1602 # Completely ignored characters
1603 t_ignore = ' \t\x0c'
1604
1605 # Error handler
1606 def t_error(self, t):
1607 error(t.lexer.lineno, "illegal character '%s'" % t.value[0])
1608 t.skip(1)
1609
1610 #####################################################################
1611 #
1612 # Parser
1613 #
1614 # Every function whose name starts with 'p_' defines a grammar
1615 # rule. The rule is encoded in the function's doc string, while
1616 # the function body provides the action taken when the rule is
1617 # matched. The argument to each function is a list of the values
1618 # of the rule's symbols: t[0] for the LHS, and t[1..n] for the
1619 # symbols on the RHS. For tokens, the value is copied from the
1620 # t.value attribute provided by the lexer. For non-terminals, the
1621 # value is assigned by the producing rule; i.e., the job of the
1622 # grammar rule function is to set the value for the non-terminal
1623 # on the LHS (by assigning to t[0]).
1624 #####################################################################
1625
1626 # The LHS of the first grammar rule is used as the start symbol
1627 # (in this case, 'specification'). Note that this rule enforces
1628 # that there will be exactly one namespace declaration, with 0 or
1629 # more global defs/decls before and after it. The defs & decls
1630 # before the namespace decl will be outside the namespace; those
1631 # after will be inside. The decoder function is always inside the
1632 # namespace.
1633 def p_specification(self, t):
1634 'specification : opt_defs_and_outputs top_level_decode_block'
1635
1636 for f in self.splits.iterkeys():
1637 f.write('\n#endif\n')
1638
1639 for f in self.files.itervalues(): # close ALL the files;
1640 f.close() # not doing so can cause compilation to fail
1641
1642 self.write_top_level_files()
1643
1644 t[0] = True
1645
1646 # 'opt_defs_and_outputs' is a possibly empty sequence of def and/or
1647 # output statements. Its productions do the hard work of eventually
1648 # instantiating a GenCode, which are generally emitted (written to disk)
1649 # as soon as possible, except for the decode_block, which has to be
1650 # accumulated into one large function of nested switch/case blocks.
1651 def p_opt_defs_and_outputs_0(self, t):
1652 'opt_defs_and_outputs : empty'
1653
1654 def p_opt_defs_and_outputs_1(self, t):
1655 'opt_defs_and_outputs : defs_and_outputs'
1656
1657 def p_defs_and_outputs_0(self, t):
1658 'defs_and_outputs : def_or_output'
1659
1660 def p_defs_and_outputs_1(self, t):
1661 'defs_and_outputs : defs_and_outputs def_or_output'
1662
1663 # The list of possible definition/output statements.
1664 # They are all processed as they are seen.
1665 def p_def_or_output(self, t):
1666 '''def_or_output : name_decl
1667 | def_format
1668 | def_bitfield
1669 | def_bitfield_struct
1670 | def_template
1671 | def_operand_types
1672 | def_operands
1673 | output
1674 | global_let
1675 | split'''
1676
1677 # Utility function used by both invocations of splitting - explicit
1678 # 'split' keyword and split() function inside "let {{ }};" blocks.
1679 def split(self, sec, write=False):
1680 assert(sec != 'header' and "header cannot be split")
1681
1682 f = self.get_file(sec)
1683 self.splits[f] += 1
1684 s = '\n#endif\n#if __SPLIT == %u\n' % self.splits[f]
1685 if write:
1686 f.write(s)
1687 else:
1688 return s
1689
1690 # split output file to reduce compilation time
1691 def p_split(self, t):
1692 'split : SPLIT output_type SEMI'
1693 assert(self.isa_name and "'split' not allowed before namespace decl")
1694
1695 self.split(t[2], True)
1696
1697 def p_output_type(self, t):
1698 '''output_type : DECODER
1699 | HEADER
1700 | EXEC'''
1701 t[0] = t[1]
1702
1703 # ISA name declaration looks like "namespace <foo>;"
1704 def p_name_decl(self, t):
1705 'name_decl : NAMESPACE ID SEMI'
1706 assert(self.isa_name == None and "Only 1 namespace decl permitted")
1707 self.isa_name = t[2]
1708 self.namespace = t[2] + 'Inst'
1709
1710 # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
1711 # directly to the appropriate output section.
1712
1713 # Massage output block by substituting in template definitions and
1714 # bit operators. We handle '%'s embedded in the string that don't
1715 # indicate template substitutions (or CPU-specific symbols, which
1716 # get handled in GenCode) by doubling them first so that the
1717 # format operation will reduce them back to single '%'s.
1718 def process_output(self, s):
1719 s = self.protectNonSubstPercents(s)
1720 # protects cpu-specific symbols too
1721 s = self.protectCpuSymbols(s)
1722 return substBitOps(s % self.templateMap)
1723
1724 def p_output(self, t):
1725 'output : OUTPUT output_type CODELIT SEMI'
1726 kwargs = { t[2]+'_output' : self.process_output(t[3]) }
1727 GenCode(self, **kwargs).emit()
1728
1729 # global let blocks 'let {{...}}' (Python code blocks) are
1730 # executed directly when seen. Note that these execute in a
1731 # special variable context 'exportContext' to prevent the code
1732 # from polluting this script's namespace.
1733 def p_global_let(self, t):
1734 'global_let : LET CODELIT SEMI'
1735 def _split(sec):
1736 return self.split(sec)
1737 self.updateExportContext()
1738 self.exportContext["header_output"] = ''
1739 self.exportContext["decoder_output"] = ''
1740 self.exportContext["exec_output"] = ''
1741 self.exportContext["decode_block"] = ''
1742 self.exportContext["split"] = _split
1743 split_setup = '''
1744def wrap(func):
1745 def split(sec):
1746 globals()[sec + '_output'] += func(sec)
1747 return split
1748split = wrap(split)
1749del wrap
1750'''
1751 # This tricky setup (immediately above) allows us to just write
1752 # (e.g.) "split('exec')" in the Python code and the split #ifdef's
1753 # will automatically be added to the exec_output variable. The inner
1754 # Python execution environment doesn't know about the split points,
1755 # so we carefully inject and wrap a closure that can retrieve the
1756 # next split's #define from the parser and add it to the current
1757 # emission-in-progress.
1758 try:
1759 exec split_setup+fixPythonIndentation(t[2]) in self.exportContext
1760 except Exception, exc:
1761 if debug:
1762 raise
1763 error(t.lineno(1), 'In global let block: %s' % exc)
1764 GenCode(self,
1765 header_output=self.exportContext["header_output"],
1766 decoder_output=self.exportContext["decoder_output"],
1767 exec_output=self.exportContext["exec_output"],
1768 decode_block=self.exportContext["decode_block"]).emit()
1769
1770 # Define the mapping from operand type extensions to C++ types and
1771 # bit widths (stored in operandTypeMap).
1772 def p_def_operand_types(self, t):
1773 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
1774 try:
1775 self.operandTypeMap = eval('{' + t[3] + '}')
1776 except Exception, exc:
1777 if debug:
1778 raise
1779 error(t.lineno(1),
1780 'In def operand_types: %s' % exc)
1781
1782 # Define the mapping from operand names to operand classes and
1783 # other traits. Stored in operandNameMap.
1784 def p_def_operands(self, t):
1785 'def_operands : DEF OPERANDS CODELIT SEMI'
1786 if not hasattr(self, 'operandTypeMap'):
1787 error(t.lineno(1),
1788 'error: operand types must be defined before operands')
1789 try:
1790 user_dict = eval('{' + t[3] + '}', self.exportContext)
1791 except Exception, exc:
1792 if debug:
1793 raise
1794 error(t.lineno(1), 'In def operands: %s' % exc)
1795 self.buildOperandNameMap(user_dict, t.lexer.lineno)
1796
1797 # A bitfield definition looks like:
1798 # 'def [signed] bitfield <ID> [<first>:<last>]'
1799 # This generates a preprocessor macro in the output file.
1800 def p_def_bitfield_0(self, t):
1801 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
1802 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
1803 if (t[2] == 'signed'):
1804 expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
1805 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1806 GenCode(self, header_output=hash_define).emit()
1807
1808 # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
1809 def p_def_bitfield_1(self, t):
1810 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
1811 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
1812 if (t[2] == 'signed'):
1813 expr = 'sext<%d>(%s)' % (1, expr)
1814 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1815 GenCode(self, header_output=hash_define).emit()
1816
1817 # alternate form for structure member: 'def bitfield <ID> <ID>'
1818 def p_def_bitfield_struct(self, t):
1819 'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI'
1820 if (t[2] != ''):
1821 error(t.lineno(1),
1822 'error: structure bitfields are always unsigned.')
1823 expr = 'machInst.%s' % t[5]
1824 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1825 GenCode(self, header_output=hash_define).emit()
1826
1827 def p_id_with_dot_0(self, t):
1828 'id_with_dot : ID'
1829 t[0] = t[1]
1830
1831 def p_id_with_dot_1(self, t):
1832 'id_with_dot : ID DOT id_with_dot'
1833 t[0] = t[1] + t[2] + t[3]
1834
1835 def p_opt_signed_0(self, t):
1836 'opt_signed : SIGNED'
1837 t[0] = t[1]
1838
1839 def p_opt_signed_1(self, t):
1840 'opt_signed : empty'
1841 t[0] = ''
1842
1843 def p_def_template(self, t):
1844 'def_template : DEF TEMPLATE ID CODELIT SEMI'
1845 if t[3] in self.templateMap:
1846 print "warning: template %s already defined" % t[3]
1847 self.templateMap[t[3]] = Template(self, t[4])
1848
1849 # An instruction format definition looks like
1850 # "def format <fmt>(<params>) {{...}};"
1851 def p_def_format(self, t):
1852 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
1853 (id, params, code) = (t[3], t[5], t[7])
1854 self.defFormat(id, params, code, t.lexer.lineno)
1855
1856 # The formal parameter list for an instruction format is a
1857 # possibly empty list of comma-separated parameters. Positional
1858 # (standard, non-keyword) parameters must come first, followed by
1859 # keyword parameters, followed by a '*foo' parameter that gets
1860 # excess positional arguments (as in Python). Each of these three
1861 # parameter categories is optional.
1862 #
1863 # Note that we do not support the '**foo' parameter for collecting
1864 # otherwise undefined keyword args. Otherwise the parameter list
1865 # is (I believe) identical to what is supported in Python.
1866 #
1867 # The param list generates a tuple, where the first element is a
1868 # list of the positional params and the second element is a dict
1869 # containing the keyword params.
1870 def p_param_list_0(self, t):
1871 'param_list : positional_param_list COMMA nonpositional_param_list'
1872 t[0] = t[1] + t[3]
1873
1874 def p_param_list_1(self, t):
1875 '''param_list : positional_param_list
1876 | nonpositional_param_list'''
1877 t[0] = t[1]
1878
1879 def p_positional_param_list_0(self, t):
1880 'positional_param_list : empty'
1881 t[0] = []
1882
1883 def p_positional_param_list_1(self, t):
1884 'positional_param_list : ID'
1885 t[0] = [t[1]]
1886
1887 def p_positional_param_list_2(self, t):
1888 'positional_param_list : positional_param_list COMMA ID'
1889 t[0] = t[1] + [t[3]]
1890
1891 def p_nonpositional_param_list_0(self, t):
1892 'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
1893 t[0] = t[1] + t[3]
1894
1895 def p_nonpositional_param_list_1(self, t):
1896 '''nonpositional_param_list : keyword_param_list
1897 | excess_args_param'''
1898 t[0] = t[1]
1899
1900 def p_keyword_param_list_0(self, t):
1901 'keyword_param_list : keyword_param'
1902 t[0] = [t[1]]
1903
1904 def p_keyword_param_list_1(self, t):
1905 'keyword_param_list : keyword_param_list COMMA keyword_param'
1906 t[0] = t[1] + [t[3]]
1907
1908 def p_keyword_param(self, t):
1909 'keyword_param : ID EQUALS expr'
1910 t[0] = t[1] + ' = ' + t[3].__repr__()
1911
1912 def p_excess_args_param(self, t):
1913 'excess_args_param : ASTERISK ID'
1914 # Just concatenate them: '*ID'. Wrap in list to be consistent
1915 # with positional_param_list and keyword_param_list.
1916 t[0] = [t[1] + t[2]]
1917
1918 # End of format definition-related rules.
1919 ##############
1920
1921 #
1922 # A decode block looks like:
1923 # decode <field1> [, <field2>]* [default <inst>] { ... }
1924 #
1925 def p_top_level_decode_block(self, t):
1926 'top_level_decode_block : decode_block'
1927 codeObj = t[1]
1928 codeObj.wrap_decode_block('''
1929StaticInstPtr
1930%(isa_name)s::Decoder::decodeInst(%(isa_name)s::ExtMachInst machInst)
1931{
1932 using namespace %(namespace)s;
1933''' % self, '}')
1934
1935 codeObj.emit()
1936
1937 def p_decode_block(self, t):
1938 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
1939 default_defaults = self.defaultStack.pop()
1940 codeObj = t[5]
1941 # use the "default defaults" only if there was no explicit
1942 # default statement in decode_stmt_list
1943 if not codeObj.has_decode_default:
1944 codeObj += default_defaults
1945 codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
1946 t[0] = codeObj
1947
1948 # The opt_default statement serves only to push the "default
1949 # defaults" onto defaultStack. This value will be used by nested
1950 # decode blocks, and used and popped off when the current
1951 # decode_block is processed (in p_decode_block() above).
1952 def p_opt_default_0(self, t):
1953 'opt_default : empty'
1954 # no default specified: reuse the one currently at the top of
1955 # the stack
1956 self.defaultStack.push(self.defaultStack.top())
1957 # no meaningful value returned
1958 t[0] = None
1959
1960 def p_opt_default_1(self, t):
1961 'opt_default : DEFAULT inst'
1962 # push the new default
1963 codeObj = t[2]
1964 codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
1965 self.defaultStack.push(codeObj)
1966 # no meaningful value returned
1967 t[0] = None
1968
1969 def p_decode_stmt_list_0(self, t):
1970 'decode_stmt_list : decode_stmt'
1971 t[0] = t[1]
1972
1973 def p_decode_stmt_list_1(self, t):
1974 'decode_stmt_list : decode_stmt decode_stmt_list'
1975 if (t[1].has_decode_default and t[2].has_decode_default):
1976 error(t.lineno(1), 'Two default cases in decode block')
1977 t[0] = t[1] + t[2]
1978
1979 #
1980 # Decode statement rules
1981 #
1982 # There are four types of statements allowed in a decode block:
1983 # 1. Format blocks 'format <foo> { ... }'
1984 # 2. Nested decode blocks
1985 # 3. Instruction definitions.
1986 # 4. C preprocessor directives.
1987
1988
1989 # Preprocessor directives found in a decode statement list are
1990 # passed through to the output, replicated to all of the output
1991 # code streams. This works well for ifdefs, so we can ifdef out
1992 # both the declarations and the decode cases generated by an
1993 # instruction definition. Handling them as part of the grammar
1994 # makes it easy to keep them in the right place with respect to
1995 # the code generated by the other statements.
1996 def p_decode_stmt_cpp(self, t):
1997 'decode_stmt : CPPDIRECTIVE'
1998 t[0] = GenCode(self, t[1], t[1], t[1], t[1])
1999
2000 # A format block 'format <foo> { ... }' sets the default
2001 # instruction format used to handle instruction definitions inside
2002 # the block. This format can be overridden by using an explicit
2003 # format on the instruction definition or with a nested format
2004 # block.
2005 def p_decode_stmt_format(self, t):
2006 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
2007 # The format will be pushed on the stack when 'push_format_id'
2008 # is processed (see below). Once the parser has recognized
2009 # the full production (though the right brace), we're done
2010 # with the format, so now we can pop it.
2011 self.formatStack.pop()
2012 t[0] = t[4]
2013
2014 # This rule exists so we can set the current format (& push the
2015 # stack) when we recognize the format name part of the format
2016 # block.
2017 def p_push_format_id(self, t):
2018 'push_format_id : ID'
2019 try:
2020 self.formatStack.push(self.formatMap[t[1]])
2021 t[0] = ('', '// format %s' % t[1])
2022 except KeyError:
2023 error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
2024
2025 # Nested decode block: if the value of the current field matches
2026 # the specified constant(s), do a nested decode on some other field.
2027 def p_decode_stmt_decode(self, t):
2028 'decode_stmt : case_list COLON decode_block'
2029 case_list = t[1]
2030 codeObj = t[3]
2031 # just wrap the decoding code from the block as a case in the
2032 # outer switch statement.
2033 codeObj.wrap_decode_block('\n%s\n' % ''.join(case_list))
2034 codeObj.has_decode_default = (case_list == ['default:'])
2035 t[0] = codeObj
2036
2037 # Instruction definition (finally!).
2038 def p_decode_stmt_inst(self, t):
2039 'decode_stmt : case_list COLON inst SEMI'
2040 case_list = t[1]
2041 codeObj = t[3]
2042 codeObj.wrap_decode_block('\n%s' % ''.join(case_list), 'break;\n')
2043 codeObj.has_decode_default = (case_list == ['default:'])
2044 t[0] = codeObj
2045
2046 # The constant list for a decode case label must be non-empty, and must
2047 # either be the keyword 'default', or made up of one or more
2048 # comma-separated integer literals or strings which evaluate to
2049 # constants when compiled as C++.
2050 def p_case_list_0(self, t):
2051 'case_list : DEFAULT'
2052 t[0] = ['default:']
2053
2054 def prep_int_lit_case_label(self, lit):
2055 if lit >= 2**32:
2056 return 'case ULL(%#x): ' % lit
2057 else:
2058 return 'case %#x: ' % lit
2059
2060 def prep_str_lit_case_label(self, lit):
2061 return 'case %s: ' % lit
2062
2063 def p_case_list_1(self, t):
2064 'case_list : INTLIT'
2065 t[0] = [self.prep_int_lit_case_label(t[1])]
2066
2067 def p_case_list_2(self, t):
2068 'case_list : STRLIT'
2069 t[0] = [self.prep_str_lit_case_label(t[1])]
2070
2071 def p_case_list_3(self, t):
2072 'case_list : case_list COMMA INTLIT'
2073 t[0] = t[1]
2074 t[0].append(self.prep_int_lit_case_label(t[3]))
2075
2076 def p_case_list_4(self, t):
2077 'case_list : case_list COMMA STRLIT'
2078 t[0] = t[1]
2079 t[0].append(self.prep_str_lit_case_label(t[3]))
2080
2081 # Define an instruction using the current instruction format
2082 # (specified by an enclosing format block).
2083 # "<mnemonic>(<args>)"
2084 def p_inst_0(self, t):
2085 'inst : ID LPAREN arg_list RPAREN'
2086 # Pass the ID and arg list to the current format class to deal with.
2087 currentFormat = self.formatStack.top()
2088 codeObj = currentFormat.defineInst(self, t[1], t[3], t.lexer.lineno)
2089 args = ','.join(map(str, t[3]))
2090 args = re.sub('(?m)^', '//', args)
2091 args = re.sub('^//', '', args)
2092 comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
2093 codeObj.prepend_all(comment)
2094 t[0] = codeObj
2095
2096 # Define an instruction using an explicitly specified format:
2097 # "<fmt>::<mnemonic>(<args>)"
2098 def p_inst_1(self, t):
2099 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
2100 try:
2101 format = self.formatMap[t[1]]
2102 except KeyError:
2103 error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
2104
2105 codeObj = format.defineInst(self, t[3], t[5], t.lexer.lineno)
2106 comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
2107 codeObj.prepend_all(comment)
2108 t[0] = codeObj
2109
2110 # The arg list generates a tuple, where the first element is a
2111 # list of the positional args and the second element is a dict
2112 # containing the keyword args.
2113 def p_arg_list_0(self, t):
2114 'arg_list : positional_arg_list COMMA keyword_arg_list'
2115 t[0] = ( t[1], t[3] )
2116
2117 def p_arg_list_1(self, t):
2118 'arg_list : positional_arg_list'
2119 t[0] = ( t[1], {} )
2120
2121 def p_arg_list_2(self, t):
2122 'arg_list : keyword_arg_list'
2123 t[0] = ( [], t[1] )
2124
2125 def p_positional_arg_list_0(self, t):
2126 'positional_arg_list : empty'
2127 t[0] = []
2128
2129 def p_positional_arg_list_1(self, t):
2130 'positional_arg_list : expr'
2131 t[0] = [t[1]]
2132
2133 def p_positional_arg_list_2(self, t):
2134 'positional_arg_list : positional_arg_list COMMA expr'
2135 t[0] = t[1] + [t[3]]
2136
2137 def p_keyword_arg_list_0(self, t):
2138 'keyword_arg_list : keyword_arg'
2139 t[0] = t[1]
2140
2141 def p_keyword_arg_list_1(self, t):
2142 'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
2143 t[0] = t[1]
2144 t[0].update(t[3])
2145
2146 def p_keyword_arg(self, t):
2147 'keyword_arg : ID EQUALS expr'
2148 t[0] = { t[1] : t[3] }
2149
2150 #
2151 # Basic expressions. These constitute the argument values of
2152 # "function calls" (i.e. instruction definitions in the decode
2153 # block) and default values for formal parameters of format
2154 # functions.
2155 #
2156 # Right now, these are either strings, integers, or (recursively)
2157 # lists of exprs (using Python square-bracket list syntax). Note
2158 # that bare identifiers are trated as string constants here (since
2159 # there isn't really a variable namespace to refer to).
2160 #
2161 def p_expr_0(self, t):
2162 '''expr : ID
2163 | INTLIT
2164 | STRLIT
2165 | CODELIT'''
2166 t[0] = t[1]
2167
2168 def p_expr_1(self, t):
2169 '''expr : LBRACKET list_expr RBRACKET'''
2170 t[0] = t[2]
2171
2172 def p_list_expr_0(self, t):
2173 'list_expr : expr'
2174 t[0] = [t[1]]
2175
2176 def p_list_expr_1(self, t):
2177 'list_expr : list_expr COMMA expr'
2178 t[0] = t[1] + [t[3]]
2179
2180 def p_list_expr_2(self, t):
2181 'list_expr : empty'
2182 t[0] = []
2183
2184 #
2185 # Empty production... use in other rules for readability.
2186 #
2187 def p_empty(self, t):
2188 'empty :'
2189 pass
2190
2191 # Parse error handler. Note that the argument here is the
2192 # offending *token*, not a grammar symbol (hence the need to use
2193 # t.value)
2194 def p_error(self, t):
2195 if t:
2196 error(t.lexer.lineno, "syntax error at '%s'" % t.value)
2197 else:
2198 error("unknown syntax error")
2199
2200 # END OF GRAMMAR RULES
2201
2202 def updateExportContext(self):
2203
2204 # create a continuation that allows us to grab the current parser
2205 def wrapInstObjParams(*args):
2206 return InstObjParams(self, *args)
2207 self.exportContext['InstObjParams'] = wrapInstObjParams
2208 self.exportContext.update(self.templateMap)
2209
2210 def defFormat(self, id, params, code, lineno):
2211 '''Define a new format'''
2212
2213 # make sure we haven't already defined this one
2214 if id in self.formatMap:
2215 error(lineno, 'format %s redefined.' % id)
2216
2217 # create new object and store in global map
2218 self.formatMap[id] = Format(id, params, code)
2219
2220 def expandCpuSymbolsToDict(self, template):
2221 '''Expand template with CPU-specific references into a
2222 dictionary with an entry for each CPU model name. The entry
2223 key is the model name and the corresponding value is the
2224 template with the CPU-specific refs substituted for that
2225 model.'''
2226
2227 # Protect '%'s that don't go with CPU-specific terms
2228 t = re.sub(r'%(?!\(CPU_)', '%%', template)
2229 result = {}
2230 for cpu in self.cpuModels:
2231 result[cpu.name] = t % cpu.strings
2232 return result
2233
2234 def expandCpuSymbolsToString(self, template):
2235 '''*If* the template has CPU-specific references, return a
2236 single string containing a copy of the template for each CPU
2237 model with the corresponding values substituted in. If the
2238 template has no CPU-specific references, it is returned
2239 unmodified.'''
2240
2241 if template.find('%(CPU_') != -1:
2242 return reduce(lambda x,y: x+y,
2243 self.expandCpuSymbolsToDict(template).values())
2244 else:
2245 return template
2246
2247 def protectCpuSymbols(self, template):
2248 '''Protect CPU-specific references by doubling the
2249 corresponding '%'s (in preparation for substituting a different
2250 set of references into the template).'''
2251
2252 return re.sub(r'%(?=\(CPU_)', '%%', template)
2253
2254 def protectNonSubstPercents(self, s):
2255 '''Protect any non-dict-substitution '%'s in a format string
2256 (i.e. those not followed by '(')'''
2257
2258 return re.sub(r'%(?!\()', '%%', s)
2259
2260 def buildOperandNameMap(self, user_dict, lineno):
2261 operand_name = {}
2262 for op_name, val in user_dict.iteritems():
2263
2264 # Check if extra attributes have been specified.
2265 if len(val) > 9:
2266 error(lineno, 'error: too many attributes for operand "%s"' %
2267 base_cls_name)
2268
2269 # Pad val with None in case optional args are missing
2270 val += (None, None, None, None)
2271 base_cls_name, dflt_ext, reg_spec, flags, sort_pri, \
2272 read_code, write_code, read_predicate, write_predicate = val[:9]
2273
2274 # Canonical flag structure is a triple of lists, where each list
2275 # indicates the set of flags implied by this operand always, when
2276 # used as a source, and when used as a dest, respectively.
2277 # For simplicity this can be initialized using a variety of fairly
2278 # obvious shortcuts; we convert these to canonical form here.
2279 if not flags:
2280 # no flags specified (e.g., 'None')
2281 flags = ( [], [], [] )
2282 elif isinstance(flags, str):
2283 # a single flag: assumed to be unconditional
2284 flags = ( [ flags ], [], [] )
2285 elif isinstance(flags, list):
2286 # a list of flags: also assumed to be unconditional
2287 flags = ( flags, [], [] )
2288 elif isinstance(flags, tuple):
2289 # it's a tuple: it should be a triple,
2290 # but each item could be a single string or a list
2291 (uncond_flags, src_flags, dest_flags) = flags
2292 flags = (makeList(uncond_flags),
2293 makeList(src_flags), makeList(dest_flags))
2294
2295 # Accumulate attributes of new operand class in tmp_dict
2296 tmp_dict = {}
2297 attrList = ['reg_spec', 'flags', 'sort_pri',
2298 'read_code', 'write_code',
2299 'read_predicate', 'write_predicate']
2300 if dflt_ext:
2301 dflt_ctype = self.operandTypeMap[dflt_ext]
2302 attrList.extend(['dflt_ctype', 'dflt_ext'])
2303 for attr in attrList:
2304 tmp_dict[attr] = eval(attr)
2305 tmp_dict['base_name'] = op_name
2306
2307 # New class name will be e.g. "IntReg_Ra"
2308 cls_name = base_cls_name + '_' + op_name
2309 # Evaluate string arg to get class object. Note that the
2310 # actual base class for "IntReg" is "IntRegOperand", i.e. we
2311 # have to append "Operand".
2312 try:
2313 base_cls = eval(base_cls_name + 'Operand')
2314 except NameError:
2315 error(lineno,
2316 'error: unknown operand base class "%s"' % base_cls_name)
2317 # The following statement creates a new class called
2318 # <cls_name> as a subclass of <base_cls> with the attributes
2319 # in tmp_dict, just as if we evaluated a class declaration.
2320 operand_name[op_name] = type(cls_name, (base_cls,), tmp_dict)
2321
2322 self.operandNameMap = operand_name
2323
2324 # Define operand variables.
2325 operands = user_dict.keys()
2326 extensions = self.operandTypeMap.keys()
2327
2328 operandsREString = r'''
2329 (?<!\w) # neg. lookbehind assertion: prevent partial matches
2330 ((%s)(?:_(%s))?) # match: operand with optional '_' then suffix
2331 (?!\w) # neg. lookahead assertion: prevent partial matches
2332 ''' % (string.join(operands, '|'), string.join(extensions, '|'))
2333
2334 self.operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
2335
2336 # Same as operandsREString, but extension is mandatory, and only two
2337 # groups are returned (base and ext, not full name as above).
2338 # Used for subtituting '_' for '.' to make C++ identifiers.
2339 operandsWithExtREString = r'(?<!\w)(%s)_(%s)(?!\w)' \
2340 % (string.join(operands, '|'), string.join(extensions, '|'))
2341
2342 self.operandsWithExtRE = \
2343 re.compile(operandsWithExtREString, re.MULTILINE)
2344
2345 def substMungedOpNames(self, code):
2346 '''Munge operand names in code string to make legal C++
2347 variable names. This means getting rid of the type extension
2348 if any. Will match base_name attribute of Operand object.)'''
2349 return self.operandsWithExtRE.sub(r'\1', code)
2350
2351 def mungeSnippet(self, s):
2352 '''Fix up code snippets for final substitution in templates.'''
2353 if isinstance(s, str):
2354 return self.substMungedOpNames(substBitOps(s))
2355 else:
2356 return s
2357
2358 def open(self, name, bare=False):
2359 '''Open the output file for writing and include scary warning.'''
2360 filename = os.path.join(self.output_dir, name)
2361 f = open(filename, 'w')
2362 if f:
2363 if not bare:
2364 f.write(ISAParser.scaremonger_template % self)
2365 return f
2366
2367 def update(self, file, contents):
2368 '''Update the output file only. Scons should handle the case when
2369 the new contents are unchanged using its built-in hash feature.'''
2370 f = self.open(file)
2371 f.write(contents)
2372 f.close()
2373
2374 # This regular expression matches '##include' directives
2375 includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[^"]*)".*$',
2376 re.MULTILINE)
2377
2378 def replace_include(self, matchobj, dirname):
2379 """Function to replace a matched '##include' directive with the
2380 contents of the specified file (with nested ##includes
2381 replaced recursively). 'matchobj' is an re match object
2382 (from a match of includeRE) and 'dirname' is the directory
2383 relative to which the file path should be resolved."""
2384
2385 fname = matchobj.group('filename')
2386 full_fname = os.path.normpath(os.path.join(dirname, fname))
2387 contents = '##newfile "%s"\n%s\n##endfile\n' % \
2388 (full_fname, self.read_and_flatten(full_fname))
2389 return contents
2390
2391 def read_and_flatten(self, filename):
2392 """Read a file and recursively flatten nested '##include' files."""
2393
2394 current_dir = os.path.dirname(filename)
2395 try:
2396 contents = open(filename).read()
2397 except IOError:
2398 error('Error including file "%s"' % filename)
2399
2400 self.fileNameStack.push(LineTracker(filename))
2401
2402 # Find any includes and include them
2403 def replace(matchobj):
2404 return self.replace_include(matchobj, current_dir)
2405 contents = self.includeRE.sub(replace, contents)
2406
2407 self.fileNameStack.pop()
2408 return contents
2409
2410 AlreadyGenerated = {}
2411
2412 def _parse_isa_desc(self, isa_desc_file):
2413 '''Read in and parse the ISA description.'''
2414
2415 # The build system can end up running the ISA parser twice: once to
2416 # finalize the build dependencies, and then to actually generate
2417 # the files it expects (in src/arch/$ARCH/generated). This code
2418 # doesn't do anything different either time, however; the SCons
2419 # invocations just expect different things. Since this code runs
2420 # within SCons, we can just remember that we've already run and
2421 # not perform a completely unnecessary run, since the ISA parser's
2422 # effect is idempotent.
2423 if isa_desc_file in ISAParser.AlreadyGenerated:
2424 return
2425
2426 # grab the last three path components of isa_desc_file
2427 self.filename = '/'.join(isa_desc_file.split('/')[-3:])
2428
2429 # Read file and (recursively) all included files into a string.
2430 # PLY requires that the input be in a single string so we have to
2431 # do this up front.
2432 isa_desc = self.read_and_flatten(isa_desc_file)
2433
2434 # Initialize lineno tracker
2435 self.lex.lineno = LineTracker(isa_desc_file)
2436
2437 # Parse.
2438 self.parse_string(isa_desc)
2439
2440 ISAParser.AlreadyGenerated[isa_desc_file] = None
2441
2442 def parse_isa_desc(self, *args, **kwargs):
2443 try:
2444 self._parse_isa_desc(*args, **kwargs)
2445 except ISAParserError, e:
2446 print backtrace(self.fileNameStack)
2447 print "At %s:" % e.lineno
2448 print e
2449 sys.exit(1)
2450
2451# Called as script: get args from command line.
2452# Args are: <isa desc file> <output dir>
2453if __name__ == '__main__':
2454 ISAParser(sys.argv[2]).parse_isa_desc(sys.argv[1])