isa_parser.py (11163:c81401cf5cc2) isa_parser.py (11327:1e7b883dffc6)
1# Copyright (c) 2014 ARM Limited
2# All rights reserved
3#
4# The license below extends only to copyright in the software and shall
5# not be construed as granting a license to any other intellectual
6# property including but not limited to intellectual property relating
7# to a hardware implementation of the functionality of the software
8# licensed hereunder. You may use the software subject to the license
9# terms below provided that you ensure that this notice is replicated
10# unmodified and in its entirety in all distributions of the software,
11# modified or unmodified, in source code or in binary form.
12#
13# Copyright (c) 2003-2005 The Regents of The University of Michigan
14# Copyright (c) 2013,2015 Advanced Micro Devices, Inc.
15# All rights reserved.
16#
17# Redistribution and use in source and binary forms, with or without
18# modification, are permitted provided that the following conditions are
19# met: redistributions of source code must retain the above copyright
20# notice, this list of conditions and the following disclaimer;
21# redistributions in binary form must reproduce the above copyright
22# notice, this list of conditions and the following disclaimer in the
23# documentation and/or other materials provided with the distribution;
24# neither the name of the copyright holders nor the names of its
25# contributors may be used to endorse or promote products derived from
26# this software without specific prior written permission.
27#
28# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39#
40# Authors: Steve Reinhardt
41
42from __future__ import with_statement
43import os
44import sys
45import re
46import string
47import inspect, traceback
48# get type names
49from types import *
50
51from m5.util.grammar import Grammar
52
53debug=False
54
55###################
56# Utility functions
57
58#
59# Indent every line in string 's' by two spaces
60# (except preprocessor directives).
61# Used to make nested code blocks look pretty.
62#
63def indent(s):
64 return re.sub(r'(?m)^(?!#)', ' ', s)
65
66#
67# Munge a somewhat arbitrarily formatted piece of Python code
68# (e.g. from a format 'let' block) into something whose indentation
69# will get by the Python parser.
70#
71# The two keys here are that Python will give a syntax error if
72# there's any whitespace at the beginning of the first line, and that
73# all lines at the same lexical nesting level must have identical
74# indentation. Unfortunately the way code literals work, an entire
75# let block tends to have some initial indentation. Rather than
76# trying to figure out what that is and strip it off, we prepend 'if
77# 1:' to make the let code the nested block inside the if (and have
78# the parser automatically deal with the indentation for us).
79#
80# We don't want to do this if (1) the code block is empty or (2) the
81# first line of the block doesn't have any whitespace at the front.
82
83def fixPythonIndentation(s):
84 # get rid of blank lines first
85 s = re.sub(r'(?m)^\s*\n', '', s);
86 if (s != '' and re.match(r'[ \t]', s[0])):
87 s = 'if 1:\n' + s
88 return s
89
90class ISAParserError(Exception):
91 """Exception class for parser errors"""
92 def __init__(self, first, second=None):
93 if second is None:
94 self.lineno = 0
95 self.string = first
96 else:
97 self.lineno = first
98 self.string = second
99
100 def __str__(self):
101 return self.string
102
103def error(*args):
104 raise ISAParserError(*args)
105
106####################
107# Template objects.
108#
109# Template objects are format strings that allow substitution from
110# the attribute spaces of other objects (e.g. InstObjParams instances).
111
112labelRE = re.compile(r'(?<!%)%\(([^\)]+)\)[sd]')
113
114class Template(object):
115 def __init__(self, parser, t):
116 self.parser = parser
117 self.template = t
118
119 def subst(self, d):
120 myDict = None
121
122 # Protect non-Python-dict substitutions (e.g. if there's a printf
123 # in the templated C++ code)
124 template = self.parser.protectNonSubstPercents(self.template)
125 # CPU-model-specific substitutions are handled later (in GenCode).
126 template = self.parser.protectCpuSymbols(template)
127
128 # Build a dict ('myDict') to use for the template substitution.
129 # Start with the template namespace. Make a copy since we're
130 # going to modify it.
131 myDict = self.parser.templateMap.copy()
132
133 if isinstance(d, InstObjParams):
134 # If we're dealing with an InstObjParams object, we need
135 # to be a little more sophisticated. The instruction-wide
136 # parameters are already formed, but the parameters which
137 # are only function wide still need to be generated.
138 compositeCode = ''
139
140 myDict.update(d.__dict__)
141 # The "operands" and "snippets" attributes of the InstObjParams
142 # objects are for internal use and not substitution.
143 del myDict['operands']
144 del myDict['snippets']
145
146 snippetLabels = [l for l in labelRE.findall(template)
147 if d.snippets.has_key(l)]
148
149 snippets = dict([(s, self.parser.mungeSnippet(d.snippets[s]))
150 for s in snippetLabels])
151
152 myDict.update(snippets)
153
154 compositeCode = ' '.join(map(str, snippets.values()))
155
156 # Add in template itself in case it references any
157 # operands explicitly (like Mem)
158 compositeCode += ' ' + template
159
160 operands = SubOperandList(self.parser, compositeCode, d.operands)
161
162 myDict['op_decl'] = operands.concatAttrStrings('op_decl')
163 if operands.readPC or operands.setPC:
164 myDict['op_decl'] += 'TheISA::PCState __parserAutoPCState;\n'
165
166 # In case there are predicated register reads and write, declare
167 # the variables for register indicies. It is being assumed that
168 # all the operands in the OperandList are also in the
169 # SubOperandList and in the same order. Otherwise, it is
170 # expected that predication would not be used for the operands.
171 if operands.predRead:
172 myDict['op_decl'] += 'uint8_t _sourceIndex = 0;\n'
173 if operands.predWrite:
174 myDict['op_decl'] += 'uint8_t M5_VAR_USED _destIndex = 0;\n'
175
176 is_src = lambda op: op.is_src
177 is_dest = lambda op: op.is_dest
178
179 myDict['op_src_decl'] = \
180 operands.concatSomeAttrStrings(is_src, 'op_src_decl')
181 myDict['op_dest_decl'] = \
182 operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
183 if operands.readPC:
184 myDict['op_src_decl'] += \
185 'TheISA::PCState __parserAutoPCState;\n'
186 if operands.setPC:
187 myDict['op_dest_decl'] += \
188 'TheISA::PCState __parserAutoPCState;\n'
189
190 myDict['op_rd'] = operands.concatAttrStrings('op_rd')
191 if operands.readPC:
192 myDict['op_rd'] = '__parserAutoPCState = xc->pcState();\n' + \
193 myDict['op_rd']
194
195 # Compose the op_wb string. If we're going to write back the
196 # PC state because we changed some of its elements, we'll need to
197 # do that as early as possible. That allows later uncoordinated
198 # modifications to the PC to layer appropriately.
199 reordered = list(operands.items)
200 reordered.reverse()
201 op_wb_str = ''
202 pcWbStr = 'xc->pcState(__parserAutoPCState);\n'
203 for op_desc in reordered:
204 if op_desc.isPCPart() and op_desc.is_dest:
205 op_wb_str = op_desc.op_wb + pcWbStr + op_wb_str
206 pcWbStr = ''
207 else:
208 op_wb_str = op_desc.op_wb + op_wb_str
209 myDict['op_wb'] = op_wb_str
210
211 elif isinstance(d, dict):
212 # if the argument is a dictionary, we just use it.
213 myDict.update(d)
214 elif hasattr(d, '__dict__'):
215 # if the argument is an object, we use its attribute map.
216 myDict.update(d.__dict__)
217 else:
218 raise TypeError, "Template.subst() arg must be or have dictionary"
219 return template % myDict
220
221 # Convert to string. This handles the case when a template with a
222 # CPU-specific term gets interpolated into another template or into
223 # an output block.
224 def __str__(self):
225 return self.parser.expandCpuSymbolsToString(self.template)
226
227################
228# Format object.
229#
230# A format object encapsulates an instruction format. It must provide
231# a defineInst() method that generates the code for an instruction
232# definition.
233
234class Format(object):
235 def __init__(self, id, params, code):
236 self.id = id
237 self.params = params
238 label = 'def format ' + id
239 self.user_code = compile(fixPythonIndentation(code), label, 'exec')
240 param_list = string.join(params, ", ")
241 f = '''def defInst(_code, _context, %s):
242 my_locals = vars().copy()
243 exec _code in _context, my_locals
244 return my_locals\n''' % param_list
245 c = compile(f, label + ' wrapper', 'exec')
246 exec c
247 self.func = defInst
248
249 def defineInst(self, parser, name, args, lineno):
250 parser.updateExportContext()
251 context = parser.exportContext.copy()
252 if len(name):
253 Name = name[0].upper()
254 if len(name) > 1:
255 Name += name[1:]
256 context.update({ 'name' : name, 'Name' : Name })
257 try:
258 vars = self.func(self.user_code, context, *args[0], **args[1])
259 except Exception, exc:
260 if debug:
261 raise
262 error(lineno, 'error defining "%s": %s.' % (name, exc))
263 for k in vars.keys():
264 if k not in ('header_output', 'decoder_output',
265 'exec_output', 'decode_block'):
266 del vars[k]
267 return GenCode(parser, **vars)
268
269# Special null format to catch an implicit-format instruction
270# definition outside of any format block.
271class NoFormat(object):
272 def __init__(self):
273 self.defaultInst = ''
274
275 def defineInst(self, parser, name, args, lineno):
276 error(lineno,
277 'instruction definition "%s" with no active format!' % name)
278
279###############
280# GenCode class
281#
282# The GenCode class encapsulates generated code destined for various
283# output files. The header_output and decoder_output attributes are
284# strings containing code destined for decoder.hh and decoder.cc
285# respectively. The decode_block attribute contains code to be
286# incorporated in the decode function itself (that will also end up in
287# decoder.cc). The exec_output attribute is a dictionary with a key
288# for each CPU model name; the value associated with a particular key
289# is the string of code for that CPU model's exec.cc file. The
290# has_decode_default attribute is used in the decode block to allow
291# explicit default clauses to override default default clauses.
292
293class GenCode(object):
294 # Constructor. At this point we substitute out all CPU-specific
295 # symbols. For the exec output, these go into the per-model
296 # dictionary. For all other output types they get collapsed into
297 # a single string.
298 def __init__(self, parser,
299 header_output = '', decoder_output = '', exec_output = '',
300 decode_block = '', has_decode_default = False):
301 self.parser = parser
302 self.header_output = parser.expandCpuSymbolsToString(header_output)
303 self.decoder_output = parser.expandCpuSymbolsToString(decoder_output)
304 self.exec_output = exec_output
305 self.decode_block = decode_block
306 self.has_decode_default = has_decode_default
307
308 # Write these code chunks out to the filesystem. They will be properly
309 # interwoven by the write_top_level_files().
310 def emit(self):
311 if self.header_output:
312 self.parser.get_file('header').write(self.header_output)
313 if self.decoder_output:
314 self.parser.get_file('decoder').write(self.decoder_output)
315 if self.exec_output:
316 self.parser.get_file('exec').write(self.exec_output)
317 if self.decode_block:
318 self.parser.get_file('decode_block').write(self.decode_block)
319
320 # Override '+' operator: generate a new GenCode object that
321 # concatenates all the individual strings in the operands.
322 def __add__(self, other):
323 return GenCode(self.parser,
324 self.header_output + other.header_output,
325 self.decoder_output + other.decoder_output,
326 self.exec_output + other.exec_output,
327 self.decode_block + other.decode_block,
328 self.has_decode_default or other.has_decode_default)
329
330 # Prepend a string (typically a comment) to all the strings.
331 def prepend_all(self, pre):
332 self.header_output = pre + self.header_output
333 self.decoder_output = pre + self.decoder_output
334 self.decode_block = pre + self.decode_block
335 self.exec_output = pre + self.exec_output
336
337 # Wrap the decode block in a pair of strings (e.g., 'case foo:'
338 # and 'break;'). Used to build the big nested switch statement.
339 def wrap_decode_block(self, pre, post = ''):
340 self.decode_block = pre + indent(self.decode_block) + post
341
342#####################################################################
343#
344# Bitfield Operator Support
345#
346#####################################################################
347
348bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
349
350bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
351bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
352
353def substBitOps(code):
354 # first convert single-bit selectors to two-index form
355 # i.e., <n> --> <n:n>
356 code = bitOp1ArgRE.sub(r'<\1:\1>', code)
357 # simple case: selector applied to ID (name)
358 # i.e., foo<a:b> --> bits(foo, a, b)
359 code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
360 # if selector is applied to expression (ending in ')'),
361 # we need to search backward for matching '('
362 match = bitOpExprRE.search(code)
363 while match:
364 exprEnd = match.start()
365 here = exprEnd - 1
366 nestLevel = 1
367 while nestLevel > 0:
368 if code[here] == '(':
369 nestLevel -= 1
370 elif code[here] == ')':
371 nestLevel += 1
372 here -= 1
373 if here < 0:
374 sys.exit("Didn't find '('!")
375 exprStart = here+1
376 newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
377 match.group(1), match.group(2))
378 code = code[:exprStart] + newExpr + code[match.end():]
379 match = bitOpExprRE.search(code)
380 return code
381
382
383#####################################################################
384#
385# Code Parser
386#
387# The remaining code is the support for automatically extracting
388# instruction characteristics from pseudocode.
389#
390#####################################################################
391
392# Force the argument to be a list. Useful for flags, where a caller
393# can specify a singleton flag or a list of flags. Also usful for
394# converting tuples to lists so they can be modified.
395def makeList(arg):
396 if isinstance(arg, list):
397 return arg
398 elif isinstance(arg, tuple):
399 return list(arg)
400 elif not arg:
401 return []
402 else:
403 return [ arg ]
404
405class Operand(object):
406 '''Base class for operand descriptors. An instance of this class
407 (or actually a class derived from this one) represents a specific
408 operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
409 derived classes encapsulates the traits of a particular operand
410 type (e.g., "32-bit integer register").'''
411
412 def buildReadCode(self, func = None):
413 subst_dict = {"name": self.base_name,
414 "func": func,
415 "reg_idx": self.reg_spec,
416 "ctype": self.ctype}
417 if hasattr(self, 'src_reg_idx'):
418 subst_dict['op_idx'] = self.src_reg_idx
419 code = self.read_code % subst_dict
420 return '%s = %s;\n' % (self.base_name, code)
421
422 def buildWriteCode(self, func = None):
423 subst_dict = {"name": self.base_name,
424 "func": func,
425 "reg_idx": self.reg_spec,
426 "ctype": self.ctype,
427 "final_val": self.base_name}
428 if hasattr(self, 'dest_reg_idx'):
429 subst_dict['op_idx'] = self.dest_reg_idx
430 code = self.write_code % subst_dict
431 return '''
432 {
433 %s final_val = %s;
434 %s;
435 if (traceData) { traceData->setData(final_val); }
436 }''' % (self.dflt_ctype, self.base_name, code)
437
438 def __init__(self, parser, full_name, ext, is_src, is_dest):
439 self.full_name = full_name
440 self.ext = ext
441 self.is_src = is_src
442 self.is_dest = is_dest
443 # The 'effective extension' (eff_ext) is either the actual
444 # extension, if one was explicitly provided, or the default.
445 if ext:
446 self.eff_ext = ext
447 elif hasattr(self, 'dflt_ext'):
448 self.eff_ext = self.dflt_ext
449
450 if hasattr(self, 'eff_ext'):
451 self.ctype = parser.operandTypeMap[self.eff_ext]
452
453 # Finalize additional fields (primarily code fields). This step
454 # is done separately since some of these fields may depend on the
455 # register index enumeration that hasn't been performed yet at the
456 # time of __init__(). The register index enumeration is affected
457 # by predicated register reads/writes. Hence, we forward the flags
458 # that indicate whether or not predication is in use.
459 def finalize(self, predRead, predWrite):
460 self.flags = self.getFlags()
461 self.constructor = self.makeConstructor(predRead, predWrite)
462 self.op_decl = self.makeDecl()
463
464 if self.is_src:
465 self.op_rd = self.makeRead(predRead)
466 self.op_src_decl = self.makeDecl()
467 else:
468 self.op_rd = ''
469 self.op_src_decl = ''
470
471 if self.is_dest:
472 self.op_wb = self.makeWrite(predWrite)
473 self.op_dest_decl = self.makeDecl()
474 else:
475 self.op_wb = ''
476 self.op_dest_decl = ''
477
478 def isMem(self):
479 return 0
480
481 def isReg(self):
482 return 0
483
484 def isFloatReg(self):
485 return 0
486
487 def isIntReg(self):
488 return 0
489
490 def isCCReg(self):
491 return 0
492
493 def isControlReg(self):
494 return 0
495
496 def isPCState(self):
497 return 0
498
499 def isPCPart(self):
500 return self.isPCState() and self.reg_spec
501
502 def hasReadPred(self):
503 return self.read_predicate != None
504
505 def hasWritePred(self):
506 return self.write_predicate != None
507
508 def getFlags(self):
509 # note the empty slice '[:]' gives us a copy of self.flags[0]
510 # instead of a reference to it
511 my_flags = self.flags[0][:]
512 if self.is_src:
513 my_flags += self.flags[1]
514 if self.is_dest:
515 my_flags += self.flags[2]
516 return my_flags
517
518 def makeDecl(self):
519 # Note that initializations in the declarations are solely
520 # to avoid 'uninitialized variable' errors from the compiler.
521 return self.ctype + ' ' + self.base_name + ' = 0;\n';
522
523class IntRegOperand(Operand):
524 def isReg(self):
525 return 1
526
527 def isIntReg(self):
528 return 1
529
530 def makeConstructor(self, predRead, predWrite):
531 c_src = ''
532 c_dest = ''
533
534 if self.is_src:
535 c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s;' % (self.reg_spec)
536 if self.hasReadPred():
537 c_src = '\n\tif (%s) {%s\n\t}' % \
538 (self.read_predicate, c_src)
539
540 if self.is_dest:
541 c_dest = '\n\t_destRegIdx[_numDestRegs++] = %s;' % \
542 (self.reg_spec)
543 c_dest += '\n\t_numIntDestRegs++;'
544 if self.hasWritePred():
545 c_dest = '\n\tif (%s) {%s\n\t}' % \
546 (self.write_predicate, c_dest)
547
548 return c_src + c_dest
549
550 def makeRead(self, predRead):
551 if (self.ctype == 'float' or self.ctype == 'double'):
552 error('Attempt to read integer register as FP')
553 if self.read_code != None:
554 return self.buildReadCode('readIntRegOperand')
555
556 int_reg_val = ''
557 if predRead:
558 int_reg_val = 'xc->readIntRegOperand(this, _sourceIndex++)'
559 if self.hasReadPred():
560 int_reg_val = '(%s) ? %s : 0' % \
561 (self.read_predicate, int_reg_val)
562 else:
563 int_reg_val = 'xc->readIntRegOperand(this, %d)' % self.src_reg_idx
564
565 return '%s = %s;\n' % (self.base_name, int_reg_val)
566
567 def makeWrite(self, predWrite):
568 if (self.ctype == 'float' or self.ctype == 'double'):
569 error('Attempt to write integer register as FP')
570 if self.write_code != None:
571 return self.buildWriteCode('setIntRegOperand')
572
573 if predWrite:
574 wp = 'true'
575 if self.hasWritePred():
576 wp = self.write_predicate
577
578 wcond = 'if (%s)' % (wp)
579 windex = '_destIndex++'
580 else:
581 wcond = ''
582 windex = '%d' % self.dest_reg_idx
583
584 wb = '''
585 %s
586 {
587 %s final_val = %s;
588 xc->setIntRegOperand(this, %s, final_val);\n
589 if (traceData) { traceData->setData(final_val); }
590 }''' % (wcond, self.ctype, self.base_name, windex)
591
592 return wb
593
594class FloatRegOperand(Operand):
595 def isReg(self):
596 return 1
597
598 def isFloatReg(self):
599 return 1
600
601 def makeConstructor(self, predRead, predWrite):
602 c_src = ''
603 c_dest = ''
604
605 if self.is_src:
606 c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s + FP_Reg_Base;' % \
607 (self.reg_spec)
608
609 if self.is_dest:
610 c_dest = \
611 '\n\t_destRegIdx[_numDestRegs++] = %s + FP_Reg_Base;' % \
612 (self.reg_spec)
613 c_dest += '\n\t_numFPDestRegs++;'
614
615 return c_src + c_dest
616
617 def makeRead(self, predRead):
618 bit_select = 0
619 if (self.ctype == 'float' or self.ctype == 'double'):
620 func = 'readFloatRegOperand'
621 else:
622 func = 'readFloatRegOperandBits'
623 if self.read_code != None:
624 return self.buildReadCode(func)
625
626 if predRead:
627 rindex = '_sourceIndex++'
628 else:
629 rindex = '%d' % self.src_reg_idx
630
631 return '%s = xc->%s(this, %s);\n' % \
632 (self.base_name, func, rindex)
633
634 def makeWrite(self, predWrite):
635 if (self.ctype == 'float' or self.ctype == 'double'):
636 func = 'setFloatRegOperand'
637 else:
638 func = 'setFloatRegOperandBits'
639 if self.write_code != None:
640 return self.buildWriteCode(func)
641
642 if predWrite:
643 wp = '_destIndex++'
644 else:
645 wp = '%d' % self.dest_reg_idx
646 wp = 'xc->%s(this, %s, final_val);' % (func, wp)
647
648 wb = '''
649 {
650 %s final_val = %s;
651 %s\n
652 if (traceData) { traceData->setData(final_val); }
653 }''' % (self.ctype, self.base_name, wp)
654 return wb
655
656class CCRegOperand(Operand):
657 def isReg(self):
658 return 1
659
660 def isCCReg(self):
661 return 1
662
663 def makeConstructor(self, predRead, predWrite):
664 c_src = ''
665 c_dest = ''
666
667 if self.is_src:
668 c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s + CC_Reg_Base;' % \
669 (self.reg_spec)
670 if self.hasReadPred():
671 c_src = '\n\tif (%s) {%s\n\t}' % \
672 (self.read_predicate, c_src)
673
674 if self.is_dest:
675 c_dest = \
676 '\n\t_destRegIdx[_numDestRegs++] = %s + CC_Reg_Base;' % \
677 (self.reg_spec)
678 c_dest += '\n\t_numCCDestRegs++;'
679 if self.hasWritePred():
680 c_dest = '\n\tif (%s) {%s\n\t}' % \
681 (self.write_predicate, c_dest)
682
683 return c_src + c_dest
684
685 def makeRead(self, predRead):
686 if (self.ctype == 'float' or self.ctype == 'double'):
687 error('Attempt to read condition-code register as FP')
688 if self.read_code != None:
689 return self.buildReadCode('readCCRegOperand')
690
691 int_reg_val = ''
692 if predRead:
693 int_reg_val = 'xc->readCCRegOperand(this, _sourceIndex++)'
694 if self.hasReadPred():
695 int_reg_val = '(%s) ? %s : 0' % \
696 (self.read_predicate, int_reg_val)
697 else:
698 int_reg_val = 'xc->readCCRegOperand(this, %d)' % self.src_reg_idx
699
700 return '%s = %s;\n' % (self.base_name, int_reg_val)
701
702 def makeWrite(self, predWrite):
703 if (self.ctype == 'float' or self.ctype == 'double'):
704 error('Attempt to write condition-code register as FP')
705 if self.write_code != None:
706 return self.buildWriteCode('setCCRegOperand')
707
708 if predWrite:
709 wp = 'true'
710 if self.hasWritePred():
711 wp = self.write_predicate
712
713 wcond = 'if (%s)' % (wp)
714 windex = '_destIndex++'
715 else:
716 wcond = ''
717 windex = '%d' % self.dest_reg_idx
718
719 wb = '''
720 %s
721 {
722 %s final_val = %s;
723 xc->setCCRegOperand(this, %s, final_val);\n
724 if (traceData) { traceData->setData(final_val); }
725 }''' % (wcond, self.ctype, self.base_name, windex)
726
727 return wb
728
729class ControlRegOperand(Operand):
730 def isReg(self):
731 return 1
732
733 def isControlReg(self):
734 return 1
735
736 def makeConstructor(self, predRead, predWrite):
737 c_src = ''
738 c_dest = ''
739
740 if self.is_src:
741 c_src = \
742 '\n\t_srcRegIdx[_numSrcRegs++] = %s + Misc_Reg_Base;' % \
743 (self.reg_spec)
744
745 if self.is_dest:
746 c_dest = \
747 '\n\t_destRegIdx[_numDestRegs++] = %s + Misc_Reg_Base;' % \
748 (self.reg_spec)
749
750 return c_src + c_dest
751
752 def makeRead(self, predRead):
753 bit_select = 0
754 if (self.ctype == 'float' or self.ctype == 'double'):
755 error('Attempt to read control register as FP')
756 if self.read_code != None:
757 return self.buildReadCode('readMiscRegOperand')
758
759 if predRead:
760 rindex = '_sourceIndex++'
761 else:
762 rindex = '%d' % self.src_reg_idx
763
764 return '%s = xc->readMiscRegOperand(this, %s);\n' % \
765 (self.base_name, rindex)
766
767 def makeWrite(self, predWrite):
768 if (self.ctype == 'float' or self.ctype == 'double'):
769 error('Attempt to write control register as FP')
770 if self.write_code != None:
771 return self.buildWriteCode('setMiscRegOperand')
772
773 if predWrite:
774 windex = '_destIndex++'
775 else:
776 windex = '%d' % self.dest_reg_idx
777
778 wb = 'xc->setMiscRegOperand(this, %s, %s);\n' % \
779 (windex, self.base_name)
780 wb += 'if (traceData) { traceData->setData(%s); }' % \
781 self.base_name
782
783 return wb
784
785class MemOperand(Operand):
786 def isMem(self):
787 return 1
788
789 def makeConstructor(self, predRead, predWrite):
790 return ''
791
792 def makeDecl(self):
1# Copyright (c) 2014 ARM Limited
2# All rights reserved
3#
4# The license below extends only to copyright in the software and shall
5# not be construed as granting a license to any other intellectual
6# property including but not limited to intellectual property relating
7# to a hardware implementation of the functionality of the software
8# licensed hereunder. You may use the software subject to the license
9# terms below provided that you ensure that this notice is replicated
10# unmodified and in its entirety in all distributions of the software,
11# modified or unmodified, in source code or in binary form.
12#
13# Copyright (c) 2003-2005 The Regents of The University of Michigan
14# Copyright (c) 2013,2015 Advanced Micro Devices, Inc.
15# All rights reserved.
16#
17# Redistribution and use in source and binary forms, with or without
18# modification, are permitted provided that the following conditions are
19# met: redistributions of source code must retain the above copyright
20# notice, this list of conditions and the following disclaimer;
21# redistributions in binary form must reproduce the above copyright
22# notice, this list of conditions and the following disclaimer in the
23# documentation and/or other materials provided with the distribution;
24# neither the name of the copyright holders nor the names of its
25# contributors may be used to endorse or promote products derived from
26# this software without specific prior written permission.
27#
28# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39#
40# Authors: Steve Reinhardt
41
42from __future__ import with_statement
43import os
44import sys
45import re
46import string
47import inspect, traceback
48# get type names
49from types import *
50
51from m5.util.grammar import Grammar
52
53debug=False
54
55###################
56# Utility functions
57
58#
59# Indent every line in string 's' by two spaces
60# (except preprocessor directives).
61# Used to make nested code blocks look pretty.
62#
63def indent(s):
64 return re.sub(r'(?m)^(?!#)', ' ', s)
65
66#
67# Munge a somewhat arbitrarily formatted piece of Python code
68# (e.g. from a format 'let' block) into something whose indentation
69# will get by the Python parser.
70#
71# The two keys here are that Python will give a syntax error if
72# there's any whitespace at the beginning of the first line, and that
73# all lines at the same lexical nesting level must have identical
74# indentation. Unfortunately the way code literals work, an entire
75# let block tends to have some initial indentation. Rather than
76# trying to figure out what that is and strip it off, we prepend 'if
77# 1:' to make the let code the nested block inside the if (and have
78# the parser automatically deal with the indentation for us).
79#
80# We don't want to do this if (1) the code block is empty or (2) the
81# first line of the block doesn't have any whitespace at the front.
82
83def fixPythonIndentation(s):
84 # get rid of blank lines first
85 s = re.sub(r'(?m)^\s*\n', '', s);
86 if (s != '' and re.match(r'[ \t]', s[0])):
87 s = 'if 1:\n' + s
88 return s
89
90class ISAParserError(Exception):
91 """Exception class for parser errors"""
92 def __init__(self, first, second=None):
93 if second is None:
94 self.lineno = 0
95 self.string = first
96 else:
97 self.lineno = first
98 self.string = second
99
100 def __str__(self):
101 return self.string
102
103def error(*args):
104 raise ISAParserError(*args)
105
106####################
107# Template objects.
108#
109# Template objects are format strings that allow substitution from
110# the attribute spaces of other objects (e.g. InstObjParams instances).
111
112labelRE = re.compile(r'(?<!%)%\(([^\)]+)\)[sd]')
113
114class Template(object):
115 def __init__(self, parser, t):
116 self.parser = parser
117 self.template = t
118
119 def subst(self, d):
120 myDict = None
121
122 # Protect non-Python-dict substitutions (e.g. if there's a printf
123 # in the templated C++ code)
124 template = self.parser.protectNonSubstPercents(self.template)
125 # CPU-model-specific substitutions are handled later (in GenCode).
126 template = self.parser.protectCpuSymbols(template)
127
128 # Build a dict ('myDict') to use for the template substitution.
129 # Start with the template namespace. Make a copy since we're
130 # going to modify it.
131 myDict = self.parser.templateMap.copy()
132
133 if isinstance(d, InstObjParams):
134 # If we're dealing with an InstObjParams object, we need
135 # to be a little more sophisticated. The instruction-wide
136 # parameters are already formed, but the parameters which
137 # are only function wide still need to be generated.
138 compositeCode = ''
139
140 myDict.update(d.__dict__)
141 # The "operands" and "snippets" attributes of the InstObjParams
142 # objects are for internal use and not substitution.
143 del myDict['operands']
144 del myDict['snippets']
145
146 snippetLabels = [l for l in labelRE.findall(template)
147 if d.snippets.has_key(l)]
148
149 snippets = dict([(s, self.parser.mungeSnippet(d.snippets[s]))
150 for s in snippetLabels])
151
152 myDict.update(snippets)
153
154 compositeCode = ' '.join(map(str, snippets.values()))
155
156 # Add in template itself in case it references any
157 # operands explicitly (like Mem)
158 compositeCode += ' ' + template
159
160 operands = SubOperandList(self.parser, compositeCode, d.operands)
161
162 myDict['op_decl'] = operands.concatAttrStrings('op_decl')
163 if operands.readPC or operands.setPC:
164 myDict['op_decl'] += 'TheISA::PCState __parserAutoPCState;\n'
165
166 # In case there are predicated register reads and write, declare
167 # the variables for register indicies. It is being assumed that
168 # all the operands in the OperandList are also in the
169 # SubOperandList and in the same order. Otherwise, it is
170 # expected that predication would not be used for the operands.
171 if operands.predRead:
172 myDict['op_decl'] += 'uint8_t _sourceIndex = 0;\n'
173 if operands.predWrite:
174 myDict['op_decl'] += 'uint8_t M5_VAR_USED _destIndex = 0;\n'
175
176 is_src = lambda op: op.is_src
177 is_dest = lambda op: op.is_dest
178
179 myDict['op_src_decl'] = \
180 operands.concatSomeAttrStrings(is_src, 'op_src_decl')
181 myDict['op_dest_decl'] = \
182 operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
183 if operands.readPC:
184 myDict['op_src_decl'] += \
185 'TheISA::PCState __parserAutoPCState;\n'
186 if operands.setPC:
187 myDict['op_dest_decl'] += \
188 'TheISA::PCState __parserAutoPCState;\n'
189
190 myDict['op_rd'] = operands.concatAttrStrings('op_rd')
191 if operands.readPC:
192 myDict['op_rd'] = '__parserAutoPCState = xc->pcState();\n' + \
193 myDict['op_rd']
194
195 # Compose the op_wb string. If we're going to write back the
196 # PC state because we changed some of its elements, we'll need to
197 # do that as early as possible. That allows later uncoordinated
198 # modifications to the PC to layer appropriately.
199 reordered = list(operands.items)
200 reordered.reverse()
201 op_wb_str = ''
202 pcWbStr = 'xc->pcState(__parserAutoPCState);\n'
203 for op_desc in reordered:
204 if op_desc.isPCPart() and op_desc.is_dest:
205 op_wb_str = op_desc.op_wb + pcWbStr + op_wb_str
206 pcWbStr = ''
207 else:
208 op_wb_str = op_desc.op_wb + op_wb_str
209 myDict['op_wb'] = op_wb_str
210
211 elif isinstance(d, dict):
212 # if the argument is a dictionary, we just use it.
213 myDict.update(d)
214 elif hasattr(d, '__dict__'):
215 # if the argument is an object, we use its attribute map.
216 myDict.update(d.__dict__)
217 else:
218 raise TypeError, "Template.subst() arg must be or have dictionary"
219 return template % myDict
220
221 # Convert to string. This handles the case when a template with a
222 # CPU-specific term gets interpolated into another template or into
223 # an output block.
224 def __str__(self):
225 return self.parser.expandCpuSymbolsToString(self.template)
226
227################
228# Format object.
229#
230# A format object encapsulates an instruction format. It must provide
231# a defineInst() method that generates the code for an instruction
232# definition.
233
234class Format(object):
235 def __init__(self, id, params, code):
236 self.id = id
237 self.params = params
238 label = 'def format ' + id
239 self.user_code = compile(fixPythonIndentation(code), label, 'exec')
240 param_list = string.join(params, ", ")
241 f = '''def defInst(_code, _context, %s):
242 my_locals = vars().copy()
243 exec _code in _context, my_locals
244 return my_locals\n''' % param_list
245 c = compile(f, label + ' wrapper', 'exec')
246 exec c
247 self.func = defInst
248
249 def defineInst(self, parser, name, args, lineno):
250 parser.updateExportContext()
251 context = parser.exportContext.copy()
252 if len(name):
253 Name = name[0].upper()
254 if len(name) > 1:
255 Name += name[1:]
256 context.update({ 'name' : name, 'Name' : Name })
257 try:
258 vars = self.func(self.user_code, context, *args[0], **args[1])
259 except Exception, exc:
260 if debug:
261 raise
262 error(lineno, 'error defining "%s": %s.' % (name, exc))
263 for k in vars.keys():
264 if k not in ('header_output', 'decoder_output',
265 'exec_output', 'decode_block'):
266 del vars[k]
267 return GenCode(parser, **vars)
268
269# Special null format to catch an implicit-format instruction
270# definition outside of any format block.
271class NoFormat(object):
272 def __init__(self):
273 self.defaultInst = ''
274
275 def defineInst(self, parser, name, args, lineno):
276 error(lineno,
277 'instruction definition "%s" with no active format!' % name)
278
279###############
280# GenCode class
281#
282# The GenCode class encapsulates generated code destined for various
283# output files. The header_output and decoder_output attributes are
284# strings containing code destined for decoder.hh and decoder.cc
285# respectively. The decode_block attribute contains code to be
286# incorporated in the decode function itself (that will also end up in
287# decoder.cc). The exec_output attribute is a dictionary with a key
288# for each CPU model name; the value associated with a particular key
289# is the string of code for that CPU model's exec.cc file. The
290# has_decode_default attribute is used in the decode block to allow
291# explicit default clauses to override default default clauses.
292
293class GenCode(object):
294 # Constructor. At this point we substitute out all CPU-specific
295 # symbols. For the exec output, these go into the per-model
296 # dictionary. For all other output types they get collapsed into
297 # a single string.
298 def __init__(self, parser,
299 header_output = '', decoder_output = '', exec_output = '',
300 decode_block = '', has_decode_default = False):
301 self.parser = parser
302 self.header_output = parser.expandCpuSymbolsToString(header_output)
303 self.decoder_output = parser.expandCpuSymbolsToString(decoder_output)
304 self.exec_output = exec_output
305 self.decode_block = decode_block
306 self.has_decode_default = has_decode_default
307
308 # Write these code chunks out to the filesystem. They will be properly
309 # interwoven by the write_top_level_files().
310 def emit(self):
311 if self.header_output:
312 self.parser.get_file('header').write(self.header_output)
313 if self.decoder_output:
314 self.parser.get_file('decoder').write(self.decoder_output)
315 if self.exec_output:
316 self.parser.get_file('exec').write(self.exec_output)
317 if self.decode_block:
318 self.parser.get_file('decode_block').write(self.decode_block)
319
320 # Override '+' operator: generate a new GenCode object that
321 # concatenates all the individual strings in the operands.
322 def __add__(self, other):
323 return GenCode(self.parser,
324 self.header_output + other.header_output,
325 self.decoder_output + other.decoder_output,
326 self.exec_output + other.exec_output,
327 self.decode_block + other.decode_block,
328 self.has_decode_default or other.has_decode_default)
329
330 # Prepend a string (typically a comment) to all the strings.
331 def prepend_all(self, pre):
332 self.header_output = pre + self.header_output
333 self.decoder_output = pre + self.decoder_output
334 self.decode_block = pre + self.decode_block
335 self.exec_output = pre + self.exec_output
336
337 # Wrap the decode block in a pair of strings (e.g., 'case foo:'
338 # and 'break;'). Used to build the big nested switch statement.
339 def wrap_decode_block(self, pre, post = ''):
340 self.decode_block = pre + indent(self.decode_block) + post
341
342#####################################################################
343#
344# Bitfield Operator Support
345#
346#####################################################################
347
348bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
349
350bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
351bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
352
353def substBitOps(code):
354 # first convert single-bit selectors to two-index form
355 # i.e., <n> --> <n:n>
356 code = bitOp1ArgRE.sub(r'<\1:\1>', code)
357 # simple case: selector applied to ID (name)
358 # i.e., foo<a:b> --> bits(foo, a, b)
359 code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
360 # if selector is applied to expression (ending in ')'),
361 # we need to search backward for matching '('
362 match = bitOpExprRE.search(code)
363 while match:
364 exprEnd = match.start()
365 here = exprEnd - 1
366 nestLevel = 1
367 while nestLevel > 0:
368 if code[here] == '(':
369 nestLevel -= 1
370 elif code[here] == ')':
371 nestLevel += 1
372 here -= 1
373 if here < 0:
374 sys.exit("Didn't find '('!")
375 exprStart = here+1
376 newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
377 match.group(1), match.group(2))
378 code = code[:exprStart] + newExpr + code[match.end():]
379 match = bitOpExprRE.search(code)
380 return code
381
382
383#####################################################################
384#
385# Code Parser
386#
387# The remaining code is the support for automatically extracting
388# instruction characteristics from pseudocode.
389#
390#####################################################################
391
392# Force the argument to be a list. Useful for flags, where a caller
393# can specify a singleton flag or a list of flags. Also usful for
394# converting tuples to lists so they can be modified.
395def makeList(arg):
396 if isinstance(arg, list):
397 return arg
398 elif isinstance(arg, tuple):
399 return list(arg)
400 elif not arg:
401 return []
402 else:
403 return [ arg ]
404
405class Operand(object):
406 '''Base class for operand descriptors. An instance of this class
407 (or actually a class derived from this one) represents a specific
408 operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
409 derived classes encapsulates the traits of a particular operand
410 type (e.g., "32-bit integer register").'''
411
412 def buildReadCode(self, func = None):
413 subst_dict = {"name": self.base_name,
414 "func": func,
415 "reg_idx": self.reg_spec,
416 "ctype": self.ctype}
417 if hasattr(self, 'src_reg_idx'):
418 subst_dict['op_idx'] = self.src_reg_idx
419 code = self.read_code % subst_dict
420 return '%s = %s;\n' % (self.base_name, code)
421
422 def buildWriteCode(self, func = None):
423 subst_dict = {"name": self.base_name,
424 "func": func,
425 "reg_idx": self.reg_spec,
426 "ctype": self.ctype,
427 "final_val": self.base_name}
428 if hasattr(self, 'dest_reg_idx'):
429 subst_dict['op_idx'] = self.dest_reg_idx
430 code = self.write_code % subst_dict
431 return '''
432 {
433 %s final_val = %s;
434 %s;
435 if (traceData) { traceData->setData(final_val); }
436 }''' % (self.dflt_ctype, self.base_name, code)
437
438 def __init__(self, parser, full_name, ext, is_src, is_dest):
439 self.full_name = full_name
440 self.ext = ext
441 self.is_src = is_src
442 self.is_dest = is_dest
443 # The 'effective extension' (eff_ext) is either the actual
444 # extension, if one was explicitly provided, or the default.
445 if ext:
446 self.eff_ext = ext
447 elif hasattr(self, 'dflt_ext'):
448 self.eff_ext = self.dflt_ext
449
450 if hasattr(self, 'eff_ext'):
451 self.ctype = parser.operandTypeMap[self.eff_ext]
452
453 # Finalize additional fields (primarily code fields). This step
454 # is done separately since some of these fields may depend on the
455 # register index enumeration that hasn't been performed yet at the
456 # time of __init__(). The register index enumeration is affected
457 # by predicated register reads/writes. Hence, we forward the flags
458 # that indicate whether or not predication is in use.
459 def finalize(self, predRead, predWrite):
460 self.flags = self.getFlags()
461 self.constructor = self.makeConstructor(predRead, predWrite)
462 self.op_decl = self.makeDecl()
463
464 if self.is_src:
465 self.op_rd = self.makeRead(predRead)
466 self.op_src_decl = self.makeDecl()
467 else:
468 self.op_rd = ''
469 self.op_src_decl = ''
470
471 if self.is_dest:
472 self.op_wb = self.makeWrite(predWrite)
473 self.op_dest_decl = self.makeDecl()
474 else:
475 self.op_wb = ''
476 self.op_dest_decl = ''
477
478 def isMem(self):
479 return 0
480
481 def isReg(self):
482 return 0
483
484 def isFloatReg(self):
485 return 0
486
487 def isIntReg(self):
488 return 0
489
490 def isCCReg(self):
491 return 0
492
493 def isControlReg(self):
494 return 0
495
496 def isPCState(self):
497 return 0
498
499 def isPCPart(self):
500 return self.isPCState() and self.reg_spec
501
502 def hasReadPred(self):
503 return self.read_predicate != None
504
505 def hasWritePred(self):
506 return self.write_predicate != None
507
508 def getFlags(self):
509 # note the empty slice '[:]' gives us a copy of self.flags[0]
510 # instead of a reference to it
511 my_flags = self.flags[0][:]
512 if self.is_src:
513 my_flags += self.flags[1]
514 if self.is_dest:
515 my_flags += self.flags[2]
516 return my_flags
517
518 def makeDecl(self):
519 # Note that initializations in the declarations are solely
520 # to avoid 'uninitialized variable' errors from the compiler.
521 return self.ctype + ' ' + self.base_name + ' = 0;\n';
522
523class IntRegOperand(Operand):
524 def isReg(self):
525 return 1
526
527 def isIntReg(self):
528 return 1
529
530 def makeConstructor(self, predRead, predWrite):
531 c_src = ''
532 c_dest = ''
533
534 if self.is_src:
535 c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s;' % (self.reg_spec)
536 if self.hasReadPred():
537 c_src = '\n\tif (%s) {%s\n\t}' % \
538 (self.read_predicate, c_src)
539
540 if self.is_dest:
541 c_dest = '\n\t_destRegIdx[_numDestRegs++] = %s;' % \
542 (self.reg_spec)
543 c_dest += '\n\t_numIntDestRegs++;'
544 if self.hasWritePred():
545 c_dest = '\n\tif (%s) {%s\n\t}' % \
546 (self.write_predicate, c_dest)
547
548 return c_src + c_dest
549
550 def makeRead(self, predRead):
551 if (self.ctype == 'float' or self.ctype == 'double'):
552 error('Attempt to read integer register as FP')
553 if self.read_code != None:
554 return self.buildReadCode('readIntRegOperand')
555
556 int_reg_val = ''
557 if predRead:
558 int_reg_val = 'xc->readIntRegOperand(this, _sourceIndex++)'
559 if self.hasReadPred():
560 int_reg_val = '(%s) ? %s : 0' % \
561 (self.read_predicate, int_reg_val)
562 else:
563 int_reg_val = 'xc->readIntRegOperand(this, %d)' % self.src_reg_idx
564
565 return '%s = %s;\n' % (self.base_name, int_reg_val)
566
567 def makeWrite(self, predWrite):
568 if (self.ctype == 'float' or self.ctype == 'double'):
569 error('Attempt to write integer register as FP')
570 if self.write_code != None:
571 return self.buildWriteCode('setIntRegOperand')
572
573 if predWrite:
574 wp = 'true'
575 if self.hasWritePred():
576 wp = self.write_predicate
577
578 wcond = 'if (%s)' % (wp)
579 windex = '_destIndex++'
580 else:
581 wcond = ''
582 windex = '%d' % self.dest_reg_idx
583
584 wb = '''
585 %s
586 {
587 %s final_val = %s;
588 xc->setIntRegOperand(this, %s, final_val);\n
589 if (traceData) { traceData->setData(final_val); }
590 }''' % (wcond, self.ctype, self.base_name, windex)
591
592 return wb
593
594class FloatRegOperand(Operand):
595 def isReg(self):
596 return 1
597
598 def isFloatReg(self):
599 return 1
600
601 def makeConstructor(self, predRead, predWrite):
602 c_src = ''
603 c_dest = ''
604
605 if self.is_src:
606 c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s + FP_Reg_Base;' % \
607 (self.reg_spec)
608
609 if self.is_dest:
610 c_dest = \
611 '\n\t_destRegIdx[_numDestRegs++] = %s + FP_Reg_Base;' % \
612 (self.reg_spec)
613 c_dest += '\n\t_numFPDestRegs++;'
614
615 return c_src + c_dest
616
617 def makeRead(self, predRead):
618 bit_select = 0
619 if (self.ctype == 'float' or self.ctype == 'double'):
620 func = 'readFloatRegOperand'
621 else:
622 func = 'readFloatRegOperandBits'
623 if self.read_code != None:
624 return self.buildReadCode(func)
625
626 if predRead:
627 rindex = '_sourceIndex++'
628 else:
629 rindex = '%d' % self.src_reg_idx
630
631 return '%s = xc->%s(this, %s);\n' % \
632 (self.base_name, func, rindex)
633
634 def makeWrite(self, predWrite):
635 if (self.ctype == 'float' or self.ctype == 'double'):
636 func = 'setFloatRegOperand'
637 else:
638 func = 'setFloatRegOperandBits'
639 if self.write_code != None:
640 return self.buildWriteCode(func)
641
642 if predWrite:
643 wp = '_destIndex++'
644 else:
645 wp = '%d' % self.dest_reg_idx
646 wp = 'xc->%s(this, %s, final_val);' % (func, wp)
647
648 wb = '''
649 {
650 %s final_val = %s;
651 %s\n
652 if (traceData) { traceData->setData(final_val); }
653 }''' % (self.ctype, self.base_name, wp)
654 return wb
655
656class CCRegOperand(Operand):
657 def isReg(self):
658 return 1
659
660 def isCCReg(self):
661 return 1
662
663 def makeConstructor(self, predRead, predWrite):
664 c_src = ''
665 c_dest = ''
666
667 if self.is_src:
668 c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s + CC_Reg_Base;' % \
669 (self.reg_spec)
670 if self.hasReadPred():
671 c_src = '\n\tif (%s) {%s\n\t}' % \
672 (self.read_predicate, c_src)
673
674 if self.is_dest:
675 c_dest = \
676 '\n\t_destRegIdx[_numDestRegs++] = %s + CC_Reg_Base;' % \
677 (self.reg_spec)
678 c_dest += '\n\t_numCCDestRegs++;'
679 if self.hasWritePred():
680 c_dest = '\n\tif (%s) {%s\n\t}' % \
681 (self.write_predicate, c_dest)
682
683 return c_src + c_dest
684
685 def makeRead(self, predRead):
686 if (self.ctype == 'float' or self.ctype == 'double'):
687 error('Attempt to read condition-code register as FP')
688 if self.read_code != None:
689 return self.buildReadCode('readCCRegOperand')
690
691 int_reg_val = ''
692 if predRead:
693 int_reg_val = 'xc->readCCRegOperand(this, _sourceIndex++)'
694 if self.hasReadPred():
695 int_reg_val = '(%s) ? %s : 0' % \
696 (self.read_predicate, int_reg_val)
697 else:
698 int_reg_val = 'xc->readCCRegOperand(this, %d)' % self.src_reg_idx
699
700 return '%s = %s;\n' % (self.base_name, int_reg_val)
701
702 def makeWrite(self, predWrite):
703 if (self.ctype == 'float' or self.ctype == 'double'):
704 error('Attempt to write condition-code register as FP')
705 if self.write_code != None:
706 return self.buildWriteCode('setCCRegOperand')
707
708 if predWrite:
709 wp = 'true'
710 if self.hasWritePred():
711 wp = self.write_predicate
712
713 wcond = 'if (%s)' % (wp)
714 windex = '_destIndex++'
715 else:
716 wcond = ''
717 windex = '%d' % self.dest_reg_idx
718
719 wb = '''
720 %s
721 {
722 %s final_val = %s;
723 xc->setCCRegOperand(this, %s, final_val);\n
724 if (traceData) { traceData->setData(final_val); }
725 }''' % (wcond, self.ctype, self.base_name, windex)
726
727 return wb
728
729class ControlRegOperand(Operand):
730 def isReg(self):
731 return 1
732
733 def isControlReg(self):
734 return 1
735
736 def makeConstructor(self, predRead, predWrite):
737 c_src = ''
738 c_dest = ''
739
740 if self.is_src:
741 c_src = \
742 '\n\t_srcRegIdx[_numSrcRegs++] = %s + Misc_Reg_Base;' % \
743 (self.reg_spec)
744
745 if self.is_dest:
746 c_dest = \
747 '\n\t_destRegIdx[_numDestRegs++] = %s + Misc_Reg_Base;' % \
748 (self.reg_spec)
749
750 return c_src + c_dest
751
752 def makeRead(self, predRead):
753 bit_select = 0
754 if (self.ctype == 'float' or self.ctype == 'double'):
755 error('Attempt to read control register as FP')
756 if self.read_code != None:
757 return self.buildReadCode('readMiscRegOperand')
758
759 if predRead:
760 rindex = '_sourceIndex++'
761 else:
762 rindex = '%d' % self.src_reg_idx
763
764 return '%s = xc->readMiscRegOperand(this, %s);\n' % \
765 (self.base_name, rindex)
766
767 def makeWrite(self, predWrite):
768 if (self.ctype == 'float' or self.ctype == 'double'):
769 error('Attempt to write control register as FP')
770 if self.write_code != None:
771 return self.buildWriteCode('setMiscRegOperand')
772
773 if predWrite:
774 windex = '_destIndex++'
775 else:
776 windex = '%d' % self.dest_reg_idx
777
778 wb = 'xc->setMiscRegOperand(this, %s, %s);\n' % \
779 (windex, self.base_name)
780 wb += 'if (traceData) { traceData->setData(%s); }' % \
781 self.base_name
782
783 return wb
784
785class MemOperand(Operand):
786 def isMem(self):
787 return 1
788
789 def makeConstructor(self, predRead, predWrite):
790 return ''
791
792 def makeDecl(self):
793 # Note that initializations in the declarations are solely
794 # to avoid 'uninitialized variable' errors from the compiler.
795 # Declare memory data variable.
793 # Declare memory data variable.
796 return '%s %s = 0;\n' % (self.ctype, self.base_name)
794 return '%s %s;\n' % (self.ctype, self.base_name)
797
798 def makeRead(self, predRead):
799 if self.read_code != None:
800 return self.buildReadCode()
801 return ''
802
803 def makeWrite(self, predWrite):
804 if self.write_code != None:
805 return self.buildWriteCode()
806 return ''
807
808class PCStateOperand(Operand):
809 def makeConstructor(self, predRead, predWrite):
810 return ''
811
812 def makeRead(self, predRead):
813 if self.reg_spec:
814 # A component of the PC state.
815 return '%s = __parserAutoPCState.%s();\n' % \
816 (self.base_name, self.reg_spec)
817 else:
818 # The whole PC state itself.
819 return '%s = xc->pcState();\n' % self.base_name
820
821 def makeWrite(self, predWrite):
822 if self.reg_spec:
823 # A component of the PC state.
824 return '__parserAutoPCState.%s(%s);\n' % \
825 (self.reg_spec, self.base_name)
826 else:
827 # The whole PC state itself.
828 return 'xc->pcState(%s);\n' % self.base_name
829
830 def makeDecl(self):
831 ctype = 'TheISA::PCState'
832 if self.isPCPart():
833 ctype = self.ctype
834 # Note that initializations in the declarations are solely
835 # to avoid 'uninitialized variable' errors from the compiler.
836 return '%s %s = 0;\n' % (ctype, self.base_name)
837
838 def isPCState(self):
839 return 1
840
841class OperandList(object):
842 '''Find all the operands in the given code block. Returns an operand
843 descriptor list (instance of class OperandList).'''
844 def __init__(self, parser, code):
845 self.items = []
846 self.bases = {}
847 # delete strings and comments so we don't match on operands inside
848 for regEx in (stringRE, commentRE):
849 code = regEx.sub('', code)
850 # search for operands
851 next_pos = 0
852 while 1:
853 match = parser.operandsRE.search(code, next_pos)
854 if not match:
855 # no more matches: we're done
856 break
857 op = match.groups()
858 # regexp groups are operand full name, base, and extension
859 (op_full, op_base, op_ext) = op
860 # if the token following the operand is an assignment, this is
861 # a destination (LHS), else it's a source (RHS)
862 is_dest = (assignRE.match(code, match.end()) != None)
863 is_src = not is_dest
864 # see if we've already seen this one
865 op_desc = self.find_base(op_base)
866 if op_desc:
867 if op_desc.ext != op_ext:
868 error('Inconsistent extensions for operand %s' % \
869 op_base)
870 op_desc.is_src = op_desc.is_src or is_src
871 op_desc.is_dest = op_desc.is_dest or is_dest
872 else:
873 # new operand: create new descriptor
874 op_desc = parser.operandNameMap[op_base](parser,
875 op_full, op_ext, is_src, is_dest)
876 self.append(op_desc)
877 # start next search after end of current match
878 next_pos = match.end()
879 self.sort()
880 # enumerate source & dest register operands... used in building
881 # constructor later
882 self.numSrcRegs = 0
883 self.numDestRegs = 0
884 self.numFPDestRegs = 0
885 self.numIntDestRegs = 0
886 self.numCCDestRegs = 0
887 self.numMiscDestRegs = 0
888 self.memOperand = None
889
890 # Flags to keep track if one or more operands are to be read/written
891 # conditionally.
892 self.predRead = False
893 self.predWrite = False
894
895 for op_desc in self.items:
896 if op_desc.isReg():
897 if op_desc.is_src:
898 op_desc.src_reg_idx = self.numSrcRegs
899 self.numSrcRegs += 1
900 if op_desc.is_dest:
901 op_desc.dest_reg_idx = self.numDestRegs
902 self.numDestRegs += 1
903 if op_desc.isFloatReg():
904 self.numFPDestRegs += 1
905 elif op_desc.isIntReg():
906 self.numIntDestRegs += 1
907 elif op_desc.isCCReg():
908 self.numCCDestRegs += 1
909 elif op_desc.isControlReg():
910 self.numMiscDestRegs += 1
911 elif op_desc.isMem():
912 if self.memOperand:
913 error("Code block has more than one memory operand.")
914 self.memOperand = op_desc
915
916 # Check if this operand has read/write predication. If true, then
917 # the microop will dynamically index source/dest registers.
918 self.predRead = self.predRead or op_desc.hasReadPred()
919 self.predWrite = self.predWrite or op_desc.hasWritePred()
920
921 if parser.maxInstSrcRegs < self.numSrcRegs:
922 parser.maxInstSrcRegs = self.numSrcRegs
923 if parser.maxInstDestRegs < self.numDestRegs:
924 parser.maxInstDestRegs = self.numDestRegs
925 if parser.maxMiscDestRegs < self.numMiscDestRegs:
926 parser.maxMiscDestRegs = self.numMiscDestRegs
927
928 # now make a final pass to finalize op_desc fields that may depend
929 # on the register enumeration
930 for op_desc in self.items:
931 op_desc.finalize(self.predRead, self.predWrite)
932
933 def __len__(self):
934 return len(self.items)
935
936 def __getitem__(self, index):
937 return self.items[index]
938
939 def append(self, op_desc):
940 self.items.append(op_desc)
941 self.bases[op_desc.base_name] = op_desc
942
943 def find_base(self, base_name):
944 # like self.bases[base_name], but returns None if not found
945 # (rather than raising exception)
946 return self.bases.get(base_name)
947
948 # internal helper function for concat[Some]Attr{Strings|Lists}
949 def __internalConcatAttrs(self, attr_name, filter, result):
950 for op_desc in self.items:
951 if filter(op_desc):
952 result += getattr(op_desc, attr_name)
953 return result
954
955 # return a single string that is the concatenation of the (string)
956 # values of the specified attribute for all operands
957 def concatAttrStrings(self, attr_name):
958 return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
959
960 # like concatAttrStrings, but only include the values for the operands
961 # for which the provided filter function returns true
962 def concatSomeAttrStrings(self, filter, attr_name):
963 return self.__internalConcatAttrs(attr_name, filter, '')
964
965 # return a single list that is the concatenation of the (list)
966 # values of the specified attribute for all operands
967 def concatAttrLists(self, attr_name):
968 return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
969
970 # like concatAttrLists, but only include the values for the operands
971 # for which the provided filter function returns true
972 def concatSomeAttrLists(self, filter, attr_name):
973 return self.__internalConcatAttrs(attr_name, filter, [])
974
975 def sort(self):
976 self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
977
978class SubOperandList(OperandList):
979 '''Find all the operands in the given code block. Returns an operand
980 descriptor list (instance of class OperandList).'''
981 def __init__(self, parser, code, master_list):
982 self.items = []
983 self.bases = {}
984 # delete strings and comments so we don't match on operands inside
985 for regEx in (stringRE, commentRE):
986 code = regEx.sub('', code)
987 # search for operands
988 next_pos = 0
989 while 1:
990 match = parser.operandsRE.search(code, next_pos)
991 if not match:
992 # no more matches: we're done
993 break
994 op = match.groups()
995 # regexp groups are operand full name, base, and extension
996 (op_full, op_base, op_ext) = op
997 # find this op in the master list
998 op_desc = master_list.find_base(op_base)
999 if not op_desc:
1000 error('Found operand %s which is not in the master list!'
1001 % op_base)
1002 else:
1003 # See if we've already found this operand
1004 op_desc = self.find_base(op_base)
1005 if not op_desc:
1006 # if not, add a reference to it to this sub list
1007 self.append(master_list.bases[op_base])
1008
1009 # start next search after end of current match
1010 next_pos = match.end()
1011 self.sort()
1012 self.memOperand = None
1013 # Whether the whole PC needs to be read so parts of it can be accessed
1014 self.readPC = False
1015 # Whether the whole PC needs to be written after parts of it were
1016 # changed
1017 self.setPC = False
1018 # Whether this instruction manipulates the whole PC or parts of it.
1019 # Mixing the two is a bad idea and flagged as an error.
1020 self.pcPart = None
1021
1022 # Flags to keep track if one or more operands are to be read/written
1023 # conditionally.
1024 self.predRead = False
1025 self.predWrite = False
1026
1027 for op_desc in self.items:
1028 if op_desc.isPCPart():
1029 self.readPC = True
1030 if op_desc.is_dest:
1031 self.setPC = True
1032
1033 if op_desc.isPCState():
1034 if self.pcPart is not None:
1035 if self.pcPart and not op_desc.isPCPart() or \
1036 not self.pcPart and op_desc.isPCPart():
1037 error("Mixed whole and partial PC state operands.")
1038 self.pcPart = op_desc.isPCPart()
1039
1040 if op_desc.isMem():
1041 if self.memOperand:
1042 error("Code block has more than one memory operand.")
1043 self.memOperand = op_desc
1044
1045 # Check if this operand has read/write predication. If true, then
1046 # the microop will dynamically index source/dest registers.
1047 self.predRead = self.predRead or op_desc.hasReadPred()
1048 self.predWrite = self.predWrite or op_desc.hasWritePred()
1049
1050# Regular expression object to match C++ strings
1051stringRE = re.compile(r'"([^"\\]|\\.)*"')
1052
1053# Regular expression object to match C++ comments
1054# (used in findOperands())
1055commentRE = re.compile(r'(^)?[^\S\n]*/(?:\*(.*?)\*/[^\S\n]*|/[^\n]*)($)?',
1056 re.DOTALL | re.MULTILINE)
1057
1058# Regular expression object to match assignment statements
1059# (used in findOperands())
1060assignRE = re.compile(r'\s*=(?!=)', re.MULTILINE)
1061
1062def makeFlagConstructor(flag_list):
1063 if len(flag_list) == 0:
1064 return ''
1065 # filter out repeated flags
1066 flag_list.sort()
1067 i = 1
1068 while i < len(flag_list):
1069 if flag_list[i] == flag_list[i-1]:
1070 del flag_list[i]
1071 else:
1072 i += 1
1073 pre = '\n\tflags['
1074 post = '] = true;'
1075 code = pre + string.join(flag_list, post + pre) + post
1076 return code
1077
1078# Assume all instruction flags are of the form 'IsFoo'
1079instFlagRE = re.compile(r'Is.*')
1080
1081# OpClass constants end in 'Op' except No_OpClass
1082opClassRE = re.compile(r'.*Op|No_OpClass')
1083
1084class InstObjParams(object):
1085 def __init__(self, parser, mnem, class_name, base_class = '',
1086 snippets = {}, opt_args = []):
1087 self.mnemonic = mnem
1088 self.class_name = class_name
1089 self.base_class = base_class
1090 if not isinstance(snippets, dict):
1091 snippets = {'code' : snippets}
1092 compositeCode = ' '.join(map(str, snippets.values()))
1093 self.snippets = snippets
1094
1095 self.operands = OperandList(parser, compositeCode)
1096
1097 # The header of the constructor declares the variables to be used
1098 # in the body of the constructor.
1099 header = ''
1100 header += '\n\t_numSrcRegs = 0;'
1101 header += '\n\t_numDestRegs = 0;'
1102 header += '\n\t_numFPDestRegs = 0;'
1103 header += '\n\t_numIntDestRegs = 0;'
1104 header += '\n\t_numCCDestRegs = 0;'
1105
1106 self.constructor = header + \
1107 self.operands.concatAttrStrings('constructor')
1108
1109 self.flags = self.operands.concatAttrLists('flags')
1110
1111 self.op_class = None
1112
1113 # Optional arguments are assumed to be either StaticInst flags
1114 # or an OpClass value. To avoid having to import a complete
1115 # list of these values to match against, we do it ad-hoc
1116 # with regexps.
1117 for oa in opt_args:
1118 if instFlagRE.match(oa):
1119 self.flags.append(oa)
1120 elif opClassRE.match(oa):
1121 self.op_class = oa
1122 else:
1123 error('InstObjParams: optional arg "%s" not recognized '
1124 'as StaticInst::Flag or OpClass.' % oa)
1125
1126 # Make a basic guess on the operand class if not set.
1127 # These are good enough for most cases.
1128 if not self.op_class:
1129 if 'IsStore' in self.flags:
1130 self.op_class = 'MemWriteOp'
1131 elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
1132 self.op_class = 'MemReadOp'
1133 elif 'IsFloating' in self.flags:
1134 self.op_class = 'FloatAddOp'
1135 else:
1136 self.op_class = 'IntAluOp'
1137
1138 # add flag initialization to contructor here to include
1139 # any flags added via opt_args
1140 self.constructor += makeFlagConstructor(self.flags)
1141
1142 # if 'IsFloating' is set, add call to the FP enable check
1143 # function (which should be provided by isa_desc via a declare)
1144 if 'IsFloating' in self.flags:
1145 self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
1146 else:
1147 self.fp_enable_check = ''
1148
1149##############
1150# Stack: a simple stack object. Used for both formats (formatStack)
1151# and default cases (defaultStack). Simply wraps a list to give more
1152# stack-like syntax and enable initialization with an argument list
1153# (as opposed to an argument that's a list).
1154
1155class Stack(list):
1156 def __init__(self, *items):
1157 list.__init__(self, items)
1158
1159 def push(self, item):
1160 self.append(item);
1161
1162 def top(self):
1163 return self[-1]
1164
1165# Format a file include stack backtrace as a string
1166def backtrace(filename_stack):
1167 fmt = "In file included from %s:"
1168 return "\n".join([fmt % f for f in filename_stack])
1169
1170
1171#######################
1172#
1173# LineTracker: track filenames along with line numbers in PLY lineno fields
1174# PLY explicitly doesn't do anything with 'lineno' except propagate
1175# it. This class lets us tie filenames with the line numbers with a
1176# minimum of disruption to existing increment code.
1177#
1178
1179class LineTracker(object):
1180 def __init__(self, filename, lineno=1):
1181 self.filename = filename
1182 self.lineno = lineno
1183
1184 # Overload '+=' for increments. We need to create a new object on
1185 # each update else every token ends up referencing the same
1186 # constantly incrementing instance.
1187 def __iadd__(self, incr):
1188 return LineTracker(self.filename, self.lineno + incr)
1189
1190 def __str__(self):
1191 return "%s:%d" % (self.filename, self.lineno)
1192
1193 # In case there are places where someone really expects a number
1194 def __int__(self):
1195 return self.lineno
1196
1197
1198#######################
1199#
1200# ISA Parser
1201# parses ISA DSL and emits C++ headers and source
1202#
1203
1204class ISAParser(Grammar):
1205 class CpuModel(object):
1206 def __init__(self, name, filename, includes, strings):
1207 self.name = name
1208 self.filename = filename
1209 self.includes = includes
1210 self.strings = strings
1211
1212 def __init__(self, output_dir):
1213 super(ISAParser, self).__init__()
1214 self.output_dir = output_dir
1215
1216 self.filename = None # for output file watermarking/scaremongering
1217
1218 self.cpuModels = [
1219 ISAParser.CpuModel('ExecContext',
1220 'generic_cpu_exec.cc',
1221 '#include "cpu/exec_context.hh"',
1222 { "CPU_exec_context" : "ExecContext" }),
1223 ]
1224
1225 # variable to hold templates
1226 self.templateMap = {}
1227
1228 # This dictionary maps format name strings to Format objects.
1229 self.formatMap = {}
1230
1231 # Track open files and, if applicable, how many chunks it has been
1232 # split into so far.
1233 self.files = {}
1234 self.splits = {}
1235
1236 # isa_name / namespace identifier from namespace declaration.
1237 # before the namespace declaration, None.
1238 self.isa_name = None
1239 self.namespace = None
1240
1241 # The format stack.
1242 self.formatStack = Stack(NoFormat())
1243
1244 # The default case stack.
1245 self.defaultStack = Stack(None)
1246
1247 # Stack that tracks current file and line number. Each
1248 # element is a tuple (filename, lineno) that records the
1249 # *current* filename and the line number in the *previous*
1250 # file where it was included.
1251 self.fileNameStack = Stack()
1252
1253 symbols = ('makeList', 're', 'string')
1254 self.exportContext = dict([(s, eval(s)) for s in symbols])
1255
1256 self.maxInstSrcRegs = 0
1257 self.maxInstDestRegs = 0
1258 self.maxMiscDestRegs = 0
1259
1260 def __getitem__(self, i): # Allow object (self) to be
1261 return getattr(self, i) # passed to %-substitutions
1262
1263 # Change the file suffix of a base filename:
1264 # (e.g.) decoder.cc -> decoder-g.cc.inc for 'global' outputs
1265 def suffixize(self, s, sec):
1266 extn = re.compile('(\.[^\.]+)$') # isolate extension
1267 if self.namespace:
1268 return extn.sub(r'-ns\1.inc', s) # insert some text on either side
1269 else:
1270 return extn.sub(r'-g\1.inc', s)
1271
1272 # Get the file object for emitting code into the specified section
1273 # (header, decoder, exec, decode_block).
1274 def get_file(self, section):
1275 if section == 'decode_block':
1276 filename = 'decode-method.cc.inc'
1277 else:
1278 if section == 'header':
1279 file = 'decoder.hh'
1280 else:
1281 file = '%s.cc' % section
1282 filename = self.suffixize(file, section)
1283 try:
1284 return self.files[filename]
1285 except KeyError: pass
1286
1287 f = self.open(filename)
1288 self.files[filename] = f
1289
1290 # The splittable files are the ones with many independent
1291 # per-instruction functions - the decoder's instruction constructors
1292 # and the instruction execution (execute()) methods. These both have
1293 # the suffix -ns.cc.inc, meaning they are within the namespace part
1294 # of the ISA, contain object-emitting C++ source, and are included
1295 # into other top-level files. These are the files that need special
1296 # #define's to allow parts of them to be compiled separately. Rather
1297 # than splitting the emissions into separate files, the monolithic
1298 # output of the ISA parser is maintained, but the value (or lack
1299 # thereof) of the __SPLIT definition during C preprocessing will
1300 # select the different chunks. If no 'split' directives are used,
1301 # the cpp emissions have no effect.
1302 if re.search('-ns.cc.inc$', filename):
1303 print >>f, '#if !defined(__SPLIT) || (__SPLIT == 1)'
1304 self.splits[f] = 1
1305 # ensure requisite #include's
1306 elif filename in ['decoder-g.cc.inc', 'exec-g.cc.inc']:
1307 print >>f, '#include "decoder.hh"'
1308 elif filename == 'decoder-g.hh.inc':
1309 print >>f, '#include "base/bitfield.hh"'
1310
1311 return f
1312
1313 # Weave together the parts of the different output sections by
1314 # #include'ing them into some very short top-level .cc/.hh files.
1315 # These small files make it much clearer how this tool works, since
1316 # you directly see the chunks emitted as files that are #include'd.
1317 def write_top_level_files(self):
1318 dep = self.open('inc.d', bare=True)
1319
1320 # decoder header - everything depends on this
1321 file = 'decoder.hh'
1322 with self.open(file) as f:
1323 inc = []
1324
1325 fn = 'decoder-g.hh.inc'
1326 assert(fn in self.files)
1327 f.write('#include "%s"\n' % fn)
1328 inc.append(fn)
1329
1330 fn = 'decoder-ns.hh.inc'
1331 assert(fn in self.files)
1332 f.write('namespace %s {\n#include "%s"\n}\n'
1333 % (self.namespace, fn))
1334 inc.append(fn)
1335
1336 print >>dep, file+':', ' '.join(inc)
1337
1338 # decoder method - cannot be split
1339 file = 'decoder.cc'
1340 with self.open(file) as f:
1341 inc = []
1342
1343 fn = 'decoder-g.cc.inc'
1344 assert(fn in self.files)
1345 f.write('#include "%s"\n' % fn)
1346 inc.append(fn)
1347
1348 fn = 'decode-method.cc.inc'
1349 # is guaranteed to have been written for parse to complete
1350 f.write('#include "%s"\n' % fn)
1351 inc.append(fn)
1352
1353 inc.append("decoder.hh")
1354 print >>dep, file+':', ' '.join(inc)
1355
1356 extn = re.compile('(\.[^\.]+)$')
1357
1358 # instruction constructors
1359 splits = self.splits[self.get_file('decoder')]
1360 file_ = 'inst-constrs.cc'
1361 for i in range(1, splits+1):
1362 if splits > 1:
1363 file = extn.sub(r'-%d\1' % i, file_)
1364 else:
1365 file = file_
1366 with self.open(file) as f:
1367 inc = []
1368
1369 fn = 'decoder-g.cc.inc'
1370 assert(fn in self.files)
1371 f.write('#include "%s"\n' % fn)
1372 inc.append(fn)
1373
1374 fn = 'decoder-ns.cc.inc'
1375 assert(fn in self.files)
1376 print >>f, 'namespace %s {' % self.namespace
1377 if splits > 1:
1378 print >>f, '#define __SPLIT %u' % i
1379 print >>f, '#include "%s"' % fn
1380 print >>f, '}'
1381 inc.append(fn)
1382
1383 inc.append("decoder.hh")
1384 print >>dep, file+':', ' '.join(inc)
1385
1386 # instruction execution per-CPU model
1387 splits = self.splits[self.get_file('exec')]
1388 for cpu in self.cpuModels:
1389 for i in range(1, splits+1):
1390 if splits > 1:
1391 file = extn.sub(r'_%d\1' % i, cpu.filename)
1392 else:
1393 file = cpu.filename
1394 with self.open(file) as f:
1395 inc = []
1396
1397 fn = 'exec-g.cc.inc'
1398 assert(fn in self.files)
1399 f.write('#include "%s"\n' % fn)
1400 inc.append(fn)
1401
1402 f.write(cpu.includes+"\n")
1403
1404 fn = 'exec-ns.cc.inc'
1405 assert(fn in self.files)
1406 print >>f, 'namespace %s {' % self.namespace
1407 print >>f, '#define CPU_EXEC_CONTEXT %s' \
1408 % cpu.strings['CPU_exec_context']
1409 if splits > 1:
1410 print >>f, '#define __SPLIT %u' % i
1411 print >>f, '#include "%s"' % fn
1412 print >>f, '}'
1413 inc.append(fn)
1414
1415 inc.append("decoder.hh")
1416 print >>dep, file+':', ' '.join(inc)
1417
1418 # max_inst_regs.hh
1419 self.update('max_inst_regs.hh',
1420 '''namespace %(namespace)s {
1421 const int MaxInstSrcRegs = %(maxInstSrcRegs)d;
1422 const int MaxInstDestRegs = %(maxInstDestRegs)d;
1423 const int MaxMiscDestRegs = %(maxMiscDestRegs)d;\n}\n''' % self)
1424 print >>dep, 'max_inst_regs.hh:'
1425
1426 dep.close()
1427
1428
1429 scaremonger_template ='''// DO NOT EDIT
1430// This file was automatically generated from an ISA description:
1431// %(filename)s
1432
1433''';
1434
1435 #####################################################################
1436 #
1437 # Lexer
1438 #
1439 # The PLY lexer module takes two things as input:
1440 # - A list of token names (the string list 'tokens')
1441 # - A regular expression describing a match for each token. The
1442 # regexp for token FOO can be provided in two ways:
1443 # - as a string variable named t_FOO
1444 # - as the doc string for a function named t_FOO. In this case,
1445 # the function is also executed, allowing an action to be
1446 # associated with each token match.
1447 #
1448 #####################################################################
1449
1450 # Reserved words. These are listed separately as they are matched
1451 # using the same regexp as generic IDs, but distinguished in the
1452 # t_ID() function. The PLY documentation suggests this approach.
1453 reserved = (
1454 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
1455 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
1456 'OUTPUT', 'SIGNED', 'SPLIT', 'TEMPLATE'
1457 )
1458
1459 # List of tokens. The lex module requires this.
1460 tokens = reserved + (
1461 # identifier
1462 'ID',
1463
1464 # integer literal
1465 'INTLIT',
1466
1467 # string literal
1468 'STRLIT',
1469
1470 # code literal
1471 'CODELIT',
1472
1473 # ( ) [ ] { } < > , ; . : :: *
1474 'LPAREN', 'RPAREN',
1475 'LBRACKET', 'RBRACKET',
1476 'LBRACE', 'RBRACE',
1477 'LESS', 'GREATER', 'EQUALS',
1478 'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON',
1479 'ASTERISK',
1480
1481 # C preprocessor directives
1482 'CPPDIRECTIVE'
1483
1484 # The following are matched but never returned. commented out to
1485 # suppress PLY warning
1486 # newfile directive
1487 # 'NEWFILE',
1488
1489 # endfile directive
1490 # 'ENDFILE'
1491 )
1492
1493 # Regular expressions for token matching
1494 t_LPAREN = r'\('
1495 t_RPAREN = r'\)'
1496 t_LBRACKET = r'\['
1497 t_RBRACKET = r'\]'
1498 t_LBRACE = r'\{'
1499 t_RBRACE = r'\}'
1500 t_LESS = r'\<'
1501 t_GREATER = r'\>'
1502 t_EQUALS = r'='
1503 t_COMMA = r','
1504 t_SEMI = r';'
1505 t_DOT = r'\.'
1506 t_COLON = r':'
1507 t_DBLCOLON = r'::'
1508 t_ASTERISK = r'\*'
1509
1510 # Identifiers and reserved words
1511 reserved_map = { }
1512 for r in reserved:
1513 reserved_map[r.lower()] = r
1514
1515 def t_ID(self, t):
1516 r'[A-Za-z_]\w*'
1517 t.type = self.reserved_map.get(t.value, 'ID')
1518 return t
1519
1520 # Integer literal
1521 def t_INTLIT(self, t):
1522 r'-?(0x[\da-fA-F]+)|\d+'
1523 try:
1524 t.value = int(t.value,0)
1525 except ValueError:
1526 error(t.lexer.lineno, 'Integer value "%s" too large' % t.value)
1527 t.value = 0
1528 return t
1529
1530 # String literal. Note that these use only single quotes, and
1531 # can span multiple lines.
1532 def t_STRLIT(self, t):
1533 r"(?m)'([^'])+'"
1534 # strip off quotes
1535 t.value = t.value[1:-1]
1536 t.lexer.lineno += t.value.count('\n')
1537 return t
1538
1539
1540 # "Code literal"... like a string literal, but delimiters are
1541 # '{{' and '}}' so they get formatted nicely under emacs c-mode
1542 def t_CODELIT(self, t):
1543 r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
1544 # strip off {{ & }}
1545 t.value = t.value[2:-2]
1546 t.lexer.lineno += t.value.count('\n')
1547 return t
1548
1549 def t_CPPDIRECTIVE(self, t):
1550 r'^\#[^\#].*\n'
1551 t.lexer.lineno += t.value.count('\n')
1552 return t
1553
1554 def t_NEWFILE(self, t):
1555 r'^\#\#newfile\s+"[^"]*"\n'
1556 self.fileNameStack.push(t.lexer.lineno)
1557 t.lexer.lineno = LineTracker(t.value[11:-2])
1558
1559 def t_ENDFILE(self, t):
1560 r'^\#\#endfile\n'
1561 t.lexer.lineno = self.fileNameStack.pop()
1562
1563 #
1564 # The functions t_NEWLINE, t_ignore, and t_error are
1565 # special for the lex module.
1566 #
1567
1568 # Newlines
1569 def t_NEWLINE(self, t):
1570 r'\n+'
1571 t.lexer.lineno += t.value.count('\n')
1572
1573 # Comments
1574 def t_comment(self, t):
1575 r'//.*'
1576
1577 # Completely ignored characters
1578 t_ignore = ' \t\x0c'
1579
1580 # Error handler
1581 def t_error(self, t):
1582 error(t.lexer.lineno, "illegal character '%s'" % t.value[0])
1583 t.skip(1)
1584
1585 #####################################################################
1586 #
1587 # Parser
1588 #
1589 # Every function whose name starts with 'p_' defines a grammar
1590 # rule. The rule is encoded in the function's doc string, while
1591 # the function body provides the action taken when the rule is
1592 # matched. The argument to each function is a list of the values
1593 # of the rule's symbols: t[0] for the LHS, and t[1..n] for the
1594 # symbols on the RHS. For tokens, the value is copied from the
1595 # t.value attribute provided by the lexer. For non-terminals, the
1596 # value is assigned by the producing rule; i.e., the job of the
1597 # grammar rule function is to set the value for the non-terminal
1598 # on the LHS (by assigning to t[0]).
1599 #####################################################################
1600
1601 # The LHS of the first grammar rule is used as the start symbol
1602 # (in this case, 'specification'). Note that this rule enforces
1603 # that there will be exactly one namespace declaration, with 0 or
1604 # more global defs/decls before and after it. The defs & decls
1605 # before the namespace decl will be outside the namespace; those
1606 # after will be inside. The decoder function is always inside the
1607 # namespace.
1608 def p_specification(self, t):
1609 'specification : opt_defs_and_outputs top_level_decode_block'
1610
1611 for f in self.splits.iterkeys():
1612 f.write('\n#endif\n')
1613
1614 for f in self.files.itervalues(): # close ALL the files;
1615 f.close() # not doing so can cause compilation to fail
1616
1617 self.write_top_level_files()
1618
1619 t[0] = True
1620
1621 # 'opt_defs_and_outputs' is a possibly empty sequence of def and/or
1622 # output statements. Its productions do the hard work of eventually
1623 # instantiating a GenCode, which are generally emitted (written to disk)
1624 # as soon as possible, except for the decode_block, which has to be
1625 # accumulated into one large function of nested switch/case blocks.
1626 def p_opt_defs_and_outputs_0(self, t):
1627 'opt_defs_and_outputs : empty'
1628
1629 def p_opt_defs_and_outputs_1(self, t):
1630 'opt_defs_and_outputs : defs_and_outputs'
1631
1632 def p_defs_and_outputs_0(self, t):
1633 'defs_and_outputs : def_or_output'
1634
1635 def p_defs_and_outputs_1(self, t):
1636 'defs_and_outputs : defs_and_outputs def_or_output'
1637
1638 # The list of possible definition/output statements.
1639 # They are all processed as they are seen.
1640 def p_def_or_output(self, t):
1641 '''def_or_output : name_decl
1642 | def_format
1643 | def_bitfield
1644 | def_bitfield_struct
1645 | def_template
1646 | def_operand_types
1647 | def_operands
1648 | output
1649 | global_let
1650 | split'''
1651
1652 # Utility function used by both invocations of splitting - explicit
1653 # 'split' keyword and split() function inside "let {{ }};" blocks.
1654 def split(self, sec, write=False):
1655 assert(sec != 'header' and "header cannot be split")
1656
1657 f = self.get_file(sec)
1658 self.splits[f] += 1
1659 s = '\n#endif\n#if __SPLIT == %u\n' % self.splits[f]
1660 if write:
1661 f.write(s)
1662 else:
1663 return s
1664
1665 # split output file to reduce compilation time
1666 def p_split(self, t):
1667 'split : SPLIT output_type SEMI'
1668 assert(self.isa_name and "'split' not allowed before namespace decl")
1669
1670 self.split(t[2], True)
1671
1672 def p_output_type(self, t):
1673 '''output_type : DECODER
1674 | HEADER
1675 | EXEC'''
1676 t[0] = t[1]
1677
1678 # ISA name declaration looks like "namespace <foo>;"
1679 def p_name_decl(self, t):
1680 'name_decl : NAMESPACE ID SEMI'
1681 assert(self.isa_name == None and "Only 1 namespace decl permitted")
1682 self.isa_name = t[2]
1683 self.namespace = t[2] + 'Inst'
1684
1685 # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
1686 # directly to the appropriate output section.
1687
1688 # Massage output block by substituting in template definitions and
1689 # bit operators. We handle '%'s embedded in the string that don't
1690 # indicate template substitutions (or CPU-specific symbols, which
1691 # get handled in GenCode) by doubling them first so that the
1692 # format operation will reduce them back to single '%'s.
1693 def process_output(self, s):
1694 s = self.protectNonSubstPercents(s)
1695 # protects cpu-specific symbols too
1696 s = self.protectCpuSymbols(s)
1697 return substBitOps(s % self.templateMap)
1698
1699 def p_output(self, t):
1700 'output : OUTPUT output_type CODELIT SEMI'
1701 kwargs = { t[2]+'_output' : self.process_output(t[3]) }
1702 GenCode(self, **kwargs).emit()
1703
1704 # global let blocks 'let {{...}}' (Python code blocks) are
1705 # executed directly when seen. Note that these execute in a
1706 # special variable context 'exportContext' to prevent the code
1707 # from polluting this script's namespace.
1708 def p_global_let(self, t):
1709 'global_let : LET CODELIT SEMI'
1710 def _split(sec):
1711 return self.split(sec)
1712 self.updateExportContext()
1713 self.exportContext["header_output"] = ''
1714 self.exportContext["decoder_output"] = ''
1715 self.exportContext["exec_output"] = ''
1716 self.exportContext["decode_block"] = ''
1717 self.exportContext["split"] = _split
1718 split_setup = '''
1719def wrap(func):
1720 def split(sec):
1721 globals()[sec + '_output'] += func(sec)
1722 return split
1723split = wrap(split)
1724del wrap
1725'''
1726 # This tricky setup (immediately above) allows us to just write
1727 # (e.g.) "split('exec')" in the Python code and the split #ifdef's
1728 # will automatically be added to the exec_output variable. The inner
1729 # Python execution environment doesn't know about the split points,
1730 # so we carefully inject and wrap a closure that can retrieve the
1731 # next split's #define from the parser and add it to the current
1732 # emission-in-progress.
1733 try:
1734 exec split_setup+fixPythonIndentation(t[2]) in self.exportContext
1735 except Exception, exc:
1736 if debug:
1737 raise
1738 error(t.lineno(1), 'In global let block: %s' % exc)
1739 GenCode(self,
1740 header_output=self.exportContext["header_output"],
1741 decoder_output=self.exportContext["decoder_output"],
1742 exec_output=self.exportContext["exec_output"],
1743 decode_block=self.exportContext["decode_block"]).emit()
1744
1745 # Define the mapping from operand type extensions to C++ types and
1746 # bit widths (stored in operandTypeMap).
1747 def p_def_operand_types(self, t):
1748 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
1749 try:
1750 self.operandTypeMap = eval('{' + t[3] + '}')
1751 except Exception, exc:
1752 if debug:
1753 raise
1754 error(t.lineno(1),
1755 'In def operand_types: %s' % exc)
1756
1757 # Define the mapping from operand names to operand classes and
1758 # other traits. Stored in operandNameMap.
1759 def p_def_operands(self, t):
1760 'def_operands : DEF OPERANDS CODELIT SEMI'
1761 if not hasattr(self, 'operandTypeMap'):
1762 error(t.lineno(1),
1763 'error: operand types must be defined before operands')
1764 try:
1765 user_dict = eval('{' + t[3] + '}', self.exportContext)
1766 except Exception, exc:
1767 if debug:
1768 raise
1769 error(t.lineno(1), 'In def operands: %s' % exc)
1770 self.buildOperandNameMap(user_dict, t.lexer.lineno)
1771
1772 # A bitfield definition looks like:
1773 # 'def [signed] bitfield <ID> [<first>:<last>]'
1774 # This generates a preprocessor macro in the output file.
1775 def p_def_bitfield_0(self, t):
1776 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
1777 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
1778 if (t[2] == 'signed'):
1779 expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
1780 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1781 GenCode(self, header_output=hash_define).emit()
1782
1783 # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
1784 def p_def_bitfield_1(self, t):
1785 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
1786 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
1787 if (t[2] == 'signed'):
1788 expr = 'sext<%d>(%s)' % (1, expr)
1789 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1790 GenCode(self, header_output=hash_define).emit()
1791
1792 # alternate form for structure member: 'def bitfield <ID> <ID>'
1793 def p_def_bitfield_struct(self, t):
1794 'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI'
1795 if (t[2] != ''):
1796 error(t.lineno(1),
1797 'error: structure bitfields are always unsigned.')
1798 expr = 'machInst.%s' % t[5]
1799 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1800 GenCode(self, header_output=hash_define).emit()
1801
1802 def p_id_with_dot_0(self, t):
1803 'id_with_dot : ID'
1804 t[0] = t[1]
1805
1806 def p_id_with_dot_1(self, t):
1807 'id_with_dot : ID DOT id_with_dot'
1808 t[0] = t[1] + t[2] + t[3]
1809
1810 def p_opt_signed_0(self, t):
1811 'opt_signed : SIGNED'
1812 t[0] = t[1]
1813
1814 def p_opt_signed_1(self, t):
1815 'opt_signed : empty'
1816 t[0] = ''
1817
1818 def p_def_template(self, t):
1819 'def_template : DEF TEMPLATE ID CODELIT SEMI'
1820 if t[3] in self.templateMap:
1821 print "warning: template %s already defined" % t[3]
1822 self.templateMap[t[3]] = Template(self, t[4])
1823
1824 # An instruction format definition looks like
1825 # "def format <fmt>(<params>) {{...}};"
1826 def p_def_format(self, t):
1827 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
1828 (id, params, code) = (t[3], t[5], t[7])
1829 self.defFormat(id, params, code, t.lexer.lineno)
1830
1831 # The formal parameter list for an instruction format is a
1832 # possibly empty list of comma-separated parameters. Positional
1833 # (standard, non-keyword) parameters must come first, followed by
1834 # keyword parameters, followed by a '*foo' parameter that gets
1835 # excess positional arguments (as in Python). Each of these three
1836 # parameter categories is optional.
1837 #
1838 # Note that we do not support the '**foo' parameter for collecting
1839 # otherwise undefined keyword args. Otherwise the parameter list
1840 # is (I believe) identical to what is supported in Python.
1841 #
1842 # The param list generates a tuple, where the first element is a
1843 # list of the positional params and the second element is a dict
1844 # containing the keyword params.
1845 def p_param_list_0(self, t):
1846 'param_list : positional_param_list COMMA nonpositional_param_list'
1847 t[0] = t[1] + t[3]
1848
1849 def p_param_list_1(self, t):
1850 '''param_list : positional_param_list
1851 | nonpositional_param_list'''
1852 t[0] = t[1]
1853
1854 def p_positional_param_list_0(self, t):
1855 'positional_param_list : empty'
1856 t[0] = []
1857
1858 def p_positional_param_list_1(self, t):
1859 'positional_param_list : ID'
1860 t[0] = [t[1]]
1861
1862 def p_positional_param_list_2(self, t):
1863 'positional_param_list : positional_param_list COMMA ID'
1864 t[0] = t[1] + [t[3]]
1865
1866 def p_nonpositional_param_list_0(self, t):
1867 'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
1868 t[0] = t[1] + t[3]
1869
1870 def p_nonpositional_param_list_1(self, t):
1871 '''nonpositional_param_list : keyword_param_list
1872 | excess_args_param'''
1873 t[0] = t[1]
1874
1875 def p_keyword_param_list_0(self, t):
1876 'keyword_param_list : keyword_param'
1877 t[0] = [t[1]]
1878
1879 def p_keyword_param_list_1(self, t):
1880 'keyword_param_list : keyword_param_list COMMA keyword_param'
1881 t[0] = t[1] + [t[3]]
1882
1883 def p_keyword_param(self, t):
1884 'keyword_param : ID EQUALS expr'
1885 t[0] = t[1] + ' = ' + t[3].__repr__()
1886
1887 def p_excess_args_param(self, t):
1888 'excess_args_param : ASTERISK ID'
1889 # Just concatenate them: '*ID'. Wrap in list to be consistent
1890 # with positional_param_list and keyword_param_list.
1891 t[0] = [t[1] + t[2]]
1892
1893 # End of format definition-related rules.
1894 ##############
1895
1896 #
1897 # A decode block looks like:
1898 # decode <field1> [, <field2>]* [default <inst>] { ... }
1899 #
1900 def p_top_level_decode_block(self, t):
1901 'top_level_decode_block : decode_block'
1902 codeObj = t[1]
1903 codeObj.wrap_decode_block('''
1904StaticInstPtr
1905%(isa_name)s::Decoder::decodeInst(%(isa_name)s::ExtMachInst machInst)
1906{
1907 using namespace %(namespace)s;
1908''' % self, '}')
1909
1910 codeObj.emit()
1911
1912 def p_decode_block(self, t):
1913 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
1914 default_defaults = self.defaultStack.pop()
1915 codeObj = t[5]
1916 # use the "default defaults" only if there was no explicit
1917 # default statement in decode_stmt_list
1918 if not codeObj.has_decode_default:
1919 codeObj += default_defaults
1920 codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
1921 t[0] = codeObj
1922
1923 # The opt_default statement serves only to push the "default
1924 # defaults" onto defaultStack. This value will be used by nested
1925 # decode blocks, and used and popped off when the current
1926 # decode_block is processed (in p_decode_block() above).
1927 def p_opt_default_0(self, t):
1928 'opt_default : empty'
1929 # no default specified: reuse the one currently at the top of
1930 # the stack
1931 self.defaultStack.push(self.defaultStack.top())
1932 # no meaningful value returned
1933 t[0] = None
1934
1935 def p_opt_default_1(self, t):
1936 'opt_default : DEFAULT inst'
1937 # push the new default
1938 codeObj = t[2]
1939 codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
1940 self.defaultStack.push(codeObj)
1941 # no meaningful value returned
1942 t[0] = None
1943
1944 def p_decode_stmt_list_0(self, t):
1945 'decode_stmt_list : decode_stmt'
1946 t[0] = t[1]
1947
1948 def p_decode_stmt_list_1(self, t):
1949 'decode_stmt_list : decode_stmt decode_stmt_list'
1950 if (t[1].has_decode_default and t[2].has_decode_default):
1951 error(t.lineno(1), 'Two default cases in decode block')
1952 t[0] = t[1] + t[2]
1953
1954 #
1955 # Decode statement rules
1956 #
1957 # There are four types of statements allowed in a decode block:
1958 # 1. Format blocks 'format <foo> { ... }'
1959 # 2. Nested decode blocks
1960 # 3. Instruction definitions.
1961 # 4. C preprocessor directives.
1962
1963
1964 # Preprocessor directives found in a decode statement list are
1965 # passed through to the output, replicated to all of the output
1966 # code streams. This works well for ifdefs, so we can ifdef out
1967 # both the declarations and the decode cases generated by an
1968 # instruction definition. Handling them as part of the grammar
1969 # makes it easy to keep them in the right place with respect to
1970 # the code generated by the other statements.
1971 def p_decode_stmt_cpp(self, t):
1972 'decode_stmt : CPPDIRECTIVE'
1973 t[0] = GenCode(self, t[1], t[1], t[1], t[1])
1974
1975 # A format block 'format <foo> { ... }' sets the default
1976 # instruction format used to handle instruction definitions inside
1977 # the block. This format can be overridden by using an explicit
1978 # format on the instruction definition or with a nested format
1979 # block.
1980 def p_decode_stmt_format(self, t):
1981 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
1982 # The format will be pushed on the stack when 'push_format_id'
1983 # is processed (see below). Once the parser has recognized
1984 # the full production (though the right brace), we're done
1985 # with the format, so now we can pop it.
1986 self.formatStack.pop()
1987 t[0] = t[4]
1988
1989 # This rule exists so we can set the current format (& push the
1990 # stack) when we recognize the format name part of the format
1991 # block.
1992 def p_push_format_id(self, t):
1993 'push_format_id : ID'
1994 try:
1995 self.formatStack.push(self.formatMap[t[1]])
1996 t[0] = ('', '// format %s' % t[1])
1997 except KeyError:
1998 error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
1999
2000 # Nested decode block: if the value of the current field matches
2001 # the specified constant(s), do a nested decode on some other field.
2002 def p_decode_stmt_decode(self, t):
2003 'decode_stmt : case_list COLON decode_block'
2004 case_list = t[1]
2005 codeObj = t[3]
2006 # just wrap the decoding code from the block as a case in the
2007 # outer switch statement.
2008 codeObj.wrap_decode_block('\n%s\n' % ''.join(case_list))
2009 codeObj.has_decode_default = (case_list == ['default:'])
2010 t[0] = codeObj
2011
2012 # Instruction definition (finally!).
2013 def p_decode_stmt_inst(self, t):
2014 'decode_stmt : case_list COLON inst SEMI'
2015 case_list = t[1]
2016 codeObj = t[3]
2017 codeObj.wrap_decode_block('\n%s' % ''.join(case_list), 'break;\n')
2018 codeObj.has_decode_default = (case_list == ['default:'])
2019 t[0] = codeObj
2020
2021 # The constant list for a decode case label must be non-empty, and must
2022 # either be the keyword 'default', or made up of one or more
2023 # comma-separated integer literals or strings which evaluate to
2024 # constants when compiled as C++.
2025 def p_case_list_0(self, t):
2026 'case_list : DEFAULT'
2027 t[0] = ['default:']
2028
2029 def prep_int_lit_case_label(self, lit):
2030 if lit >= 2**32:
2031 return 'case ULL(%#x): ' % lit
2032 else:
2033 return 'case %#x: ' % lit
2034
2035 def prep_str_lit_case_label(self, lit):
2036 return 'case %s: ' % lit
2037
2038 def p_case_list_1(self, t):
2039 'case_list : INTLIT'
2040 t[0] = [self.prep_int_lit_case_label(t[1])]
2041
2042 def p_case_list_2(self, t):
2043 'case_list : STRLIT'
2044 t[0] = [self.prep_str_lit_case_label(t[1])]
2045
2046 def p_case_list_3(self, t):
2047 'case_list : case_list COMMA INTLIT'
2048 t[0] = t[1]
2049 t[0].append(self.prep_int_lit_case_label(t[3]))
2050
2051 def p_case_list_4(self, t):
2052 'case_list : case_list COMMA STRLIT'
2053 t[0] = t[1]
2054 t[0].append(self.prep_str_lit_case_label(t[3]))
2055
2056 # Define an instruction using the current instruction format
2057 # (specified by an enclosing format block).
2058 # "<mnemonic>(<args>)"
2059 def p_inst_0(self, t):
2060 'inst : ID LPAREN arg_list RPAREN'
2061 # Pass the ID and arg list to the current format class to deal with.
2062 currentFormat = self.formatStack.top()
2063 codeObj = currentFormat.defineInst(self, t[1], t[3], t.lexer.lineno)
2064 args = ','.join(map(str, t[3]))
2065 args = re.sub('(?m)^', '//', args)
2066 args = re.sub('^//', '', args)
2067 comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
2068 codeObj.prepend_all(comment)
2069 t[0] = codeObj
2070
2071 # Define an instruction using an explicitly specified format:
2072 # "<fmt>::<mnemonic>(<args>)"
2073 def p_inst_1(self, t):
2074 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
2075 try:
2076 format = self.formatMap[t[1]]
2077 except KeyError:
2078 error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
2079
2080 codeObj = format.defineInst(self, t[3], t[5], t.lexer.lineno)
2081 comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
2082 codeObj.prepend_all(comment)
2083 t[0] = codeObj
2084
2085 # The arg list generates a tuple, where the first element is a
2086 # list of the positional args and the second element is a dict
2087 # containing the keyword args.
2088 def p_arg_list_0(self, t):
2089 'arg_list : positional_arg_list COMMA keyword_arg_list'
2090 t[0] = ( t[1], t[3] )
2091
2092 def p_arg_list_1(self, t):
2093 'arg_list : positional_arg_list'
2094 t[0] = ( t[1], {} )
2095
2096 def p_arg_list_2(self, t):
2097 'arg_list : keyword_arg_list'
2098 t[0] = ( [], t[1] )
2099
2100 def p_positional_arg_list_0(self, t):
2101 'positional_arg_list : empty'
2102 t[0] = []
2103
2104 def p_positional_arg_list_1(self, t):
2105 'positional_arg_list : expr'
2106 t[0] = [t[1]]
2107
2108 def p_positional_arg_list_2(self, t):
2109 'positional_arg_list : positional_arg_list COMMA expr'
2110 t[0] = t[1] + [t[3]]
2111
2112 def p_keyword_arg_list_0(self, t):
2113 'keyword_arg_list : keyword_arg'
2114 t[0] = t[1]
2115
2116 def p_keyword_arg_list_1(self, t):
2117 'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
2118 t[0] = t[1]
2119 t[0].update(t[3])
2120
2121 def p_keyword_arg(self, t):
2122 'keyword_arg : ID EQUALS expr'
2123 t[0] = { t[1] : t[3] }
2124
2125 #
2126 # Basic expressions. These constitute the argument values of
2127 # "function calls" (i.e. instruction definitions in the decode
2128 # block) and default values for formal parameters of format
2129 # functions.
2130 #
2131 # Right now, these are either strings, integers, or (recursively)
2132 # lists of exprs (using Python square-bracket list syntax). Note
2133 # that bare identifiers are trated as string constants here (since
2134 # there isn't really a variable namespace to refer to).
2135 #
2136 def p_expr_0(self, t):
2137 '''expr : ID
2138 | INTLIT
2139 | STRLIT
2140 | CODELIT'''
2141 t[0] = t[1]
2142
2143 def p_expr_1(self, t):
2144 '''expr : LBRACKET list_expr RBRACKET'''
2145 t[0] = t[2]
2146
2147 def p_list_expr_0(self, t):
2148 'list_expr : expr'
2149 t[0] = [t[1]]
2150
2151 def p_list_expr_1(self, t):
2152 'list_expr : list_expr COMMA expr'
2153 t[0] = t[1] + [t[3]]
2154
2155 def p_list_expr_2(self, t):
2156 'list_expr : empty'
2157 t[0] = []
2158
2159 #
2160 # Empty production... use in other rules for readability.
2161 #
2162 def p_empty(self, t):
2163 'empty :'
2164 pass
2165
2166 # Parse error handler. Note that the argument here is the
2167 # offending *token*, not a grammar symbol (hence the need to use
2168 # t.value)
2169 def p_error(self, t):
2170 if t:
2171 error(t.lexer.lineno, "syntax error at '%s'" % t.value)
2172 else:
2173 error("unknown syntax error")
2174
2175 # END OF GRAMMAR RULES
2176
2177 def updateExportContext(self):
2178
2179 # create a continuation that allows us to grab the current parser
2180 def wrapInstObjParams(*args):
2181 return InstObjParams(self, *args)
2182 self.exportContext['InstObjParams'] = wrapInstObjParams
2183 self.exportContext.update(self.templateMap)
2184
2185 def defFormat(self, id, params, code, lineno):
2186 '''Define a new format'''
2187
2188 # make sure we haven't already defined this one
2189 if id in self.formatMap:
2190 error(lineno, 'format %s redefined.' % id)
2191
2192 # create new object and store in global map
2193 self.formatMap[id] = Format(id, params, code)
2194
2195 def expandCpuSymbolsToDict(self, template):
2196 '''Expand template with CPU-specific references into a
2197 dictionary with an entry for each CPU model name. The entry
2198 key is the model name and the corresponding value is the
2199 template with the CPU-specific refs substituted for that
2200 model.'''
2201
2202 # Protect '%'s that don't go with CPU-specific terms
2203 t = re.sub(r'%(?!\(CPU_)', '%%', template)
2204 result = {}
2205 for cpu in self.cpuModels:
2206 result[cpu.name] = t % cpu.strings
2207 return result
2208
2209 def expandCpuSymbolsToString(self, template):
2210 '''*If* the template has CPU-specific references, return a
2211 single string containing a copy of the template for each CPU
2212 model with the corresponding values substituted in. If the
2213 template has no CPU-specific references, it is returned
2214 unmodified.'''
2215
2216 if template.find('%(CPU_') != -1:
2217 return reduce(lambda x,y: x+y,
2218 self.expandCpuSymbolsToDict(template).values())
2219 else:
2220 return template
2221
2222 def protectCpuSymbols(self, template):
2223 '''Protect CPU-specific references by doubling the
2224 corresponding '%'s (in preparation for substituting a different
2225 set of references into the template).'''
2226
2227 return re.sub(r'%(?=\(CPU_)', '%%', template)
2228
2229 def protectNonSubstPercents(self, s):
2230 '''Protect any non-dict-substitution '%'s in a format string
2231 (i.e. those not followed by '(')'''
2232
2233 return re.sub(r'%(?!\()', '%%', s)
2234
2235 def buildOperandNameMap(self, user_dict, lineno):
2236 operand_name = {}
2237 for op_name, val in user_dict.iteritems():
2238
2239 # Check if extra attributes have been specified.
2240 if len(val) > 9:
2241 error(lineno, 'error: too many attributes for operand "%s"' %
2242 base_cls_name)
2243
2244 # Pad val with None in case optional args are missing
2245 val += (None, None, None, None)
2246 base_cls_name, dflt_ext, reg_spec, flags, sort_pri, \
2247 read_code, write_code, read_predicate, write_predicate = val[:9]
2248
2249 # Canonical flag structure is a triple of lists, where each list
2250 # indicates the set of flags implied by this operand always, when
2251 # used as a source, and when used as a dest, respectively.
2252 # For simplicity this can be initialized using a variety of fairly
2253 # obvious shortcuts; we convert these to canonical form here.
2254 if not flags:
2255 # no flags specified (e.g., 'None')
2256 flags = ( [], [], [] )
2257 elif isinstance(flags, str):
2258 # a single flag: assumed to be unconditional
2259 flags = ( [ flags ], [], [] )
2260 elif isinstance(flags, list):
2261 # a list of flags: also assumed to be unconditional
2262 flags = ( flags, [], [] )
2263 elif isinstance(flags, tuple):
2264 # it's a tuple: it should be a triple,
2265 # but each item could be a single string or a list
2266 (uncond_flags, src_flags, dest_flags) = flags
2267 flags = (makeList(uncond_flags),
2268 makeList(src_flags), makeList(dest_flags))
2269
2270 # Accumulate attributes of new operand class in tmp_dict
2271 tmp_dict = {}
2272 attrList = ['reg_spec', 'flags', 'sort_pri',
2273 'read_code', 'write_code',
2274 'read_predicate', 'write_predicate']
2275 if dflt_ext:
2276 dflt_ctype = self.operandTypeMap[dflt_ext]
2277 attrList.extend(['dflt_ctype', 'dflt_ext'])
2278 for attr in attrList:
2279 tmp_dict[attr] = eval(attr)
2280 tmp_dict['base_name'] = op_name
2281
2282 # New class name will be e.g. "IntReg_Ra"
2283 cls_name = base_cls_name + '_' + op_name
2284 # Evaluate string arg to get class object. Note that the
2285 # actual base class for "IntReg" is "IntRegOperand", i.e. we
2286 # have to append "Operand".
2287 try:
2288 base_cls = eval(base_cls_name + 'Operand')
2289 except NameError:
2290 error(lineno,
2291 'error: unknown operand base class "%s"' % base_cls_name)
2292 # The following statement creates a new class called
2293 # <cls_name> as a subclass of <base_cls> with the attributes
2294 # in tmp_dict, just as if we evaluated a class declaration.
2295 operand_name[op_name] = type(cls_name, (base_cls,), tmp_dict)
2296
2297 self.operandNameMap = operand_name
2298
2299 # Define operand variables.
2300 operands = user_dict.keys()
2301 extensions = self.operandTypeMap.keys()
2302
2303 operandsREString = r'''
2304 (?<!\w) # neg. lookbehind assertion: prevent partial matches
2305 ((%s)(?:_(%s))?) # match: operand with optional '_' then suffix
2306 (?!\w) # neg. lookahead assertion: prevent partial matches
2307 ''' % (string.join(operands, '|'), string.join(extensions, '|'))
2308
2309 self.operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
2310
2311 # Same as operandsREString, but extension is mandatory, and only two
2312 # groups are returned (base and ext, not full name as above).
2313 # Used for subtituting '_' for '.' to make C++ identifiers.
2314 operandsWithExtREString = r'(?<!\w)(%s)_(%s)(?!\w)' \
2315 % (string.join(operands, '|'), string.join(extensions, '|'))
2316
2317 self.operandsWithExtRE = \
2318 re.compile(operandsWithExtREString, re.MULTILINE)
2319
2320 def substMungedOpNames(self, code):
2321 '''Munge operand names in code string to make legal C++
2322 variable names. This means getting rid of the type extension
2323 if any. Will match base_name attribute of Operand object.)'''
2324 return self.operandsWithExtRE.sub(r'\1', code)
2325
2326 def mungeSnippet(self, s):
2327 '''Fix up code snippets for final substitution in templates.'''
2328 if isinstance(s, str):
2329 return self.substMungedOpNames(substBitOps(s))
2330 else:
2331 return s
2332
2333 def open(self, name, bare=False):
2334 '''Open the output file for writing and include scary warning.'''
2335 filename = os.path.join(self.output_dir, name)
2336 f = open(filename, 'w')
2337 if f:
2338 if not bare:
2339 f.write(ISAParser.scaremonger_template % self)
2340 return f
2341
2342 def update(self, file, contents):
2343 '''Update the output file only. Scons should handle the case when
2344 the new contents are unchanged using its built-in hash feature.'''
2345 f = self.open(file)
2346 f.write(contents)
2347 f.close()
2348
2349 # This regular expression matches '##include' directives
2350 includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[^"]*)".*$',
2351 re.MULTILINE)
2352
2353 def replace_include(self, matchobj, dirname):
2354 """Function to replace a matched '##include' directive with the
2355 contents of the specified file (with nested ##includes
2356 replaced recursively). 'matchobj' is an re match object
2357 (from a match of includeRE) and 'dirname' is the directory
2358 relative to which the file path should be resolved."""
2359
2360 fname = matchobj.group('filename')
2361 full_fname = os.path.normpath(os.path.join(dirname, fname))
2362 contents = '##newfile "%s"\n%s\n##endfile\n' % \
2363 (full_fname, self.read_and_flatten(full_fname))
2364 return contents
2365
2366 def read_and_flatten(self, filename):
2367 """Read a file and recursively flatten nested '##include' files."""
2368
2369 current_dir = os.path.dirname(filename)
2370 try:
2371 contents = open(filename).read()
2372 except IOError:
2373 error('Error including file "%s"' % filename)
2374
2375 self.fileNameStack.push(LineTracker(filename))
2376
2377 # Find any includes and include them
2378 def replace(matchobj):
2379 return self.replace_include(matchobj, current_dir)
2380 contents = self.includeRE.sub(replace, contents)
2381
2382 self.fileNameStack.pop()
2383 return contents
2384
2385 AlreadyGenerated = {}
2386
2387 def _parse_isa_desc(self, isa_desc_file):
2388 '''Read in and parse the ISA description.'''
2389
2390 # The build system can end up running the ISA parser twice: once to
2391 # finalize the build dependencies, and then to actually generate
2392 # the files it expects (in src/arch/$ARCH/generated). This code
2393 # doesn't do anything different either time, however; the SCons
2394 # invocations just expect different things. Since this code runs
2395 # within SCons, we can just remember that we've already run and
2396 # not perform a completely unnecessary run, since the ISA parser's
2397 # effect is idempotent.
2398 if isa_desc_file in ISAParser.AlreadyGenerated:
2399 return
2400
2401 # grab the last three path components of isa_desc_file
2402 self.filename = '/'.join(isa_desc_file.split('/')[-3:])
2403
2404 # Read file and (recursively) all included files into a string.
2405 # PLY requires that the input be in a single string so we have to
2406 # do this up front.
2407 isa_desc = self.read_and_flatten(isa_desc_file)
2408
2409 # Initialize lineno tracker
2410 self.lex.lineno = LineTracker(isa_desc_file)
2411
2412 # Parse.
2413 self.parse_string(isa_desc)
2414
2415 ISAParser.AlreadyGenerated[isa_desc_file] = None
2416
2417 def parse_isa_desc(self, *args, **kwargs):
2418 try:
2419 self._parse_isa_desc(*args, **kwargs)
2420 except ISAParserError, e:
2421 print backtrace(self.fileNameStack)
2422 print "At %s:" % e.lineno
2423 print e
2424 sys.exit(1)
2425
2426# Called as script: get args from command line.
2427# Args are: <isa desc file> <output dir>
2428if __name__ == '__main__':
2429 ISAParser(sys.argv[2]).parse_isa_desc(sys.argv[1])
795
796 def makeRead(self, predRead):
797 if self.read_code != None:
798 return self.buildReadCode()
799 return ''
800
801 def makeWrite(self, predWrite):
802 if self.write_code != None:
803 return self.buildWriteCode()
804 return ''
805
806class PCStateOperand(Operand):
807 def makeConstructor(self, predRead, predWrite):
808 return ''
809
810 def makeRead(self, predRead):
811 if self.reg_spec:
812 # A component of the PC state.
813 return '%s = __parserAutoPCState.%s();\n' % \
814 (self.base_name, self.reg_spec)
815 else:
816 # The whole PC state itself.
817 return '%s = xc->pcState();\n' % self.base_name
818
819 def makeWrite(self, predWrite):
820 if self.reg_spec:
821 # A component of the PC state.
822 return '__parserAutoPCState.%s(%s);\n' % \
823 (self.reg_spec, self.base_name)
824 else:
825 # The whole PC state itself.
826 return 'xc->pcState(%s);\n' % self.base_name
827
828 def makeDecl(self):
829 ctype = 'TheISA::PCState'
830 if self.isPCPart():
831 ctype = self.ctype
832 # Note that initializations in the declarations are solely
833 # to avoid 'uninitialized variable' errors from the compiler.
834 return '%s %s = 0;\n' % (ctype, self.base_name)
835
836 def isPCState(self):
837 return 1
838
839class OperandList(object):
840 '''Find all the operands in the given code block. Returns an operand
841 descriptor list (instance of class OperandList).'''
842 def __init__(self, parser, code):
843 self.items = []
844 self.bases = {}
845 # delete strings and comments so we don't match on operands inside
846 for regEx in (stringRE, commentRE):
847 code = regEx.sub('', code)
848 # search for operands
849 next_pos = 0
850 while 1:
851 match = parser.operandsRE.search(code, next_pos)
852 if not match:
853 # no more matches: we're done
854 break
855 op = match.groups()
856 # regexp groups are operand full name, base, and extension
857 (op_full, op_base, op_ext) = op
858 # if the token following the operand is an assignment, this is
859 # a destination (LHS), else it's a source (RHS)
860 is_dest = (assignRE.match(code, match.end()) != None)
861 is_src = not is_dest
862 # see if we've already seen this one
863 op_desc = self.find_base(op_base)
864 if op_desc:
865 if op_desc.ext != op_ext:
866 error('Inconsistent extensions for operand %s' % \
867 op_base)
868 op_desc.is_src = op_desc.is_src or is_src
869 op_desc.is_dest = op_desc.is_dest or is_dest
870 else:
871 # new operand: create new descriptor
872 op_desc = parser.operandNameMap[op_base](parser,
873 op_full, op_ext, is_src, is_dest)
874 self.append(op_desc)
875 # start next search after end of current match
876 next_pos = match.end()
877 self.sort()
878 # enumerate source & dest register operands... used in building
879 # constructor later
880 self.numSrcRegs = 0
881 self.numDestRegs = 0
882 self.numFPDestRegs = 0
883 self.numIntDestRegs = 0
884 self.numCCDestRegs = 0
885 self.numMiscDestRegs = 0
886 self.memOperand = None
887
888 # Flags to keep track if one or more operands are to be read/written
889 # conditionally.
890 self.predRead = False
891 self.predWrite = False
892
893 for op_desc in self.items:
894 if op_desc.isReg():
895 if op_desc.is_src:
896 op_desc.src_reg_idx = self.numSrcRegs
897 self.numSrcRegs += 1
898 if op_desc.is_dest:
899 op_desc.dest_reg_idx = self.numDestRegs
900 self.numDestRegs += 1
901 if op_desc.isFloatReg():
902 self.numFPDestRegs += 1
903 elif op_desc.isIntReg():
904 self.numIntDestRegs += 1
905 elif op_desc.isCCReg():
906 self.numCCDestRegs += 1
907 elif op_desc.isControlReg():
908 self.numMiscDestRegs += 1
909 elif op_desc.isMem():
910 if self.memOperand:
911 error("Code block has more than one memory operand.")
912 self.memOperand = op_desc
913
914 # Check if this operand has read/write predication. If true, then
915 # the microop will dynamically index source/dest registers.
916 self.predRead = self.predRead or op_desc.hasReadPred()
917 self.predWrite = self.predWrite or op_desc.hasWritePred()
918
919 if parser.maxInstSrcRegs < self.numSrcRegs:
920 parser.maxInstSrcRegs = self.numSrcRegs
921 if parser.maxInstDestRegs < self.numDestRegs:
922 parser.maxInstDestRegs = self.numDestRegs
923 if parser.maxMiscDestRegs < self.numMiscDestRegs:
924 parser.maxMiscDestRegs = self.numMiscDestRegs
925
926 # now make a final pass to finalize op_desc fields that may depend
927 # on the register enumeration
928 for op_desc in self.items:
929 op_desc.finalize(self.predRead, self.predWrite)
930
931 def __len__(self):
932 return len(self.items)
933
934 def __getitem__(self, index):
935 return self.items[index]
936
937 def append(self, op_desc):
938 self.items.append(op_desc)
939 self.bases[op_desc.base_name] = op_desc
940
941 def find_base(self, base_name):
942 # like self.bases[base_name], but returns None if not found
943 # (rather than raising exception)
944 return self.bases.get(base_name)
945
946 # internal helper function for concat[Some]Attr{Strings|Lists}
947 def __internalConcatAttrs(self, attr_name, filter, result):
948 for op_desc in self.items:
949 if filter(op_desc):
950 result += getattr(op_desc, attr_name)
951 return result
952
953 # return a single string that is the concatenation of the (string)
954 # values of the specified attribute for all operands
955 def concatAttrStrings(self, attr_name):
956 return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
957
958 # like concatAttrStrings, but only include the values for the operands
959 # for which the provided filter function returns true
960 def concatSomeAttrStrings(self, filter, attr_name):
961 return self.__internalConcatAttrs(attr_name, filter, '')
962
963 # return a single list that is the concatenation of the (list)
964 # values of the specified attribute for all operands
965 def concatAttrLists(self, attr_name):
966 return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
967
968 # like concatAttrLists, but only include the values for the operands
969 # for which the provided filter function returns true
970 def concatSomeAttrLists(self, filter, attr_name):
971 return self.__internalConcatAttrs(attr_name, filter, [])
972
973 def sort(self):
974 self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
975
976class SubOperandList(OperandList):
977 '''Find all the operands in the given code block. Returns an operand
978 descriptor list (instance of class OperandList).'''
979 def __init__(self, parser, code, master_list):
980 self.items = []
981 self.bases = {}
982 # delete strings and comments so we don't match on operands inside
983 for regEx in (stringRE, commentRE):
984 code = regEx.sub('', code)
985 # search for operands
986 next_pos = 0
987 while 1:
988 match = parser.operandsRE.search(code, next_pos)
989 if not match:
990 # no more matches: we're done
991 break
992 op = match.groups()
993 # regexp groups are operand full name, base, and extension
994 (op_full, op_base, op_ext) = op
995 # find this op in the master list
996 op_desc = master_list.find_base(op_base)
997 if not op_desc:
998 error('Found operand %s which is not in the master list!'
999 % op_base)
1000 else:
1001 # See if we've already found this operand
1002 op_desc = self.find_base(op_base)
1003 if not op_desc:
1004 # if not, add a reference to it to this sub list
1005 self.append(master_list.bases[op_base])
1006
1007 # start next search after end of current match
1008 next_pos = match.end()
1009 self.sort()
1010 self.memOperand = None
1011 # Whether the whole PC needs to be read so parts of it can be accessed
1012 self.readPC = False
1013 # Whether the whole PC needs to be written after parts of it were
1014 # changed
1015 self.setPC = False
1016 # Whether this instruction manipulates the whole PC or parts of it.
1017 # Mixing the two is a bad idea and flagged as an error.
1018 self.pcPart = None
1019
1020 # Flags to keep track if one or more operands are to be read/written
1021 # conditionally.
1022 self.predRead = False
1023 self.predWrite = False
1024
1025 for op_desc in self.items:
1026 if op_desc.isPCPart():
1027 self.readPC = True
1028 if op_desc.is_dest:
1029 self.setPC = True
1030
1031 if op_desc.isPCState():
1032 if self.pcPart is not None:
1033 if self.pcPart and not op_desc.isPCPart() or \
1034 not self.pcPart and op_desc.isPCPart():
1035 error("Mixed whole and partial PC state operands.")
1036 self.pcPart = op_desc.isPCPart()
1037
1038 if op_desc.isMem():
1039 if self.memOperand:
1040 error("Code block has more than one memory operand.")
1041 self.memOperand = op_desc
1042
1043 # Check if this operand has read/write predication. If true, then
1044 # the microop will dynamically index source/dest registers.
1045 self.predRead = self.predRead or op_desc.hasReadPred()
1046 self.predWrite = self.predWrite or op_desc.hasWritePred()
1047
1048# Regular expression object to match C++ strings
1049stringRE = re.compile(r'"([^"\\]|\\.)*"')
1050
1051# Regular expression object to match C++ comments
1052# (used in findOperands())
1053commentRE = re.compile(r'(^)?[^\S\n]*/(?:\*(.*?)\*/[^\S\n]*|/[^\n]*)($)?',
1054 re.DOTALL | re.MULTILINE)
1055
1056# Regular expression object to match assignment statements
1057# (used in findOperands())
1058assignRE = re.compile(r'\s*=(?!=)', re.MULTILINE)
1059
1060def makeFlagConstructor(flag_list):
1061 if len(flag_list) == 0:
1062 return ''
1063 # filter out repeated flags
1064 flag_list.sort()
1065 i = 1
1066 while i < len(flag_list):
1067 if flag_list[i] == flag_list[i-1]:
1068 del flag_list[i]
1069 else:
1070 i += 1
1071 pre = '\n\tflags['
1072 post = '] = true;'
1073 code = pre + string.join(flag_list, post + pre) + post
1074 return code
1075
1076# Assume all instruction flags are of the form 'IsFoo'
1077instFlagRE = re.compile(r'Is.*')
1078
1079# OpClass constants end in 'Op' except No_OpClass
1080opClassRE = re.compile(r'.*Op|No_OpClass')
1081
1082class InstObjParams(object):
1083 def __init__(self, parser, mnem, class_name, base_class = '',
1084 snippets = {}, opt_args = []):
1085 self.mnemonic = mnem
1086 self.class_name = class_name
1087 self.base_class = base_class
1088 if not isinstance(snippets, dict):
1089 snippets = {'code' : snippets}
1090 compositeCode = ' '.join(map(str, snippets.values()))
1091 self.snippets = snippets
1092
1093 self.operands = OperandList(parser, compositeCode)
1094
1095 # The header of the constructor declares the variables to be used
1096 # in the body of the constructor.
1097 header = ''
1098 header += '\n\t_numSrcRegs = 0;'
1099 header += '\n\t_numDestRegs = 0;'
1100 header += '\n\t_numFPDestRegs = 0;'
1101 header += '\n\t_numIntDestRegs = 0;'
1102 header += '\n\t_numCCDestRegs = 0;'
1103
1104 self.constructor = header + \
1105 self.operands.concatAttrStrings('constructor')
1106
1107 self.flags = self.operands.concatAttrLists('flags')
1108
1109 self.op_class = None
1110
1111 # Optional arguments are assumed to be either StaticInst flags
1112 # or an OpClass value. To avoid having to import a complete
1113 # list of these values to match against, we do it ad-hoc
1114 # with regexps.
1115 for oa in opt_args:
1116 if instFlagRE.match(oa):
1117 self.flags.append(oa)
1118 elif opClassRE.match(oa):
1119 self.op_class = oa
1120 else:
1121 error('InstObjParams: optional arg "%s" not recognized '
1122 'as StaticInst::Flag or OpClass.' % oa)
1123
1124 # Make a basic guess on the operand class if not set.
1125 # These are good enough for most cases.
1126 if not self.op_class:
1127 if 'IsStore' in self.flags:
1128 self.op_class = 'MemWriteOp'
1129 elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
1130 self.op_class = 'MemReadOp'
1131 elif 'IsFloating' in self.flags:
1132 self.op_class = 'FloatAddOp'
1133 else:
1134 self.op_class = 'IntAluOp'
1135
1136 # add flag initialization to contructor here to include
1137 # any flags added via opt_args
1138 self.constructor += makeFlagConstructor(self.flags)
1139
1140 # if 'IsFloating' is set, add call to the FP enable check
1141 # function (which should be provided by isa_desc via a declare)
1142 if 'IsFloating' in self.flags:
1143 self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
1144 else:
1145 self.fp_enable_check = ''
1146
1147##############
1148# Stack: a simple stack object. Used for both formats (formatStack)
1149# and default cases (defaultStack). Simply wraps a list to give more
1150# stack-like syntax and enable initialization with an argument list
1151# (as opposed to an argument that's a list).
1152
1153class Stack(list):
1154 def __init__(self, *items):
1155 list.__init__(self, items)
1156
1157 def push(self, item):
1158 self.append(item);
1159
1160 def top(self):
1161 return self[-1]
1162
1163# Format a file include stack backtrace as a string
1164def backtrace(filename_stack):
1165 fmt = "In file included from %s:"
1166 return "\n".join([fmt % f for f in filename_stack])
1167
1168
1169#######################
1170#
1171# LineTracker: track filenames along with line numbers in PLY lineno fields
1172# PLY explicitly doesn't do anything with 'lineno' except propagate
1173# it. This class lets us tie filenames with the line numbers with a
1174# minimum of disruption to existing increment code.
1175#
1176
1177class LineTracker(object):
1178 def __init__(self, filename, lineno=1):
1179 self.filename = filename
1180 self.lineno = lineno
1181
1182 # Overload '+=' for increments. We need to create a new object on
1183 # each update else every token ends up referencing the same
1184 # constantly incrementing instance.
1185 def __iadd__(self, incr):
1186 return LineTracker(self.filename, self.lineno + incr)
1187
1188 def __str__(self):
1189 return "%s:%d" % (self.filename, self.lineno)
1190
1191 # In case there are places where someone really expects a number
1192 def __int__(self):
1193 return self.lineno
1194
1195
1196#######################
1197#
1198# ISA Parser
1199# parses ISA DSL and emits C++ headers and source
1200#
1201
1202class ISAParser(Grammar):
1203 class CpuModel(object):
1204 def __init__(self, name, filename, includes, strings):
1205 self.name = name
1206 self.filename = filename
1207 self.includes = includes
1208 self.strings = strings
1209
1210 def __init__(self, output_dir):
1211 super(ISAParser, self).__init__()
1212 self.output_dir = output_dir
1213
1214 self.filename = None # for output file watermarking/scaremongering
1215
1216 self.cpuModels = [
1217 ISAParser.CpuModel('ExecContext',
1218 'generic_cpu_exec.cc',
1219 '#include "cpu/exec_context.hh"',
1220 { "CPU_exec_context" : "ExecContext" }),
1221 ]
1222
1223 # variable to hold templates
1224 self.templateMap = {}
1225
1226 # This dictionary maps format name strings to Format objects.
1227 self.formatMap = {}
1228
1229 # Track open files and, if applicable, how many chunks it has been
1230 # split into so far.
1231 self.files = {}
1232 self.splits = {}
1233
1234 # isa_name / namespace identifier from namespace declaration.
1235 # before the namespace declaration, None.
1236 self.isa_name = None
1237 self.namespace = None
1238
1239 # The format stack.
1240 self.formatStack = Stack(NoFormat())
1241
1242 # The default case stack.
1243 self.defaultStack = Stack(None)
1244
1245 # Stack that tracks current file and line number. Each
1246 # element is a tuple (filename, lineno) that records the
1247 # *current* filename and the line number in the *previous*
1248 # file where it was included.
1249 self.fileNameStack = Stack()
1250
1251 symbols = ('makeList', 're', 'string')
1252 self.exportContext = dict([(s, eval(s)) for s in symbols])
1253
1254 self.maxInstSrcRegs = 0
1255 self.maxInstDestRegs = 0
1256 self.maxMiscDestRegs = 0
1257
1258 def __getitem__(self, i): # Allow object (self) to be
1259 return getattr(self, i) # passed to %-substitutions
1260
1261 # Change the file suffix of a base filename:
1262 # (e.g.) decoder.cc -> decoder-g.cc.inc for 'global' outputs
1263 def suffixize(self, s, sec):
1264 extn = re.compile('(\.[^\.]+)$') # isolate extension
1265 if self.namespace:
1266 return extn.sub(r'-ns\1.inc', s) # insert some text on either side
1267 else:
1268 return extn.sub(r'-g\1.inc', s)
1269
1270 # Get the file object for emitting code into the specified section
1271 # (header, decoder, exec, decode_block).
1272 def get_file(self, section):
1273 if section == 'decode_block':
1274 filename = 'decode-method.cc.inc'
1275 else:
1276 if section == 'header':
1277 file = 'decoder.hh'
1278 else:
1279 file = '%s.cc' % section
1280 filename = self.suffixize(file, section)
1281 try:
1282 return self.files[filename]
1283 except KeyError: pass
1284
1285 f = self.open(filename)
1286 self.files[filename] = f
1287
1288 # The splittable files are the ones with many independent
1289 # per-instruction functions - the decoder's instruction constructors
1290 # and the instruction execution (execute()) methods. These both have
1291 # the suffix -ns.cc.inc, meaning they are within the namespace part
1292 # of the ISA, contain object-emitting C++ source, and are included
1293 # into other top-level files. These are the files that need special
1294 # #define's to allow parts of them to be compiled separately. Rather
1295 # than splitting the emissions into separate files, the monolithic
1296 # output of the ISA parser is maintained, but the value (or lack
1297 # thereof) of the __SPLIT definition during C preprocessing will
1298 # select the different chunks. If no 'split' directives are used,
1299 # the cpp emissions have no effect.
1300 if re.search('-ns.cc.inc$', filename):
1301 print >>f, '#if !defined(__SPLIT) || (__SPLIT == 1)'
1302 self.splits[f] = 1
1303 # ensure requisite #include's
1304 elif filename in ['decoder-g.cc.inc', 'exec-g.cc.inc']:
1305 print >>f, '#include "decoder.hh"'
1306 elif filename == 'decoder-g.hh.inc':
1307 print >>f, '#include "base/bitfield.hh"'
1308
1309 return f
1310
1311 # Weave together the parts of the different output sections by
1312 # #include'ing them into some very short top-level .cc/.hh files.
1313 # These small files make it much clearer how this tool works, since
1314 # you directly see the chunks emitted as files that are #include'd.
1315 def write_top_level_files(self):
1316 dep = self.open('inc.d', bare=True)
1317
1318 # decoder header - everything depends on this
1319 file = 'decoder.hh'
1320 with self.open(file) as f:
1321 inc = []
1322
1323 fn = 'decoder-g.hh.inc'
1324 assert(fn in self.files)
1325 f.write('#include "%s"\n' % fn)
1326 inc.append(fn)
1327
1328 fn = 'decoder-ns.hh.inc'
1329 assert(fn in self.files)
1330 f.write('namespace %s {\n#include "%s"\n}\n'
1331 % (self.namespace, fn))
1332 inc.append(fn)
1333
1334 print >>dep, file+':', ' '.join(inc)
1335
1336 # decoder method - cannot be split
1337 file = 'decoder.cc'
1338 with self.open(file) as f:
1339 inc = []
1340
1341 fn = 'decoder-g.cc.inc'
1342 assert(fn in self.files)
1343 f.write('#include "%s"\n' % fn)
1344 inc.append(fn)
1345
1346 fn = 'decode-method.cc.inc'
1347 # is guaranteed to have been written for parse to complete
1348 f.write('#include "%s"\n' % fn)
1349 inc.append(fn)
1350
1351 inc.append("decoder.hh")
1352 print >>dep, file+':', ' '.join(inc)
1353
1354 extn = re.compile('(\.[^\.]+)$')
1355
1356 # instruction constructors
1357 splits = self.splits[self.get_file('decoder')]
1358 file_ = 'inst-constrs.cc'
1359 for i in range(1, splits+1):
1360 if splits > 1:
1361 file = extn.sub(r'-%d\1' % i, file_)
1362 else:
1363 file = file_
1364 with self.open(file) as f:
1365 inc = []
1366
1367 fn = 'decoder-g.cc.inc'
1368 assert(fn in self.files)
1369 f.write('#include "%s"\n' % fn)
1370 inc.append(fn)
1371
1372 fn = 'decoder-ns.cc.inc'
1373 assert(fn in self.files)
1374 print >>f, 'namespace %s {' % self.namespace
1375 if splits > 1:
1376 print >>f, '#define __SPLIT %u' % i
1377 print >>f, '#include "%s"' % fn
1378 print >>f, '}'
1379 inc.append(fn)
1380
1381 inc.append("decoder.hh")
1382 print >>dep, file+':', ' '.join(inc)
1383
1384 # instruction execution per-CPU model
1385 splits = self.splits[self.get_file('exec')]
1386 for cpu in self.cpuModels:
1387 for i in range(1, splits+1):
1388 if splits > 1:
1389 file = extn.sub(r'_%d\1' % i, cpu.filename)
1390 else:
1391 file = cpu.filename
1392 with self.open(file) as f:
1393 inc = []
1394
1395 fn = 'exec-g.cc.inc'
1396 assert(fn in self.files)
1397 f.write('#include "%s"\n' % fn)
1398 inc.append(fn)
1399
1400 f.write(cpu.includes+"\n")
1401
1402 fn = 'exec-ns.cc.inc'
1403 assert(fn in self.files)
1404 print >>f, 'namespace %s {' % self.namespace
1405 print >>f, '#define CPU_EXEC_CONTEXT %s' \
1406 % cpu.strings['CPU_exec_context']
1407 if splits > 1:
1408 print >>f, '#define __SPLIT %u' % i
1409 print >>f, '#include "%s"' % fn
1410 print >>f, '}'
1411 inc.append(fn)
1412
1413 inc.append("decoder.hh")
1414 print >>dep, file+':', ' '.join(inc)
1415
1416 # max_inst_regs.hh
1417 self.update('max_inst_regs.hh',
1418 '''namespace %(namespace)s {
1419 const int MaxInstSrcRegs = %(maxInstSrcRegs)d;
1420 const int MaxInstDestRegs = %(maxInstDestRegs)d;
1421 const int MaxMiscDestRegs = %(maxMiscDestRegs)d;\n}\n''' % self)
1422 print >>dep, 'max_inst_regs.hh:'
1423
1424 dep.close()
1425
1426
1427 scaremonger_template ='''// DO NOT EDIT
1428// This file was automatically generated from an ISA description:
1429// %(filename)s
1430
1431''';
1432
1433 #####################################################################
1434 #
1435 # Lexer
1436 #
1437 # The PLY lexer module takes two things as input:
1438 # - A list of token names (the string list 'tokens')
1439 # - A regular expression describing a match for each token. The
1440 # regexp for token FOO can be provided in two ways:
1441 # - as a string variable named t_FOO
1442 # - as the doc string for a function named t_FOO. In this case,
1443 # the function is also executed, allowing an action to be
1444 # associated with each token match.
1445 #
1446 #####################################################################
1447
1448 # Reserved words. These are listed separately as they are matched
1449 # using the same regexp as generic IDs, but distinguished in the
1450 # t_ID() function. The PLY documentation suggests this approach.
1451 reserved = (
1452 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
1453 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
1454 'OUTPUT', 'SIGNED', 'SPLIT', 'TEMPLATE'
1455 )
1456
1457 # List of tokens. The lex module requires this.
1458 tokens = reserved + (
1459 # identifier
1460 'ID',
1461
1462 # integer literal
1463 'INTLIT',
1464
1465 # string literal
1466 'STRLIT',
1467
1468 # code literal
1469 'CODELIT',
1470
1471 # ( ) [ ] { } < > , ; . : :: *
1472 'LPAREN', 'RPAREN',
1473 'LBRACKET', 'RBRACKET',
1474 'LBRACE', 'RBRACE',
1475 'LESS', 'GREATER', 'EQUALS',
1476 'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON',
1477 'ASTERISK',
1478
1479 # C preprocessor directives
1480 'CPPDIRECTIVE'
1481
1482 # The following are matched but never returned. commented out to
1483 # suppress PLY warning
1484 # newfile directive
1485 # 'NEWFILE',
1486
1487 # endfile directive
1488 # 'ENDFILE'
1489 )
1490
1491 # Regular expressions for token matching
1492 t_LPAREN = r'\('
1493 t_RPAREN = r'\)'
1494 t_LBRACKET = r'\['
1495 t_RBRACKET = r'\]'
1496 t_LBRACE = r'\{'
1497 t_RBRACE = r'\}'
1498 t_LESS = r'\<'
1499 t_GREATER = r'\>'
1500 t_EQUALS = r'='
1501 t_COMMA = r','
1502 t_SEMI = r';'
1503 t_DOT = r'\.'
1504 t_COLON = r':'
1505 t_DBLCOLON = r'::'
1506 t_ASTERISK = r'\*'
1507
1508 # Identifiers and reserved words
1509 reserved_map = { }
1510 for r in reserved:
1511 reserved_map[r.lower()] = r
1512
1513 def t_ID(self, t):
1514 r'[A-Za-z_]\w*'
1515 t.type = self.reserved_map.get(t.value, 'ID')
1516 return t
1517
1518 # Integer literal
1519 def t_INTLIT(self, t):
1520 r'-?(0x[\da-fA-F]+)|\d+'
1521 try:
1522 t.value = int(t.value,0)
1523 except ValueError:
1524 error(t.lexer.lineno, 'Integer value "%s" too large' % t.value)
1525 t.value = 0
1526 return t
1527
1528 # String literal. Note that these use only single quotes, and
1529 # can span multiple lines.
1530 def t_STRLIT(self, t):
1531 r"(?m)'([^'])+'"
1532 # strip off quotes
1533 t.value = t.value[1:-1]
1534 t.lexer.lineno += t.value.count('\n')
1535 return t
1536
1537
1538 # "Code literal"... like a string literal, but delimiters are
1539 # '{{' and '}}' so they get formatted nicely under emacs c-mode
1540 def t_CODELIT(self, t):
1541 r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
1542 # strip off {{ & }}
1543 t.value = t.value[2:-2]
1544 t.lexer.lineno += t.value.count('\n')
1545 return t
1546
1547 def t_CPPDIRECTIVE(self, t):
1548 r'^\#[^\#].*\n'
1549 t.lexer.lineno += t.value.count('\n')
1550 return t
1551
1552 def t_NEWFILE(self, t):
1553 r'^\#\#newfile\s+"[^"]*"\n'
1554 self.fileNameStack.push(t.lexer.lineno)
1555 t.lexer.lineno = LineTracker(t.value[11:-2])
1556
1557 def t_ENDFILE(self, t):
1558 r'^\#\#endfile\n'
1559 t.lexer.lineno = self.fileNameStack.pop()
1560
1561 #
1562 # The functions t_NEWLINE, t_ignore, and t_error are
1563 # special for the lex module.
1564 #
1565
1566 # Newlines
1567 def t_NEWLINE(self, t):
1568 r'\n+'
1569 t.lexer.lineno += t.value.count('\n')
1570
1571 # Comments
1572 def t_comment(self, t):
1573 r'//.*'
1574
1575 # Completely ignored characters
1576 t_ignore = ' \t\x0c'
1577
1578 # Error handler
1579 def t_error(self, t):
1580 error(t.lexer.lineno, "illegal character '%s'" % t.value[0])
1581 t.skip(1)
1582
1583 #####################################################################
1584 #
1585 # Parser
1586 #
1587 # Every function whose name starts with 'p_' defines a grammar
1588 # rule. The rule is encoded in the function's doc string, while
1589 # the function body provides the action taken when the rule is
1590 # matched. The argument to each function is a list of the values
1591 # of the rule's symbols: t[0] for the LHS, and t[1..n] for the
1592 # symbols on the RHS. For tokens, the value is copied from the
1593 # t.value attribute provided by the lexer. For non-terminals, the
1594 # value is assigned by the producing rule; i.e., the job of the
1595 # grammar rule function is to set the value for the non-terminal
1596 # on the LHS (by assigning to t[0]).
1597 #####################################################################
1598
1599 # The LHS of the first grammar rule is used as the start symbol
1600 # (in this case, 'specification'). Note that this rule enforces
1601 # that there will be exactly one namespace declaration, with 0 or
1602 # more global defs/decls before and after it. The defs & decls
1603 # before the namespace decl will be outside the namespace; those
1604 # after will be inside. The decoder function is always inside the
1605 # namespace.
1606 def p_specification(self, t):
1607 'specification : opt_defs_and_outputs top_level_decode_block'
1608
1609 for f in self.splits.iterkeys():
1610 f.write('\n#endif\n')
1611
1612 for f in self.files.itervalues(): # close ALL the files;
1613 f.close() # not doing so can cause compilation to fail
1614
1615 self.write_top_level_files()
1616
1617 t[0] = True
1618
1619 # 'opt_defs_and_outputs' is a possibly empty sequence of def and/or
1620 # output statements. Its productions do the hard work of eventually
1621 # instantiating a GenCode, which are generally emitted (written to disk)
1622 # as soon as possible, except for the decode_block, which has to be
1623 # accumulated into one large function of nested switch/case blocks.
1624 def p_opt_defs_and_outputs_0(self, t):
1625 'opt_defs_and_outputs : empty'
1626
1627 def p_opt_defs_and_outputs_1(self, t):
1628 'opt_defs_and_outputs : defs_and_outputs'
1629
1630 def p_defs_and_outputs_0(self, t):
1631 'defs_and_outputs : def_or_output'
1632
1633 def p_defs_and_outputs_1(self, t):
1634 'defs_and_outputs : defs_and_outputs def_or_output'
1635
1636 # The list of possible definition/output statements.
1637 # They are all processed as they are seen.
1638 def p_def_or_output(self, t):
1639 '''def_or_output : name_decl
1640 | def_format
1641 | def_bitfield
1642 | def_bitfield_struct
1643 | def_template
1644 | def_operand_types
1645 | def_operands
1646 | output
1647 | global_let
1648 | split'''
1649
1650 # Utility function used by both invocations of splitting - explicit
1651 # 'split' keyword and split() function inside "let {{ }};" blocks.
1652 def split(self, sec, write=False):
1653 assert(sec != 'header' and "header cannot be split")
1654
1655 f = self.get_file(sec)
1656 self.splits[f] += 1
1657 s = '\n#endif\n#if __SPLIT == %u\n' % self.splits[f]
1658 if write:
1659 f.write(s)
1660 else:
1661 return s
1662
1663 # split output file to reduce compilation time
1664 def p_split(self, t):
1665 'split : SPLIT output_type SEMI'
1666 assert(self.isa_name and "'split' not allowed before namespace decl")
1667
1668 self.split(t[2], True)
1669
1670 def p_output_type(self, t):
1671 '''output_type : DECODER
1672 | HEADER
1673 | EXEC'''
1674 t[0] = t[1]
1675
1676 # ISA name declaration looks like "namespace <foo>;"
1677 def p_name_decl(self, t):
1678 'name_decl : NAMESPACE ID SEMI'
1679 assert(self.isa_name == None and "Only 1 namespace decl permitted")
1680 self.isa_name = t[2]
1681 self.namespace = t[2] + 'Inst'
1682
1683 # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
1684 # directly to the appropriate output section.
1685
1686 # Massage output block by substituting in template definitions and
1687 # bit operators. We handle '%'s embedded in the string that don't
1688 # indicate template substitutions (or CPU-specific symbols, which
1689 # get handled in GenCode) by doubling them first so that the
1690 # format operation will reduce them back to single '%'s.
1691 def process_output(self, s):
1692 s = self.protectNonSubstPercents(s)
1693 # protects cpu-specific symbols too
1694 s = self.protectCpuSymbols(s)
1695 return substBitOps(s % self.templateMap)
1696
1697 def p_output(self, t):
1698 'output : OUTPUT output_type CODELIT SEMI'
1699 kwargs = { t[2]+'_output' : self.process_output(t[3]) }
1700 GenCode(self, **kwargs).emit()
1701
1702 # global let blocks 'let {{...}}' (Python code blocks) are
1703 # executed directly when seen. Note that these execute in a
1704 # special variable context 'exportContext' to prevent the code
1705 # from polluting this script's namespace.
1706 def p_global_let(self, t):
1707 'global_let : LET CODELIT SEMI'
1708 def _split(sec):
1709 return self.split(sec)
1710 self.updateExportContext()
1711 self.exportContext["header_output"] = ''
1712 self.exportContext["decoder_output"] = ''
1713 self.exportContext["exec_output"] = ''
1714 self.exportContext["decode_block"] = ''
1715 self.exportContext["split"] = _split
1716 split_setup = '''
1717def wrap(func):
1718 def split(sec):
1719 globals()[sec + '_output'] += func(sec)
1720 return split
1721split = wrap(split)
1722del wrap
1723'''
1724 # This tricky setup (immediately above) allows us to just write
1725 # (e.g.) "split('exec')" in the Python code and the split #ifdef's
1726 # will automatically be added to the exec_output variable. The inner
1727 # Python execution environment doesn't know about the split points,
1728 # so we carefully inject and wrap a closure that can retrieve the
1729 # next split's #define from the parser and add it to the current
1730 # emission-in-progress.
1731 try:
1732 exec split_setup+fixPythonIndentation(t[2]) in self.exportContext
1733 except Exception, exc:
1734 if debug:
1735 raise
1736 error(t.lineno(1), 'In global let block: %s' % exc)
1737 GenCode(self,
1738 header_output=self.exportContext["header_output"],
1739 decoder_output=self.exportContext["decoder_output"],
1740 exec_output=self.exportContext["exec_output"],
1741 decode_block=self.exportContext["decode_block"]).emit()
1742
1743 # Define the mapping from operand type extensions to C++ types and
1744 # bit widths (stored in operandTypeMap).
1745 def p_def_operand_types(self, t):
1746 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
1747 try:
1748 self.operandTypeMap = eval('{' + t[3] + '}')
1749 except Exception, exc:
1750 if debug:
1751 raise
1752 error(t.lineno(1),
1753 'In def operand_types: %s' % exc)
1754
1755 # Define the mapping from operand names to operand classes and
1756 # other traits. Stored in operandNameMap.
1757 def p_def_operands(self, t):
1758 'def_operands : DEF OPERANDS CODELIT SEMI'
1759 if not hasattr(self, 'operandTypeMap'):
1760 error(t.lineno(1),
1761 'error: operand types must be defined before operands')
1762 try:
1763 user_dict = eval('{' + t[3] + '}', self.exportContext)
1764 except Exception, exc:
1765 if debug:
1766 raise
1767 error(t.lineno(1), 'In def operands: %s' % exc)
1768 self.buildOperandNameMap(user_dict, t.lexer.lineno)
1769
1770 # A bitfield definition looks like:
1771 # 'def [signed] bitfield <ID> [<first>:<last>]'
1772 # This generates a preprocessor macro in the output file.
1773 def p_def_bitfield_0(self, t):
1774 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
1775 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
1776 if (t[2] == 'signed'):
1777 expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
1778 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1779 GenCode(self, header_output=hash_define).emit()
1780
1781 # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
1782 def p_def_bitfield_1(self, t):
1783 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
1784 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
1785 if (t[2] == 'signed'):
1786 expr = 'sext<%d>(%s)' % (1, expr)
1787 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1788 GenCode(self, header_output=hash_define).emit()
1789
1790 # alternate form for structure member: 'def bitfield <ID> <ID>'
1791 def p_def_bitfield_struct(self, t):
1792 'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI'
1793 if (t[2] != ''):
1794 error(t.lineno(1),
1795 'error: structure bitfields are always unsigned.')
1796 expr = 'machInst.%s' % t[5]
1797 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1798 GenCode(self, header_output=hash_define).emit()
1799
1800 def p_id_with_dot_0(self, t):
1801 'id_with_dot : ID'
1802 t[0] = t[1]
1803
1804 def p_id_with_dot_1(self, t):
1805 'id_with_dot : ID DOT id_with_dot'
1806 t[0] = t[1] + t[2] + t[3]
1807
1808 def p_opt_signed_0(self, t):
1809 'opt_signed : SIGNED'
1810 t[0] = t[1]
1811
1812 def p_opt_signed_1(self, t):
1813 'opt_signed : empty'
1814 t[0] = ''
1815
1816 def p_def_template(self, t):
1817 'def_template : DEF TEMPLATE ID CODELIT SEMI'
1818 if t[3] in self.templateMap:
1819 print "warning: template %s already defined" % t[3]
1820 self.templateMap[t[3]] = Template(self, t[4])
1821
1822 # An instruction format definition looks like
1823 # "def format <fmt>(<params>) {{...}};"
1824 def p_def_format(self, t):
1825 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
1826 (id, params, code) = (t[3], t[5], t[7])
1827 self.defFormat(id, params, code, t.lexer.lineno)
1828
1829 # The formal parameter list for an instruction format is a
1830 # possibly empty list of comma-separated parameters. Positional
1831 # (standard, non-keyword) parameters must come first, followed by
1832 # keyword parameters, followed by a '*foo' parameter that gets
1833 # excess positional arguments (as in Python). Each of these three
1834 # parameter categories is optional.
1835 #
1836 # Note that we do not support the '**foo' parameter for collecting
1837 # otherwise undefined keyword args. Otherwise the parameter list
1838 # is (I believe) identical to what is supported in Python.
1839 #
1840 # The param list generates a tuple, where the first element is a
1841 # list of the positional params and the second element is a dict
1842 # containing the keyword params.
1843 def p_param_list_0(self, t):
1844 'param_list : positional_param_list COMMA nonpositional_param_list'
1845 t[0] = t[1] + t[3]
1846
1847 def p_param_list_1(self, t):
1848 '''param_list : positional_param_list
1849 | nonpositional_param_list'''
1850 t[0] = t[1]
1851
1852 def p_positional_param_list_0(self, t):
1853 'positional_param_list : empty'
1854 t[0] = []
1855
1856 def p_positional_param_list_1(self, t):
1857 'positional_param_list : ID'
1858 t[0] = [t[1]]
1859
1860 def p_positional_param_list_2(self, t):
1861 'positional_param_list : positional_param_list COMMA ID'
1862 t[0] = t[1] + [t[3]]
1863
1864 def p_nonpositional_param_list_0(self, t):
1865 'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
1866 t[0] = t[1] + t[3]
1867
1868 def p_nonpositional_param_list_1(self, t):
1869 '''nonpositional_param_list : keyword_param_list
1870 | excess_args_param'''
1871 t[0] = t[1]
1872
1873 def p_keyword_param_list_0(self, t):
1874 'keyword_param_list : keyword_param'
1875 t[0] = [t[1]]
1876
1877 def p_keyword_param_list_1(self, t):
1878 'keyword_param_list : keyword_param_list COMMA keyword_param'
1879 t[0] = t[1] + [t[3]]
1880
1881 def p_keyword_param(self, t):
1882 'keyword_param : ID EQUALS expr'
1883 t[0] = t[1] + ' = ' + t[3].__repr__()
1884
1885 def p_excess_args_param(self, t):
1886 'excess_args_param : ASTERISK ID'
1887 # Just concatenate them: '*ID'. Wrap in list to be consistent
1888 # with positional_param_list and keyword_param_list.
1889 t[0] = [t[1] + t[2]]
1890
1891 # End of format definition-related rules.
1892 ##############
1893
1894 #
1895 # A decode block looks like:
1896 # decode <field1> [, <field2>]* [default <inst>] { ... }
1897 #
1898 def p_top_level_decode_block(self, t):
1899 'top_level_decode_block : decode_block'
1900 codeObj = t[1]
1901 codeObj.wrap_decode_block('''
1902StaticInstPtr
1903%(isa_name)s::Decoder::decodeInst(%(isa_name)s::ExtMachInst machInst)
1904{
1905 using namespace %(namespace)s;
1906''' % self, '}')
1907
1908 codeObj.emit()
1909
1910 def p_decode_block(self, t):
1911 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
1912 default_defaults = self.defaultStack.pop()
1913 codeObj = t[5]
1914 # use the "default defaults" only if there was no explicit
1915 # default statement in decode_stmt_list
1916 if not codeObj.has_decode_default:
1917 codeObj += default_defaults
1918 codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
1919 t[0] = codeObj
1920
1921 # The opt_default statement serves only to push the "default
1922 # defaults" onto defaultStack. This value will be used by nested
1923 # decode blocks, and used and popped off when the current
1924 # decode_block is processed (in p_decode_block() above).
1925 def p_opt_default_0(self, t):
1926 'opt_default : empty'
1927 # no default specified: reuse the one currently at the top of
1928 # the stack
1929 self.defaultStack.push(self.defaultStack.top())
1930 # no meaningful value returned
1931 t[0] = None
1932
1933 def p_opt_default_1(self, t):
1934 'opt_default : DEFAULT inst'
1935 # push the new default
1936 codeObj = t[2]
1937 codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
1938 self.defaultStack.push(codeObj)
1939 # no meaningful value returned
1940 t[0] = None
1941
1942 def p_decode_stmt_list_0(self, t):
1943 'decode_stmt_list : decode_stmt'
1944 t[0] = t[1]
1945
1946 def p_decode_stmt_list_1(self, t):
1947 'decode_stmt_list : decode_stmt decode_stmt_list'
1948 if (t[1].has_decode_default and t[2].has_decode_default):
1949 error(t.lineno(1), 'Two default cases in decode block')
1950 t[0] = t[1] + t[2]
1951
1952 #
1953 # Decode statement rules
1954 #
1955 # There are four types of statements allowed in a decode block:
1956 # 1. Format blocks 'format <foo> { ... }'
1957 # 2. Nested decode blocks
1958 # 3. Instruction definitions.
1959 # 4. C preprocessor directives.
1960
1961
1962 # Preprocessor directives found in a decode statement list are
1963 # passed through to the output, replicated to all of the output
1964 # code streams. This works well for ifdefs, so we can ifdef out
1965 # both the declarations and the decode cases generated by an
1966 # instruction definition. Handling them as part of the grammar
1967 # makes it easy to keep them in the right place with respect to
1968 # the code generated by the other statements.
1969 def p_decode_stmt_cpp(self, t):
1970 'decode_stmt : CPPDIRECTIVE'
1971 t[0] = GenCode(self, t[1], t[1], t[1], t[1])
1972
1973 # A format block 'format <foo> { ... }' sets the default
1974 # instruction format used to handle instruction definitions inside
1975 # the block. This format can be overridden by using an explicit
1976 # format on the instruction definition or with a nested format
1977 # block.
1978 def p_decode_stmt_format(self, t):
1979 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
1980 # The format will be pushed on the stack when 'push_format_id'
1981 # is processed (see below). Once the parser has recognized
1982 # the full production (though the right brace), we're done
1983 # with the format, so now we can pop it.
1984 self.formatStack.pop()
1985 t[0] = t[4]
1986
1987 # This rule exists so we can set the current format (& push the
1988 # stack) when we recognize the format name part of the format
1989 # block.
1990 def p_push_format_id(self, t):
1991 'push_format_id : ID'
1992 try:
1993 self.formatStack.push(self.formatMap[t[1]])
1994 t[0] = ('', '// format %s' % t[1])
1995 except KeyError:
1996 error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
1997
1998 # Nested decode block: if the value of the current field matches
1999 # the specified constant(s), do a nested decode on some other field.
2000 def p_decode_stmt_decode(self, t):
2001 'decode_stmt : case_list COLON decode_block'
2002 case_list = t[1]
2003 codeObj = t[3]
2004 # just wrap the decoding code from the block as a case in the
2005 # outer switch statement.
2006 codeObj.wrap_decode_block('\n%s\n' % ''.join(case_list))
2007 codeObj.has_decode_default = (case_list == ['default:'])
2008 t[0] = codeObj
2009
2010 # Instruction definition (finally!).
2011 def p_decode_stmt_inst(self, t):
2012 'decode_stmt : case_list COLON inst SEMI'
2013 case_list = t[1]
2014 codeObj = t[3]
2015 codeObj.wrap_decode_block('\n%s' % ''.join(case_list), 'break;\n')
2016 codeObj.has_decode_default = (case_list == ['default:'])
2017 t[0] = codeObj
2018
2019 # The constant list for a decode case label must be non-empty, and must
2020 # either be the keyword 'default', or made up of one or more
2021 # comma-separated integer literals or strings which evaluate to
2022 # constants when compiled as C++.
2023 def p_case_list_0(self, t):
2024 'case_list : DEFAULT'
2025 t[0] = ['default:']
2026
2027 def prep_int_lit_case_label(self, lit):
2028 if lit >= 2**32:
2029 return 'case ULL(%#x): ' % lit
2030 else:
2031 return 'case %#x: ' % lit
2032
2033 def prep_str_lit_case_label(self, lit):
2034 return 'case %s: ' % lit
2035
2036 def p_case_list_1(self, t):
2037 'case_list : INTLIT'
2038 t[0] = [self.prep_int_lit_case_label(t[1])]
2039
2040 def p_case_list_2(self, t):
2041 'case_list : STRLIT'
2042 t[0] = [self.prep_str_lit_case_label(t[1])]
2043
2044 def p_case_list_3(self, t):
2045 'case_list : case_list COMMA INTLIT'
2046 t[0] = t[1]
2047 t[0].append(self.prep_int_lit_case_label(t[3]))
2048
2049 def p_case_list_4(self, t):
2050 'case_list : case_list COMMA STRLIT'
2051 t[0] = t[1]
2052 t[0].append(self.prep_str_lit_case_label(t[3]))
2053
2054 # Define an instruction using the current instruction format
2055 # (specified by an enclosing format block).
2056 # "<mnemonic>(<args>)"
2057 def p_inst_0(self, t):
2058 'inst : ID LPAREN arg_list RPAREN'
2059 # Pass the ID and arg list to the current format class to deal with.
2060 currentFormat = self.formatStack.top()
2061 codeObj = currentFormat.defineInst(self, t[1], t[3], t.lexer.lineno)
2062 args = ','.join(map(str, t[3]))
2063 args = re.sub('(?m)^', '//', args)
2064 args = re.sub('^//', '', args)
2065 comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
2066 codeObj.prepend_all(comment)
2067 t[0] = codeObj
2068
2069 # Define an instruction using an explicitly specified format:
2070 # "<fmt>::<mnemonic>(<args>)"
2071 def p_inst_1(self, t):
2072 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
2073 try:
2074 format = self.formatMap[t[1]]
2075 except KeyError:
2076 error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
2077
2078 codeObj = format.defineInst(self, t[3], t[5], t.lexer.lineno)
2079 comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
2080 codeObj.prepend_all(comment)
2081 t[0] = codeObj
2082
2083 # The arg list generates a tuple, where the first element is a
2084 # list of the positional args and the second element is a dict
2085 # containing the keyword args.
2086 def p_arg_list_0(self, t):
2087 'arg_list : positional_arg_list COMMA keyword_arg_list'
2088 t[0] = ( t[1], t[3] )
2089
2090 def p_arg_list_1(self, t):
2091 'arg_list : positional_arg_list'
2092 t[0] = ( t[1], {} )
2093
2094 def p_arg_list_2(self, t):
2095 'arg_list : keyword_arg_list'
2096 t[0] = ( [], t[1] )
2097
2098 def p_positional_arg_list_0(self, t):
2099 'positional_arg_list : empty'
2100 t[0] = []
2101
2102 def p_positional_arg_list_1(self, t):
2103 'positional_arg_list : expr'
2104 t[0] = [t[1]]
2105
2106 def p_positional_arg_list_2(self, t):
2107 'positional_arg_list : positional_arg_list COMMA expr'
2108 t[0] = t[1] + [t[3]]
2109
2110 def p_keyword_arg_list_0(self, t):
2111 'keyword_arg_list : keyword_arg'
2112 t[0] = t[1]
2113
2114 def p_keyword_arg_list_1(self, t):
2115 'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
2116 t[0] = t[1]
2117 t[0].update(t[3])
2118
2119 def p_keyword_arg(self, t):
2120 'keyword_arg : ID EQUALS expr'
2121 t[0] = { t[1] : t[3] }
2122
2123 #
2124 # Basic expressions. These constitute the argument values of
2125 # "function calls" (i.e. instruction definitions in the decode
2126 # block) and default values for formal parameters of format
2127 # functions.
2128 #
2129 # Right now, these are either strings, integers, or (recursively)
2130 # lists of exprs (using Python square-bracket list syntax). Note
2131 # that bare identifiers are trated as string constants here (since
2132 # there isn't really a variable namespace to refer to).
2133 #
2134 def p_expr_0(self, t):
2135 '''expr : ID
2136 | INTLIT
2137 | STRLIT
2138 | CODELIT'''
2139 t[0] = t[1]
2140
2141 def p_expr_1(self, t):
2142 '''expr : LBRACKET list_expr RBRACKET'''
2143 t[0] = t[2]
2144
2145 def p_list_expr_0(self, t):
2146 'list_expr : expr'
2147 t[0] = [t[1]]
2148
2149 def p_list_expr_1(self, t):
2150 'list_expr : list_expr COMMA expr'
2151 t[0] = t[1] + [t[3]]
2152
2153 def p_list_expr_2(self, t):
2154 'list_expr : empty'
2155 t[0] = []
2156
2157 #
2158 # Empty production... use in other rules for readability.
2159 #
2160 def p_empty(self, t):
2161 'empty :'
2162 pass
2163
2164 # Parse error handler. Note that the argument here is the
2165 # offending *token*, not a grammar symbol (hence the need to use
2166 # t.value)
2167 def p_error(self, t):
2168 if t:
2169 error(t.lexer.lineno, "syntax error at '%s'" % t.value)
2170 else:
2171 error("unknown syntax error")
2172
2173 # END OF GRAMMAR RULES
2174
2175 def updateExportContext(self):
2176
2177 # create a continuation that allows us to grab the current parser
2178 def wrapInstObjParams(*args):
2179 return InstObjParams(self, *args)
2180 self.exportContext['InstObjParams'] = wrapInstObjParams
2181 self.exportContext.update(self.templateMap)
2182
2183 def defFormat(self, id, params, code, lineno):
2184 '''Define a new format'''
2185
2186 # make sure we haven't already defined this one
2187 if id in self.formatMap:
2188 error(lineno, 'format %s redefined.' % id)
2189
2190 # create new object and store in global map
2191 self.formatMap[id] = Format(id, params, code)
2192
2193 def expandCpuSymbolsToDict(self, template):
2194 '''Expand template with CPU-specific references into a
2195 dictionary with an entry for each CPU model name. The entry
2196 key is the model name and the corresponding value is the
2197 template with the CPU-specific refs substituted for that
2198 model.'''
2199
2200 # Protect '%'s that don't go with CPU-specific terms
2201 t = re.sub(r'%(?!\(CPU_)', '%%', template)
2202 result = {}
2203 for cpu in self.cpuModels:
2204 result[cpu.name] = t % cpu.strings
2205 return result
2206
2207 def expandCpuSymbolsToString(self, template):
2208 '''*If* the template has CPU-specific references, return a
2209 single string containing a copy of the template for each CPU
2210 model with the corresponding values substituted in. If the
2211 template has no CPU-specific references, it is returned
2212 unmodified.'''
2213
2214 if template.find('%(CPU_') != -1:
2215 return reduce(lambda x,y: x+y,
2216 self.expandCpuSymbolsToDict(template).values())
2217 else:
2218 return template
2219
2220 def protectCpuSymbols(self, template):
2221 '''Protect CPU-specific references by doubling the
2222 corresponding '%'s (in preparation for substituting a different
2223 set of references into the template).'''
2224
2225 return re.sub(r'%(?=\(CPU_)', '%%', template)
2226
2227 def protectNonSubstPercents(self, s):
2228 '''Protect any non-dict-substitution '%'s in a format string
2229 (i.e. those not followed by '(')'''
2230
2231 return re.sub(r'%(?!\()', '%%', s)
2232
2233 def buildOperandNameMap(self, user_dict, lineno):
2234 operand_name = {}
2235 for op_name, val in user_dict.iteritems():
2236
2237 # Check if extra attributes have been specified.
2238 if len(val) > 9:
2239 error(lineno, 'error: too many attributes for operand "%s"' %
2240 base_cls_name)
2241
2242 # Pad val with None in case optional args are missing
2243 val += (None, None, None, None)
2244 base_cls_name, dflt_ext, reg_spec, flags, sort_pri, \
2245 read_code, write_code, read_predicate, write_predicate = val[:9]
2246
2247 # Canonical flag structure is a triple of lists, where each list
2248 # indicates the set of flags implied by this operand always, when
2249 # used as a source, and when used as a dest, respectively.
2250 # For simplicity this can be initialized using a variety of fairly
2251 # obvious shortcuts; we convert these to canonical form here.
2252 if not flags:
2253 # no flags specified (e.g., 'None')
2254 flags = ( [], [], [] )
2255 elif isinstance(flags, str):
2256 # a single flag: assumed to be unconditional
2257 flags = ( [ flags ], [], [] )
2258 elif isinstance(flags, list):
2259 # a list of flags: also assumed to be unconditional
2260 flags = ( flags, [], [] )
2261 elif isinstance(flags, tuple):
2262 # it's a tuple: it should be a triple,
2263 # but each item could be a single string or a list
2264 (uncond_flags, src_flags, dest_flags) = flags
2265 flags = (makeList(uncond_flags),
2266 makeList(src_flags), makeList(dest_flags))
2267
2268 # Accumulate attributes of new operand class in tmp_dict
2269 tmp_dict = {}
2270 attrList = ['reg_spec', 'flags', 'sort_pri',
2271 'read_code', 'write_code',
2272 'read_predicate', 'write_predicate']
2273 if dflt_ext:
2274 dflt_ctype = self.operandTypeMap[dflt_ext]
2275 attrList.extend(['dflt_ctype', 'dflt_ext'])
2276 for attr in attrList:
2277 tmp_dict[attr] = eval(attr)
2278 tmp_dict['base_name'] = op_name
2279
2280 # New class name will be e.g. "IntReg_Ra"
2281 cls_name = base_cls_name + '_' + op_name
2282 # Evaluate string arg to get class object. Note that the
2283 # actual base class for "IntReg" is "IntRegOperand", i.e. we
2284 # have to append "Operand".
2285 try:
2286 base_cls = eval(base_cls_name + 'Operand')
2287 except NameError:
2288 error(lineno,
2289 'error: unknown operand base class "%s"' % base_cls_name)
2290 # The following statement creates a new class called
2291 # <cls_name> as a subclass of <base_cls> with the attributes
2292 # in tmp_dict, just as if we evaluated a class declaration.
2293 operand_name[op_name] = type(cls_name, (base_cls,), tmp_dict)
2294
2295 self.operandNameMap = operand_name
2296
2297 # Define operand variables.
2298 operands = user_dict.keys()
2299 extensions = self.operandTypeMap.keys()
2300
2301 operandsREString = r'''
2302 (?<!\w) # neg. lookbehind assertion: prevent partial matches
2303 ((%s)(?:_(%s))?) # match: operand with optional '_' then suffix
2304 (?!\w) # neg. lookahead assertion: prevent partial matches
2305 ''' % (string.join(operands, '|'), string.join(extensions, '|'))
2306
2307 self.operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
2308
2309 # Same as operandsREString, but extension is mandatory, and only two
2310 # groups are returned (base and ext, not full name as above).
2311 # Used for subtituting '_' for '.' to make C++ identifiers.
2312 operandsWithExtREString = r'(?<!\w)(%s)_(%s)(?!\w)' \
2313 % (string.join(operands, '|'), string.join(extensions, '|'))
2314
2315 self.operandsWithExtRE = \
2316 re.compile(operandsWithExtREString, re.MULTILINE)
2317
2318 def substMungedOpNames(self, code):
2319 '''Munge operand names in code string to make legal C++
2320 variable names. This means getting rid of the type extension
2321 if any. Will match base_name attribute of Operand object.)'''
2322 return self.operandsWithExtRE.sub(r'\1', code)
2323
2324 def mungeSnippet(self, s):
2325 '''Fix up code snippets for final substitution in templates.'''
2326 if isinstance(s, str):
2327 return self.substMungedOpNames(substBitOps(s))
2328 else:
2329 return s
2330
2331 def open(self, name, bare=False):
2332 '''Open the output file for writing and include scary warning.'''
2333 filename = os.path.join(self.output_dir, name)
2334 f = open(filename, 'w')
2335 if f:
2336 if not bare:
2337 f.write(ISAParser.scaremonger_template % self)
2338 return f
2339
2340 def update(self, file, contents):
2341 '''Update the output file only. Scons should handle the case when
2342 the new contents are unchanged using its built-in hash feature.'''
2343 f = self.open(file)
2344 f.write(contents)
2345 f.close()
2346
2347 # This regular expression matches '##include' directives
2348 includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[^"]*)".*$',
2349 re.MULTILINE)
2350
2351 def replace_include(self, matchobj, dirname):
2352 """Function to replace a matched '##include' directive with the
2353 contents of the specified file (with nested ##includes
2354 replaced recursively). 'matchobj' is an re match object
2355 (from a match of includeRE) and 'dirname' is the directory
2356 relative to which the file path should be resolved."""
2357
2358 fname = matchobj.group('filename')
2359 full_fname = os.path.normpath(os.path.join(dirname, fname))
2360 contents = '##newfile "%s"\n%s\n##endfile\n' % \
2361 (full_fname, self.read_and_flatten(full_fname))
2362 return contents
2363
2364 def read_and_flatten(self, filename):
2365 """Read a file and recursively flatten nested '##include' files."""
2366
2367 current_dir = os.path.dirname(filename)
2368 try:
2369 contents = open(filename).read()
2370 except IOError:
2371 error('Error including file "%s"' % filename)
2372
2373 self.fileNameStack.push(LineTracker(filename))
2374
2375 # Find any includes and include them
2376 def replace(matchobj):
2377 return self.replace_include(matchobj, current_dir)
2378 contents = self.includeRE.sub(replace, contents)
2379
2380 self.fileNameStack.pop()
2381 return contents
2382
2383 AlreadyGenerated = {}
2384
2385 def _parse_isa_desc(self, isa_desc_file):
2386 '''Read in and parse the ISA description.'''
2387
2388 # The build system can end up running the ISA parser twice: once to
2389 # finalize the build dependencies, and then to actually generate
2390 # the files it expects (in src/arch/$ARCH/generated). This code
2391 # doesn't do anything different either time, however; the SCons
2392 # invocations just expect different things. Since this code runs
2393 # within SCons, we can just remember that we've already run and
2394 # not perform a completely unnecessary run, since the ISA parser's
2395 # effect is idempotent.
2396 if isa_desc_file in ISAParser.AlreadyGenerated:
2397 return
2398
2399 # grab the last three path components of isa_desc_file
2400 self.filename = '/'.join(isa_desc_file.split('/')[-3:])
2401
2402 # Read file and (recursively) all included files into a string.
2403 # PLY requires that the input be in a single string so we have to
2404 # do this up front.
2405 isa_desc = self.read_and_flatten(isa_desc_file)
2406
2407 # Initialize lineno tracker
2408 self.lex.lineno = LineTracker(isa_desc_file)
2409
2410 # Parse.
2411 self.parse_string(isa_desc)
2412
2413 ISAParser.AlreadyGenerated[isa_desc_file] = None
2414
2415 def parse_isa_desc(self, *args, **kwargs):
2416 try:
2417 self._parse_isa_desc(*args, **kwargs)
2418 except ISAParserError, e:
2419 print backtrace(self.fileNameStack)
2420 print "At %s:" % e.lineno
2421 print e
2422 sys.exit(1)
2423
2424# Called as script: get args from command line.
2425# Args are: <isa desc file> <output dir>
2426if __name__ == '__main__':
2427 ISAParser(sys.argv[2]).parse_isa_desc(sys.argv[1])