isa_parser.py (10934:5af8f40d8f2c) isa_parser.py (10935:acd48ddd725f)
1# Copyright (c) 2014 ARM Limited
2# All rights reserved
3#
4# The license below extends only to copyright in the software and shall
5# not be construed as granting a license to any other intellectual
6# property including but not limited to intellectual property relating
7# to a hardware implementation of the functionality of the software
8# licensed hereunder. You may use the software subject to the license
9# terms below provided that you ensure that this notice is replicated
10# unmodified and in its entirety in all distributions of the software,
11# modified or unmodified, in source code or in binary form.
12#
13# Copyright (c) 2003-2005 The Regents of The University of Michigan
14# Copyright (c) 2013 Advanced Micro Devices, Inc.
15# All rights reserved.
16#
17# Redistribution and use in source and binary forms, with or without
18# modification, are permitted provided that the following conditions are
19# met: redistributions of source code must retain the above copyright
20# notice, this list of conditions and the following disclaimer;
21# redistributions in binary form must reproduce the above copyright
22# notice, this list of conditions and the following disclaimer in the
23# documentation and/or other materials provided with the distribution;
24# neither the name of the copyright holders nor the names of its
25# contributors may be used to endorse or promote products derived from
26# this software without specific prior written permission.
27#
28# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39#
40# Authors: Steve Reinhardt
41
42from __future__ import with_statement
43import os
44import sys
45import re
46import string
47import inspect, traceback
48# get type names
49from types import *
50
51from m5.util.grammar import Grammar
52
53debug=False
54
55###################
56# Utility functions
57
58#
59# Indent every line in string 's' by two spaces
60# (except preprocessor directives).
61# Used to make nested code blocks look pretty.
62#
63def indent(s):
64 return re.sub(r'(?m)^(?!#)', ' ', s)
65
66#
67# Munge a somewhat arbitrarily formatted piece of Python code
68# (e.g. from a format 'let' block) into something whose indentation
69# will get by the Python parser.
70#
71# The two keys here are that Python will give a syntax error if
72# there's any whitespace at the beginning of the first line, and that
73# all lines at the same lexical nesting level must have identical
74# indentation. Unfortunately the way code literals work, an entire
75# let block tends to have some initial indentation. Rather than
76# trying to figure out what that is and strip it off, we prepend 'if
77# 1:' to make the let code the nested block inside the if (and have
78# the parser automatically deal with the indentation for us).
79#
80# We don't want to do this if (1) the code block is empty or (2) the
81# first line of the block doesn't have any whitespace at the front.
82
83def fixPythonIndentation(s):
84 # get rid of blank lines first
85 s = re.sub(r'(?m)^\s*\n', '', s);
86 if (s != '' and re.match(r'[ \t]', s[0])):
87 s = 'if 1:\n' + s
88 return s
89
90class ISAParserError(Exception):
91 """Error handler for parser errors"""
92 def __init__(self, first, second=None):
93 if second is None:
94 self.lineno = 0
95 self.string = first
96 else:
97 if hasattr(first, 'lexer'):
98 first = first.lexer.lineno
99 self.lineno = first
100 self.string = second
101
102 def display(self, filename_stack, print_traceback=debug):
103 # Output formatted to work under Emacs compile-mode. Optional
104 # 'print_traceback' arg, if set to True, prints a Python stack
105 # backtrace too (can be handy when trying to debug the parser
106 # itself).
107
108 spaces = ""
109 for (filename, line) in filename_stack[:-1]:
110 print "%sIn file included from %s:" % (spaces, filename)
111 spaces += " "
112
113 # Print a Python stack backtrace if requested.
114 if print_traceback or not self.lineno:
115 traceback.print_exc()
116
117 line_str = "%s:" % (filename_stack[-1][0], )
118 if self.lineno:
119 line_str += "%d:" % (self.lineno, )
120
121 return "%s%s %s" % (spaces, line_str, self.string)
122
123 def exit(self, filename_stack, print_traceback=debug):
124 # Just call exit.
125
126 sys.exit(self.display(filename_stack, print_traceback))
127
128def error(*args):
129 raise ISAParserError(*args)
130
131####################
132# Template objects.
133#
134# Template objects are format strings that allow substitution from
135# the attribute spaces of other objects (e.g. InstObjParams instances).
136
137labelRE = re.compile(r'(?<!%)%\(([^\)]+)\)[sd]')
138
139class Template(object):
140 def __init__(self, parser, t):
141 self.parser = parser
142 self.template = t
143
144 def subst(self, d):
145 myDict = None
146
147 # Protect non-Python-dict substitutions (e.g. if there's a printf
148 # in the templated C++ code)
149 template = self.parser.protectNonSubstPercents(self.template)
150 # CPU-model-specific substitutions are handled later (in GenCode).
151 template = self.parser.protectCpuSymbols(template)
152
153 # Build a dict ('myDict') to use for the template substitution.
154 # Start with the template namespace. Make a copy since we're
155 # going to modify it.
156 myDict = self.parser.templateMap.copy()
157
158 if isinstance(d, InstObjParams):
159 # If we're dealing with an InstObjParams object, we need
160 # to be a little more sophisticated. The instruction-wide
161 # parameters are already formed, but the parameters which
162 # are only function wide still need to be generated.
163 compositeCode = ''
164
165 myDict.update(d.__dict__)
166 # The "operands" and "snippets" attributes of the InstObjParams
167 # objects are for internal use and not substitution.
168 del myDict['operands']
169 del myDict['snippets']
170
171 snippetLabels = [l for l in labelRE.findall(template)
172 if d.snippets.has_key(l)]
173
174 snippets = dict([(s, self.parser.mungeSnippet(d.snippets[s]))
175 for s in snippetLabels])
176
177 myDict.update(snippets)
178
179 compositeCode = ' '.join(map(str, snippets.values()))
180
181 # Add in template itself in case it references any
182 # operands explicitly (like Mem)
183 compositeCode += ' ' + template
184
185 operands = SubOperandList(self.parser, compositeCode, d.operands)
186
187 myDict['op_decl'] = operands.concatAttrStrings('op_decl')
188 if operands.readPC or operands.setPC:
189 myDict['op_decl'] += 'TheISA::PCState __parserAutoPCState;\n'
190
191 # In case there are predicated register reads and write, declare
192 # the variables for register indicies. It is being assumed that
193 # all the operands in the OperandList are also in the
194 # SubOperandList and in the same order. Otherwise, it is
195 # expected that predication would not be used for the operands.
196 if operands.predRead:
197 myDict['op_decl'] += 'uint8_t _sourceIndex = 0;\n'
198 if operands.predWrite:
199 myDict['op_decl'] += 'uint8_t M5_VAR_USED _destIndex = 0;\n'
200
201 is_src = lambda op: op.is_src
202 is_dest = lambda op: op.is_dest
203
204 myDict['op_src_decl'] = \
205 operands.concatSomeAttrStrings(is_src, 'op_src_decl')
206 myDict['op_dest_decl'] = \
207 operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
208 if operands.readPC:
209 myDict['op_src_decl'] += \
210 'TheISA::PCState __parserAutoPCState;\n'
211 if operands.setPC:
212 myDict['op_dest_decl'] += \
213 'TheISA::PCState __parserAutoPCState;\n'
214
215 myDict['op_rd'] = operands.concatAttrStrings('op_rd')
216 if operands.readPC:
217 myDict['op_rd'] = '__parserAutoPCState = xc->pcState();\n' + \
218 myDict['op_rd']
219
220 # Compose the op_wb string. If we're going to write back the
221 # PC state because we changed some of its elements, we'll need to
222 # do that as early as possible. That allows later uncoordinated
223 # modifications to the PC to layer appropriately.
224 reordered = list(operands.items)
225 reordered.reverse()
226 op_wb_str = ''
227 pcWbStr = 'xc->pcState(__parserAutoPCState);\n'
228 for op_desc in reordered:
229 if op_desc.isPCPart() and op_desc.is_dest:
230 op_wb_str = op_desc.op_wb + pcWbStr + op_wb_str
231 pcWbStr = ''
232 else:
233 op_wb_str = op_desc.op_wb + op_wb_str
234 myDict['op_wb'] = op_wb_str
235
236 elif isinstance(d, dict):
237 # if the argument is a dictionary, we just use it.
238 myDict.update(d)
239 elif hasattr(d, '__dict__'):
240 # if the argument is an object, we use its attribute map.
241 myDict.update(d.__dict__)
242 else:
243 raise TypeError, "Template.subst() arg must be or have dictionary"
244 return template % myDict
245
246 # Convert to string. This handles the case when a template with a
247 # CPU-specific term gets interpolated into another template or into
248 # an output block.
249 def __str__(self):
250 return self.parser.expandCpuSymbolsToString(self.template)
251
252################
253# Format object.
254#
255# A format object encapsulates an instruction format. It must provide
256# a defineInst() method that generates the code for an instruction
257# definition.
258
259class Format(object):
260 def __init__(self, id, params, code):
261 self.id = id
262 self.params = params
263 label = 'def format ' + id
264 self.user_code = compile(fixPythonIndentation(code), label, 'exec')
265 param_list = string.join(params, ", ")
266 f = '''def defInst(_code, _context, %s):
267 my_locals = vars().copy()
268 exec _code in _context, my_locals
269 return my_locals\n''' % param_list
270 c = compile(f, label + ' wrapper', 'exec')
271 exec c
272 self.func = defInst
273
274 def defineInst(self, parser, name, args, lineno):
275 parser.updateExportContext()
276 context = parser.exportContext.copy()
277 if len(name):
278 Name = name[0].upper()
279 if len(name) > 1:
280 Name += name[1:]
281 context.update({ 'name' : name, 'Name' : Name })
282 try:
283 vars = self.func(self.user_code, context, *args[0], **args[1])
284 except Exception, exc:
285 if debug:
286 raise
287 error(lineno, 'error defining "%s": %s.' % (name, exc))
288 for k in vars.keys():
289 if k not in ('header_output', 'decoder_output',
290 'exec_output', 'decode_block'):
291 del vars[k]
292 return GenCode(parser, **vars)
293
294# Special null format to catch an implicit-format instruction
295# definition outside of any format block.
296class NoFormat(object):
297 def __init__(self):
298 self.defaultInst = ''
299
300 def defineInst(self, parser, name, args, lineno):
301 error(lineno,
302 'instruction definition "%s" with no active format!' % name)
303
304###############
305# GenCode class
306#
307# The GenCode class encapsulates generated code destined for various
308# output files. The header_output and decoder_output attributes are
309# strings containing code destined for decoder.hh and decoder.cc
310# respectively. The decode_block attribute contains code to be
311# incorporated in the decode function itself (that will also end up in
312# decoder.cc). The exec_output attribute is a dictionary with a key
313# for each CPU model name; the value associated with a particular key
314# is the string of code for that CPU model's exec.cc file. The
315# has_decode_default attribute is used in the decode block to allow
316# explicit default clauses to override default default clauses.
317
318class GenCode(object):
319 # Constructor. At this point we substitute out all CPU-specific
320 # symbols. For the exec output, these go into the per-model
321 # dictionary. For all other output types they get collapsed into
322 # a single string.
323 def __init__(self, parser,
324 header_output = '', decoder_output = '', exec_output = '',
325 decode_block = '', has_decode_default = False):
326 self.parser = parser
327 self.header_output = parser.expandCpuSymbolsToString(header_output)
328 self.decoder_output = parser.expandCpuSymbolsToString(decoder_output)
329 self.exec_output = exec_output
330 self.decode_block = decode_block
331 self.has_decode_default = has_decode_default
332
333 # Write these code chunks out to the filesystem. They will be properly
334 # interwoven by the write_top_level_files().
335 def emit(self):
336 if self.header_output:
337 self.parser.get_file('header').write(self.header_output)
338 if self.decoder_output:
339 self.parser.get_file('decoder').write(self.decoder_output)
340 if self.exec_output:
341 self.parser.get_file('exec').write(self.exec_output)
342 if self.decode_block:
343 self.parser.get_file('decode_block').write(self.decode_block)
344
345 # Override '+' operator: generate a new GenCode object that
346 # concatenates all the individual strings in the operands.
347 def __add__(self, other):
348 return GenCode(self.parser,
349 self.header_output + other.header_output,
350 self.decoder_output + other.decoder_output,
351 self.exec_output + other.exec_output,
352 self.decode_block + other.decode_block,
353 self.has_decode_default or other.has_decode_default)
354
355 # Prepend a string (typically a comment) to all the strings.
356 def prepend_all(self, pre):
357 self.header_output = pre + self.header_output
358 self.decoder_output = pre + self.decoder_output
359 self.decode_block = pre + self.decode_block
360 self.exec_output = pre + self.exec_output
361
362 # Wrap the decode block in a pair of strings (e.g., 'case foo:'
363 # and 'break;'). Used to build the big nested switch statement.
364 def wrap_decode_block(self, pre, post = ''):
365 self.decode_block = pre + indent(self.decode_block) + post
366
367#####################################################################
368#
369# Bitfield Operator Support
370#
371#####################################################################
372
373bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
374
375bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
376bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
377
378def substBitOps(code):
379 # first convert single-bit selectors to two-index form
380 # i.e., <n> --> <n:n>
381 code = bitOp1ArgRE.sub(r'<\1:\1>', code)
382 # simple case: selector applied to ID (name)
383 # i.e., foo<a:b> --> bits(foo, a, b)
384 code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
385 # if selector is applied to expression (ending in ')'),
386 # we need to search backward for matching '('
387 match = bitOpExprRE.search(code)
388 while match:
389 exprEnd = match.start()
390 here = exprEnd - 1
391 nestLevel = 1
392 while nestLevel > 0:
393 if code[here] == '(':
394 nestLevel -= 1
395 elif code[here] == ')':
396 nestLevel += 1
397 here -= 1
398 if here < 0:
399 sys.exit("Didn't find '('!")
400 exprStart = here+1
401 newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
402 match.group(1), match.group(2))
403 code = code[:exprStart] + newExpr + code[match.end():]
404 match = bitOpExprRE.search(code)
405 return code
406
407
408#####################################################################
409#
410# Code Parser
411#
412# The remaining code is the support for automatically extracting
413# instruction characteristics from pseudocode.
414#
415#####################################################################
416
417# Force the argument to be a list. Useful for flags, where a caller
418# can specify a singleton flag or a list of flags. Also usful for
419# converting tuples to lists so they can be modified.
420def makeList(arg):
421 if isinstance(arg, list):
422 return arg
423 elif isinstance(arg, tuple):
424 return list(arg)
425 elif not arg:
426 return []
427 else:
428 return [ arg ]
429
430class Operand(object):
431 '''Base class for operand descriptors. An instance of this class
432 (or actually a class derived from this one) represents a specific
433 operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
434 derived classes encapsulates the traits of a particular operand
435 type (e.g., "32-bit integer register").'''
436
437 def buildReadCode(self, func = None):
438 subst_dict = {"name": self.base_name,
439 "func": func,
440 "reg_idx": self.reg_spec,
441 "ctype": self.ctype}
442 if hasattr(self, 'src_reg_idx'):
443 subst_dict['op_idx'] = self.src_reg_idx
444 code = self.read_code % subst_dict
445 return '%s = %s;\n' % (self.base_name, code)
446
447 def buildWriteCode(self, func = None):
448 subst_dict = {"name": self.base_name,
449 "func": func,
450 "reg_idx": self.reg_spec,
451 "ctype": self.ctype,
452 "final_val": self.base_name}
453 if hasattr(self, 'dest_reg_idx'):
454 subst_dict['op_idx'] = self.dest_reg_idx
455 code = self.write_code % subst_dict
456 return '''
457 {
458 %s final_val = %s;
459 %s;
460 if (traceData) { traceData->setData(final_val); }
461 }''' % (self.dflt_ctype, self.base_name, code)
462
463 def __init__(self, parser, full_name, ext, is_src, is_dest):
464 self.full_name = full_name
465 self.ext = ext
466 self.is_src = is_src
467 self.is_dest = is_dest
468 # The 'effective extension' (eff_ext) is either the actual
469 # extension, if one was explicitly provided, or the default.
470 if ext:
471 self.eff_ext = ext
472 elif hasattr(self, 'dflt_ext'):
473 self.eff_ext = self.dflt_ext
474
475 if hasattr(self, 'eff_ext'):
476 self.ctype = parser.operandTypeMap[self.eff_ext]
477
478 # Finalize additional fields (primarily code fields). This step
479 # is done separately since some of these fields may depend on the
480 # register index enumeration that hasn't been performed yet at the
481 # time of __init__(). The register index enumeration is affected
482 # by predicated register reads/writes. Hence, we forward the flags
483 # that indicate whether or not predication is in use.
484 def finalize(self, predRead, predWrite):
485 self.flags = self.getFlags()
486 self.constructor = self.makeConstructor(predRead, predWrite)
487 self.op_decl = self.makeDecl()
488
489 if self.is_src:
490 self.op_rd = self.makeRead(predRead)
491 self.op_src_decl = self.makeDecl()
492 else:
493 self.op_rd = ''
494 self.op_src_decl = ''
495
496 if self.is_dest:
497 self.op_wb = self.makeWrite(predWrite)
498 self.op_dest_decl = self.makeDecl()
499 else:
500 self.op_wb = ''
501 self.op_dest_decl = ''
502
503 def isMem(self):
504 return 0
505
506 def isReg(self):
507 return 0
508
509 def isFloatReg(self):
510 return 0
511
512 def isIntReg(self):
513 return 0
514
515 def isCCReg(self):
516 return 0
517
1# Copyright (c) 2014 ARM Limited
2# All rights reserved
3#
4# The license below extends only to copyright in the software and shall
5# not be construed as granting a license to any other intellectual
6# property including but not limited to intellectual property relating
7# to a hardware implementation of the functionality of the software
8# licensed hereunder. You may use the software subject to the license
9# terms below provided that you ensure that this notice is replicated
10# unmodified and in its entirety in all distributions of the software,
11# modified or unmodified, in source code or in binary form.
12#
13# Copyright (c) 2003-2005 The Regents of The University of Michigan
14# Copyright (c) 2013 Advanced Micro Devices, Inc.
15# All rights reserved.
16#
17# Redistribution and use in source and binary forms, with or without
18# modification, are permitted provided that the following conditions are
19# met: redistributions of source code must retain the above copyright
20# notice, this list of conditions and the following disclaimer;
21# redistributions in binary form must reproduce the above copyright
22# notice, this list of conditions and the following disclaimer in the
23# documentation and/or other materials provided with the distribution;
24# neither the name of the copyright holders nor the names of its
25# contributors may be used to endorse or promote products derived from
26# this software without specific prior written permission.
27#
28# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39#
40# Authors: Steve Reinhardt
41
42from __future__ import with_statement
43import os
44import sys
45import re
46import string
47import inspect, traceback
48# get type names
49from types import *
50
51from m5.util.grammar import Grammar
52
53debug=False
54
55###################
56# Utility functions
57
58#
59# Indent every line in string 's' by two spaces
60# (except preprocessor directives).
61# Used to make nested code blocks look pretty.
62#
63def indent(s):
64 return re.sub(r'(?m)^(?!#)', ' ', s)
65
66#
67# Munge a somewhat arbitrarily formatted piece of Python code
68# (e.g. from a format 'let' block) into something whose indentation
69# will get by the Python parser.
70#
71# The two keys here are that Python will give a syntax error if
72# there's any whitespace at the beginning of the first line, and that
73# all lines at the same lexical nesting level must have identical
74# indentation. Unfortunately the way code literals work, an entire
75# let block tends to have some initial indentation. Rather than
76# trying to figure out what that is and strip it off, we prepend 'if
77# 1:' to make the let code the nested block inside the if (and have
78# the parser automatically deal with the indentation for us).
79#
80# We don't want to do this if (1) the code block is empty or (2) the
81# first line of the block doesn't have any whitespace at the front.
82
83def fixPythonIndentation(s):
84 # get rid of blank lines first
85 s = re.sub(r'(?m)^\s*\n', '', s);
86 if (s != '' and re.match(r'[ \t]', s[0])):
87 s = 'if 1:\n' + s
88 return s
89
90class ISAParserError(Exception):
91 """Error handler for parser errors"""
92 def __init__(self, first, second=None):
93 if second is None:
94 self.lineno = 0
95 self.string = first
96 else:
97 if hasattr(first, 'lexer'):
98 first = first.lexer.lineno
99 self.lineno = first
100 self.string = second
101
102 def display(self, filename_stack, print_traceback=debug):
103 # Output formatted to work under Emacs compile-mode. Optional
104 # 'print_traceback' arg, if set to True, prints a Python stack
105 # backtrace too (can be handy when trying to debug the parser
106 # itself).
107
108 spaces = ""
109 for (filename, line) in filename_stack[:-1]:
110 print "%sIn file included from %s:" % (spaces, filename)
111 spaces += " "
112
113 # Print a Python stack backtrace if requested.
114 if print_traceback or not self.lineno:
115 traceback.print_exc()
116
117 line_str = "%s:" % (filename_stack[-1][0], )
118 if self.lineno:
119 line_str += "%d:" % (self.lineno, )
120
121 return "%s%s %s" % (spaces, line_str, self.string)
122
123 def exit(self, filename_stack, print_traceback=debug):
124 # Just call exit.
125
126 sys.exit(self.display(filename_stack, print_traceback))
127
128def error(*args):
129 raise ISAParserError(*args)
130
131####################
132# Template objects.
133#
134# Template objects are format strings that allow substitution from
135# the attribute spaces of other objects (e.g. InstObjParams instances).
136
137labelRE = re.compile(r'(?<!%)%\(([^\)]+)\)[sd]')
138
139class Template(object):
140 def __init__(self, parser, t):
141 self.parser = parser
142 self.template = t
143
144 def subst(self, d):
145 myDict = None
146
147 # Protect non-Python-dict substitutions (e.g. if there's a printf
148 # in the templated C++ code)
149 template = self.parser.protectNonSubstPercents(self.template)
150 # CPU-model-specific substitutions are handled later (in GenCode).
151 template = self.parser.protectCpuSymbols(template)
152
153 # Build a dict ('myDict') to use for the template substitution.
154 # Start with the template namespace. Make a copy since we're
155 # going to modify it.
156 myDict = self.parser.templateMap.copy()
157
158 if isinstance(d, InstObjParams):
159 # If we're dealing with an InstObjParams object, we need
160 # to be a little more sophisticated. The instruction-wide
161 # parameters are already formed, but the parameters which
162 # are only function wide still need to be generated.
163 compositeCode = ''
164
165 myDict.update(d.__dict__)
166 # The "operands" and "snippets" attributes of the InstObjParams
167 # objects are for internal use and not substitution.
168 del myDict['operands']
169 del myDict['snippets']
170
171 snippetLabels = [l for l in labelRE.findall(template)
172 if d.snippets.has_key(l)]
173
174 snippets = dict([(s, self.parser.mungeSnippet(d.snippets[s]))
175 for s in snippetLabels])
176
177 myDict.update(snippets)
178
179 compositeCode = ' '.join(map(str, snippets.values()))
180
181 # Add in template itself in case it references any
182 # operands explicitly (like Mem)
183 compositeCode += ' ' + template
184
185 operands = SubOperandList(self.parser, compositeCode, d.operands)
186
187 myDict['op_decl'] = operands.concatAttrStrings('op_decl')
188 if operands.readPC or operands.setPC:
189 myDict['op_decl'] += 'TheISA::PCState __parserAutoPCState;\n'
190
191 # In case there are predicated register reads and write, declare
192 # the variables for register indicies. It is being assumed that
193 # all the operands in the OperandList are also in the
194 # SubOperandList and in the same order. Otherwise, it is
195 # expected that predication would not be used for the operands.
196 if operands.predRead:
197 myDict['op_decl'] += 'uint8_t _sourceIndex = 0;\n'
198 if operands.predWrite:
199 myDict['op_decl'] += 'uint8_t M5_VAR_USED _destIndex = 0;\n'
200
201 is_src = lambda op: op.is_src
202 is_dest = lambda op: op.is_dest
203
204 myDict['op_src_decl'] = \
205 operands.concatSomeAttrStrings(is_src, 'op_src_decl')
206 myDict['op_dest_decl'] = \
207 operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
208 if operands.readPC:
209 myDict['op_src_decl'] += \
210 'TheISA::PCState __parserAutoPCState;\n'
211 if operands.setPC:
212 myDict['op_dest_decl'] += \
213 'TheISA::PCState __parserAutoPCState;\n'
214
215 myDict['op_rd'] = operands.concatAttrStrings('op_rd')
216 if operands.readPC:
217 myDict['op_rd'] = '__parserAutoPCState = xc->pcState();\n' + \
218 myDict['op_rd']
219
220 # Compose the op_wb string. If we're going to write back the
221 # PC state because we changed some of its elements, we'll need to
222 # do that as early as possible. That allows later uncoordinated
223 # modifications to the PC to layer appropriately.
224 reordered = list(operands.items)
225 reordered.reverse()
226 op_wb_str = ''
227 pcWbStr = 'xc->pcState(__parserAutoPCState);\n'
228 for op_desc in reordered:
229 if op_desc.isPCPart() and op_desc.is_dest:
230 op_wb_str = op_desc.op_wb + pcWbStr + op_wb_str
231 pcWbStr = ''
232 else:
233 op_wb_str = op_desc.op_wb + op_wb_str
234 myDict['op_wb'] = op_wb_str
235
236 elif isinstance(d, dict):
237 # if the argument is a dictionary, we just use it.
238 myDict.update(d)
239 elif hasattr(d, '__dict__'):
240 # if the argument is an object, we use its attribute map.
241 myDict.update(d.__dict__)
242 else:
243 raise TypeError, "Template.subst() arg must be or have dictionary"
244 return template % myDict
245
246 # Convert to string. This handles the case when a template with a
247 # CPU-specific term gets interpolated into another template or into
248 # an output block.
249 def __str__(self):
250 return self.parser.expandCpuSymbolsToString(self.template)
251
252################
253# Format object.
254#
255# A format object encapsulates an instruction format. It must provide
256# a defineInst() method that generates the code for an instruction
257# definition.
258
259class Format(object):
260 def __init__(self, id, params, code):
261 self.id = id
262 self.params = params
263 label = 'def format ' + id
264 self.user_code = compile(fixPythonIndentation(code), label, 'exec')
265 param_list = string.join(params, ", ")
266 f = '''def defInst(_code, _context, %s):
267 my_locals = vars().copy()
268 exec _code in _context, my_locals
269 return my_locals\n''' % param_list
270 c = compile(f, label + ' wrapper', 'exec')
271 exec c
272 self.func = defInst
273
274 def defineInst(self, parser, name, args, lineno):
275 parser.updateExportContext()
276 context = parser.exportContext.copy()
277 if len(name):
278 Name = name[0].upper()
279 if len(name) > 1:
280 Name += name[1:]
281 context.update({ 'name' : name, 'Name' : Name })
282 try:
283 vars = self.func(self.user_code, context, *args[0], **args[1])
284 except Exception, exc:
285 if debug:
286 raise
287 error(lineno, 'error defining "%s": %s.' % (name, exc))
288 for k in vars.keys():
289 if k not in ('header_output', 'decoder_output',
290 'exec_output', 'decode_block'):
291 del vars[k]
292 return GenCode(parser, **vars)
293
294# Special null format to catch an implicit-format instruction
295# definition outside of any format block.
296class NoFormat(object):
297 def __init__(self):
298 self.defaultInst = ''
299
300 def defineInst(self, parser, name, args, lineno):
301 error(lineno,
302 'instruction definition "%s" with no active format!' % name)
303
304###############
305# GenCode class
306#
307# The GenCode class encapsulates generated code destined for various
308# output files. The header_output and decoder_output attributes are
309# strings containing code destined for decoder.hh and decoder.cc
310# respectively. The decode_block attribute contains code to be
311# incorporated in the decode function itself (that will also end up in
312# decoder.cc). The exec_output attribute is a dictionary with a key
313# for each CPU model name; the value associated with a particular key
314# is the string of code for that CPU model's exec.cc file. The
315# has_decode_default attribute is used in the decode block to allow
316# explicit default clauses to override default default clauses.
317
318class GenCode(object):
319 # Constructor. At this point we substitute out all CPU-specific
320 # symbols. For the exec output, these go into the per-model
321 # dictionary. For all other output types they get collapsed into
322 # a single string.
323 def __init__(self, parser,
324 header_output = '', decoder_output = '', exec_output = '',
325 decode_block = '', has_decode_default = False):
326 self.parser = parser
327 self.header_output = parser.expandCpuSymbolsToString(header_output)
328 self.decoder_output = parser.expandCpuSymbolsToString(decoder_output)
329 self.exec_output = exec_output
330 self.decode_block = decode_block
331 self.has_decode_default = has_decode_default
332
333 # Write these code chunks out to the filesystem. They will be properly
334 # interwoven by the write_top_level_files().
335 def emit(self):
336 if self.header_output:
337 self.parser.get_file('header').write(self.header_output)
338 if self.decoder_output:
339 self.parser.get_file('decoder').write(self.decoder_output)
340 if self.exec_output:
341 self.parser.get_file('exec').write(self.exec_output)
342 if self.decode_block:
343 self.parser.get_file('decode_block').write(self.decode_block)
344
345 # Override '+' operator: generate a new GenCode object that
346 # concatenates all the individual strings in the operands.
347 def __add__(self, other):
348 return GenCode(self.parser,
349 self.header_output + other.header_output,
350 self.decoder_output + other.decoder_output,
351 self.exec_output + other.exec_output,
352 self.decode_block + other.decode_block,
353 self.has_decode_default or other.has_decode_default)
354
355 # Prepend a string (typically a comment) to all the strings.
356 def prepend_all(self, pre):
357 self.header_output = pre + self.header_output
358 self.decoder_output = pre + self.decoder_output
359 self.decode_block = pre + self.decode_block
360 self.exec_output = pre + self.exec_output
361
362 # Wrap the decode block in a pair of strings (e.g., 'case foo:'
363 # and 'break;'). Used to build the big nested switch statement.
364 def wrap_decode_block(self, pre, post = ''):
365 self.decode_block = pre + indent(self.decode_block) + post
366
367#####################################################################
368#
369# Bitfield Operator Support
370#
371#####################################################################
372
373bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
374
375bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
376bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
377
378def substBitOps(code):
379 # first convert single-bit selectors to two-index form
380 # i.e., <n> --> <n:n>
381 code = bitOp1ArgRE.sub(r'<\1:\1>', code)
382 # simple case: selector applied to ID (name)
383 # i.e., foo<a:b> --> bits(foo, a, b)
384 code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
385 # if selector is applied to expression (ending in ')'),
386 # we need to search backward for matching '('
387 match = bitOpExprRE.search(code)
388 while match:
389 exprEnd = match.start()
390 here = exprEnd - 1
391 nestLevel = 1
392 while nestLevel > 0:
393 if code[here] == '(':
394 nestLevel -= 1
395 elif code[here] == ')':
396 nestLevel += 1
397 here -= 1
398 if here < 0:
399 sys.exit("Didn't find '('!")
400 exprStart = here+1
401 newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
402 match.group(1), match.group(2))
403 code = code[:exprStart] + newExpr + code[match.end():]
404 match = bitOpExprRE.search(code)
405 return code
406
407
408#####################################################################
409#
410# Code Parser
411#
412# The remaining code is the support for automatically extracting
413# instruction characteristics from pseudocode.
414#
415#####################################################################
416
417# Force the argument to be a list. Useful for flags, where a caller
418# can specify a singleton flag or a list of flags. Also usful for
419# converting tuples to lists so they can be modified.
420def makeList(arg):
421 if isinstance(arg, list):
422 return arg
423 elif isinstance(arg, tuple):
424 return list(arg)
425 elif not arg:
426 return []
427 else:
428 return [ arg ]
429
430class Operand(object):
431 '''Base class for operand descriptors. An instance of this class
432 (or actually a class derived from this one) represents a specific
433 operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
434 derived classes encapsulates the traits of a particular operand
435 type (e.g., "32-bit integer register").'''
436
437 def buildReadCode(self, func = None):
438 subst_dict = {"name": self.base_name,
439 "func": func,
440 "reg_idx": self.reg_spec,
441 "ctype": self.ctype}
442 if hasattr(self, 'src_reg_idx'):
443 subst_dict['op_idx'] = self.src_reg_idx
444 code = self.read_code % subst_dict
445 return '%s = %s;\n' % (self.base_name, code)
446
447 def buildWriteCode(self, func = None):
448 subst_dict = {"name": self.base_name,
449 "func": func,
450 "reg_idx": self.reg_spec,
451 "ctype": self.ctype,
452 "final_val": self.base_name}
453 if hasattr(self, 'dest_reg_idx'):
454 subst_dict['op_idx'] = self.dest_reg_idx
455 code = self.write_code % subst_dict
456 return '''
457 {
458 %s final_val = %s;
459 %s;
460 if (traceData) { traceData->setData(final_val); }
461 }''' % (self.dflt_ctype, self.base_name, code)
462
463 def __init__(self, parser, full_name, ext, is_src, is_dest):
464 self.full_name = full_name
465 self.ext = ext
466 self.is_src = is_src
467 self.is_dest = is_dest
468 # The 'effective extension' (eff_ext) is either the actual
469 # extension, if one was explicitly provided, or the default.
470 if ext:
471 self.eff_ext = ext
472 elif hasattr(self, 'dflt_ext'):
473 self.eff_ext = self.dflt_ext
474
475 if hasattr(self, 'eff_ext'):
476 self.ctype = parser.operandTypeMap[self.eff_ext]
477
478 # Finalize additional fields (primarily code fields). This step
479 # is done separately since some of these fields may depend on the
480 # register index enumeration that hasn't been performed yet at the
481 # time of __init__(). The register index enumeration is affected
482 # by predicated register reads/writes. Hence, we forward the flags
483 # that indicate whether or not predication is in use.
484 def finalize(self, predRead, predWrite):
485 self.flags = self.getFlags()
486 self.constructor = self.makeConstructor(predRead, predWrite)
487 self.op_decl = self.makeDecl()
488
489 if self.is_src:
490 self.op_rd = self.makeRead(predRead)
491 self.op_src_decl = self.makeDecl()
492 else:
493 self.op_rd = ''
494 self.op_src_decl = ''
495
496 if self.is_dest:
497 self.op_wb = self.makeWrite(predWrite)
498 self.op_dest_decl = self.makeDecl()
499 else:
500 self.op_wb = ''
501 self.op_dest_decl = ''
502
503 def isMem(self):
504 return 0
505
506 def isReg(self):
507 return 0
508
509 def isFloatReg(self):
510 return 0
511
512 def isIntReg(self):
513 return 0
514
515 def isCCReg(self):
516 return 0
517
518 def isVectorReg(self):
519 return 0
520
521 def isControlReg(self):
522 return 0
523
524 def isPCState(self):
525 return 0
526
527 def isPCPart(self):
528 return self.isPCState() and self.reg_spec
529
530 def hasReadPred(self):
531 return self.read_predicate != None
532
533 def hasWritePred(self):
534 return self.write_predicate != None
535
536 def getFlags(self):
537 # note the empty slice '[:]' gives us a copy of self.flags[0]
538 # instead of a reference to it
539 my_flags = self.flags[0][:]
540 if self.is_src:
541 my_flags += self.flags[1]
542 if self.is_dest:
543 my_flags += self.flags[2]
544 return my_flags
545
546 def makeDecl(self):
547 # Note that initializations in the declarations are solely
548 # to avoid 'uninitialized variable' errors from the compiler.
549 return self.ctype + ' ' + self.base_name + ' = 0;\n';
550
551class IntRegOperand(Operand):
552 def isReg(self):
553 return 1
554
555 def isIntReg(self):
556 return 1
557
558 def makeConstructor(self, predRead, predWrite):
559 c_src = ''
560 c_dest = ''
561
562 if self.is_src:
563 c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s;' % (self.reg_spec)
564 if self.hasReadPred():
565 c_src = '\n\tif (%s) {%s\n\t}' % \
566 (self.read_predicate, c_src)
567
568 if self.is_dest:
569 c_dest = '\n\t_destRegIdx[_numDestRegs++] = %s;' % \
570 (self.reg_spec)
571 c_dest += '\n\t_numIntDestRegs++;'
572 if self.hasWritePred():
573 c_dest = '\n\tif (%s) {%s\n\t}' % \
574 (self.write_predicate, c_dest)
575
576 return c_src + c_dest
577
578 def makeRead(self, predRead):
579 if (self.ctype == 'float' or self.ctype == 'double'):
580 error('Attempt to read integer register as FP')
581 if self.read_code != None:
582 return self.buildReadCode('readIntRegOperand')
583
584 int_reg_val = ''
585 if predRead:
586 int_reg_val = 'xc->readIntRegOperand(this, _sourceIndex++)'
587 if self.hasReadPred():
588 int_reg_val = '(%s) ? %s : 0' % \
589 (self.read_predicate, int_reg_val)
590 else:
591 int_reg_val = 'xc->readIntRegOperand(this, %d)' % self.src_reg_idx
592
593 return '%s = %s;\n' % (self.base_name, int_reg_val)
594
595 def makeWrite(self, predWrite):
596 if (self.ctype == 'float' or self.ctype == 'double'):
597 error('Attempt to write integer register as FP')
598 if self.write_code != None:
599 return self.buildWriteCode('setIntRegOperand')
600
601 if predWrite:
602 wp = 'true'
603 if self.hasWritePred():
604 wp = self.write_predicate
605
606 wcond = 'if (%s)' % (wp)
607 windex = '_destIndex++'
608 else:
609 wcond = ''
610 windex = '%d' % self.dest_reg_idx
611
612 wb = '''
613 %s
614 {
615 %s final_val = %s;
616 xc->setIntRegOperand(this, %s, final_val);\n
617 if (traceData) { traceData->setData(final_val); }
618 }''' % (wcond, self.ctype, self.base_name, windex)
619
620 return wb
621
622class FloatRegOperand(Operand):
623 def isReg(self):
624 return 1
625
626 def isFloatReg(self):
627 return 1
628
629 def makeConstructor(self, predRead, predWrite):
630 c_src = ''
631 c_dest = ''
632
633 if self.is_src:
634 c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s + FP_Reg_Base;' % \
635 (self.reg_spec)
636
637 if self.is_dest:
638 c_dest = \
639 '\n\t_destRegIdx[_numDestRegs++] = %s + FP_Reg_Base;' % \
640 (self.reg_spec)
641 c_dest += '\n\t_numFPDestRegs++;'
642
643 return c_src + c_dest
644
645 def makeRead(self, predRead):
646 bit_select = 0
647 if (self.ctype == 'float' or self.ctype == 'double'):
648 func = 'readFloatRegOperand'
649 else:
650 func = 'readFloatRegOperandBits'
651 if self.read_code != None:
652 return self.buildReadCode(func)
653
654 if predRead:
655 rindex = '_sourceIndex++'
656 else:
657 rindex = '%d' % self.src_reg_idx
658
659 return '%s = xc->%s(this, %s);\n' % \
660 (self.base_name, func, rindex)
661
662 def makeWrite(self, predWrite):
663 if (self.ctype == 'float' or self.ctype == 'double'):
664 func = 'setFloatRegOperand'
665 else:
666 func = 'setFloatRegOperandBits'
667 if self.write_code != None:
668 return self.buildWriteCode(func)
669
670 if predWrite:
671 wp = '_destIndex++'
672 else:
673 wp = '%d' % self.dest_reg_idx
674 wp = 'xc->%s(this, %s, final_val);' % (func, wp)
675
676 wb = '''
677 {
678 %s final_val = %s;
679 %s\n
680 if (traceData) { traceData->setData(final_val); }
681 }''' % (self.ctype, self.base_name, wp)
682 return wb
683
684class CCRegOperand(Operand):
685 def isReg(self):
686 return 1
687
688 def isCCReg(self):
689 return 1
690
691 def makeConstructor(self, predRead, predWrite):
692 c_src = ''
693 c_dest = ''
694
695 if self.is_src:
696 c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s + CC_Reg_Base;' % \
697 (self.reg_spec)
698 if self.hasReadPred():
699 c_src = '\n\tif (%s) {%s\n\t}' % \
700 (self.read_predicate, c_src)
701
702 if self.is_dest:
703 c_dest = \
704 '\n\t_destRegIdx[_numDestRegs++] = %s + CC_Reg_Base;' % \
705 (self.reg_spec)
706 c_dest += '\n\t_numCCDestRegs++;'
707 if self.hasWritePred():
708 c_dest = '\n\tif (%s) {%s\n\t}' % \
709 (self.write_predicate, c_dest)
710
711 return c_src + c_dest
712
713 def makeRead(self, predRead):
714 if (self.ctype == 'float' or self.ctype == 'double'):
715 error('Attempt to read condition-code register as FP')
716 if self.read_code != None:
717 return self.buildReadCode('readCCRegOperand')
718
719 int_reg_val = ''
720 if predRead:
721 int_reg_val = 'xc->readCCRegOperand(this, _sourceIndex++)'
722 if self.hasReadPred():
723 int_reg_val = '(%s) ? %s : 0' % \
724 (self.read_predicate, int_reg_val)
725 else:
726 int_reg_val = 'xc->readCCRegOperand(this, %d)' % self.src_reg_idx
727
728 return '%s = %s;\n' % (self.base_name, int_reg_val)
729
730 def makeWrite(self, predWrite):
731 if (self.ctype == 'float' or self.ctype == 'double'):
732 error('Attempt to write condition-code register as FP')
733 if self.write_code != None:
734 return self.buildWriteCode('setCCRegOperand')
735
736 if predWrite:
737 wp = 'true'
738 if self.hasWritePred():
739 wp = self.write_predicate
740
741 wcond = 'if (%s)' % (wp)
742 windex = '_destIndex++'
743 else:
744 wcond = ''
745 windex = '%d' % self.dest_reg_idx
746
747 wb = '''
748 %s
749 {
750 %s final_val = %s;
751 xc->setCCRegOperand(this, %s, final_val);\n
752 if (traceData) { traceData->setData(final_val); }
753 }''' % (wcond, self.ctype, self.base_name, windex)
754
755 return wb
756
518 def isControlReg(self):
519 return 0
520
521 def isPCState(self):
522 return 0
523
524 def isPCPart(self):
525 return self.isPCState() and self.reg_spec
526
527 def hasReadPred(self):
528 return self.read_predicate != None
529
530 def hasWritePred(self):
531 return self.write_predicate != None
532
533 def getFlags(self):
534 # note the empty slice '[:]' gives us a copy of self.flags[0]
535 # instead of a reference to it
536 my_flags = self.flags[0][:]
537 if self.is_src:
538 my_flags += self.flags[1]
539 if self.is_dest:
540 my_flags += self.flags[2]
541 return my_flags
542
543 def makeDecl(self):
544 # Note that initializations in the declarations are solely
545 # to avoid 'uninitialized variable' errors from the compiler.
546 return self.ctype + ' ' + self.base_name + ' = 0;\n';
547
548class IntRegOperand(Operand):
549 def isReg(self):
550 return 1
551
552 def isIntReg(self):
553 return 1
554
555 def makeConstructor(self, predRead, predWrite):
556 c_src = ''
557 c_dest = ''
558
559 if self.is_src:
560 c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s;' % (self.reg_spec)
561 if self.hasReadPred():
562 c_src = '\n\tif (%s) {%s\n\t}' % \
563 (self.read_predicate, c_src)
564
565 if self.is_dest:
566 c_dest = '\n\t_destRegIdx[_numDestRegs++] = %s;' % \
567 (self.reg_spec)
568 c_dest += '\n\t_numIntDestRegs++;'
569 if self.hasWritePred():
570 c_dest = '\n\tif (%s) {%s\n\t}' % \
571 (self.write_predicate, c_dest)
572
573 return c_src + c_dest
574
575 def makeRead(self, predRead):
576 if (self.ctype == 'float' or self.ctype == 'double'):
577 error('Attempt to read integer register as FP')
578 if self.read_code != None:
579 return self.buildReadCode('readIntRegOperand')
580
581 int_reg_val = ''
582 if predRead:
583 int_reg_val = 'xc->readIntRegOperand(this, _sourceIndex++)'
584 if self.hasReadPred():
585 int_reg_val = '(%s) ? %s : 0' % \
586 (self.read_predicate, int_reg_val)
587 else:
588 int_reg_val = 'xc->readIntRegOperand(this, %d)' % self.src_reg_idx
589
590 return '%s = %s;\n' % (self.base_name, int_reg_val)
591
592 def makeWrite(self, predWrite):
593 if (self.ctype == 'float' or self.ctype == 'double'):
594 error('Attempt to write integer register as FP')
595 if self.write_code != None:
596 return self.buildWriteCode('setIntRegOperand')
597
598 if predWrite:
599 wp = 'true'
600 if self.hasWritePred():
601 wp = self.write_predicate
602
603 wcond = 'if (%s)' % (wp)
604 windex = '_destIndex++'
605 else:
606 wcond = ''
607 windex = '%d' % self.dest_reg_idx
608
609 wb = '''
610 %s
611 {
612 %s final_val = %s;
613 xc->setIntRegOperand(this, %s, final_val);\n
614 if (traceData) { traceData->setData(final_val); }
615 }''' % (wcond, self.ctype, self.base_name, windex)
616
617 return wb
618
619class FloatRegOperand(Operand):
620 def isReg(self):
621 return 1
622
623 def isFloatReg(self):
624 return 1
625
626 def makeConstructor(self, predRead, predWrite):
627 c_src = ''
628 c_dest = ''
629
630 if self.is_src:
631 c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s + FP_Reg_Base;' % \
632 (self.reg_spec)
633
634 if self.is_dest:
635 c_dest = \
636 '\n\t_destRegIdx[_numDestRegs++] = %s + FP_Reg_Base;' % \
637 (self.reg_spec)
638 c_dest += '\n\t_numFPDestRegs++;'
639
640 return c_src + c_dest
641
642 def makeRead(self, predRead):
643 bit_select = 0
644 if (self.ctype == 'float' or self.ctype == 'double'):
645 func = 'readFloatRegOperand'
646 else:
647 func = 'readFloatRegOperandBits'
648 if self.read_code != None:
649 return self.buildReadCode(func)
650
651 if predRead:
652 rindex = '_sourceIndex++'
653 else:
654 rindex = '%d' % self.src_reg_idx
655
656 return '%s = xc->%s(this, %s);\n' % \
657 (self.base_name, func, rindex)
658
659 def makeWrite(self, predWrite):
660 if (self.ctype == 'float' or self.ctype == 'double'):
661 func = 'setFloatRegOperand'
662 else:
663 func = 'setFloatRegOperandBits'
664 if self.write_code != None:
665 return self.buildWriteCode(func)
666
667 if predWrite:
668 wp = '_destIndex++'
669 else:
670 wp = '%d' % self.dest_reg_idx
671 wp = 'xc->%s(this, %s, final_val);' % (func, wp)
672
673 wb = '''
674 {
675 %s final_val = %s;
676 %s\n
677 if (traceData) { traceData->setData(final_val); }
678 }''' % (self.ctype, self.base_name, wp)
679 return wb
680
681class CCRegOperand(Operand):
682 def isReg(self):
683 return 1
684
685 def isCCReg(self):
686 return 1
687
688 def makeConstructor(self, predRead, predWrite):
689 c_src = ''
690 c_dest = ''
691
692 if self.is_src:
693 c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s + CC_Reg_Base;' % \
694 (self.reg_spec)
695 if self.hasReadPred():
696 c_src = '\n\tif (%s) {%s\n\t}' % \
697 (self.read_predicate, c_src)
698
699 if self.is_dest:
700 c_dest = \
701 '\n\t_destRegIdx[_numDestRegs++] = %s + CC_Reg_Base;' % \
702 (self.reg_spec)
703 c_dest += '\n\t_numCCDestRegs++;'
704 if self.hasWritePred():
705 c_dest = '\n\tif (%s) {%s\n\t}' % \
706 (self.write_predicate, c_dest)
707
708 return c_src + c_dest
709
710 def makeRead(self, predRead):
711 if (self.ctype == 'float' or self.ctype == 'double'):
712 error('Attempt to read condition-code register as FP')
713 if self.read_code != None:
714 return self.buildReadCode('readCCRegOperand')
715
716 int_reg_val = ''
717 if predRead:
718 int_reg_val = 'xc->readCCRegOperand(this, _sourceIndex++)'
719 if self.hasReadPred():
720 int_reg_val = '(%s) ? %s : 0' % \
721 (self.read_predicate, int_reg_val)
722 else:
723 int_reg_val = 'xc->readCCRegOperand(this, %d)' % self.src_reg_idx
724
725 return '%s = %s;\n' % (self.base_name, int_reg_val)
726
727 def makeWrite(self, predWrite):
728 if (self.ctype == 'float' or self.ctype == 'double'):
729 error('Attempt to write condition-code register as FP')
730 if self.write_code != None:
731 return self.buildWriteCode('setCCRegOperand')
732
733 if predWrite:
734 wp = 'true'
735 if self.hasWritePred():
736 wp = self.write_predicate
737
738 wcond = 'if (%s)' % (wp)
739 windex = '_destIndex++'
740 else:
741 wcond = ''
742 windex = '%d' % self.dest_reg_idx
743
744 wb = '''
745 %s
746 {
747 %s final_val = %s;
748 xc->setCCRegOperand(this, %s, final_val);\n
749 if (traceData) { traceData->setData(final_val); }
750 }''' % (wcond, self.ctype, self.base_name, windex)
751
752 return wb
753
757class VectorRegOperand(Operand):
758 def isReg(self):
759 return 1
760
761 def isVectorReg(self):
762 return 1
763
764 def __init__(self, parser, full_name, ext, is_src, is_dest):
765 ## Vector registers are always treated as source registers since
766 ## not the whole of them might be written, in which case we need
767 ## to retain the earlier value.
768 super(VectorRegOperand, self).__init__(parser, full_name, ext,
769 True, is_dest)
770 self.size = 0
771
772 def finalize(self, predRead, predWrite):
773 self.flags = self.getFlags()
774 self.constructor = self.makeConstructor(predRead, predWrite)
775 self.op_decl = self.makeDecl()
776
777 if self.is_src:
778 self.op_rd = self.makeRead(predRead)
779 self.op_src_decl = self.makeDecl()
780 else:
781 self.op_rd = ''
782 self.op_src_decl = ''
783
784 if self.is_dest:
785 self.op_wb = self.makeWrite(predWrite)
786 self.op_dest_decl = self.makeDecl()
787 else:
788 self.op_wb = ''
789 self.op_dest_decl = ''
790
791 def makeConstructor(self, predRead, predWrite):
792 c_src = ''
793 c_dest = ''
794
795 if self.is_src:
796 c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s + Vector_Reg_Base;' % \
797 (self.reg_spec)
798 if self.hasReadPred():
799 c_src = '\n\tif (%s) {%s\n\t}' % \
800 (self.read_predicate, c_src)
801
802 if self.is_dest:
803 c_dest = '\n\t_destRegIdx[_numDestRegs++] = %s + Vector_Reg_Base;' % \
804 (self.reg_spec)
805 c_dest += '\n\t_numVectorDestRegs++;'
806 if self.hasWritePred():
807 c_dest = '\n\tif (%s) {%s\n\t}' % \
808 (self.write_predicate, c_dest)
809
810 return c_src + c_dest
811
812 def makeRead(self, predRead):
813 if self.read_code != None:
814 return self.buildReadCode('readVectorRegOperand')
815
816 vector_reg_val = ''
817 if predRead:
818 vector_reg_val = 'xc->readVectorRegOperand(this, _sourceIndex++)'
819 if self.hasReadPred():
820 vector_reg_val = '(%s) ? %s : 0' % \
821 (self.read_predicate, vector_reg_val)
822 else:
823 vector_reg_val = 'xc->readVectorRegOperand(this, %d)' % \
824 self.src_reg_idx
825
826 return '%s = %s;\n' % (self.base_name, vector_reg_val)
827
828 def makeWrite(self, predWrite):
829 if self.write_code != None:
830 return self.buildWriteCode('setVectorRegOperand')
831
832 if predWrite:
833 wp = 'true'
834 if self.hasWritePred():
835 wp = self.write_predicate
836
837 wcond = 'if (%s)' % (wp)
838 windex = '_destIndex++'
839 else:
840 wcond = ''
841 windex = '%d' % self.dest_reg_idx
842
843 wb = '''
844 %s
845 {
846 TheISA::VectorReg final_val = %s;
847 xc->setVectorRegOperand(this, %s, final_val);\n
848 if (traceData) { traceData->setData(final_val); }
849 }''' % (wcond, self.base_name, windex)
850
851 return wb
852
853 def makeDecl(self):
854 ctype = 'TheISA::VectorReg'
855 return '%s %s;\n' % (ctype, self.base_name)
856
857class ControlRegOperand(Operand):
858 def isReg(self):
859 return 1
860
861 def isControlReg(self):
862 return 1
863
864 def makeConstructor(self, predRead, predWrite):
865 c_src = ''
866 c_dest = ''
867
868 if self.is_src:
869 c_src = \
870 '\n\t_srcRegIdx[_numSrcRegs++] = %s + Misc_Reg_Base;' % \
871 (self.reg_spec)
872
873 if self.is_dest:
874 c_dest = \
875 '\n\t_destRegIdx[_numDestRegs++] = %s + Misc_Reg_Base;' % \
876 (self.reg_spec)
877
878 return c_src + c_dest
879
880 def makeRead(self, predRead):
881 bit_select = 0
882 if (self.ctype == 'float' or self.ctype == 'double'):
883 error('Attempt to read control register as FP')
884 if self.read_code != None:
885 return self.buildReadCode('readMiscRegOperand')
886
887 if predRead:
888 rindex = '_sourceIndex++'
889 else:
890 rindex = '%d' % self.src_reg_idx
891
892 return '%s = xc->readMiscRegOperand(this, %s);\n' % \
893 (self.base_name, rindex)
894
895 def makeWrite(self, predWrite):
896 if (self.ctype == 'float' or self.ctype == 'double'):
897 error('Attempt to write control register as FP')
898 if self.write_code != None:
899 return self.buildWriteCode('setMiscRegOperand')
900
901 if predWrite:
902 windex = '_destIndex++'
903 else:
904 windex = '%d' % self.dest_reg_idx
905
906 wb = 'xc->setMiscRegOperand(this, %s, %s);\n' % \
907 (windex, self.base_name)
908 wb += 'if (traceData) { traceData->setData(%s); }' % \
909 self.base_name
910
911 return wb
912
913class MemOperand(Operand):
914 def isMem(self):
915 return 1
916
917 def makeConstructor(self, predRead, predWrite):
918 return ''
919
920 def makeDecl(self):
921 # Note that initializations in the declarations are solely
922 # to avoid 'uninitialized variable' errors from the compiler.
923 # Declare memory data variable.
754class ControlRegOperand(Operand):
755 def isReg(self):
756 return 1
757
758 def isControlReg(self):
759 return 1
760
761 def makeConstructor(self, predRead, predWrite):
762 c_src = ''
763 c_dest = ''
764
765 if self.is_src:
766 c_src = \
767 '\n\t_srcRegIdx[_numSrcRegs++] = %s + Misc_Reg_Base;' % \
768 (self.reg_spec)
769
770 if self.is_dest:
771 c_dest = \
772 '\n\t_destRegIdx[_numDestRegs++] = %s + Misc_Reg_Base;' % \
773 (self.reg_spec)
774
775 return c_src + c_dest
776
777 def makeRead(self, predRead):
778 bit_select = 0
779 if (self.ctype == 'float' or self.ctype == 'double'):
780 error('Attempt to read control register as FP')
781 if self.read_code != None:
782 return self.buildReadCode('readMiscRegOperand')
783
784 if predRead:
785 rindex = '_sourceIndex++'
786 else:
787 rindex = '%d' % self.src_reg_idx
788
789 return '%s = xc->readMiscRegOperand(this, %s);\n' % \
790 (self.base_name, rindex)
791
792 def makeWrite(self, predWrite):
793 if (self.ctype == 'float' or self.ctype == 'double'):
794 error('Attempt to write control register as FP')
795 if self.write_code != None:
796 return self.buildWriteCode('setMiscRegOperand')
797
798 if predWrite:
799 windex = '_destIndex++'
800 else:
801 windex = '%d' % self.dest_reg_idx
802
803 wb = 'xc->setMiscRegOperand(this, %s, %s);\n' % \
804 (windex, self.base_name)
805 wb += 'if (traceData) { traceData->setData(%s); }' % \
806 self.base_name
807
808 return wb
809
810class MemOperand(Operand):
811 def isMem(self):
812 return 1
813
814 def makeConstructor(self, predRead, predWrite):
815 return ''
816
817 def makeDecl(self):
818 # Note that initializations in the declarations are solely
819 # to avoid 'uninitialized variable' errors from the compiler.
820 # Declare memory data variable.
924 if 'IsVector' in self.flags:
925 return 'TheISA::VectorReg %s;\n' % self.base_name
926 else:
927 return '%s %s = 0;\n' % (self.ctype, self.base_name)
821 return '%s %s = 0;\n' % (self.ctype, self.base_name)
928
929 def makeRead(self, predRead):
930 if self.read_code != None:
931 return self.buildReadCode()
932 return ''
933
934 def makeWrite(self, predWrite):
935 if self.write_code != None:
936 return self.buildWriteCode()
937 return ''
938
939class PCStateOperand(Operand):
940 def makeConstructor(self, predRead, predWrite):
941 return ''
942
943 def makeRead(self, predRead):
944 if self.reg_spec:
945 # A component of the PC state.
946 return '%s = __parserAutoPCState.%s();\n' % \
947 (self.base_name, self.reg_spec)
948 else:
949 # The whole PC state itself.
950 return '%s = xc->pcState();\n' % self.base_name
951
952 def makeWrite(self, predWrite):
953 if self.reg_spec:
954 # A component of the PC state.
955 return '__parserAutoPCState.%s(%s);\n' % \
956 (self.reg_spec, self.base_name)
957 else:
958 # The whole PC state itself.
959 return 'xc->pcState(%s);\n' % self.base_name
960
961 def makeDecl(self):
962 ctype = 'TheISA::PCState'
963 if self.isPCPart():
964 ctype = self.ctype
965 # Note that initializations in the declarations are solely
966 # to avoid 'uninitialized variable' errors from the compiler.
967 return '%s %s = 0;\n' % (ctype, self.base_name)
968
969 def isPCState(self):
970 return 1
971
972class OperandList(object):
973 '''Find all the operands in the given code block. Returns an operand
974 descriptor list (instance of class OperandList).'''
975 def __init__(self, parser, code):
976 self.items = []
977 self.bases = {}
978 # delete strings and comments so we don't match on operands inside
979 for regEx in (stringRE, commentRE):
980 code = regEx.sub('', code)
981 # search for operands
982 next_pos = 0
983 while 1:
984 match = parser.operandsRE.search(code, next_pos)
985 if not match:
986 # no more matches: we're done
987 break
988 op = match.groups()
989 # regexp groups are operand full name, base, and extension
990 (op_full, op_base, op_ext) = op
991 # if the token following the operand is an assignment, this is
992 # a destination (LHS), else it's a source (RHS)
993 is_dest = (assignRE.match(code, match.end()) != None)
994 is_src = not is_dest
995 # see if we've already seen this one
996 op_desc = self.find_base(op_base)
997 if op_desc:
998 if op_desc.ext != op_ext:
999 error('Inconsistent extensions for operand %s' % \
1000 op_base)
1001 op_desc.is_src = op_desc.is_src or is_src
1002 op_desc.is_dest = op_desc.is_dest or is_dest
1003 else:
1004 # new operand: create new descriptor
1005 op_desc = parser.operandNameMap[op_base](parser,
1006 op_full, op_ext, is_src, is_dest)
1007 self.append(op_desc)
1008 # start next search after end of current match
1009 next_pos = match.end()
1010 self.sort()
1011 # enumerate source & dest register operands... used in building
1012 # constructor later
1013 self.numSrcRegs = 0
1014 self.numDestRegs = 0
1015 self.numFPDestRegs = 0
1016 self.numIntDestRegs = 0
1017 self.numCCDestRegs = 0
822
823 def makeRead(self, predRead):
824 if self.read_code != None:
825 return self.buildReadCode()
826 return ''
827
828 def makeWrite(self, predWrite):
829 if self.write_code != None:
830 return self.buildWriteCode()
831 return ''
832
833class PCStateOperand(Operand):
834 def makeConstructor(self, predRead, predWrite):
835 return ''
836
837 def makeRead(self, predRead):
838 if self.reg_spec:
839 # A component of the PC state.
840 return '%s = __parserAutoPCState.%s();\n' % \
841 (self.base_name, self.reg_spec)
842 else:
843 # The whole PC state itself.
844 return '%s = xc->pcState();\n' % self.base_name
845
846 def makeWrite(self, predWrite):
847 if self.reg_spec:
848 # A component of the PC state.
849 return '__parserAutoPCState.%s(%s);\n' % \
850 (self.reg_spec, self.base_name)
851 else:
852 # The whole PC state itself.
853 return 'xc->pcState(%s);\n' % self.base_name
854
855 def makeDecl(self):
856 ctype = 'TheISA::PCState'
857 if self.isPCPart():
858 ctype = self.ctype
859 # Note that initializations in the declarations are solely
860 # to avoid 'uninitialized variable' errors from the compiler.
861 return '%s %s = 0;\n' % (ctype, self.base_name)
862
863 def isPCState(self):
864 return 1
865
866class OperandList(object):
867 '''Find all the operands in the given code block. Returns an operand
868 descriptor list (instance of class OperandList).'''
869 def __init__(self, parser, code):
870 self.items = []
871 self.bases = {}
872 # delete strings and comments so we don't match on operands inside
873 for regEx in (stringRE, commentRE):
874 code = regEx.sub('', code)
875 # search for operands
876 next_pos = 0
877 while 1:
878 match = parser.operandsRE.search(code, next_pos)
879 if not match:
880 # no more matches: we're done
881 break
882 op = match.groups()
883 # regexp groups are operand full name, base, and extension
884 (op_full, op_base, op_ext) = op
885 # if the token following the operand is an assignment, this is
886 # a destination (LHS), else it's a source (RHS)
887 is_dest = (assignRE.match(code, match.end()) != None)
888 is_src = not is_dest
889 # see if we've already seen this one
890 op_desc = self.find_base(op_base)
891 if op_desc:
892 if op_desc.ext != op_ext:
893 error('Inconsistent extensions for operand %s' % \
894 op_base)
895 op_desc.is_src = op_desc.is_src or is_src
896 op_desc.is_dest = op_desc.is_dest or is_dest
897 else:
898 # new operand: create new descriptor
899 op_desc = parser.operandNameMap[op_base](parser,
900 op_full, op_ext, is_src, is_dest)
901 self.append(op_desc)
902 # start next search after end of current match
903 next_pos = match.end()
904 self.sort()
905 # enumerate source & dest register operands... used in building
906 # constructor later
907 self.numSrcRegs = 0
908 self.numDestRegs = 0
909 self.numFPDestRegs = 0
910 self.numIntDestRegs = 0
911 self.numCCDestRegs = 0
1018 self.numVectorDestRegs = 0
1019 self.numMiscDestRegs = 0
1020 self.memOperand = None
1021
1022 # Flags to keep track if one or more operands are to be read/written
1023 # conditionally.
1024 self.predRead = False
1025 self.predWrite = False
1026
1027 for op_desc in self.items:
1028 if op_desc.isReg():
1029 if op_desc.is_src:
1030 op_desc.src_reg_idx = self.numSrcRegs
1031 self.numSrcRegs += 1
1032 if op_desc.is_dest:
1033 op_desc.dest_reg_idx = self.numDestRegs
1034 self.numDestRegs += 1
1035 if op_desc.isFloatReg():
1036 self.numFPDestRegs += 1
1037 elif op_desc.isIntReg():
1038 self.numIntDestRegs += 1
1039 elif op_desc.isCCReg():
1040 self.numCCDestRegs += 1
912 self.numMiscDestRegs = 0
913 self.memOperand = None
914
915 # Flags to keep track if one or more operands are to be read/written
916 # conditionally.
917 self.predRead = False
918 self.predWrite = False
919
920 for op_desc in self.items:
921 if op_desc.isReg():
922 if op_desc.is_src:
923 op_desc.src_reg_idx = self.numSrcRegs
924 self.numSrcRegs += 1
925 if op_desc.is_dest:
926 op_desc.dest_reg_idx = self.numDestRegs
927 self.numDestRegs += 1
928 if op_desc.isFloatReg():
929 self.numFPDestRegs += 1
930 elif op_desc.isIntReg():
931 self.numIntDestRegs += 1
932 elif op_desc.isCCReg():
933 self.numCCDestRegs += 1
1041 elif op_desc.isVectorReg():
1042 self.numVectorDestRegs += 1
1043 elif op_desc.isControlReg():
1044 self.numMiscDestRegs += 1
1045 elif op_desc.isMem():
1046 if self.memOperand:
1047 error("Code block has more than one memory operand.")
1048 self.memOperand = op_desc
1049
1050 # Check if this operand has read/write predication. If true, then
1051 # the microop will dynamically index source/dest registers.
1052 self.predRead = self.predRead or op_desc.hasReadPred()
1053 self.predWrite = self.predWrite or op_desc.hasWritePred()
1054
1055 if parser.maxInstSrcRegs < self.numSrcRegs:
1056 parser.maxInstSrcRegs = self.numSrcRegs
1057 if parser.maxInstDestRegs < self.numDestRegs:
1058 parser.maxInstDestRegs = self.numDestRegs
1059 if parser.maxMiscDestRegs < self.numMiscDestRegs:
1060 parser.maxMiscDestRegs = self.numMiscDestRegs
1061
1062 # now make a final pass to finalize op_desc fields that may depend
1063 # on the register enumeration
1064 for op_desc in self.items:
1065 op_desc.finalize(self.predRead, self.predWrite)
1066
1067 def __len__(self):
1068 return len(self.items)
1069
1070 def __getitem__(self, index):
1071 return self.items[index]
1072
1073 def append(self, op_desc):
1074 self.items.append(op_desc)
1075 self.bases[op_desc.base_name] = op_desc
1076
1077 def find_base(self, base_name):
1078 # like self.bases[base_name], but returns None if not found
1079 # (rather than raising exception)
1080 return self.bases.get(base_name)
1081
1082 # internal helper function for concat[Some]Attr{Strings|Lists}
1083 def __internalConcatAttrs(self, attr_name, filter, result):
1084 for op_desc in self.items:
1085 if filter(op_desc):
1086 result += getattr(op_desc, attr_name)
1087 return result
1088
1089 # return a single string that is the concatenation of the (string)
1090 # values of the specified attribute for all operands
1091 def concatAttrStrings(self, attr_name):
1092 return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
1093
1094 # like concatAttrStrings, but only include the values for the operands
1095 # for which the provided filter function returns true
1096 def concatSomeAttrStrings(self, filter, attr_name):
1097 return self.__internalConcatAttrs(attr_name, filter, '')
1098
1099 # return a single list that is the concatenation of the (list)
1100 # values of the specified attribute for all operands
1101 def concatAttrLists(self, attr_name):
1102 return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
1103
1104 # like concatAttrLists, but only include the values for the operands
1105 # for which the provided filter function returns true
1106 def concatSomeAttrLists(self, filter, attr_name):
1107 return self.__internalConcatAttrs(attr_name, filter, [])
1108
1109 def sort(self):
1110 self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
1111
1112class SubOperandList(OperandList):
1113 '''Find all the operands in the given code block. Returns an operand
1114 descriptor list (instance of class OperandList).'''
1115 def __init__(self, parser, code, master_list):
1116 self.items = []
1117 self.bases = {}
1118 # delete strings and comments so we don't match on operands inside
1119 for regEx in (stringRE, commentRE):
1120 code = regEx.sub('', code)
1121 # search for operands
1122 next_pos = 0
1123 while 1:
1124 match = parser.operandsRE.search(code, next_pos)
1125 if not match:
1126 # no more matches: we're done
1127 break
1128 op = match.groups()
1129 # regexp groups are operand full name, base, and extension
1130 (op_full, op_base, op_ext) = op
1131 # find this op in the master list
1132 op_desc = master_list.find_base(op_base)
1133 if not op_desc:
1134 error('Found operand %s which is not in the master list!' \
1135 ' This is an internal error' % op_base)
1136 else:
1137 # See if we've already found this operand
1138 op_desc = self.find_base(op_base)
1139 if not op_desc:
1140 # if not, add a reference to it to this sub list
1141 self.append(master_list.bases[op_base])
1142
1143 # start next search after end of current match
1144 next_pos = match.end()
1145 self.sort()
1146 self.memOperand = None
1147 # Whether the whole PC needs to be read so parts of it can be accessed
1148 self.readPC = False
1149 # Whether the whole PC needs to be written after parts of it were
1150 # changed
1151 self.setPC = False
1152 # Whether this instruction manipulates the whole PC or parts of it.
1153 # Mixing the two is a bad idea and flagged as an error.
1154 self.pcPart = None
1155
1156 # Flags to keep track if one or more operands are to be read/written
1157 # conditionally.
1158 self.predRead = False
1159 self.predWrite = False
1160
1161 for op_desc in self.items:
1162 if op_desc.isPCPart():
1163 self.readPC = True
1164 if op_desc.is_dest:
1165 self.setPC = True
1166
1167 if op_desc.isPCState():
1168 if self.pcPart is not None:
1169 if self.pcPart and not op_desc.isPCPart() or \
1170 not self.pcPart and op_desc.isPCPart():
1171 error("Mixed whole and partial PC state operands.")
1172 self.pcPart = op_desc.isPCPart()
1173
1174 if op_desc.isMem():
1175 if self.memOperand:
1176 error("Code block has more than one memory operand.")
1177 self.memOperand = op_desc
1178
1179 # Check if this operand has read/write predication. If true, then
1180 # the microop will dynamically index source/dest registers.
1181 self.predRead = self.predRead or op_desc.hasReadPred()
1182 self.predWrite = self.predWrite or op_desc.hasWritePred()
1183
1184# Regular expression object to match C++ strings
1185stringRE = re.compile(r'"([^"\\]|\\.)*"')
1186
1187# Regular expression object to match C++ comments
1188# (used in findOperands())
1189commentRE = re.compile(r'(^)?[^\S\n]*/(?:\*(.*?)\*/[^\S\n]*|/[^\n]*)($)?',
1190 re.DOTALL | re.MULTILINE)
1191
1192# Regular expression object to match assignment statements
1193# (used in findOperands())
1194assignRE = re.compile(r'\s*=(?!=)', re.MULTILINE)
1195
1196def makeFlagConstructor(flag_list):
1197 if len(flag_list) == 0:
1198 return ''
1199 # filter out repeated flags
1200 flag_list.sort()
1201 i = 1
1202 while i < len(flag_list):
1203 if flag_list[i] == flag_list[i-1]:
1204 del flag_list[i]
1205 else:
1206 i += 1
1207 pre = '\n\tflags['
1208 post = '] = true;'
1209 code = pre + string.join(flag_list, post + pre) + post
1210 return code
1211
1212# Assume all instruction flags are of the form 'IsFoo'
1213instFlagRE = re.compile(r'Is.*')
1214
1215# OpClass constants end in 'Op' except No_OpClass
1216opClassRE = re.compile(r'.*Op|No_OpClass')
1217
1218class InstObjParams(object):
1219 def __init__(self, parser, mnem, class_name, base_class = '',
1220 snippets = {}, opt_args = []):
1221 self.mnemonic = mnem
1222 self.class_name = class_name
1223 self.base_class = base_class
1224 if not isinstance(snippets, dict):
1225 snippets = {'code' : snippets}
1226 compositeCode = ' '.join(map(str, snippets.values()))
1227 self.snippets = snippets
1228
1229 self.operands = OperandList(parser, compositeCode)
1230
1231 # The header of the constructor declares the variables to be used
1232 # in the body of the constructor.
1233 header = ''
1234 header += '\n\t_numSrcRegs = 0;'
1235 header += '\n\t_numDestRegs = 0;'
1236 header += '\n\t_numFPDestRegs = 0;'
1237 header += '\n\t_numIntDestRegs = 0;'
1238 header += '\n\t_numCCDestRegs = 0;'
934 elif op_desc.isControlReg():
935 self.numMiscDestRegs += 1
936 elif op_desc.isMem():
937 if self.memOperand:
938 error("Code block has more than one memory operand.")
939 self.memOperand = op_desc
940
941 # Check if this operand has read/write predication. If true, then
942 # the microop will dynamically index source/dest registers.
943 self.predRead = self.predRead or op_desc.hasReadPred()
944 self.predWrite = self.predWrite or op_desc.hasWritePred()
945
946 if parser.maxInstSrcRegs < self.numSrcRegs:
947 parser.maxInstSrcRegs = self.numSrcRegs
948 if parser.maxInstDestRegs < self.numDestRegs:
949 parser.maxInstDestRegs = self.numDestRegs
950 if parser.maxMiscDestRegs < self.numMiscDestRegs:
951 parser.maxMiscDestRegs = self.numMiscDestRegs
952
953 # now make a final pass to finalize op_desc fields that may depend
954 # on the register enumeration
955 for op_desc in self.items:
956 op_desc.finalize(self.predRead, self.predWrite)
957
958 def __len__(self):
959 return len(self.items)
960
961 def __getitem__(self, index):
962 return self.items[index]
963
964 def append(self, op_desc):
965 self.items.append(op_desc)
966 self.bases[op_desc.base_name] = op_desc
967
968 def find_base(self, base_name):
969 # like self.bases[base_name], but returns None if not found
970 # (rather than raising exception)
971 return self.bases.get(base_name)
972
973 # internal helper function for concat[Some]Attr{Strings|Lists}
974 def __internalConcatAttrs(self, attr_name, filter, result):
975 for op_desc in self.items:
976 if filter(op_desc):
977 result += getattr(op_desc, attr_name)
978 return result
979
980 # return a single string that is the concatenation of the (string)
981 # values of the specified attribute for all operands
982 def concatAttrStrings(self, attr_name):
983 return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
984
985 # like concatAttrStrings, but only include the values for the operands
986 # for which the provided filter function returns true
987 def concatSomeAttrStrings(self, filter, attr_name):
988 return self.__internalConcatAttrs(attr_name, filter, '')
989
990 # return a single list that is the concatenation of the (list)
991 # values of the specified attribute for all operands
992 def concatAttrLists(self, attr_name):
993 return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
994
995 # like concatAttrLists, but only include the values for the operands
996 # for which the provided filter function returns true
997 def concatSomeAttrLists(self, filter, attr_name):
998 return self.__internalConcatAttrs(attr_name, filter, [])
999
1000 def sort(self):
1001 self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
1002
1003class SubOperandList(OperandList):
1004 '''Find all the operands in the given code block. Returns an operand
1005 descriptor list (instance of class OperandList).'''
1006 def __init__(self, parser, code, master_list):
1007 self.items = []
1008 self.bases = {}
1009 # delete strings and comments so we don't match on operands inside
1010 for regEx in (stringRE, commentRE):
1011 code = regEx.sub('', code)
1012 # search for operands
1013 next_pos = 0
1014 while 1:
1015 match = parser.operandsRE.search(code, next_pos)
1016 if not match:
1017 # no more matches: we're done
1018 break
1019 op = match.groups()
1020 # regexp groups are operand full name, base, and extension
1021 (op_full, op_base, op_ext) = op
1022 # find this op in the master list
1023 op_desc = master_list.find_base(op_base)
1024 if not op_desc:
1025 error('Found operand %s which is not in the master list!' \
1026 ' This is an internal error' % op_base)
1027 else:
1028 # See if we've already found this operand
1029 op_desc = self.find_base(op_base)
1030 if not op_desc:
1031 # if not, add a reference to it to this sub list
1032 self.append(master_list.bases[op_base])
1033
1034 # start next search after end of current match
1035 next_pos = match.end()
1036 self.sort()
1037 self.memOperand = None
1038 # Whether the whole PC needs to be read so parts of it can be accessed
1039 self.readPC = False
1040 # Whether the whole PC needs to be written after parts of it were
1041 # changed
1042 self.setPC = False
1043 # Whether this instruction manipulates the whole PC or parts of it.
1044 # Mixing the two is a bad idea and flagged as an error.
1045 self.pcPart = None
1046
1047 # Flags to keep track if one or more operands are to be read/written
1048 # conditionally.
1049 self.predRead = False
1050 self.predWrite = False
1051
1052 for op_desc in self.items:
1053 if op_desc.isPCPart():
1054 self.readPC = True
1055 if op_desc.is_dest:
1056 self.setPC = True
1057
1058 if op_desc.isPCState():
1059 if self.pcPart is not None:
1060 if self.pcPart and not op_desc.isPCPart() or \
1061 not self.pcPart and op_desc.isPCPart():
1062 error("Mixed whole and partial PC state operands.")
1063 self.pcPart = op_desc.isPCPart()
1064
1065 if op_desc.isMem():
1066 if self.memOperand:
1067 error("Code block has more than one memory operand.")
1068 self.memOperand = op_desc
1069
1070 # Check if this operand has read/write predication. If true, then
1071 # the microop will dynamically index source/dest registers.
1072 self.predRead = self.predRead or op_desc.hasReadPred()
1073 self.predWrite = self.predWrite or op_desc.hasWritePred()
1074
1075# Regular expression object to match C++ strings
1076stringRE = re.compile(r'"([^"\\]|\\.)*"')
1077
1078# Regular expression object to match C++ comments
1079# (used in findOperands())
1080commentRE = re.compile(r'(^)?[^\S\n]*/(?:\*(.*?)\*/[^\S\n]*|/[^\n]*)($)?',
1081 re.DOTALL | re.MULTILINE)
1082
1083# Regular expression object to match assignment statements
1084# (used in findOperands())
1085assignRE = re.compile(r'\s*=(?!=)', re.MULTILINE)
1086
1087def makeFlagConstructor(flag_list):
1088 if len(flag_list) == 0:
1089 return ''
1090 # filter out repeated flags
1091 flag_list.sort()
1092 i = 1
1093 while i < len(flag_list):
1094 if flag_list[i] == flag_list[i-1]:
1095 del flag_list[i]
1096 else:
1097 i += 1
1098 pre = '\n\tflags['
1099 post = '] = true;'
1100 code = pre + string.join(flag_list, post + pre) + post
1101 return code
1102
1103# Assume all instruction flags are of the form 'IsFoo'
1104instFlagRE = re.compile(r'Is.*')
1105
1106# OpClass constants end in 'Op' except No_OpClass
1107opClassRE = re.compile(r'.*Op|No_OpClass')
1108
1109class InstObjParams(object):
1110 def __init__(self, parser, mnem, class_name, base_class = '',
1111 snippets = {}, opt_args = []):
1112 self.mnemonic = mnem
1113 self.class_name = class_name
1114 self.base_class = base_class
1115 if not isinstance(snippets, dict):
1116 snippets = {'code' : snippets}
1117 compositeCode = ' '.join(map(str, snippets.values()))
1118 self.snippets = snippets
1119
1120 self.operands = OperandList(parser, compositeCode)
1121
1122 # The header of the constructor declares the variables to be used
1123 # in the body of the constructor.
1124 header = ''
1125 header += '\n\t_numSrcRegs = 0;'
1126 header += '\n\t_numDestRegs = 0;'
1127 header += '\n\t_numFPDestRegs = 0;'
1128 header += '\n\t_numIntDestRegs = 0;'
1129 header += '\n\t_numCCDestRegs = 0;'
1239 header += '\n\t_numVectorDestRegs = 0;'
1240
1241 self.constructor = header + \
1242 self.operands.concatAttrStrings('constructor')
1243
1244 self.flags = self.operands.concatAttrLists('flags')
1245
1246 self.op_class = None
1247
1248 # Optional arguments are assumed to be either StaticInst flags
1249 # or an OpClass value. To avoid having to import a complete
1250 # list of these values to match against, we do it ad-hoc
1251 # with regexps.
1252 for oa in opt_args:
1253 if instFlagRE.match(oa):
1254 self.flags.append(oa)
1255 elif opClassRE.match(oa):
1256 self.op_class = oa
1257 else:
1258 error('InstObjParams: optional arg "%s" not recognized '
1259 'as StaticInst::Flag or OpClass.' % oa)
1260
1261 # Make a basic guess on the operand class if not set.
1262 # These are good enough for most cases.
1263 if not self.op_class:
1264 if 'IsStore' in self.flags:
1265 self.op_class = 'MemWriteOp'
1266 elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
1267 self.op_class = 'MemReadOp'
1268 elif 'IsFloating' in self.flags:
1269 self.op_class = 'FloatAddOp'
1270 else:
1271 self.op_class = 'IntAluOp'
1272
1273 # add flag initialization to contructor here to include
1274 # any flags added via opt_args
1275 self.constructor += makeFlagConstructor(self.flags)
1276
1277 # if 'IsFloating' is set, add call to the FP enable check
1278 # function (which should be provided by isa_desc via a declare)
1279 if 'IsFloating' in self.flags:
1280 self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
1281 else:
1282 self.fp_enable_check = ''
1283
1284##############
1285# Stack: a simple stack object. Used for both formats (formatStack)
1286# and default cases (defaultStack). Simply wraps a list to give more
1287# stack-like syntax and enable initialization with an argument list
1288# (as opposed to an argument that's a list).
1289
1290class Stack(list):
1291 def __init__(self, *items):
1292 list.__init__(self, items)
1293
1294 def push(self, item):
1295 self.append(item);
1296
1297 def top(self):
1298 return self[-1]
1299
1300#######################
1301#
1302# ISA Parser
1303# parses ISA DSL and emits C++ headers and source
1304#
1305
1306class ISAParser(Grammar):
1307 class CpuModel(object):
1308 def __init__(self, name, filename, includes, strings):
1309 self.name = name
1310 self.filename = filename
1311 self.includes = includes
1312 self.strings = strings
1313
1314 def __init__(self, output_dir):
1315 super(ISAParser, self).__init__()
1316 self.output_dir = output_dir
1317
1318 self.filename = None # for output file watermarking/scaremongering
1319
1320 self.cpuModels = [
1321 ISAParser.CpuModel('ExecContext',
1322 'generic_cpu_exec.cc',
1323 '#include "cpu/exec_context.hh"',
1324 { "CPU_exec_context" : "ExecContext" }),
1325 ]
1326
1327 # variable to hold templates
1328 self.templateMap = {}
1329
1330 # This dictionary maps format name strings to Format objects.
1331 self.formatMap = {}
1332
1333 # Track open files and, if applicable, how many chunks it has been
1334 # split into so far.
1335 self.files = {}
1336 self.splits = {}
1337
1338 # isa_name / namespace identifier from namespace declaration.
1339 # before the namespace declaration, None.
1340 self.isa_name = None
1341 self.namespace = None
1342
1343 # The format stack.
1344 self.formatStack = Stack(NoFormat())
1345
1346 # The default case stack.
1347 self.defaultStack = Stack(None)
1348
1349 # Stack that tracks current file and line number. Each
1350 # element is a tuple (filename, lineno) that records the
1351 # *current* filename and the line number in the *previous*
1352 # file where it was included.
1353 self.fileNameStack = Stack()
1354
1355 symbols = ('makeList', 're', 'string')
1356 self.exportContext = dict([(s, eval(s)) for s in symbols])
1357
1358 self.maxInstSrcRegs = 0
1359 self.maxInstDestRegs = 0
1360 self.maxMiscDestRegs = 0
1361
1362 def __getitem__(self, i): # Allow object (self) to be
1363 return getattr(self, i) # passed to %-substitutions
1364
1365 # Change the file suffix of a base filename:
1366 # (e.g.) decoder.cc -> decoder-g.cc.inc for 'global' outputs
1367 def suffixize(self, s, sec):
1368 extn = re.compile('(\.[^\.]+)$') # isolate extension
1369 if self.namespace:
1370 return extn.sub(r'-ns\1.inc', s) # insert some text on either side
1371 else:
1372 return extn.sub(r'-g\1.inc', s)
1373
1374 # Get the file object for emitting code into the specified section
1375 # (header, decoder, exec, decode_block).
1376 def get_file(self, section):
1377 if section == 'decode_block':
1378 filename = 'decode-method.cc.inc'
1379 else:
1380 if section == 'header':
1381 file = 'decoder.hh'
1382 else:
1383 file = '%s.cc' % section
1384 filename = self.suffixize(file, section)
1385 try:
1386 return self.files[filename]
1387 except KeyError: pass
1388
1389 f = self.open(filename)
1390 self.files[filename] = f
1391
1392 # The splittable files are the ones with many independent
1393 # per-instruction functions - the decoder's instruction constructors
1394 # and the instruction execution (execute()) methods. These both have
1395 # the suffix -ns.cc.inc, meaning they are within the namespace part
1396 # of the ISA, contain object-emitting C++ source, and are included
1397 # into other top-level files. These are the files that need special
1398 # #define's to allow parts of them to be compiled separately. Rather
1399 # than splitting the emissions into separate files, the monolithic
1400 # output of the ISA parser is maintained, but the value (or lack
1401 # thereof) of the __SPLIT definition during C preprocessing will
1402 # select the different chunks. If no 'split' directives are used,
1403 # the cpp emissions have no effect.
1404 if re.search('-ns.cc.inc$', filename):
1405 print >>f, '#if !defined(__SPLIT) || (__SPLIT == 1)'
1406 self.splits[f] = 1
1407 # ensure requisite #include's
1408 elif filename in ['decoder-g.cc.inc', 'exec-g.cc.inc']:
1409 print >>f, '#include "decoder.hh"'
1410 elif filename == 'decoder-g.hh.inc':
1411 print >>f, '#include "base/bitfield.hh"'
1412
1413 return f
1414
1415 # Weave together the parts of the different output sections by
1416 # #include'ing them into some very short top-level .cc/.hh files.
1417 # These small files make it much clearer how this tool works, since
1418 # you directly see the chunks emitted as files that are #include'd.
1419 def write_top_level_files(self):
1420 dep = self.open('inc.d', bare=True)
1421
1422 # decoder header - everything depends on this
1423 file = 'decoder.hh'
1424 with self.open(file) as f:
1425 inc = []
1426
1427 fn = 'decoder-g.hh.inc'
1428 assert(fn in self.files)
1429 f.write('#include "%s"\n' % fn)
1430 inc.append(fn)
1431
1432 fn = 'decoder-ns.hh.inc'
1433 assert(fn in self.files)
1434 f.write('namespace %s {\n#include "%s"\n}\n'
1435 % (self.namespace, fn))
1436 inc.append(fn)
1437
1438 print >>dep, file+':', ' '.join(inc)
1439
1440 # decoder method - cannot be split
1441 file = 'decoder.cc'
1442 with self.open(file) as f:
1443 inc = []
1444
1445 fn = 'decoder-g.cc.inc'
1446 assert(fn in self.files)
1447 f.write('#include "%s"\n' % fn)
1448 inc.append(fn)
1449
1450 fn = 'decode-method.cc.inc'
1451 # is guaranteed to have been written for parse to complete
1452 f.write('#include "%s"\n' % fn)
1453 inc.append(fn)
1454
1455 inc.append("decoder.hh")
1456 print >>dep, file+':', ' '.join(inc)
1457
1458 extn = re.compile('(\.[^\.]+)$')
1459
1460 # instruction constructors
1461 splits = self.splits[self.get_file('decoder')]
1462 file_ = 'inst-constrs.cc'
1463 for i in range(1, splits+1):
1464 if splits > 1:
1465 file = extn.sub(r'-%d\1' % i, file_)
1466 else:
1467 file = file_
1468 with self.open(file) as f:
1469 inc = []
1470
1471 fn = 'decoder-g.cc.inc'
1472 assert(fn in self.files)
1473 f.write('#include "%s"\n' % fn)
1474 inc.append(fn)
1475
1476 fn = 'decoder-ns.cc.inc'
1477 assert(fn in self.files)
1478 print >>f, 'namespace %s {' % self.namespace
1479 if splits > 1:
1480 print >>f, '#define __SPLIT %u' % i
1481 print >>f, '#include "%s"' % fn
1482 print >>f, '}'
1483 inc.append(fn)
1484
1485 inc.append("decoder.hh")
1486 print >>dep, file+':', ' '.join(inc)
1487
1488 # instruction execution per-CPU model
1489 splits = self.splits[self.get_file('exec')]
1490 for cpu in self.cpuModels:
1491 for i in range(1, splits+1):
1492 if splits > 1:
1493 file = extn.sub(r'_%d\1' % i, cpu.filename)
1494 else:
1495 file = cpu.filename
1496 with self.open(file) as f:
1497 inc = []
1498
1499 fn = 'exec-g.cc.inc'
1500 assert(fn in self.files)
1501 f.write('#include "%s"\n' % fn)
1502 inc.append(fn)
1503
1504 f.write(cpu.includes+"\n")
1505
1506 fn = 'exec-ns.cc.inc'
1507 assert(fn in self.files)
1508 print >>f, 'namespace %s {' % self.namespace
1509 print >>f, '#define CPU_EXEC_CONTEXT %s' \
1510 % cpu.strings['CPU_exec_context']
1511 if splits > 1:
1512 print >>f, '#define __SPLIT %u' % i
1513 print >>f, '#include "%s"' % fn
1514 print >>f, '}'
1515 inc.append(fn)
1516
1517 inc.append("decoder.hh")
1518 print >>dep, file+':', ' '.join(inc)
1519
1520 # max_inst_regs.hh
1521 self.update('max_inst_regs.hh',
1522 '''namespace %(namespace)s {
1523 const int MaxInstSrcRegs = %(maxInstSrcRegs)d;
1524 const int MaxInstDestRegs = %(maxInstDestRegs)d;
1525 const int MaxMiscDestRegs = %(maxMiscDestRegs)d;\n}\n''' % self)
1526 print >>dep, 'max_inst_regs.hh:'
1527
1528 dep.close()
1529
1530
1531 scaremonger_template ='''// DO NOT EDIT
1532// This file was automatically generated from an ISA description:
1533// %(filename)s
1534
1535''';
1536
1537 #####################################################################
1538 #
1539 # Lexer
1540 #
1541 # The PLY lexer module takes two things as input:
1542 # - A list of token names (the string list 'tokens')
1543 # - A regular expression describing a match for each token. The
1544 # regexp for token FOO can be provided in two ways:
1545 # - as a string variable named t_FOO
1546 # - as the doc string for a function named t_FOO. In this case,
1547 # the function is also executed, allowing an action to be
1548 # associated with each token match.
1549 #
1550 #####################################################################
1551
1552 # Reserved words. These are listed separately as they are matched
1553 # using the same regexp as generic IDs, but distinguished in the
1554 # t_ID() function. The PLY documentation suggests this approach.
1555 reserved = (
1556 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
1557 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
1558 'OUTPUT', 'SIGNED', 'SPLIT', 'TEMPLATE'
1559 )
1560
1561 # List of tokens. The lex module requires this.
1562 tokens = reserved + (
1563 # identifier
1564 'ID',
1565
1566 # integer literal
1567 'INTLIT',
1568
1569 # string literal
1570 'STRLIT',
1571
1572 # code literal
1573 'CODELIT',
1574
1575 # ( ) [ ] { } < > , ; . : :: *
1576 'LPAREN', 'RPAREN',
1577 'LBRACKET', 'RBRACKET',
1578 'LBRACE', 'RBRACE',
1579 'LESS', 'GREATER', 'EQUALS',
1580 'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON',
1581 'ASTERISK',
1582
1583 # C preprocessor directives
1584 'CPPDIRECTIVE'
1585
1586 # The following are matched but never returned. commented out to
1587 # suppress PLY warning
1588 # newfile directive
1589 # 'NEWFILE',
1590
1591 # endfile directive
1592 # 'ENDFILE'
1593 )
1594
1595 # Regular expressions for token matching
1596 t_LPAREN = r'\('
1597 t_RPAREN = r'\)'
1598 t_LBRACKET = r'\['
1599 t_RBRACKET = r'\]'
1600 t_LBRACE = r'\{'
1601 t_RBRACE = r'\}'
1602 t_LESS = r'\<'
1603 t_GREATER = r'\>'
1604 t_EQUALS = r'='
1605 t_COMMA = r','
1606 t_SEMI = r';'
1607 t_DOT = r'\.'
1608 t_COLON = r':'
1609 t_DBLCOLON = r'::'
1610 t_ASTERISK = r'\*'
1611
1612 # Identifiers and reserved words
1613 reserved_map = { }
1614 for r in reserved:
1615 reserved_map[r.lower()] = r
1616
1617 def t_ID(self, t):
1618 r'[A-Za-z_]\w*'
1619 t.type = self.reserved_map.get(t.value, 'ID')
1620 return t
1621
1622 # Integer literal
1623 def t_INTLIT(self, t):
1624 r'-?(0x[\da-fA-F]+)|\d+'
1625 try:
1626 t.value = int(t.value,0)
1627 except ValueError:
1628 error(t, 'Integer value "%s" too large' % t.value)
1629 t.value = 0
1630 return t
1631
1632 # String literal. Note that these use only single quotes, and
1633 # can span multiple lines.
1634 def t_STRLIT(self, t):
1635 r"(?m)'([^'])+'"
1636 # strip off quotes
1637 t.value = t.value[1:-1]
1638 t.lexer.lineno += t.value.count('\n')
1639 return t
1640
1641
1642 # "Code literal"... like a string literal, but delimiters are
1643 # '{{' and '}}' so they get formatted nicely under emacs c-mode
1644 def t_CODELIT(self, t):
1645 r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
1646 # strip off {{ & }}
1647 t.value = t.value[2:-2]
1648 t.lexer.lineno += t.value.count('\n')
1649 return t
1650
1651 def t_CPPDIRECTIVE(self, t):
1652 r'^\#[^\#].*\n'
1653 t.lexer.lineno += t.value.count('\n')
1654 return t
1655
1656 def t_NEWFILE(self, t):
1657 r'^\#\#newfile\s+"[^"]*"'
1658 self.fileNameStack.push((t.value[11:-1], t.lexer.lineno))
1659 t.lexer.lineno = 0
1660
1661 def t_ENDFILE(self, t):
1662 r'^\#\#endfile'
1663 (old_filename, t.lexer.lineno) = self.fileNameStack.pop()
1664
1665 #
1666 # The functions t_NEWLINE, t_ignore, and t_error are
1667 # special for the lex module.
1668 #
1669
1670 # Newlines
1671 def t_NEWLINE(self, t):
1672 r'\n+'
1673 t.lexer.lineno += t.value.count('\n')
1674
1675 # Comments
1676 def t_comment(self, t):
1677 r'//.*'
1678
1679 # Completely ignored characters
1680 t_ignore = ' \t\x0c'
1681
1682 # Error handler
1683 def t_error(self, t):
1684 error(t, "illegal character '%s'" % t.value[0])
1685 t.skip(1)
1686
1687 #####################################################################
1688 #
1689 # Parser
1690 #
1691 # Every function whose name starts with 'p_' defines a grammar
1692 # rule. The rule is encoded in the function's doc string, while
1693 # the function body provides the action taken when the rule is
1694 # matched. The argument to each function is a list of the values
1695 # of the rule's symbols: t[0] for the LHS, and t[1..n] for the
1696 # symbols on the RHS. For tokens, the value is copied from the
1697 # t.value attribute provided by the lexer. For non-terminals, the
1698 # value is assigned by the producing rule; i.e., the job of the
1699 # grammar rule function is to set the value for the non-terminal
1700 # on the LHS (by assigning to t[0]).
1701 #####################################################################
1702
1703 # The LHS of the first grammar rule is used as the start symbol
1704 # (in this case, 'specification'). Note that this rule enforces
1705 # that there will be exactly one namespace declaration, with 0 or
1706 # more global defs/decls before and after it. The defs & decls
1707 # before the namespace decl will be outside the namespace; those
1708 # after will be inside. The decoder function is always inside the
1709 # namespace.
1710 def p_specification(self, t):
1711 'specification : opt_defs_and_outputs top_level_decode_block'
1712
1713 for f in self.splits.iterkeys():
1714 f.write('\n#endif\n')
1715
1716 for f in self.files.itervalues(): # close ALL the files;
1717 f.close() # not doing so can cause compilation to fail
1718
1719 self.write_top_level_files()
1720
1721 t[0] = True
1722
1723 # 'opt_defs_and_outputs' is a possibly empty sequence of def and/or
1724 # output statements. Its productions do the hard work of eventually
1725 # instantiating a GenCode, which are generally emitted (written to disk)
1726 # as soon as possible, except for the decode_block, which has to be
1727 # accumulated into one large function of nested switch/case blocks.
1728 def p_opt_defs_and_outputs_0(self, t):
1729 'opt_defs_and_outputs : empty'
1730
1731 def p_opt_defs_and_outputs_1(self, t):
1732 'opt_defs_and_outputs : defs_and_outputs'
1733
1734 def p_defs_and_outputs_0(self, t):
1735 'defs_and_outputs : def_or_output'
1736
1737 def p_defs_and_outputs_1(self, t):
1738 'defs_and_outputs : defs_and_outputs def_or_output'
1739
1740 # The list of possible definition/output statements.
1741 # They are all processed as they are seen.
1742 def p_def_or_output(self, t):
1743 '''def_or_output : name_decl
1744 | def_format
1745 | def_bitfield
1746 | def_bitfield_struct
1747 | def_template
1748 | def_operand_types
1749 | def_operands
1750 | output
1751 | global_let
1752 | split'''
1753
1754 # Utility function used by both invocations of splitting - explicit
1755 # 'split' keyword and split() function inside "let {{ }};" blocks.
1756 def split(self, sec, write=False):
1757 assert(sec != 'header' and "header cannot be split")
1758
1759 f = self.get_file(sec)
1760 self.splits[f] += 1
1761 s = '\n#endif\n#if __SPLIT == %u\n' % self.splits[f]
1762 if write:
1763 f.write(s)
1764 else:
1765 return s
1766
1767 # split output file to reduce compilation time
1768 def p_split(self, t):
1769 'split : SPLIT output_type SEMI'
1770 assert(self.isa_name and "'split' not allowed before namespace decl")
1771
1772 self.split(t[2], True)
1773
1774 def p_output_type(self, t):
1775 '''output_type : DECODER
1776 | HEADER
1777 | EXEC'''
1778 t[0] = t[1]
1779
1780 # ISA name declaration looks like "namespace <foo>;"
1781 def p_name_decl(self, t):
1782 'name_decl : NAMESPACE ID SEMI'
1783 assert(self.isa_name == None and "Only 1 namespace decl permitted")
1784 self.isa_name = t[2]
1785 self.namespace = t[2] + 'Inst'
1786
1787 # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
1788 # directly to the appropriate output section.
1789
1790 # Massage output block by substituting in template definitions and
1791 # bit operators. We handle '%'s embedded in the string that don't
1792 # indicate template substitutions (or CPU-specific symbols, which
1793 # get handled in GenCode) by doubling them first so that the
1794 # format operation will reduce them back to single '%'s.
1795 def process_output(self, s):
1796 s = self.protectNonSubstPercents(s)
1797 # protects cpu-specific symbols too
1798 s = self.protectCpuSymbols(s)
1799 return substBitOps(s % self.templateMap)
1800
1801 def p_output(self, t):
1802 'output : OUTPUT output_type CODELIT SEMI'
1803 kwargs = { t[2]+'_output' : self.process_output(t[3]) }
1804 GenCode(self, **kwargs).emit()
1805
1806 # global let blocks 'let {{...}}' (Python code blocks) are
1807 # executed directly when seen. Note that these execute in a
1808 # special variable context 'exportContext' to prevent the code
1809 # from polluting this script's namespace.
1810 def p_global_let(self, t):
1811 'global_let : LET CODELIT SEMI'
1812 def _split(sec):
1813 return self.split(sec)
1814 self.updateExportContext()
1815 self.exportContext["header_output"] = ''
1816 self.exportContext["decoder_output"] = ''
1817 self.exportContext["exec_output"] = ''
1818 self.exportContext["decode_block"] = ''
1819 self.exportContext["split"] = _split
1820 split_setup = '''
1821def wrap(func):
1822 def split(sec):
1823 globals()[sec + '_output'] += func(sec)
1824 return split
1825split = wrap(split)
1826del wrap
1827'''
1828 # This tricky setup (immediately above) allows us to just write
1829 # (e.g.) "split('exec')" in the Python code and the split #ifdef's
1830 # will automatically be added to the exec_output variable. The inner
1831 # Python execution environment doesn't know about the split points,
1832 # so we carefully inject and wrap a closure that can retrieve the
1833 # next split's #define from the parser and add it to the current
1834 # emission-in-progress.
1835 try:
1836 exec split_setup+fixPythonIndentation(t[2]) in self.exportContext
1837 except Exception, exc:
1838 if debug:
1839 raise
1840 error(t, 'error: %s in global let block "%s".' % (exc, t[2]))
1841 GenCode(self,
1842 header_output=self.exportContext["header_output"],
1843 decoder_output=self.exportContext["decoder_output"],
1844 exec_output=self.exportContext["exec_output"],
1845 decode_block=self.exportContext["decode_block"]).emit()
1846
1847 # Define the mapping from operand type extensions to C++ types and
1848 # bit widths (stored in operandTypeMap).
1849 def p_def_operand_types(self, t):
1850 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
1851 try:
1852 self.operandTypeMap = eval('{' + t[3] + '}')
1853 except Exception, exc:
1854 if debug:
1855 raise
1856 error(t,
1857 'error: %s in def operand_types block "%s".' % (exc, t[3]))
1858
1859 # Define the mapping from operand names to operand classes and
1860 # other traits. Stored in operandNameMap.
1861 def p_def_operands(self, t):
1862 'def_operands : DEF OPERANDS CODELIT SEMI'
1863 if not hasattr(self, 'operandTypeMap'):
1864 error(t, 'error: operand types must be defined before operands')
1865 try:
1866 user_dict = eval('{' + t[3] + '}', self.exportContext)
1867 except Exception, exc:
1868 if debug:
1869 raise
1870 error(t, 'error: %s in def operands block "%s".' % (exc, t[3]))
1871 self.buildOperandNameMap(user_dict, t.lexer.lineno)
1872
1873 # A bitfield definition looks like:
1874 # 'def [signed] bitfield <ID> [<first>:<last>]'
1875 # This generates a preprocessor macro in the output file.
1876 def p_def_bitfield_0(self, t):
1877 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
1878 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
1879 if (t[2] == 'signed'):
1880 expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
1881 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1882 GenCode(self, header_output=hash_define).emit()
1883
1884 # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
1885 def p_def_bitfield_1(self, t):
1886 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
1887 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
1888 if (t[2] == 'signed'):
1889 expr = 'sext<%d>(%s)' % (1, expr)
1890 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1891 GenCode(self, header_output=hash_define).emit()
1892
1893 # alternate form for structure member: 'def bitfield <ID> <ID>'
1894 def p_def_bitfield_struct(self, t):
1895 'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI'
1896 if (t[2] != ''):
1897 error(t, 'error: structure bitfields are always unsigned.')
1898 expr = 'machInst.%s' % t[5]
1899 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1900 GenCode(self, header_output=hash_define).emit()
1901
1902 def p_id_with_dot_0(self, t):
1903 'id_with_dot : ID'
1904 t[0] = t[1]
1905
1906 def p_id_with_dot_1(self, t):
1907 'id_with_dot : ID DOT id_with_dot'
1908 t[0] = t[1] + t[2] + t[3]
1909
1910 def p_opt_signed_0(self, t):
1911 'opt_signed : SIGNED'
1912 t[0] = t[1]
1913
1914 def p_opt_signed_1(self, t):
1915 'opt_signed : empty'
1916 t[0] = ''
1917
1918 def p_def_template(self, t):
1919 'def_template : DEF TEMPLATE ID CODELIT SEMI'
1920 if t[3] in self.templateMap:
1921 print "warning: template %s already defined" % t[3]
1922 self.templateMap[t[3]] = Template(self, t[4])
1923
1924 # An instruction format definition looks like
1925 # "def format <fmt>(<params>) {{...}};"
1926 def p_def_format(self, t):
1927 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
1928 (id, params, code) = (t[3], t[5], t[7])
1929 self.defFormat(id, params, code, t.lexer.lineno)
1930
1931 # The formal parameter list for an instruction format is a
1932 # possibly empty list of comma-separated parameters. Positional
1933 # (standard, non-keyword) parameters must come first, followed by
1934 # keyword parameters, followed by a '*foo' parameter that gets
1935 # excess positional arguments (as in Python). Each of these three
1936 # parameter categories is optional.
1937 #
1938 # Note that we do not support the '**foo' parameter for collecting
1939 # otherwise undefined keyword args. Otherwise the parameter list
1940 # is (I believe) identical to what is supported in Python.
1941 #
1942 # The param list generates a tuple, where the first element is a
1943 # list of the positional params and the second element is a dict
1944 # containing the keyword params.
1945 def p_param_list_0(self, t):
1946 'param_list : positional_param_list COMMA nonpositional_param_list'
1947 t[0] = t[1] + t[3]
1948
1949 def p_param_list_1(self, t):
1950 '''param_list : positional_param_list
1951 | nonpositional_param_list'''
1952 t[0] = t[1]
1953
1954 def p_positional_param_list_0(self, t):
1955 'positional_param_list : empty'
1956 t[0] = []
1957
1958 def p_positional_param_list_1(self, t):
1959 'positional_param_list : ID'
1960 t[0] = [t[1]]
1961
1962 def p_positional_param_list_2(self, t):
1963 'positional_param_list : positional_param_list COMMA ID'
1964 t[0] = t[1] + [t[3]]
1965
1966 def p_nonpositional_param_list_0(self, t):
1967 'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
1968 t[0] = t[1] + t[3]
1969
1970 def p_nonpositional_param_list_1(self, t):
1971 '''nonpositional_param_list : keyword_param_list
1972 | excess_args_param'''
1973 t[0] = t[1]
1974
1975 def p_keyword_param_list_0(self, t):
1976 'keyword_param_list : keyword_param'
1977 t[0] = [t[1]]
1978
1979 def p_keyword_param_list_1(self, t):
1980 'keyword_param_list : keyword_param_list COMMA keyword_param'
1981 t[0] = t[1] + [t[3]]
1982
1983 def p_keyword_param(self, t):
1984 'keyword_param : ID EQUALS expr'
1985 t[0] = t[1] + ' = ' + t[3].__repr__()
1986
1987 def p_excess_args_param(self, t):
1988 'excess_args_param : ASTERISK ID'
1989 # Just concatenate them: '*ID'. Wrap in list to be consistent
1990 # with positional_param_list and keyword_param_list.
1991 t[0] = [t[1] + t[2]]
1992
1993 # End of format definition-related rules.
1994 ##############
1995
1996 #
1997 # A decode block looks like:
1998 # decode <field1> [, <field2>]* [default <inst>] { ... }
1999 #
2000 def p_top_level_decode_block(self, t):
2001 'top_level_decode_block : decode_block'
2002 codeObj = t[1]
2003 codeObj.wrap_decode_block('''
2004StaticInstPtr
2005%(isa_name)s::Decoder::decodeInst(%(isa_name)s::ExtMachInst machInst)
2006{
2007 using namespace %(namespace)s;
2008''' % self, '}')
2009
2010 codeObj.emit()
2011
2012 def p_decode_block(self, t):
2013 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
2014 default_defaults = self.defaultStack.pop()
2015 codeObj = t[5]
2016 # use the "default defaults" only if there was no explicit
2017 # default statement in decode_stmt_list
2018 if not codeObj.has_decode_default:
2019 codeObj += default_defaults
2020 codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
2021 t[0] = codeObj
2022
2023 # The opt_default statement serves only to push the "default
2024 # defaults" onto defaultStack. This value will be used by nested
2025 # decode blocks, and used and popped off when the current
2026 # decode_block is processed (in p_decode_block() above).
2027 def p_opt_default_0(self, t):
2028 'opt_default : empty'
2029 # no default specified: reuse the one currently at the top of
2030 # the stack
2031 self.defaultStack.push(self.defaultStack.top())
2032 # no meaningful value returned
2033 t[0] = None
2034
2035 def p_opt_default_1(self, t):
2036 'opt_default : DEFAULT inst'
2037 # push the new default
2038 codeObj = t[2]
2039 codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
2040 self.defaultStack.push(codeObj)
2041 # no meaningful value returned
2042 t[0] = None
2043
2044 def p_decode_stmt_list_0(self, t):
2045 'decode_stmt_list : decode_stmt'
2046 t[0] = t[1]
2047
2048 def p_decode_stmt_list_1(self, t):
2049 'decode_stmt_list : decode_stmt decode_stmt_list'
2050 if (t[1].has_decode_default and t[2].has_decode_default):
2051 error(t, 'Two default cases in decode block')
2052 t[0] = t[1] + t[2]
2053
2054 #
2055 # Decode statement rules
2056 #
2057 # There are four types of statements allowed in a decode block:
2058 # 1. Format blocks 'format <foo> { ... }'
2059 # 2. Nested decode blocks
2060 # 3. Instruction definitions.
2061 # 4. C preprocessor directives.
2062
2063
2064 # Preprocessor directives found in a decode statement list are
2065 # passed through to the output, replicated to all of the output
2066 # code streams. This works well for ifdefs, so we can ifdef out
2067 # both the declarations and the decode cases generated by an
2068 # instruction definition. Handling them as part of the grammar
2069 # makes it easy to keep them in the right place with respect to
2070 # the code generated by the other statements.
2071 def p_decode_stmt_cpp(self, t):
2072 'decode_stmt : CPPDIRECTIVE'
2073 t[0] = GenCode(self, t[1], t[1], t[1], t[1])
2074
2075 # A format block 'format <foo> { ... }' sets the default
2076 # instruction format used to handle instruction definitions inside
2077 # the block. This format can be overridden by using an explicit
2078 # format on the instruction definition or with a nested format
2079 # block.
2080 def p_decode_stmt_format(self, t):
2081 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
2082 # The format will be pushed on the stack when 'push_format_id'
2083 # is processed (see below). Once the parser has recognized
2084 # the full production (though the right brace), we're done
2085 # with the format, so now we can pop it.
2086 self.formatStack.pop()
2087 t[0] = t[4]
2088
2089 # This rule exists so we can set the current format (& push the
2090 # stack) when we recognize the format name part of the format
2091 # block.
2092 def p_push_format_id(self, t):
2093 'push_format_id : ID'
2094 try:
2095 self.formatStack.push(self.formatMap[t[1]])
2096 t[0] = ('', '// format %s' % t[1])
2097 except KeyError:
2098 error(t, 'instruction format "%s" not defined.' % t[1])
2099
2100 # Nested decode block: if the value of the current field matches
2101 # the specified constant(s), do a nested decode on some other field.
2102 def p_decode_stmt_decode(self, t):
2103 'decode_stmt : case_list COLON decode_block'
2104 case_list = t[1]
2105 codeObj = t[3]
2106 # just wrap the decoding code from the block as a case in the
2107 # outer switch statement.
2108 codeObj.wrap_decode_block('\n%s\n' % ''.join(case_list))
2109 codeObj.has_decode_default = (case_list == ['default:'])
2110 t[0] = codeObj
2111
2112 # Instruction definition (finally!).
2113 def p_decode_stmt_inst(self, t):
2114 'decode_stmt : case_list COLON inst SEMI'
2115 case_list = t[1]
2116 codeObj = t[3]
2117 codeObj.wrap_decode_block('\n%s' % ''.join(case_list), 'break;\n')
2118 codeObj.has_decode_default = (case_list == ['default:'])
2119 t[0] = codeObj
2120
2121 # The constant list for a decode case label must be non-empty, and must
2122 # either be the keyword 'default', or made up of one or more
2123 # comma-separated integer literals or strings which evaluate to
2124 # constants when compiled as C++.
2125 def p_case_list_0(self, t):
2126 'case_list : DEFAULT'
2127 t[0] = ['default:']
2128
2129 def prep_int_lit_case_label(self, lit):
2130 if lit >= 2**32:
2131 return 'case ULL(%#x): ' % lit
2132 else:
2133 return 'case %#x: ' % lit
2134
2135 def prep_str_lit_case_label(self, lit):
2136 return 'case %s: ' % lit
2137
2138 def p_case_list_1(self, t):
2139 'case_list : INTLIT'
2140 t[0] = [self.prep_int_lit_case_label(t[1])]
2141
2142 def p_case_list_2(self, t):
2143 'case_list : STRLIT'
2144 t[0] = [self.prep_str_lit_case_label(t[1])]
2145
2146 def p_case_list_3(self, t):
2147 'case_list : case_list COMMA INTLIT'
2148 t[0] = t[1]
2149 t[0].append(self.prep_int_lit_case_label(t[3]))
2150
2151 def p_case_list_4(self, t):
2152 'case_list : case_list COMMA STRLIT'
2153 t[0] = t[1]
2154 t[0].append(self.prep_str_lit_case_label(t[3]))
2155
2156 # Define an instruction using the current instruction format
2157 # (specified by an enclosing format block).
2158 # "<mnemonic>(<args>)"
2159 def p_inst_0(self, t):
2160 'inst : ID LPAREN arg_list RPAREN'
2161 # Pass the ID and arg list to the current format class to deal with.
2162 currentFormat = self.formatStack.top()
2163 codeObj = currentFormat.defineInst(self, t[1], t[3], t.lexer.lineno)
2164 args = ','.join(map(str, t[3]))
2165 args = re.sub('(?m)^', '//', args)
2166 args = re.sub('^//', '', args)
2167 comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
2168 codeObj.prepend_all(comment)
2169 t[0] = codeObj
2170
2171 # Define an instruction using an explicitly specified format:
2172 # "<fmt>::<mnemonic>(<args>)"
2173 def p_inst_1(self, t):
2174 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
2175 try:
2176 format = self.formatMap[t[1]]
2177 except KeyError:
2178 error(t, 'instruction format "%s" not defined.' % t[1])
2179
2180 codeObj = format.defineInst(self, t[3], t[5], t.lexer.lineno)
2181 comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
2182 codeObj.prepend_all(comment)
2183 t[0] = codeObj
2184
2185 # The arg list generates a tuple, where the first element is a
2186 # list of the positional args and the second element is a dict
2187 # containing the keyword args.
2188 def p_arg_list_0(self, t):
2189 'arg_list : positional_arg_list COMMA keyword_arg_list'
2190 t[0] = ( t[1], t[3] )
2191
2192 def p_arg_list_1(self, t):
2193 'arg_list : positional_arg_list'
2194 t[0] = ( t[1], {} )
2195
2196 def p_arg_list_2(self, t):
2197 'arg_list : keyword_arg_list'
2198 t[0] = ( [], t[1] )
2199
2200 def p_positional_arg_list_0(self, t):
2201 'positional_arg_list : empty'
2202 t[0] = []
2203
2204 def p_positional_arg_list_1(self, t):
2205 'positional_arg_list : expr'
2206 t[0] = [t[1]]
2207
2208 def p_positional_arg_list_2(self, t):
2209 'positional_arg_list : positional_arg_list COMMA expr'
2210 t[0] = t[1] + [t[3]]
2211
2212 def p_keyword_arg_list_0(self, t):
2213 'keyword_arg_list : keyword_arg'
2214 t[0] = t[1]
2215
2216 def p_keyword_arg_list_1(self, t):
2217 'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
2218 t[0] = t[1]
2219 t[0].update(t[3])
2220
2221 def p_keyword_arg(self, t):
2222 'keyword_arg : ID EQUALS expr'
2223 t[0] = { t[1] : t[3] }
2224
2225 #
2226 # Basic expressions. These constitute the argument values of
2227 # "function calls" (i.e. instruction definitions in the decode
2228 # block) and default values for formal parameters of format
2229 # functions.
2230 #
2231 # Right now, these are either strings, integers, or (recursively)
2232 # lists of exprs (using Python square-bracket list syntax). Note
2233 # that bare identifiers are trated as string constants here (since
2234 # there isn't really a variable namespace to refer to).
2235 #
2236 def p_expr_0(self, t):
2237 '''expr : ID
2238 | INTLIT
2239 | STRLIT
2240 | CODELIT'''
2241 t[0] = t[1]
2242
2243 def p_expr_1(self, t):
2244 '''expr : LBRACKET list_expr RBRACKET'''
2245 t[0] = t[2]
2246
2247 def p_list_expr_0(self, t):
2248 'list_expr : expr'
2249 t[0] = [t[1]]
2250
2251 def p_list_expr_1(self, t):
2252 'list_expr : list_expr COMMA expr'
2253 t[0] = t[1] + [t[3]]
2254
2255 def p_list_expr_2(self, t):
2256 'list_expr : empty'
2257 t[0] = []
2258
2259 #
2260 # Empty production... use in other rules for readability.
2261 #
2262 def p_empty(self, t):
2263 'empty :'
2264 pass
2265
2266 # Parse error handler. Note that the argument here is the
2267 # offending *token*, not a grammar symbol (hence the need to use
2268 # t.value)
2269 def p_error(self, t):
2270 if t:
2271 error(t, "syntax error at '%s'" % t.value)
2272 else:
2273 error("unknown syntax error")
2274
2275 # END OF GRAMMAR RULES
2276
2277 def updateExportContext(self):
2278
2279 # create a continuation that allows us to grab the current parser
2280 def wrapInstObjParams(*args):
2281 return InstObjParams(self, *args)
2282 self.exportContext['InstObjParams'] = wrapInstObjParams
2283 self.exportContext.update(self.templateMap)
2284
2285 def defFormat(self, id, params, code, lineno):
2286 '''Define a new format'''
2287
2288 # make sure we haven't already defined this one
2289 if id in self.formatMap:
2290 error(lineno, 'format %s redefined.' % id)
2291
2292 # create new object and store in global map
2293 self.formatMap[id] = Format(id, params, code)
2294
2295 def expandCpuSymbolsToDict(self, template):
2296 '''Expand template with CPU-specific references into a
2297 dictionary with an entry for each CPU model name. The entry
2298 key is the model name and the corresponding value is the
2299 template with the CPU-specific refs substituted for that
2300 model.'''
2301
2302 # Protect '%'s that don't go with CPU-specific terms
2303 t = re.sub(r'%(?!\(CPU_)', '%%', template)
2304 result = {}
2305 for cpu in self.cpuModels:
2306 result[cpu.name] = t % cpu.strings
2307 return result
2308
2309 def expandCpuSymbolsToString(self, template):
2310 '''*If* the template has CPU-specific references, return a
2311 single string containing a copy of the template for each CPU
2312 model with the corresponding values substituted in. If the
2313 template has no CPU-specific references, it is returned
2314 unmodified.'''
2315
2316 if template.find('%(CPU_') != -1:
2317 return reduce(lambda x,y: x+y,
2318 self.expandCpuSymbolsToDict(template).values())
2319 else:
2320 return template
2321
2322 def protectCpuSymbols(self, template):
2323 '''Protect CPU-specific references by doubling the
2324 corresponding '%'s (in preparation for substituting a different
2325 set of references into the template).'''
2326
2327 return re.sub(r'%(?=\(CPU_)', '%%', template)
2328
2329 def protectNonSubstPercents(self, s):
2330 '''Protect any non-dict-substitution '%'s in a format string
2331 (i.e. those not followed by '(')'''
2332
2333 return re.sub(r'%(?!\()', '%%', s)
2334
2335 def buildOperandNameMap(self, user_dict, lineno):
2336 operand_name = {}
2337 for op_name, val in user_dict.iteritems():
2338
2339 # Check if extra attributes have been specified.
2340 if len(val) > 9:
2341 error(lineno, 'error: too many attributes for operand "%s"' %
2342 base_cls_name)
2343
2344 # Pad val with None in case optional args are missing
2345 val += (None, None, None, None)
2346 base_cls_name, dflt_ext, reg_spec, flags, sort_pri, \
2347 read_code, write_code, read_predicate, write_predicate = val[:9]
2348
2349 # Canonical flag structure is a triple of lists, where each list
2350 # indicates the set of flags implied by this operand always, when
2351 # used as a source, and when used as a dest, respectively.
2352 # For simplicity this can be initialized using a variety of fairly
2353 # obvious shortcuts; we convert these to canonical form here.
2354 if not flags:
2355 # no flags specified (e.g., 'None')
2356 flags = ( [], [], [] )
2357 elif isinstance(flags, str):
2358 # a single flag: assumed to be unconditional
2359 flags = ( [ flags ], [], [] )
2360 elif isinstance(flags, list):
2361 # a list of flags: also assumed to be unconditional
2362 flags = ( flags, [], [] )
2363 elif isinstance(flags, tuple):
2364 # it's a tuple: it should be a triple,
2365 # but each item could be a single string or a list
2366 (uncond_flags, src_flags, dest_flags) = flags
2367 flags = (makeList(uncond_flags),
2368 makeList(src_flags), makeList(dest_flags))
2369
2370 # Accumulate attributes of new operand class in tmp_dict
2371 tmp_dict = {}
2372 attrList = ['reg_spec', 'flags', 'sort_pri',
2373 'read_code', 'write_code',
2374 'read_predicate', 'write_predicate']
2375 if dflt_ext:
2376 dflt_ctype = self.operandTypeMap[dflt_ext]
2377 attrList.extend(['dflt_ctype', 'dflt_ext'])
2378 for attr in attrList:
2379 tmp_dict[attr] = eval(attr)
2380 tmp_dict['base_name'] = op_name
2381
2382 # New class name will be e.g. "IntReg_Ra"
2383 cls_name = base_cls_name + '_' + op_name
2384 # Evaluate string arg to get class object. Note that the
2385 # actual base class for "IntReg" is "IntRegOperand", i.e. we
2386 # have to append "Operand".
2387 try:
2388 base_cls = eval(base_cls_name + 'Operand')
2389 except NameError:
2390 error(lineno,
2391 'error: unknown operand base class "%s"' % base_cls_name)
2392 # The following statement creates a new class called
2393 # <cls_name> as a subclass of <base_cls> with the attributes
2394 # in tmp_dict, just as if we evaluated a class declaration.
2395 operand_name[op_name] = type(cls_name, (base_cls,), tmp_dict)
2396
2397 self.operandNameMap = operand_name
2398
2399 # Define operand variables.
2400 operands = user_dict.keys()
2401 extensions = self.operandTypeMap.keys()
2402
2403 operandsREString = r'''
2404 (?<!\w) # neg. lookbehind assertion: prevent partial matches
1130
1131 self.constructor = header + \
1132 self.operands.concatAttrStrings('constructor')
1133
1134 self.flags = self.operands.concatAttrLists('flags')
1135
1136 self.op_class = None
1137
1138 # Optional arguments are assumed to be either StaticInst flags
1139 # or an OpClass value. To avoid having to import a complete
1140 # list of these values to match against, we do it ad-hoc
1141 # with regexps.
1142 for oa in opt_args:
1143 if instFlagRE.match(oa):
1144 self.flags.append(oa)
1145 elif opClassRE.match(oa):
1146 self.op_class = oa
1147 else:
1148 error('InstObjParams: optional arg "%s" not recognized '
1149 'as StaticInst::Flag or OpClass.' % oa)
1150
1151 # Make a basic guess on the operand class if not set.
1152 # These are good enough for most cases.
1153 if not self.op_class:
1154 if 'IsStore' in self.flags:
1155 self.op_class = 'MemWriteOp'
1156 elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
1157 self.op_class = 'MemReadOp'
1158 elif 'IsFloating' in self.flags:
1159 self.op_class = 'FloatAddOp'
1160 else:
1161 self.op_class = 'IntAluOp'
1162
1163 # add flag initialization to contructor here to include
1164 # any flags added via opt_args
1165 self.constructor += makeFlagConstructor(self.flags)
1166
1167 # if 'IsFloating' is set, add call to the FP enable check
1168 # function (which should be provided by isa_desc via a declare)
1169 if 'IsFloating' in self.flags:
1170 self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
1171 else:
1172 self.fp_enable_check = ''
1173
1174##############
1175# Stack: a simple stack object. Used for both formats (formatStack)
1176# and default cases (defaultStack). Simply wraps a list to give more
1177# stack-like syntax and enable initialization with an argument list
1178# (as opposed to an argument that's a list).
1179
1180class Stack(list):
1181 def __init__(self, *items):
1182 list.__init__(self, items)
1183
1184 def push(self, item):
1185 self.append(item);
1186
1187 def top(self):
1188 return self[-1]
1189
1190#######################
1191#
1192# ISA Parser
1193# parses ISA DSL and emits C++ headers and source
1194#
1195
1196class ISAParser(Grammar):
1197 class CpuModel(object):
1198 def __init__(self, name, filename, includes, strings):
1199 self.name = name
1200 self.filename = filename
1201 self.includes = includes
1202 self.strings = strings
1203
1204 def __init__(self, output_dir):
1205 super(ISAParser, self).__init__()
1206 self.output_dir = output_dir
1207
1208 self.filename = None # for output file watermarking/scaremongering
1209
1210 self.cpuModels = [
1211 ISAParser.CpuModel('ExecContext',
1212 'generic_cpu_exec.cc',
1213 '#include "cpu/exec_context.hh"',
1214 { "CPU_exec_context" : "ExecContext" }),
1215 ]
1216
1217 # variable to hold templates
1218 self.templateMap = {}
1219
1220 # This dictionary maps format name strings to Format objects.
1221 self.formatMap = {}
1222
1223 # Track open files and, if applicable, how many chunks it has been
1224 # split into so far.
1225 self.files = {}
1226 self.splits = {}
1227
1228 # isa_name / namespace identifier from namespace declaration.
1229 # before the namespace declaration, None.
1230 self.isa_name = None
1231 self.namespace = None
1232
1233 # The format stack.
1234 self.formatStack = Stack(NoFormat())
1235
1236 # The default case stack.
1237 self.defaultStack = Stack(None)
1238
1239 # Stack that tracks current file and line number. Each
1240 # element is a tuple (filename, lineno) that records the
1241 # *current* filename and the line number in the *previous*
1242 # file where it was included.
1243 self.fileNameStack = Stack()
1244
1245 symbols = ('makeList', 're', 'string')
1246 self.exportContext = dict([(s, eval(s)) for s in symbols])
1247
1248 self.maxInstSrcRegs = 0
1249 self.maxInstDestRegs = 0
1250 self.maxMiscDestRegs = 0
1251
1252 def __getitem__(self, i): # Allow object (self) to be
1253 return getattr(self, i) # passed to %-substitutions
1254
1255 # Change the file suffix of a base filename:
1256 # (e.g.) decoder.cc -> decoder-g.cc.inc for 'global' outputs
1257 def suffixize(self, s, sec):
1258 extn = re.compile('(\.[^\.]+)$') # isolate extension
1259 if self.namespace:
1260 return extn.sub(r'-ns\1.inc', s) # insert some text on either side
1261 else:
1262 return extn.sub(r'-g\1.inc', s)
1263
1264 # Get the file object for emitting code into the specified section
1265 # (header, decoder, exec, decode_block).
1266 def get_file(self, section):
1267 if section == 'decode_block':
1268 filename = 'decode-method.cc.inc'
1269 else:
1270 if section == 'header':
1271 file = 'decoder.hh'
1272 else:
1273 file = '%s.cc' % section
1274 filename = self.suffixize(file, section)
1275 try:
1276 return self.files[filename]
1277 except KeyError: pass
1278
1279 f = self.open(filename)
1280 self.files[filename] = f
1281
1282 # The splittable files are the ones with many independent
1283 # per-instruction functions - the decoder's instruction constructors
1284 # and the instruction execution (execute()) methods. These both have
1285 # the suffix -ns.cc.inc, meaning they are within the namespace part
1286 # of the ISA, contain object-emitting C++ source, and are included
1287 # into other top-level files. These are the files that need special
1288 # #define's to allow parts of them to be compiled separately. Rather
1289 # than splitting the emissions into separate files, the monolithic
1290 # output of the ISA parser is maintained, but the value (or lack
1291 # thereof) of the __SPLIT definition during C preprocessing will
1292 # select the different chunks. If no 'split' directives are used,
1293 # the cpp emissions have no effect.
1294 if re.search('-ns.cc.inc$', filename):
1295 print >>f, '#if !defined(__SPLIT) || (__SPLIT == 1)'
1296 self.splits[f] = 1
1297 # ensure requisite #include's
1298 elif filename in ['decoder-g.cc.inc', 'exec-g.cc.inc']:
1299 print >>f, '#include "decoder.hh"'
1300 elif filename == 'decoder-g.hh.inc':
1301 print >>f, '#include "base/bitfield.hh"'
1302
1303 return f
1304
1305 # Weave together the parts of the different output sections by
1306 # #include'ing them into some very short top-level .cc/.hh files.
1307 # These small files make it much clearer how this tool works, since
1308 # you directly see the chunks emitted as files that are #include'd.
1309 def write_top_level_files(self):
1310 dep = self.open('inc.d', bare=True)
1311
1312 # decoder header - everything depends on this
1313 file = 'decoder.hh'
1314 with self.open(file) as f:
1315 inc = []
1316
1317 fn = 'decoder-g.hh.inc'
1318 assert(fn in self.files)
1319 f.write('#include "%s"\n' % fn)
1320 inc.append(fn)
1321
1322 fn = 'decoder-ns.hh.inc'
1323 assert(fn in self.files)
1324 f.write('namespace %s {\n#include "%s"\n}\n'
1325 % (self.namespace, fn))
1326 inc.append(fn)
1327
1328 print >>dep, file+':', ' '.join(inc)
1329
1330 # decoder method - cannot be split
1331 file = 'decoder.cc'
1332 with self.open(file) as f:
1333 inc = []
1334
1335 fn = 'decoder-g.cc.inc'
1336 assert(fn in self.files)
1337 f.write('#include "%s"\n' % fn)
1338 inc.append(fn)
1339
1340 fn = 'decode-method.cc.inc'
1341 # is guaranteed to have been written for parse to complete
1342 f.write('#include "%s"\n' % fn)
1343 inc.append(fn)
1344
1345 inc.append("decoder.hh")
1346 print >>dep, file+':', ' '.join(inc)
1347
1348 extn = re.compile('(\.[^\.]+)$')
1349
1350 # instruction constructors
1351 splits = self.splits[self.get_file('decoder')]
1352 file_ = 'inst-constrs.cc'
1353 for i in range(1, splits+1):
1354 if splits > 1:
1355 file = extn.sub(r'-%d\1' % i, file_)
1356 else:
1357 file = file_
1358 with self.open(file) as f:
1359 inc = []
1360
1361 fn = 'decoder-g.cc.inc'
1362 assert(fn in self.files)
1363 f.write('#include "%s"\n' % fn)
1364 inc.append(fn)
1365
1366 fn = 'decoder-ns.cc.inc'
1367 assert(fn in self.files)
1368 print >>f, 'namespace %s {' % self.namespace
1369 if splits > 1:
1370 print >>f, '#define __SPLIT %u' % i
1371 print >>f, '#include "%s"' % fn
1372 print >>f, '}'
1373 inc.append(fn)
1374
1375 inc.append("decoder.hh")
1376 print >>dep, file+':', ' '.join(inc)
1377
1378 # instruction execution per-CPU model
1379 splits = self.splits[self.get_file('exec')]
1380 for cpu in self.cpuModels:
1381 for i in range(1, splits+1):
1382 if splits > 1:
1383 file = extn.sub(r'_%d\1' % i, cpu.filename)
1384 else:
1385 file = cpu.filename
1386 with self.open(file) as f:
1387 inc = []
1388
1389 fn = 'exec-g.cc.inc'
1390 assert(fn in self.files)
1391 f.write('#include "%s"\n' % fn)
1392 inc.append(fn)
1393
1394 f.write(cpu.includes+"\n")
1395
1396 fn = 'exec-ns.cc.inc'
1397 assert(fn in self.files)
1398 print >>f, 'namespace %s {' % self.namespace
1399 print >>f, '#define CPU_EXEC_CONTEXT %s' \
1400 % cpu.strings['CPU_exec_context']
1401 if splits > 1:
1402 print >>f, '#define __SPLIT %u' % i
1403 print >>f, '#include "%s"' % fn
1404 print >>f, '}'
1405 inc.append(fn)
1406
1407 inc.append("decoder.hh")
1408 print >>dep, file+':', ' '.join(inc)
1409
1410 # max_inst_regs.hh
1411 self.update('max_inst_regs.hh',
1412 '''namespace %(namespace)s {
1413 const int MaxInstSrcRegs = %(maxInstSrcRegs)d;
1414 const int MaxInstDestRegs = %(maxInstDestRegs)d;
1415 const int MaxMiscDestRegs = %(maxMiscDestRegs)d;\n}\n''' % self)
1416 print >>dep, 'max_inst_regs.hh:'
1417
1418 dep.close()
1419
1420
1421 scaremonger_template ='''// DO NOT EDIT
1422// This file was automatically generated from an ISA description:
1423// %(filename)s
1424
1425''';
1426
1427 #####################################################################
1428 #
1429 # Lexer
1430 #
1431 # The PLY lexer module takes two things as input:
1432 # - A list of token names (the string list 'tokens')
1433 # - A regular expression describing a match for each token. The
1434 # regexp for token FOO can be provided in two ways:
1435 # - as a string variable named t_FOO
1436 # - as the doc string for a function named t_FOO. In this case,
1437 # the function is also executed, allowing an action to be
1438 # associated with each token match.
1439 #
1440 #####################################################################
1441
1442 # Reserved words. These are listed separately as they are matched
1443 # using the same regexp as generic IDs, but distinguished in the
1444 # t_ID() function. The PLY documentation suggests this approach.
1445 reserved = (
1446 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
1447 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
1448 'OUTPUT', 'SIGNED', 'SPLIT', 'TEMPLATE'
1449 )
1450
1451 # List of tokens. The lex module requires this.
1452 tokens = reserved + (
1453 # identifier
1454 'ID',
1455
1456 # integer literal
1457 'INTLIT',
1458
1459 # string literal
1460 'STRLIT',
1461
1462 # code literal
1463 'CODELIT',
1464
1465 # ( ) [ ] { } < > , ; . : :: *
1466 'LPAREN', 'RPAREN',
1467 'LBRACKET', 'RBRACKET',
1468 'LBRACE', 'RBRACE',
1469 'LESS', 'GREATER', 'EQUALS',
1470 'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON',
1471 'ASTERISK',
1472
1473 # C preprocessor directives
1474 'CPPDIRECTIVE'
1475
1476 # The following are matched but never returned. commented out to
1477 # suppress PLY warning
1478 # newfile directive
1479 # 'NEWFILE',
1480
1481 # endfile directive
1482 # 'ENDFILE'
1483 )
1484
1485 # Regular expressions for token matching
1486 t_LPAREN = r'\('
1487 t_RPAREN = r'\)'
1488 t_LBRACKET = r'\['
1489 t_RBRACKET = r'\]'
1490 t_LBRACE = r'\{'
1491 t_RBRACE = r'\}'
1492 t_LESS = r'\<'
1493 t_GREATER = r'\>'
1494 t_EQUALS = r'='
1495 t_COMMA = r','
1496 t_SEMI = r';'
1497 t_DOT = r'\.'
1498 t_COLON = r':'
1499 t_DBLCOLON = r'::'
1500 t_ASTERISK = r'\*'
1501
1502 # Identifiers and reserved words
1503 reserved_map = { }
1504 for r in reserved:
1505 reserved_map[r.lower()] = r
1506
1507 def t_ID(self, t):
1508 r'[A-Za-z_]\w*'
1509 t.type = self.reserved_map.get(t.value, 'ID')
1510 return t
1511
1512 # Integer literal
1513 def t_INTLIT(self, t):
1514 r'-?(0x[\da-fA-F]+)|\d+'
1515 try:
1516 t.value = int(t.value,0)
1517 except ValueError:
1518 error(t, 'Integer value "%s" too large' % t.value)
1519 t.value = 0
1520 return t
1521
1522 # String literal. Note that these use only single quotes, and
1523 # can span multiple lines.
1524 def t_STRLIT(self, t):
1525 r"(?m)'([^'])+'"
1526 # strip off quotes
1527 t.value = t.value[1:-1]
1528 t.lexer.lineno += t.value.count('\n')
1529 return t
1530
1531
1532 # "Code literal"... like a string literal, but delimiters are
1533 # '{{' and '}}' so they get formatted nicely under emacs c-mode
1534 def t_CODELIT(self, t):
1535 r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
1536 # strip off {{ & }}
1537 t.value = t.value[2:-2]
1538 t.lexer.lineno += t.value.count('\n')
1539 return t
1540
1541 def t_CPPDIRECTIVE(self, t):
1542 r'^\#[^\#].*\n'
1543 t.lexer.lineno += t.value.count('\n')
1544 return t
1545
1546 def t_NEWFILE(self, t):
1547 r'^\#\#newfile\s+"[^"]*"'
1548 self.fileNameStack.push((t.value[11:-1], t.lexer.lineno))
1549 t.lexer.lineno = 0
1550
1551 def t_ENDFILE(self, t):
1552 r'^\#\#endfile'
1553 (old_filename, t.lexer.lineno) = self.fileNameStack.pop()
1554
1555 #
1556 # The functions t_NEWLINE, t_ignore, and t_error are
1557 # special for the lex module.
1558 #
1559
1560 # Newlines
1561 def t_NEWLINE(self, t):
1562 r'\n+'
1563 t.lexer.lineno += t.value.count('\n')
1564
1565 # Comments
1566 def t_comment(self, t):
1567 r'//.*'
1568
1569 # Completely ignored characters
1570 t_ignore = ' \t\x0c'
1571
1572 # Error handler
1573 def t_error(self, t):
1574 error(t, "illegal character '%s'" % t.value[0])
1575 t.skip(1)
1576
1577 #####################################################################
1578 #
1579 # Parser
1580 #
1581 # Every function whose name starts with 'p_' defines a grammar
1582 # rule. The rule is encoded in the function's doc string, while
1583 # the function body provides the action taken when the rule is
1584 # matched. The argument to each function is a list of the values
1585 # of the rule's symbols: t[0] for the LHS, and t[1..n] for the
1586 # symbols on the RHS. For tokens, the value is copied from the
1587 # t.value attribute provided by the lexer. For non-terminals, the
1588 # value is assigned by the producing rule; i.e., the job of the
1589 # grammar rule function is to set the value for the non-terminal
1590 # on the LHS (by assigning to t[0]).
1591 #####################################################################
1592
1593 # The LHS of the first grammar rule is used as the start symbol
1594 # (in this case, 'specification'). Note that this rule enforces
1595 # that there will be exactly one namespace declaration, with 0 or
1596 # more global defs/decls before and after it. The defs & decls
1597 # before the namespace decl will be outside the namespace; those
1598 # after will be inside. The decoder function is always inside the
1599 # namespace.
1600 def p_specification(self, t):
1601 'specification : opt_defs_and_outputs top_level_decode_block'
1602
1603 for f in self.splits.iterkeys():
1604 f.write('\n#endif\n')
1605
1606 for f in self.files.itervalues(): # close ALL the files;
1607 f.close() # not doing so can cause compilation to fail
1608
1609 self.write_top_level_files()
1610
1611 t[0] = True
1612
1613 # 'opt_defs_and_outputs' is a possibly empty sequence of def and/or
1614 # output statements. Its productions do the hard work of eventually
1615 # instantiating a GenCode, which are generally emitted (written to disk)
1616 # as soon as possible, except for the decode_block, which has to be
1617 # accumulated into one large function of nested switch/case blocks.
1618 def p_opt_defs_and_outputs_0(self, t):
1619 'opt_defs_and_outputs : empty'
1620
1621 def p_opt_defs_and_outputs_1(self, t):
1622 'opt_defs_and_outputs : defs_and_outputs'
1623
1624 def p_defs_and_outputs_0(self, t):
1625 'defs_and_outputs : def_or_output'
1626
1627 def p_defs_and_outputs_1(self, t):
1628 'defs_and_outputs : defs_and_outputs def_or_output'
1629
1630 # The list of possible definition/output statements.
1631 # They are all processed as they are seen.
1632 def p_def_or_output(self, t):
1633 '''def_or_output : name_decl
1634 | def_format
1635 | def_bitfield
1636 | def_bitfield_struct
1637 | def_template
1638 | def_operand_types
1639 | def_operands
1640 | output
1641 | global_let
1642 | split'''
1643
1644 # Utility function used by both invocations of splitting - explicit
1645 # 'split' keyword and split() function inside "let {{ }};" blocks.
1646 def split(self, sec, write=False):
1647 assert(sec != 'header' and "header cannot be split")
1648
1649 f = self.get_file(sec)
1650 self.splits[f] += 1
1651 s = '\n#endif\n#if __SPLIT == %u\n' % self.splits[f]
1652 if write:
1653 f.write(s)
1654 else:
1655 return s
1656
1657 # split output file to reduce compilation time
1658 def p_split(self, t):
1659 'split : SPLIT output_type SEMI'
1660 assert(self.isa_name and "'split' not allowed before namespace decl")
1661
1662 self.split(t[2], True)
1663
1664 def p_output_type(self, t):
1665 '''output_type : DECODER
1666 | HEADER
1667 | EXEC'''
1668 t[0] = t[1]
1669
1670 # ISA name declaration looks like "namespace <foo>;"
1671 def p_name_decl(self, t):
1672 'name_decl : NAMESPACE ID SEMI'
1673 assert(self.isa_name == None and "Only 1 namespace decl permitted")
1674 self.isa_name = t[2]
1675 self.namespace = t[2] + 'Inst'
1676
1677 # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
1678 # directly to the appropriate output section.
1679
1680 # Massage output block by substituting in template definitions and
1681 # bit operators. We handle '%'s embedded in the string that don't
1682 # indicate template substitutions (or CPU-specific symbols, which
1683 # get handled in GenCode) by doubling them first so that the
1684 # format operation will reduce them back to single '%'s.
1685 def process_output(self, s):
1686 s = self.protectNonSubstPercents(s)
1687 # protects cpu-specific symbols too
1688 s = self.protectCpuSymbols(s)
1689 return substBitOps(s % self.templateMap)
1690
1691 def p_output(self, t):
1692 'output : OUTPUT output_type CODELIT SEMI'
1693 kwargs = { t[2]+'_output' : self.process_output(t[3]) }
1694 GenCode(self, **kwargs).emit()
1695
1696 # global let blocks 'let {{...}}' (Python code blocks) are
1697 # executed directly when seen. Note that these execute in a
1698 # special variable context 'exportContext' to prevent the code
1699 # from polluting this script's namespace.
1700 def p_global_let(self, t):
1701 'global_let : LET CODELIT SEMI'
1702 def _split(sec):
1703 return self.split(sec)
1704 self.updateExportContext()
1705 self.exportContext["header_output"] = ''
1706 self.exportContext["decoder_output"] = ''
1707 self.exportContext["exec_output"] = ''
1708 self.exportContext["decode_block"] = ''
1709 self.exportContext["split"] = _split
1710 split_setup = '''
1711def wrap(func):
1712 def split(sec):
1713 globals()[sec + '_output'] += func(sec)
1714 return split
1715split = wrap(split)
1716del wrap
1717'''
1718 # This tricky setup (immediately above) allows us to just write
1719 # (e.g.) "split('exec')" in the Python code and the split #ifdef's
1720 # will automatically be added to the exec_output variable. The inner
1721 # Python execution environment doesn't know about the split points,
1722 # so we carefully inject and wrap a closure that can retrieve the
1723 # next split's #define from the parser and add it to the current
1724 # emission-in-progress.
1725 try:
1726 exec split_setup+fixPythonIndentation(t[2]) in self.exportContext
1727 except Exception, exc:
1728 if debug:
1729 raise
1730 error(t, 'error: %s in global let block "%s".' % (exc, t[2]))
1731 GenCode(self,
1732 header_output=self.exportContext["header_output"],
1733 decoder_output=self.exportContext["decoder_output"],
1734 exec_output=self.exportContext["exec_output"],
1735 decode_block=self.exportContext["decode_block"]).emit()
1736
1737 # Define the mapping from operand type extensions to C++ types and
1738 # bit widths (stored in operandTypeMap).
1739 def p_def_operand_types(self, t):
1740 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
1741 try:
1742 self.operandTypeMap = eval('{' + t[3] + '}')
1743 except Exception, exc:
1744 if debug:
1745 raise
1746 error(t,
1747 'error: %s in def operand_types block "%s".' % (exc, t[3]))
1748
1749 # Define the mapping from operand names to operand classes and
1750 # other traits. Stored in operandNameMap.
1751 def p_def_operands(self, t):
1752 'def_operands : DEF OPERANDS CODELIT SEMI'
1753 if not hasattr(self, 'operandTypeMap'):
1754 error(t, 'error: operand types must be defined before operands')
1755 try:
1756 user_dict = eval('{' + t[3] + '}', self.exportContext)
1757 except Exception, exc:
1758 if debug:
1759 raise
1760 error(t, 'error: %s in def operands block "%s".' % (exc, t[3]))
1761 self.buildOperandNameMap(user_dict, t.lexer.lineno)
1762
1763 # A bitfield definition looks like:
1764 # 'def [signed] bitfield <ID> [<first>:<last>]'
1765 # This generates a preprocessor macro in the output file.
1766 def p_def_bitfield_0(self, t):
1767 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
1768 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
1769 if (t[2] == 'signed'):
1770 expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
1771 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1772 GenCode(self, header_output=hash_define).emit()
1773
1774 # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
1775 def p_def_bitfield_1(self, t):
1776 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
1777 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
1778 if (t[2] == 'signed'):
1779 expr = 'sext<%d>(%s)' % (1, expr)
1780 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1781 GenCode(self, header_output=hash_define).emit()
1782
1783 # alternate form for structure member: 'def bitfield <ID> <ID>'
1784 def p_def_bitfield_struct(self, t):
1785 'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI'
1786 if (t[2] != ''):
1787 error(t, 'error: structure bitfields are always unsigned.')
1788 expr = 'machInst.%s' % t[5]
1789 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1790 GenCode(self, header_output=hash_define).emit()
1791
1792 def p_id_with_dot_0(self, t):
1793 'id_with_dot : ID'
1794 t[0] = t[1]
1795
1796 def p_id_with_dot_1(self, t):
1797 'id_with_dot : ID DOT id_with_dot'
1798 t[0] = t[1] + t[2] + t[3]
1799
1800 def p_opt_signed_0(self, t):
1801 'opt_signed : SIGNED'
1802 t[0] = t[1]
1803
1804 def p_opt_signed_1(self, t):
1805 'opt_signed : empty'
1806 t[0] = ''
1807
1808 def p_def_template(self, t):
1809 'def_template : DEF TEMPLATE ID CODELIT SEMI'
1810 if t[3] in self.templateMap:
1811 print "warning: template %s already defined" % t[3]
1812 self.templateMap[t[3]] = Template(self, t[4])
1813
1814 # An instruction format definition looks like
1815 # "def format <fmt>(<params>) {{...}};"
1816 def p_def_format(self, t):
1817 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
1818 (id, params, code) = (t[3], t[5], t[7])
1819 self.defFormat(id, params, code, t.lexer.lineno)
1820
1821 # The formal parameter list for an instruction format is a
1822 # possibly empty list of comma-separated parameters. Positional
1823 # (standard, non-keyword) parameters must come first, followed by
1824 # keyword parameters, followed by a '*foo' parameter that gets
1825 # excess positional arguments (as in Python). Each of these three
1826 # parameter categories is optional.
1827 #
1828 # Note that we do not support the '**foo' parameter for collecting
1829 # otherwise undefined keyword args. Otherwise the parameter list
1830 # is (I believe) identical to what is supported in Python.
1831 #
1832 # The param list generates a tuple, where the first element is a
1833 # list of the positional params and the second element is a dict
1834 # containing the keyword params.
1835 def p_param_list_0(self, t):
1836 'param_list : positional_param_list COMMA nonpositional_param_list'
1837 t[0] = t[1] + t[3]
1838
1839 def p_param_list_1(self, t):
1840 '''param_list : positional_param_list
1841 | nonpositional_param_list'''
1842 t[0] = t[1]
1843
1844 def p_positional_param_list_0(self, t):
1845 'positional_param_list : empty'
1846 t[0] = []
1847
1848 def p_positional_param_list_1(self, t):
1849 'positional_param_list : ID'
1850 t[0] = [t[1]]
1851
1852 def p_positional_param_list_2(self, t):
1853 'positional_param_list : positional_param_list COMMA ID'
1854 t[0] = t[1] + [t[3]]
1855
1856 def p_nonpositional_param_list_0(self, t):
1857 'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
1858 t[0] = t[1] + t[3]
1859
1860 def p_nonpositional_param_list_1(self, t):
1861 '''nonpositional_param_list : keyword_param_list
1862 | excess_args_param'''
1863 t[0] = t[1]
1864
1865 def p_keyword_param_list_0(self, t):
1866 'keyword_param_list : keyword_param'
1867 t[0] = [t[1]]
1868
1869 def p_keyword_param_list_1(self, t):
1870 'keyword_param_list : keyword_param_list COMMA keyword_param'
1871 t[0] = t[1] + [t[3]]
1872
1873 def p_keyword_param(self, t):
1874 'keyword_param : ID EQUALS expr'
1875 t[0] = t[1] + ' = ' + t[3].__repr__()
1876
1877 def p_excess_args_param(self, t):
1878 'excess_args_param : ASTERISK ID'
1879 # Just concatenate them: '*ID'. Wrap in list to be consistent
1880 # with positional_param_list and keyword_param_list.
1881 t[0] = [t[1] + t[2]]
1882
1883 # End of format definition-related rules.
1884 ##############
1885
1886 #
1887 # A decode block looks like:
1888 # decode <field1> [, <field2>]* [default <inst>] { ... }
1889 #
1890 def p_top_level_decode_block(self, t):
1891 'top_level_decode_block : decode_block'
1892 codeObj = t[1]
1893 codeObj.wrap_decode_block('''
1894StaticInstPtr
1895%(isa_name)s::Decoder::decodeInst(%(isa_name)s::ExtMachInst machInst)
1896{
1897 using namespace %(namespace)s;
1898''' % self, '}')
1899
1900 codeObj.emit()
1901
1902 def p_decode_block(self, t):
1903 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
1904 default_defaults = self.defaultStack.pop()
1905 codeObj = t[5]
1906 # use the "default defaults" only if there was no explicit
1907 # default statement in decode_stmt_list
1908 if not codeObj.has_decode_default:
1909 codeObj += default_defaults
1910 codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
1911 t[0] = codeObj
1912
1913 # The opt_default statement serves only to push the "default
1914 # defaults" onto defaultStack. This value will be used by nested
1915 # decode blocks, and used and popped off when the current
1916 # decode_block is processed (in p_decode_block() above).
1917 def p_opt_default_0(self, t):
1918 'opt_default : empty'
1919 # no default specified: reuse the one currently at the top of
1920 # the stack
1921 self.defaultStack.push(self.defaultStack.top())
1922 # no meaningful value returned
1923 t[0] = None
1924
1925 def p_opt_default_1(self, t):
1926 'opt_default : DEFAULT inst'
1927 # push the new default
1928 codeObj = t[2]
1929 codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
1930 self.defaultStack.push(codeObj)
1931 # no meaningful value returned
1932 t[0] = None
1933
1934 def p_decode_stmt_list_0(self, t):
1935 'decode_stmt_list : decode_stmt'
1936 t[0] = t[1]
1937
1938 def p_decode_stmt_list_1(self, t):
1939 'decode_stmt_list : decode_stmt decode_stmt_list'
1940 if (t[1].has_decode_default and t[2].has_decode_default):
1941 error(t, 'Two default cases in decode block')
1942 t[0] = t[1] + t[2]
1943
1944 #
1945 # Decode statement rules
1946 #
1947 # There are four types of statements allowed in a decode block:
1948 # 1. Format blocks 'format <foo> { ... }'
1949 # 2. Nested decode blocks
1950 # 3. Instruction definitions.
1951 # 4. C preprocessor directives.
1952
1953
1954 # Preprocessor directives found in a decode statement list are
1955 # passed through to the output, replicated to all of the output
1956 # code streams. This works well for ifdefs, so we can ifdef out
1957 # both the declarations and the decode cases generated by an
1958 # instruction definition. Handling them as part of the grammar
1959 # makes it easy to keep them in the right place with respect to
1960 # the code generated by the other statements.
1961 def p_decode_stmt_cpp(self, t):
1962 'decode_stmt : CPPDIRECTIVE'
1963 t[0] = GenCode(self, t[1], t[1], t[1], t[1])
1964
1965 # A format block 'format <foo> { ... }' sets the default
1966 # instruction format used to handle instruction definitions inside
1967 # the block. This format can be overridden by using an explicit
1968 # format on the instruction definition or with a nested format
1969 # block.
1970 def p_decode_stmt_format(self, t):
1971 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
1972 # The format will be pushed on the stack when 'push_format_id'
1973 # is processed (see below). Once the parser has recognized
1974 # the full production (though the right brace), we're done
1975 # with the format, so now we can pop it.
1976 self.formatStack.pop()
1977 t[0] = t[4]
1978
1979 # This rule exists so we can set the current format (& push the
1980 # stack) when we recognize the format name part of the format
1981 # block.
1982 def p_push_format_id(self, t):
1983 'push_format_id : ID'
1984 try:
1985 self.formatStack.push(self.formatMap[t[1]])
1986 t[0] = ('', '// format %s' % t[1])
1987 except KeyError:
1988 error(t, 'instruction format "%s" not defined.' % t[1])
1989
1990 # Nested decode block: if the value of the current field matches
1991 # the specified constant(s), do a nested decode on some other field.
1992 def p_decode_stmt_decode(self, t):
1993 'decode_stmt : case_list COLON decode_block'
1994 case_list = t[1]
1995 codeObj = t[3]
1996 # just wrap the decoding code from the block as a case in the
1997 # outer switch statement.
1998 codeObj.wrap_decode_block('\n%s\n' % ''.join(case_list))
1999 codeObj.has_decode_default = (case_list == ['default:'])
2000 t[0] = codeObj
2001
2002 # Instruction definition (finally!).
2003 def p_decode_stmt_inst(self, t):
2004 'decode_stmt : case_list COLON inst SEMI'
2005 case_list = t[1]
2006 codeObj = t[3]
2007 codeObj.wrap_decode_block('\n%s' % ''.join(case_list), 'break;\n')
2008 codeObj.has_decode_default = (case_list == ['default:'])
2009 t[0] = codeObj
2010
2011 # The constant list for a decode case label must be non-empty, and must
2012 # either be the keyword 'default', or made up of one or more
2013 # comma-separated integer literals or strings which evaluate to
2014 # constants when compiled as C++.
2015 def p_case_list_0(self, t):
2016 'case_list : DEFAULT'
2017 t[0] = ['default:']
2018
2019 def prep_int_lit_case_label(self, lit):
2020 if lit >= 2**32:
2021 return 'case ULL(%#x): ' % lit
2022 else:
2023 return 'case %#x: ' % lit
2024
2025 def prep_str_lit_case_label(self, lit):
2026 return 'case %s: ' % lit
2027
2028 def p_case_list_1(self, t):
2029 'case_list : INTLIT'
2030 t[0] = [self.prep_int_lit_case_label(t[1])]
2031
2032 def p_case_list_2(self, t):
2033 'case_list : STRLIT'
2034 t[0] = [self.prep_str_lit_case_label(t[1])]
2035
2036 def p_case_list_3(self, t):
2037 'case_list : case_list COMMA INTLIT'
2038 t[0] = t[1]
2039 t[0].append(self.prep_int_lit_case_label(t[3]))
2040
2041 def p_case_list_4(self, t):
2042 'case_list : case_list COMMA STRLIT'
2043 t[0] = t[1]
2044 t[0].append(self.prep_str_lit_case_label(t[3]))
2045
2046 # Define an instruction using the current instruction format
2047 # (specified by an enclosing format block).
2048 # "<mnemonic>(<args>)"
2049 def p_inst_0(self, t):
2050 'inst : ID LPAREN arg_list RPAREN'
2051 # Pass the ID and arg list to the current format class to deal with.
2052 currentFormat = self.formatStack.top()
2053 codeObj = currentFormat.defineInst(self, t[1], t[3], t.lexer.lineno)
2054 args = ','.join(map(str, t[3]))
2055 args = re.sub('(?m)^', '//', args)
2056 args = re.sub('^//', '', args)
2057 comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
2058 codeObj.prepend_all(comment)
2059 t[0] = codeObj
2060
2061 # Define an instruction using an explicitly specified format:
2062 # "<fmt>::<mnemonic>(<args>)"
2063 def p_inst_1(self, t):
2064 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
2065 try:
2066 format = self.formatMap[t[1]]
2067 except KeyError:
2068 error(t, 'instruction format "%s" not defined.' % t[1])
2069
2070 codeObj = format.defineInst(self, t[3], t[5], t.lexer.lineno)
2071 comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
2072 codeObj.prepend_all(comment)
2073 t[0] = codeObj
2074
2075 # The arg list generates a tuple, where the first element is a
2076 # list of the positional args and the second element is a dict
2077 # containing the keyword args.
2078 def p_arg_list_0(self, t):
2079 'arg_list : positional_arg_list COMMA keyword_arg_list'
2080 t[0] = ( t[1], t[3] )
2081
2082 def p_arg_list_1(self, t):
2083 'arg_list : positional_arg_list'
2084 t[0] = ( t[1], {} )
2085
2086 def p_arg_list_2(self, t):
2087 'arg_list : keyword_arg_list'
2088 t[0] = ( [], t[1] )
2089
2090 def p_positional_arg_list_0(self, t):
2091 'positional_arg_list : empty'
2092 t[0] = []
2093
2094 def p_positional_arg_list_1(self, t):
2095 'positional_arg_list : expr'
2096 t[0] = [t[1]]
2097
2098 def p_positional_arg_list_2(self, t):
2099 'positional_arg_list : positional_arg_list COMMA expr'
2100 t[0] = t[1] + [t[3]]
2101
2102 def p_keyword_arg_list_0(self, t):
2103 'keyword_arg_list : keyword_arg'
2104 t[0] = t[1]
2105
2106 def p_keyword_arg_list_1(self, t):
2107 'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
2108 t[0] = t[1]
2109 t[0].update(t[3])
2110
2111 def p_keyword_arg(self, t):
2112 'keyword_arg : ID EQUALS expr'
2113 t[0] = { t[1] : t[3] }
2114
2115 #
2116 # Basic expressions. These constitute the argument values of
2117 # "function calls" (i.e. instruction definitions in the decode
2118 # block) and default values for formal parameters of format
2119 # functions.
2120 #
2121 # Right now, these are either strings, integers, or (recursively)
2122 # lists of exprs (using Python square-bracket list syntax). Note
2123 # that bare identifiers are trated as string constants here (since
2124 # there isn't really a variable namespace to refer to).
2125 #
2126 def p_expr_0(self, t):
2127 '''expr : ID
2128 | INTLIT
2129 | STRLIT
2130 | CODELIT'''
2131 t[0] = t[1]
2132
2133 def p_expr_1(self, t):
2134 '''expr : LBRACKET list_expr RBRACKET'''
2135 t[0] = t[2]
2136
2137 def p_list_expr_0(self, t):
2138 'list_expr : expr'
2139 t[0] = [t[1]]
2140
2141 def p_list_expr_1(self, t):
2142 'list_expr : list_expr COMMA expr'
2143 t[0] = t[1] + [t[3]]
2144
2145 def p_list_expr_2(self, t):
2146 'list_expr : empty'
2147 t[0] = []
2148
2149 #
2150 # Empty production... use in other rules for readability.
2151 #
2152 def p_empty(self, t):
2153 'empty :'
2154 pass
2155
2156 # Parse error handler. Note that the argument here is the
2157 # offending *token*, not a grammar symbol (hence the need to use
2158 # t.value)
2159 def p_error(self, t):
2160 if t:
2161 error(t, "syntax error at '%s'" % t.value)
2162 else:
2163 error("unknown syntax error")
2164
2165 # END OF GRAMMAR RULES
2166
2167 def updateExportContext(self):
2168
2169 # create a continuation that allows us to grab the current parser
2170 def wrapInstObjParams(*args):
2171 return InstObjParams(self, *args)
2172 self.exportContext['InstObjParams'] = wrapInstObjParams
2173 self.exportContext.update(self.templateMap)
2174
2175 def defFormat(self, id, params, code, lineno):
2176 '''Define a new format'''
2177
2178 # make sure we haven't already defined this one
2179 if id in self.formatMap:
2180 error(lineno, 'format %s redefined.' % id)
2181
2182 # create new object and store in global map
2183 self.formatMap[id] = Format(id, params, code)
2184
2185 def expandCpuSymbolsToDict(self, template):
2186 '''Expand template with CPU-specific references into a
2187 dictionary with an entry for each CPU model name. The entry
2188 key is the model name and the corresponding value is the
2189 template with the CPU-specific refs substituted for that
2190 model.'''
2191
2192 # Protect '%'s that don't go with CPU-specific terms
2193 t = re.sub(r'%(?!\(CPU_)', '%%', template)
2194 result = {}
2195 for cpu in self.cpuModels:
2196 result[cpu.name] = t % cpu.strings
2197 return result
2198
2199 def expandCpuSymbolsToString(self, template):
2200 '''*If* the template has CPU-specific references, return a
2201 single string containing a copy of the template for each CPU
2202 model with the corresponding values substituted in. If the
2203 template has no CPU-specific references, it is returned
2204 unmodified.'''
2205
2206 if template.find('%(CPU_') != -1:
2207 return reduce(lambda x,y: x+y,
2208 self.expandCpuSymbolsToDict(template).values())
2209 else:
2210 return template
2211
2212 def protectCpuSymbols(self, template):
2213 '''Protect CPU-specific references by doubling the
2214 corresponding '%'s (in preparation for substituting a different
2215 set of references into the template).'''
2216
2217 return re.sub(r'%(?=\(CPU_)', '%%', template)
2218
2219 def protectNonSubstPercents(self, s):
2220 '''Protect any non-dict-substitution '%'s in a format string
2221 (i.e. those not followed by '(')'''
2222
2223 return re.sub(r'%(?!\()', '%%', s)
2224
2225 def buildOperandNameMap(self, user_dict, lineno):
2226 operand_name = {}
2227 for op_name, val in user_dict.iteritems():
2228
2229 # Check if extra attributes have been specified.
2230 if len(val) > 9:
2231 error(lineno, 'error: too many attributes for operand "%s"' %
2232 base_cls_name)
2233
2234 # Pad val with None in case optional args are missing
2235 val += (None, None, None, None)
2236 base_cls_name, dflt_ext, reg_spec, flags, sort_pri, \
2237 read_code, write_code, read_predicate, write_predicate = val[:9]
2238
2239 # Canonical flag structure is a triple of lists, where each list
2240 # indicates the set of flags implied by this operand always, when
2241 # used as a source, and when used as a dest, respectively.
2242 # For simplicity this can be initialized using a variety of fairly
2243 # obvious shortcuts; we convert these to canonical form here.
2244 if not flags:
2245 # no flags specified (e.g., 'None')
2246 flags = ( [], [], [] )
2247 elif isinstance(flags, str):
2248 # a single flag: assumed to be unconditional
2249 flags = ( [ flags ], [], [] )
2250 elif isinstance(flags, list):
2251 # a list of flags: also assumed to be unconditional
2252 flags = ( flags, [], [] )
2253 elif isinstance(flags, tuple):
2254 # it's a tuple: it should be a triple,
2255 # but each item could be a single string or a list
2256 (uncond_flags, src_flags, dest_flags) = flags
2257 flags = (makeList(uncond_flags),
2258 makeList(src_flags), makeList(dest_flags))
2259
2260 # Accumulate attributes of new operand class in tmp_dict
2261 tmp_dict = {}
2262 attrList = ['reg_spec', 'flags', 'sort_pri',
2263 'read_code', 'write_code',
2264 'read_predicate', 'write_predicate']
2265 if dflt_ext:
2266 dflt_ctype = self.operandTypeMap[dflt_ext]
2267 attrList.extend(['dflt_ctype', 'dflt_ext'])
2268 for attr in attrList:
2269 tmp_dict[attr] = eval(attr)
2270 tmp_dict['base_name'] = op_name
2271
2272 # New class name will be e.g. "IntReg_Ra"
2273 cls_name = base_cls_name + '_' + op_name
2274 # Evaluate string arg to get class object. Note that the
2275 # actual base class for "IntReg" is "IntRegOperand", i.e. we
2276 # have to append "Operand".
2277 try:
2278 base_cls = eval(base_cls_name + 'Operand')
2279 except NameError:
2280 error(lineno,
2281 'error: unknown operand base class "%s"' % base_cls_name)
2282 # The following statement creates a new class called
2283 # <cls_name> as a subclass of <base_cls> with the attributes
2284 # in tmp_dict, just as if we evaluated a class declaration.
2285 operand_name[op_name] = type(cls_name, (base_cls,), tmp_dict)
2286
2287 self.operandNameMap = operand_name
2288
2289 # Define operand variables.
2290 operands = user_dict.keys()
2291 extensions = self.operandTypeMap.keys()
2292
2293 operandsREString = r'''
2294 (?<!\w) # neg. lookbehind assertion: prevent partial matches
2405 ((%s)(?:_(%s))?(?:\[\w+\])?) # match: operand with optional '_'
2406 # then suffix, and then an optional array index.
2295 ((%s)(?:_(%s))?) # match: operand with optional '_' then suffix
2407 (?!\w) # neg. lookahead assertion: prevent partial matches
2408 ''' % (string.join(operands, '|'), string.join(extensions, '|'))
2409
2410 self.operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
2411
2412 # Same as operandsREString, but extension is mandatory, and only two
2413 # groups are returned (base and ext, not full name as above).
2414 # Used for subtituting '_' for '.' to make C++ identifiers.
2415 operandsWithExtREString = r'(?<!\w)(%s)_(%s)(?!\w)' \
2416 % (string.join(operands, '|'), string.join(extensions, '|'))
2417
2418 self.operandsWithExtRE = \
2419 re.compile(operandsWithExtREString, re.MULTILINE)
2420
2421 def substMungedOpNames(self, code):
2422 '''Munge operand names in code string to make legal C++
2423 variable names. This means getting rid of the type extension
2424 if any. Will match base_name attribute of Operand object.)'''
2425 return self.operandsWithExtRE.sub(r'\1', code)
2426
2427 def mungeSnippet(self, s):
2428 '''Fix up code snippets for final substitution in templates.'''
2429 if isinstance(s, str):
2430 return self.substMungedOpNames(substBitOps(s))
2431 else:
2432 return s
2433
2434 def open(self, name, bare=False):
2435 '''Open the output file for writing and include scary warning.'''
2436 filename = os.path.join(self.output_dir, name)
2437 f = open(filename, 'w')
2438 if f:
2439 if not bare:
2440 f.write(ISAParser.scaremonger_template % self)
2441 return f
2442
2443 def update(self, file, contents):
2444 '''Update the output file only. Scons should handle the case when
2445 the new contents are unchanged using its built-in hash feature.'''
2446 f = self.open(file)
2447 f.write(contents)
2448 f.close()
2449
2450 # This regular expression matches '##include' directives
2451 includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[^"]*)".*$',
2452 re.MULTILINE)
2453
2454 def replace_include(self, matchobj, dirname):
2455 """Function to replace a matched '##include' directive with the
2456 contents of the specified file (with nested ##includes
2457 replaced recursively). 'matchobj' is an re match object
2458 (from a match of includeRE) and 'dirname' is the directory
2459 relative to which the file path should be resolved."""
2460
2461 fname = matchobj.group('filename')
2462 full_fname = os.path.normpath(os.path.join(dirname, fname))
2463 contents = '##newfile "%s"\n%s\n##endfile\n' % \
2464 (full_fname, self.read_and_flatten(full_fname))
2465 return contents
2466
2467 def read_and_flatten(self, filename):
2468 """Read a file and recursively flatten nested '##include' files."""
2469
2470 current_dir = os.path.dirname(filename)
2471 try:
2472 contents = open(filename).read()
2473 except IOError:
2474 error('Error including file "%s"' % filename)
2475
2476 self.fileNameStack.push((filename, 0))
2477
2478 # Find any includes and include them
2479 def replace(matchobj):
2480 return self.replace_include(matchobj, current_dir)
2481 contents = self.includeRE.sub(replace, contents)
2482
2483 self.fileNameStack.pop()
2484 return contents
2485
2486 AlreadyGenerated = {}
2487
2488 def _parse_isa_desc(self, isa_desc_file):
2489 '''Read in and parse the ISA description.'''
2490
2491 # The build system can end up running the ISA parser twice: once to
2492 # finalize the build dependencies, and then to actually generate
2493 # the files it expects (in src/arch/$ARCH/generated). This code
2494 # doesn't do anything different either time, however; the SCons
2495 # invocations just expect different things. Since this code runs
2496 # within SCons, we can just remember that we've already run and
2497 # not perform a completely unnecessary run, since the ISA parser's
2498 # effect is idempotent.
2499 if isa_desc_file in ISAParser.AlreadyGenerated:
2500 return
2501
2502 # grab the last three path components of isa_desc_file
2503 self.filename = '/'.join(isa_desc_file.split('/')[-3:])
2504
2505 # Read file and (recursively) all included files into a string.
2506 # PLY requires that the input be in a single string so we have to
2507 # do this up front.
2508 isa_desc = self.read_and_flatten(isa_desc_file)
2509
2510 # Initialize filename stack with outer file.
2511 self.fileNameStack.push((isa_desc_file, 0))
2512
2513 # Parse.
2514 self.parse_string(isa_desc)
2515
2516 ISAParser.AlreadyGenerated[isa_desc_file] = None
2517
2518 def parse_isa_desc(self, *args, **kwargs):
2519 try:
2520 self._parse_isa_desc(*args, **kwargs)
2521 except ISAParserError, e:
2522 e.exit(self.fileNameStack)
2523
2524# Called as script: get args from command line.
2525# Args are: <isa desc file> <output dir>
2526if __name__ == '__main__':
2527 ISAParser(sys.argv[2]).parse_isa_desc(sys.argv[1])
2296 (?!\w) # neg. lookahead assertion: prevent partial matches
2297 ''' % (string.join(operands, '|'), string.join(extensions, '|'))
2298
2299 self.operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
2300
2301 # Same as operandsREString, but extension is mandatory, and only two
2302 # groups are returned (base and ext, not full name as above).
2303 # Used for subtituting '_' for '.' to make C++ identifiers.
2304 operandsWithExtREString = r'(?<!\w)(%s)_(%s)(?!\w)' \
2305 % (string.join(operands, '|'), string.join(extensions, '|'))
2306
2307 self.operandsWithExtRE = \
2308 re.compile(operandsWithExtREString, re.MULTILINE)
2309
2310 def substMungedOpNames(self, code):
2311 '''Munge operand names in code string to make legal C++
2312 variable names. This means getting rid of the type extension
2313 if any. Will match base_name attribute of Operand object.)'''
2314 return self.operandsWithExtRE.sub(r'\1', code)
2315
2316 def mungeSnippet(self, s):
2317 '''Fix up code snippets for final substitution in templates.'''
2318 if isinstance(s, str):
2319 return self.substMungedOpNames(substBitOps(s))
2320 else:
2321 return s
2322
2323 def open(self, name, bare=False):
2324 '''Open the output file for writing and include scary warning.'''
2325 filename = os.path.join(self.output_dir, name)
2326 f = open(filename, 'w')
2327 if f:
2328 if not bare:
2329 f.write(ISAParser.scaremonger_template % self)
2330 return f
2331
2332 def update(self, file, contents):
2333 '''Update the output file only. Scons should handle the case when
2334 the new contents are unchanged using its built-in hash feature.'''
2335 f = self.open(file)
2336 f.write(contents)
2337 f.close()
2338
2339 # This regular expression matches '##include' directives
2340 includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[^"]*)".*$',
2341 re.MULTILINE)
2342
2343 def replace_include(self, matchobj, dirname):
2344 """Function to replace a matched '##include' directive with the
2345 contents of the specified file (with nested ##includes
2346 replaced recursively). 'matchobj' is an re match object
2347 (from a match of includeRE) and 'dirname' is the directory
2348 relative to which the file path should be resolved."""
2349
2350 fname = matchobj.group('filename')
2351 full_fname = os.path.normpath(os.path.join(dirname, fname))
2352 contents = '##newfile "%s"\n%s\n##endfile\n' % \
2353 (full_fname, self.read_and_flatten(full_fname))
2354 return contents
2355
2356 def read_and_flatten(self, filename):
2357 """Read a file and recursively flatten nested '##include' files."""
2358
2359 current_dir = os.path.dirname(filename)
2360 try:
2361 contents = open(filename).read()
2362 except IOError:
2363 error('Error including file "%s"' % filename)
2364
2365 self.fileNameStack.push((filename, 0))
2366
2367 # Find any includes and include them
2368 def replace(matchobj):
2369 return self.replace_include(matchobj, current_dir)
2370 contents = self.includeRE.sub(replace, contents)
2371
2372 self.fileNameStack.pop()
2373 return contents
2374
2375 AlreadyGenerated = {}
2376
2377 def _parse_isa_desc(self, isa_desc_file):
2378 '''Read in and parse the ISA description.'''
2379
2380 # The build system can end up running the ISA parser twice: once to
2381 # finalize the build dependencies, and then to actually generate
2382 # the files it expects (in src/arch/$ARCH/generated). This code
2383 # doesn't do anything different either time, however; the SCons
2384 # invocations just expect different things. Since this code runs
2385 # within SCons, we can just remember that we've already run and
2386 # not perform a completely unnecessary run, since the ISA parser's
2387 # effect is idempotent.
2388 if isa_desc_file in ISAParser.AlreadyGenerated:
2389 return
2390
2391 # grab the last three path components of isa_desc_file
2392 self.filename = '/'.join(isa_desc_file.split('/')[-3:])
2393
2394 # Read file and (recursively) all included files into a string.
2395 # PLY requires that the input be in a single string so we have to
2396 # do this up front.
2397 isa_desc = self.read_and_flatten(isa_desc_file)
2398
2399 # Initialize filename stack with outer file.
2400 self.fileNameStack.push((isa_desc_file, 0))
2401
2402 # Parse.
2403 self.parse_string(isa_desc)
2404
2405 ISAParser.AlreadyGenerated[isa_desc_file] = None
2406
2407 def parse_isa_desc(self, *args, **kwargs):
2408 try:
2409 self._parse_isa_desc(*args, **kwargs)
2410 except ISAParserError, e:
2411 e.exit(self.fileNameStack)
2412
2413# Called as script: get args from command line.
2414# Args are: <isa desc file> <output dir>
2415if __name__ == '__main__':
2416 ISAParser(sys.argv[2]).parse_isa_desc(sys.argv[1])