isa_parser.py (10170:7e7cd19c9d9e) isa_parser.py (10196:be0e1724eb39)
1# Copyright (c) 2003-2005 The Regents of The University of Michigan
2# Copyright (c) 2013 Advanced Micro Devices, Inc.
3# All rights reserved.
4#
5# Redistribution and use in source and binary forms, with or without
6# modification, are permitted provided that the following conditions are
7# met: redistributions of source code must retain the above copyright
8# notice, this list of conditions and the following disclaimer;
9# redistributions in binary form must reproduce the above copyright
10# notice, this list of conditions and the following disclaimer in the
11# documentation and/or other materials provided with the distribution;
12# neither the name of the copyright holders nor the names of its
13# contributors may be used to endorse or promote products derived from
14# this software without specific prior written permission.
15#
16# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27#
28# Authors: Steve Reinhardt
29
1# Copyright (c) 2003-2005 The Regents of The University of Michigan
2# Copyright (c) 2013 Advanced Micro Devices, Inc.
3# All rights reserved.
4#
5# Redistribution and use in source and binary forms, with or without
6# modification, are permitted provided that the following conditions are
7# met: redistributions of source code must retain the above copyright
8# notice, this list of conditions and the following disclaimer;
9# redistributions in binary form must reproduce the above copyright
10# notice, this list of conditions and the following disclaimer in the
11# documentation and/or other materials provided with the distribution;
12# neither the name of the copyright holders nor the names of its
13# contributors may be used to endorse or promote products derived from
14# this software without specific prior written permission.
15#
16# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27#
28# Authors: Steve Reinhardt
29
30from __future__ import with_statement
30import os
31import sys
32import re
33import string
34import inspect, traceback
35# get type names
36from types import *
37
38from m5.util.grammar import Grammar
39
40debug=False
41
42###################
43# Utility functions
44
45#
46# Indent every line in string 's' by two spaces
47# (except preprocessor directives).
48# Used to make nested code blocks look pretty.
49#
50def indent(s):
51 return re.sub(r'(?m)^(?!#)', ' ', s)
52
53#
54# Munge a somewhat arbitrarily formatted piece of Python code
55# (e.g. from a format 'let' block) into something whose indentation
56# will get by the Python parser.
57#
58# The two keys here are that Python will give a syntax error if
59# there's any whitespace at the beginning of the first line, and that
60# all lines at the same lexical nesting level must have identical
61# indentation. Unfortunately the way code literals work, an entire
62# let block tends to have some initial indentation. Rather than
63# trying to figure out what that is and strip it off, we prepend 'if
64# 1:' to make the let code the nested block inside the if (and have
65# the parser automatically deal with the indentation for us).
66#
67# We don't want to do this if (1) the code block is empty or (2) the
68# first line of the block doesn't have any whitespace at the front.
69
70def fixPythonIndentation(s):
71 # get rid of blank lines first
72 s = re.sub(r'(?m)^\s*\n', '', s);
73 if (s != '' and re.match(r'[ \t]', s[0])):
74 s = 'if 1:\n' + s
75 return s
76
77class ISAParserError(Exception):
78 """Error handler for parser errors"""
79 def __init__(self, first, second=None):
80 if second is None:
81 self.lineno = 0
82 self.string = first
83 else:
84 if hasattr(first, 'lexer'):
85 first = first.lexer.lineno
86 self.lineno = first
87 self.string = second
88
89 def display(self, filename_stack, print_traceback=debug):
90 # Output formatted to work under Emacs compile-mode. Optional
91 # 'print_traceback' arg, if set to True, prints a Python stack
92 # backtrace too (can be handy when trying to debug the parser
93 # itself).
94
95 spaces = ""
96 for (filename, line) in filename_stack[:-1]:
97 print "%sIn file included from %s:" % (spaces, filename)
98 spaces += " "
99
100 # Print a Python stack backtrace if requested.
101 if print_traceback or not self.lineno:
102 traceback.print_exc()
103
104 line_str = "%s:" % (filename_stack[-1][0], )
105 if self.lineno:
106 line_str += "%d:" % (self.lineno, )
107
108 return "%s%s %s" % (spaces, line_str, self.string)
109
110 def exit(self, filename_stack, print_traceback=debug):
111 # Just call exit.
112
113 sys.exit(self.display(filename_stack, print_traceback))
114
115def error(*args):
116 raise ISAParserError(*args)
117
118####################
119# Template objects.
120#
121# Template objects are format strings that allow substitution from
122# the attribute spaces of other objects (e.g. InstObjParams instances).
123
124labelRE = re.compile(r'(?<!%)%\(([^\)]+)\)[sd]')
125
126class Template(object):
127 def __init__(self, parser, t):
128 self.parser = parser
129 self.template = t
130
131 def subst(self, d):
132 myDict = None
133
134 # Protect non-Python-dict substitutions (e.g. if there's a printf
135 # in the templated C++ code)
136 template = self.parser.protectNonSubstPercents(self.template)
137 # CPU-model-specific substitutions are handled later (in GenCode).
138 template = self.parser.protectCpuSymbols(template)
139
140 # Build a dict ('myDict') to use for the template substitution.
141 # Start with the template namespace. Make a copy since we're
142 # going to modify it.
143 myDict = self.parser.templateMap.copy()
144
145 if isinstance(d, InstObjParams):
146 # If we're dealing with an InstObjParams object, we need
147 # to be a little more sophisticated. The instruction-wide
148 # parameters are already formed, but the parameters which
149 # are only function wide still need to be generated.
150 compositeCode = ''
151
152 myDict.update(d.__dict__)
153 # The "operands" and "snippets" attributes of the InstObjParams
154 # objects are for internal use and not substitution.
155 del myDict['operands']
156 del myDict['snippets']
157
158 snippetLabels = [l for l in labelRE.findall(template)
159 if d.snippets.has_key(l)]
160
161 snippets = dict([(s, self.parser.mungeSnippet(d.snippets[s]))
162 for s in snippetLabels])
163
164 myDict.update(snippets)
165
166 compositeCode = ' '.join(map(str, snippets.values()))
167
168 # Add in template itself in case it references any
169 # operands explicitly (like Mem)
170 compositeCode += ' ' + template
171
172 operands = SubOperandList(self.parser, compositeCode, d.operands)
173
174 myDict['op_decl'] = operands.concatAttrStrings('op_decl')
175 if operands.readPC or operands.setPC:
176 myDict['op_decl'] += 'TheISA::PCState __parserAutoPCState;\n'
177
178 # In case there are predicated register reads and write, declare
179 # the variables for register indicies. It is being assumed that
180 # all the operands in the OperandList are also in the
181 # SubOperandList and in the same order. Otherwise, it is
182 # expected that predication would not be used for the operands.
183 if operands.predRead:
184 myDict['op_decl'] += 'uint8_t _sourceIndex = 0;\n'
185 if operands.predWrite:
186 myDict['op_decl'] += 'uint8_t M5_VAR_USED _destIndex = 0;\n'
187
188 is_src = lambda op: op.is_src
189 is_dest = lambda op: op.is_dest
190
191 myDict['op_src_decl'] = \
192 operands.concatSomeAttrStrings(is_src, 'op_src_decl')
193 myDict['op_dest_decl'] = \
194 operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
195 if operands.readPC:
196 myDict['op_src_decl'] += \
197 'TheISA::PCState __parserAutoPCState;\n'
198 if operands.setPC:
199 myDict['op_dest_decl'] += \
200 'TheISA::PCState __parserAutoPCState;\n'
201
202 myDict['op_rd'] = operands.concatAttrStrings('op_rd')
203 if operands.readPC:
204 myDict['op_rd'] = '__parserAutoPCState = xc->pcState();\n' + \
205 myDict['op_rd']
206
207 # Compose the op_wb string. If we're going to write back the
208 # PC state because we changed some of its elements, we'll need to
209 # do that as early as possible. That allows later uncoordinated
210 # modifications to the PC to layer appropriately.
211 reordered = list(operands.items)
212 reordered.reverse()
213 op_wb_str = ''
214 pcWbStr = 'xc->pcState(__parserAutoPCState);\n'
215 for op_desc in reordered:
216 if op_desc.isPCPart() and op_desc.is_dest:
217 op_wb_str = op_desc.op_wb + pcWbStr + op_wb_str
218 pcWbStr = ''
219 else:
220 op_wb_str = op_desc.op_wb + op_wb_str
221 myDict['op_wb'] = op_wb_str
222
223 elif isinstance(d, dict):
224 # if the argument is a dictionary, we just use it.
225 myDict.update(d)
226 elif hasattr(d, '__dict__'):
227 # if the argument is an object, we use its attribute map.
228 myDict.update(d.__dict__)
229 else:
230 raise TypeError, "Template.subst() arg must be or have dictionary"
231 return template % myDict
232
233 # Convert to string. This handles the case when a template with a
234 # CPU-specific term gets interpolated into another template or into
235 # an output block.
236 def __str__(self):
237 return self.parser.expandCpuSymbolsToString(self.template)
238
239################
240# Format object.
241#
242# A format object encapsulates an instruction format. It must provide
243# a defineInst() method that generates the code for an instruction
244# definition.
245
246class Format(object):
247 def __init__(self, id, params, code):
248 self.id = id
249 self.params = params
250 label = 'def format ' + id
251 self.user_code = compile(fixPythonIndentation(code), label, 'exec')
252 param_list = string.join(params, ", ")
253 f = '''def defInst(_code, _context, %s):
254 my_locals = vars().copy()
255 exec _code in _context, my_locals
256 return my_locals\n''' % param_list
257 c = compile(f, label + ' wrapper', 'exec')
258 exec c
259 self.func = defInst
260
261 def defineInst(self, parser, name, args, lineno):
262 parser.updateExportContext()
263 context = parser.exportContext.copy()
264 if len(name):
265 Name = name[0].upper()
266 if len(name) > 1:
267 Name += name[1:]
268 context.update({ 'name' : name, 'Name' : Name })
269 try:
270 vars = self.func(self.user_code, context, *args[0], **args[1])
271 except Exception, exc:
272 if debug:
273 raise
274 error(lineno, 'error defining "%s": %s.' % (name, exc))
275 for k in vars.keys():
276 if k not in ('header_output', 'decoder_output',
277 'exec_output', 'decode_block'):
278 del vars[k]
279 return GenCode(parser, **vars)
280
281# Special null format to catch an implicit-format instruction
282# definition outside of any format block.
283class NoFormat(object):
284 def __init__(self):
285 self.defaultInst = ''
286
287 def defineInst(self, parser, name, args, lineno):
288 error(lineno,
289 'instruction definition "%s" with no active format!' % name)
290
291###############
292# GenCode class
293#
294# The GenCode class encapsulates generated code destined for various
295# output files. The header_output and decoder_output attributes are
296# strings containing code destined for decoder.hh and decoder.cc
297# respectively. The decode_block attribute contains code to be
298# incorporated in the decode function itself (that will also end up in
299# decoder.cc). The exec_output attribute is a dictionary with a key
300# for each CPU model name; the value associated with a particular key
301# is the string of code for that CPU model's exec.cc file. The
302# has_decode_default attribute is used in the decode block to allow
303# explicit default clauses to override default default clauses.
304
305class GenCode(object):
306 # Constructor. At this point we substitute out all CPU-specific
307 # symbols. For the exec output, these go into the per-model
308 # dictionary. For all other output types they get collapsed into
309 # a single string.
310 def __init__(self, parser,
311 header_output = '', decoder_output = '', exec_output = '',
312 decode_block = '', has_decode_default = False):
313 self.parser = parser
314 self.header_output = parser.expandCpuSymbolsToString(header_output)
315 self.decoder_output = parser.expandCpuSymbolsToString(decoder_output)
31import os
32import sys
33import re
34import string
35import inspect, traceback
36# get type names
37from types import *
38
39from m5.util.grammar import Grammar
40
41debug=False
42
43###################
44# Utility functions
45
46#
47# Indent every line in string 's' by two spaces
48# (except preprocessor directives).
49# Used to make nested code blocks look pretty.
50#
51def indent(s):
52 return re.sub(r'(?m)^(?!#)', ' ', s)
53
54#
55# Munge a somewhat arbitrarily formatted piece of Python code
56# (e.g. from a format 'let' block) into something whose indentation
57# will get by the Python parser.
58#
59# The two keys here are that Python will give a syntax error if
60# there's any whitespace at the beginning of the first line, and that
61# all lines at the same lexical nesting level must have identical
62# indentation. Unfortunately the way code literals work, an entire
63# let block tends to have some initial indentation. Rather than
64# trying to figure out what that is and strip it off, we prepend 'if
65# 1:' to make the let code the nested block inside the if (and have
66# the parser automatically deal with the indentation for us).
67#
68# We don't want to do this if (1) the code block is empty or (2) the
69# first line of the block doesn't have any whitespace at the front.
70
71def fixPythonIndentation(s):
72 # get rid of blank lines first
73 s = re.sub(r'(?m)^\s*\n', '', s);
74 if (s != '' and re.match(r'[ \t]', s[0])):
75 s = 'if 1:\n' + s
76 return s
77
78class ISAParserError(Exception):
79 """Error handler for parser errors"""
80 def __init__(self, first, second=None):
81 if second is None:
82 self.lineno = 0
83 self.string = first
84 else:
85 if hasattr(first, 'lexer'):
86 first = first.lexer.lineno
87 self.lineno = first
88 self.string = second
89
90 def display(self, filename_stack, print_traceback=debug):
91 # Output formatted to work under Emacs compile-mode. Optional
92 # 'print_traceback' arg, if set to True, prints a Python stack
93 # backtrace too (can be handy when trying to debug the parser
94 # itself).
95
96 spaces = ""
97 for (filename, line) in filename_stack[:-1]:
98 print "%sIn file included from %s:" % (spaces, filename)
99 spaces += " "
100
101 # Print a Python stack backtrace if requested.
102 if print_traceback or not self.lineno:
103 traceback.print_exc()
104
105 line_str = "%s:" % (filename_stack[-1][0], )
106 if self.lineno:
107 line_str += "%d:" % (self.lineno, )
108
109 return "%s%s %s" % (spaces, line_str, self.string)
110
111 def exit(self, filename_stack, print_traceback=debug):
112 # Just call exit.
113
114 sys.exit(self.display(filename_stack, print_traceback))
115
116def error(*args):
117 raise ISAParserError(*args)
118
119####################
120# Template objects.
121#
122# Template objects are format strings that allow substitution from
123# the attribute spaces of other objects (e.g. InstObjParams instances).
124
125labelRE = re.compile(r'(?<!%)%\(([^\)]+)\)[sd]')
126
127class Template(object):
128 def __init__(self, parser, t):
129 self.parser = parser
130 self.template = t
131
132 def subst(self, d):
133 myDict = None
134
135 # Protect non-Python-dict substitutions (e.g. if there's a printf
136 # in the templated C++ code)
137 template = self.parser.protectNonSubstPercents(self.template)
138 # CPU-model-specific substitutions are handled later (in GenCode).
139 template = self.parser.protectCpuSymbols(template)
140
141 # Build a dict ('myDict') to use for the template substitution.
142 # Start with the template namespace. Make a copy since we're
143 # going to modify it.
144 myDict = self.parser.templateMap.copy()
145
146 if isinstance(d, InstObjParams):
147 # If we're dealing with an InstObjParams object, we need
148 # to be a little more sophisticated. The instruction-wide
149 # parameters are already formed, but the parameters which
150 # are only function wide still need to be generated.
151 compositeCode = ''
152
153 myDict.update(d.__dict__)
154 # The "operands" and "snippets" attributes of the InstObjParams
155 # objects are for internal use and not substitution.
156 del myDict['operands']
157 del myDict['snippets']
158
159 snippetLabels = [l for l in labelRE.findall(template)
160 if d.snippets.has_key(l)]
161
162 snippets = dict([(s, self.parser.mungeSnippet(d.snippets[s]))
163 for s in snippetLabels])
164
165 myDict.update(snippets)
166
167 compositeCode = ' '.join(map(str, snippets.values()))
168
169 # Add in template itself in case it references any
170 # operands explicitly (like Mem)
171 compositeCode += ' ' + template
172
173 operands = SubOperandList(self.parser, compositeCode, d.operands)
174
175 myDict['op_decl'] = operands.concatAttrStrings('op_decl')
176 if operands.readPC or operands.setPC:
177 myDict['op_decl'] += 'TheISA::PCState __parserAutoPCState;\n'
178
179 # In case there are predicated register reads and write, declare
180 # the variables for register indicies. It is being assumed that
181 # all the operands in the OperandList are also in the
182 # SubOperandList and in the same order. Otherwise, it is
183 # expected that predication would not be used for the operands.
184 if operands.predRead:
185 myDict['op_decl'] += 'uint8_t _sourceIndex = 0;\n'
186 if operands.predWrite:
187 myDict['op_decl'] += 'uint8_t M5_VAR_USED _destIndex = 0;\n'
188
189 is_src = lambda op: op.is_src
190 is_dest = lambda op: op.is_dest
191
192 myDict['op_src_decl'] = \
193 operands.concatSomeAttrStrings(is_src, 'op_src_decl')
194 myDict['op_dest_decl'] = \
195 operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
196 if operands.readPC:
197 myDict['op_src_decl'] += \
198 'TheISA::PCState __parserAutoPCState;\n'
199 if operands.setPC:
200 myDict['op_dest_decl'] += \
201 'TheISA::PCState __parserAutoPCState;\n'
202
203 myDict['op_rd'] = operands.concatAttrStrings('op_rd')
204 if operands.readPC:
205 myDict['op_rd'] = '__parserAutoPCState = xc->pcState();\n' + \
206 myDict['op_rd']
207
208 # Compose the op_wb string. If we're going to write back the
209 # PC state because we changed some of its elements, we'll need to
210 # do that as early as possible. That allows later uncoordinated
211 # modifications to the PC to layer appropriately.
212 reordered = list(operands.items)
213 reordered.reverse()
214 op_wb_str = ''
215 pcWbStr = 'xc->pcState(__parserAutoPCState);\n'
216 for op_desc in reordered:
217 if op_desc.isPCPart() and op_desc.is_dest:
218 op_wb_str = op_desc.op_wb + pcWbStr + op_wb_str
219 pcWbStr = ''
220 else:
221 op_wb_str = op_desc.op_wb + op_wb_str
222 myDict['op_wb'] = op_wb_str
223
224 elif isinstance(d, dict):
225 # if the argument is a dictionary, we just use it.
226 myDict.update(d)
227 elif hasattr(d, '__dict__'):
228 # if the argument is an object, we use its attribute map.
229 myDict.update(d.__dict__)
230 else:
231 raise TypeError, "Template.subst() arg must be or have dictionary"
232 return template % myDict
233
234 # Convert to string. This handles the case when a template with a
235 # CPU-specific term gets interpolated into another template or into
236 # an output block.
237 def __str__(self):
238 return self.parser.expandCpuSymbolsToString(self.template)
239
240################
241# Format object.
242#
243# A format object encapsulates an instruction format. It must provide
244# a defineInst() method that generates the code for an instruction
245# definition.
246
247class Format(object):
248 def __init__(self, id, params, code):
249 self.id = id
250 self.params = params
251 label = 'def format ' + id
252 self.user_code = compile(fixPythonIndentation(code), label, 'exec')
253 param_list = string.join(params, ", ")
254 f = '''def defInst(_code, _context, %s):
255 my_locals = vars().copy()
256 exec _code in _context, my_locals
257 return my_locals\n''' % param_list
258 c = compile(f, label + ' wrapper', 'exec')
259 exec c
260 self.func = defInst
261
262 def defineInst(self, parser, name, args, lineno):
263 parser.updateExportContext()
264 context = parser.exportContext.copy()
265 if len(name):
266 Name = name[0].upper()
267 if len(name) > 1:
268 Name += name[1:]
269 context.update({ 'name' : name, 'Name' : Name })
270 try:
271 vars = self.func(self.user_code, context, *args[0], **args[1])
272 except Exception, exc:
273 if debug:
274 raise
275 error(lineno, 'error defining "%s": %s.' % (name, exc))
276 for k in vars.keys():
277 if k not in ('header_output', 'decoder_output',
278 'exec_output', 'decode_block'):
279 del vars[k]
280 return GenCode(parser, **vars)
281
282# Special null format to catch an implicit-format instruction
283# definition outside of any format block.
284class NoFormat(object):
285 def __init__(self):
286 self.defaultInst = ''
287
288 def defineInst(self, parser, name, args, lineno):
289 error(lineno,
290 'instruction definition "%s" with no active format!' % name)
291
292###############
293# GenCode class
294#
295# The GenCode class encapsulates generated code destined for various
296# output files. The header_output and decoder_output attributes are
297# strings containing code destined for decoder.hh and decoder.cc
298# respectively. The decode_block attribute contains code to be
299# incorporated in the decode function itself (that will also end up in
300# decoder.cc). The exec_output attribute is a dictionary with a key
301# for each CPU model name; the value associated with a particular key
302# is the string of code for that CPU model's exec.cc file. The
303# has_decode_default attribute is used in the decode block to allow
304# explicit default clauses to override default default clauses.
305
306class GenCode(object):
307 # Constructor. At this point we substitute out all CPU-specific
308 # symbols. For the exec output, these go into the per-model
309 # dictionary. For all other output types they get collapsed into
310 # a single string.
311 def __init__(self, parser,
312 header_output = '', decoder_output = '', exec_output = '',
313 decode_block = '', has_decode_default = False):
314 self.parser = parser
315 self.header_output = parser.expandCpuSymbolsToString(header_output)
316 self.decoder_output = parser.expandCpuSymbolsToString(decoder_output)
316 if isinstance(exec_output, dict):
317 self.exec_output = exec_output
318 elif isinstance(exec_output, str):
319 # If the exec_output arg is a single string, we replicate
320 # it for each of the CPU models, substituting and
321 # %(CPU_foo)s params appropriately.
322 self.exec_output = parser.expandCpuSymbolsToDict(exec_output)
323 self.decode_block = parser.expandCpuSymbolsToString(decode_block)
317 self.exec_output = exec_output
318 self.decode_block = decode_block
324 self.has_decode_default = has_decode_default
325
319 self.has_decode_default = has_decode_default
320
321 # Write these code chunks out to the filesystem. They will be properly
322 # interwoven by the write_top_level_files().
323 def emit(self):
324 if self.header_output:
325 self.parser.get_file('header').write(self.header_output)
326 if self.decoder_output:
327 self.parser.get_file('decoder').write(self.decoder_output)
328 if self.exec_output:
329 self.parser.get_file('exec').write(self.exec_output)
330 if self.decode_block:
331 self.parser.get_file('decode_block').write(self.decode_block)
332
326 # Override '+' operator: generate a new GenCode object that
327 # concatenates all the individual strings in the operands.
328 def __add__(self, other):
333 # Override '+' operator: generate a new GenCode object that
334 # concatenates all the individual strings in the operands.
335 def __add__(self, other):
329 exec_output = {}
330 for cpu in self.parser.cpuModels:
331 n = cpu.name
332 exec_output[n] = self.exec_output[n] + other.exec_output[n]
333 return GenCode(self.parser,
334 self.header_output + other.header_output,
335 self.decoder_output + other.decoder_output,
336 return GenCode(self.parser,
337 self.header_output + other.header_output,
338 self.decoder_output + other.decoder_output,
336 exec_output,
339 self.exec_output + other.exec_output,
337 self.decode_block + other.decode_block,
338 self.has_decode_default or other.has_decode_default)
339
340 # Prepend a string (typically a comment) to all the strings.
341 def prepend_all(self, pre):
342 self.header_output = pre + self.header_output
343 self.decoder_output = pre + self.decoder_output
344 self.decode_block = pre + self.decode_block
340 self.decode_block + other.decode_block,
341 self.has_decode_default or other.has_decode_default)
342
343 # Prepend a string (typically a comment) to all the strings.
344 def prepend_all(self, pre):
345 self.header_output = pre + self.header_output
346 self.decoder_output = pre + self.decoder_output
347 self.decode_block = pre + self.decode_block
345 for cpu in self.parser.cpuModels:
346 self.exec_output[cpu.name] = pre + self.exec_output[cpu.name]
348 self.exec_output = pre + self.exec_output
347
348 # Wrap the decode block in a pair of strings (e.g., 'case foo:'
349 # and 'break;'). Used to build the big nested switch statement.
350 def wrap_decode_block(self, pre, post = ''):
351 self.decode_block = pre + indent(self.decode_block) + post
352
353#####################################################################
354#
355# Bitfield Operator Support
356#
357#####################################################################
358
359bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
360
361bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
362bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
363
364def substBitOps(code):
365 # first convert single-bit selectors to two-index form
366 # i.e., <n> --> <n:n>
367 code = bitOp1ArgRE.sub(r'<\1:\1>', code)
368 # simple case: selector applied to ID (name)
369 # i.e., foo<a:b> --> bits(foo, a, b)
370 code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
371 # if selector is applied to expression (ending in ')'),
372 # we need to search backward for matching '('
373 match = bitOpExprRE.search(code)
374 while match:
375 exprEnd = match.start()
376 here = exprEnd - 1
377 nestLevel = 1
378 while nestLevel > 0:
379 if code[here] == '(':
380 nestLevel -= 1
381 elif code[here] == ')':
382 nestLevel += 1
383 here -= 1
384 if here < 0:
385 sys.exit("Didn't find '('!")
386 exprStart = here+1
387 newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
388 match.group(1), match.group(2))
389 code = code[:exprStart] + newExpr + code[match.end():]
390 match = bitOpExprRE.search(code)
391 return code
392
393
394#####################################################################
395#
396# Code Parser
397#
398# The remaining code is the support for automatically extracting
399# instruction characteristics from pseudocode.
400#
401#####################################################################
402
403# Force the argument to be a list. Useful for flags, where a caller
404# can specify a singleton flag or a list of flags. Also usful for
405# converting tuples to lists so they can be modified.
406def makeList(arg):
407 if isinstance(arg, list):
408 return arg
409 elif isinstance(arg, tuple):
410 return list(arg)
411 elif not arg:
412 return []
413 else:
414 return [ arg ]
415
416class Operand(object):
417 '''Base class for operand descriptors. An instance of this class
418 (or actually a class derived from this one) represents a specific
419 operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
420 derived classes encapsulates the traits of a particular operand
421 type (e.g., "32-bit integer register").'''
422
423 def buildReadCode(self, func = None):
424 subst_dict = {"name": self.base_name,
425 "func": func,
426 "reg_idx": self.reg_spec,
427 "ctype": self.ctype}
428 if hasattr(self, 'src_reg_idx'):
429 subst_dict['op_idx'] = self.src_reg_idx
430 code = self.read_code % subst_dict
431 return '%s = %s;\n' % (self.base_name, code)
432
433 def buildWriteCode(self, func = None):
434 subst_dict = {"name": self.base_name,
435 "func": func,
436 "reg_idx": self.reg_spec,
437 "ctype": self.ctype,
438 "final_val": self.base_name}
439 if hasattr(self, 'dest_reg_idx'):
440 subst_dict['op_idx'] = self.dest_reg_idx
441 code = self.write_code % subst_dict
442 return '''
443 {
444 %s final_val = %s;
445 %s;
446 if (traceData) { traceData->setData(final_val); }
447 }''' % (self.dflt_ctype, self.base_name, code)
448
449 def __init__(self, parser, full_name, ext, is_src, is_dest):
450 self.full_name = full_name
451 self.ext = ext
452 self.is_src = is_src
453 self.is_dest = is_dest
454 # The 'effective extension' (eff_ext) is either the actual
455 # extension, if one was explicitly provided, or the default.
456 if ext:
457 self.eff_ext = ext
458 elif hasattr(self, 'dflt_ext'):
459 self.eff_ext = self.dflt_ext
460
461 if hasattr(self, 'eff_ext'):
462 self.ctype = parser.operandTypeMap[self.eff_ext]
463
464 # Finalize additional fields (primarily code fields). This step
465 # is done separately since some of these fields may depend on the
466 # register index enumeration that hasn't been performed yet at the
467 # time of __init__(). The register index enumeration is affected
468 # by predicated register reads/writes. Hence, we forward the flags
469 # that indicate whether or not predication is in use.
470 def finalize(self, predRead, predWrite):
471 self.flags = self.getFlags()
472 self.constructor = self.makeConstructor(predRead, predWrite)
473 self.op_decl = self.makeDecl()
474
475 if self.is_src:
476 self.op_rd = self.makeRead(predRead)
477 self.op_src_decl = self.makeDecl()
478 else:
479 self.op_rd = ''
480 self.op_src_decl = ''
481
482 if self.is_dest:
483 self.op_wb = self.makeWrite(predWrite)
484 self.op_dest_decl = self.makeDecl()
485 else:
486 self.op_wb = ''
487 self.op_dest_decl = ''
488
489 def isMem(self):
490 return 0
491
492 def isReg(self):
493 return 0
494
495 def isFloatReg(self):
496 return 0
497
498 def isIntReg(self):
499 return 0
500
501 def isCCReg(self):
502 return 0
503
504 def isControlReg(self):
505 return 0
506
507 def isPCState(self):
508 return 0
509
510 def isPCPart(self):
511 return self.isPCState() and self.reg_spec
512
513 def hasReadPred(self):
514 return self.read_predicate != None
515
516 def hasWritePred(self):
517 return self.write_predicate != None
518
519 def getFlags(self):
520 # note the empty slice '[:]' gives us a copy of self.flags[0]
521 # instead of a reference to it
522 my_flags = self.flags[0][:]
523 if self.is_src:
524 my_flags += self.flags[1]
525 if self.is_dest:
526 my_flags += self.flags[2]
527 return my_flags
528
529 def makeDecl(self):
530 # Note that initializations in the declarations are solely
531 # to avoid 'uninitialized variable' errors from the compiler.
532 return self.ctype + ' ' + self.base_name + ' = 0;\n';
533
534class IntRegOperand(Operand):
535 def isReg(self):
536 return 1
537
538 def isIntReg(self):
539 return 1
540
541 def makeConstructor(self, predRead, predWrite):
542 c_src = ''
543 c_dest = ''
544
545 if self.is_src:
546 c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s;' % (self.reg_spec)
547 if self.hasReadPred():
548 c_src = '\n\tif (%s) {%s\n\t}' % \
549 (self.read_predicate, c_src)
550
551 if self.is_dest:
552 c_dest = '\n\t_destRegIdx[_numDestRegs++] = %s;' % \
553 (self.reg_spec)
554 c_dest += '\n\t_numIntDestRegs++;'
555 if self.hasWritePred():
556 c_dest = '\n\tif (%s) {%s\n\t}' % \
557 (self.write_predicate, c_dest)
558
559 return c_src + c_dest
560
561 def makeRead(self, predRead):
562 if (self.ctype == 'float' or self.ctype == 'double'):
563 error('Attempt to read integer register as FP')
564 if self.read_code != None:
565 return self.buildReadCode('readIntRegOperand')
566
567 int_reg_val = ''
568 if predRead:
569 int_reg_val = 'xc->readIntRegOperand(this, _sourceIndex++)'
570 if self.hasReadPred():
571 int_reg_val = '(%s) ? %s : 0' % \
572 (self.read_predicate, int_reg_val)
573 else:
574 int_reg_val = 'xc->readIntRegOperand(this, %d)' % self.src_reg_idx
575
576 return '%s = %s;\n' % (self.base_name, int_reg_val)
577
578 def makeWrite(self, predWrite):
579 if (self.ctype == 'float' or self.ctype == 'double'):
580 error('Attempt to write integer register as FP')
581 if self.write_code != None:
582 return self.buildWriteCode('setIntRegOperand')
583
584 if predWrite:
585 wp = 'true'
586 if self.hasWritePred():
587 wp = self.write_predicate
588
589 wcond = 'if (%s)' % (wp)
590 windex = '_destIndex++'
591 else:
592 wcond = ''
593 windex = '%d' % self.dest_reg_idx
594
595 wb = '''
596 %s
597 {
598 %s final_val = %s;
599 xc->setIntRegOperand(this, %s, final_val);\n
600 if (traceData) { traceData->setData(final_val); }
601 }''' % (wcond, self.ctype, self.base_name, windex)
602
603 return wb
604
605class FloatRegOperand(Operand):
606 def isReg(self):
607 return 1
608
609 def isFloatReg(self):
610 return 1
611
612 def makeConstructor(self, predRead, predWrite):
613 c_src = ''
614 c_dest = ''
615
616 if self.is_src:
617 c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s + FP_Reg_Base;' % \
618 (self.reg_spec)
619
620 if self.is_dest:
621 c_dest = \
622 '\n\t_destRegIdx[_numDestRegs++] = %s + FP_Reg_Base;' % \
623 (self.reg_spec)
624 c_dest += '\n\t_numFPDestRegs++;'
625
626 return c_src + c_dest
627
628 def makeRead(self, predRead):
629 bit_select = 0
630 if (self.ctype == 'float' or self.ctype == 'double'):
631 func = 'readFloatRegOperand'
632 else:
633 func = 'readFloatRegOperandBits'
634 if self.read_code != None:
635 return self.buildReadCode(func)
636
637 if predRead:
638 rindex = '_sourceIndex++'
639 else:
640 rindex = '%d' % self.src_reg_idx
641
642 return '%s = xc->%s(this, %s);\n' % \
643 (self.base_name, func, rindex)
644
645 def makeWrite(self, predWrite):
646 if (self.ctype == 'float' or self.ctype == 'double'):
647 func = 'setFloatRegOperand'
648 else:
649 func = 'setFloatRegOperandBits'
650 if self.write_code != None:
651 return self.buildWriteCode(func)
652
653 if predWrite:
654 wp = '_destIndex++'
655 else:
656 wp = '%d' % self.dest_reg_idx
657 wp = 'xc->%s(this, %s, final_val);' % (func, wp)
658
659 wb = '''
660 {
661 %s final_val = %s;
662 %s\n
663 if (traceData) { traceData->setData(final_val); }
664 }''' % (self.ctype, self.base_name, wp)
665 return wb
666
667class CCRegOperand(Operand):
668 def isReg(self):
669 return 1
670
671 def isCCReg(self):
672 return 1
673
674 def makeConstructor(self, predRead, predWrite):
675 c_src = ''
676 c_dest = ''
677
678 if self.is_src:
679 c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s + CC_Reg_Base;' % \
680 (self.reg_spec)
681 if self.hasReadPred():
682 c_src = '\n\tif (%s) {%s\n\t}' % \
683 (self.read_predicate, c_src)
684
685 if self.is_dest:
686 c_dest = \
687 '\n\t_destRegIdx[_numDestRegs++] = %s + CC_Reg_Base;' % \
688 (self.reg_spec)
689 c_dest += '\n\t_numCCDestRegs++;'
690 if self.hasWritePred():
691 c_dest = '\n\tif (%s) {%s\n\t}' % \
692 (self.write_predicate, c_dest)
693
694 return c_src + c_dest
695
696 def makeRead(self, predRead):
697 if (self.ctype == 'float' or self.ctype == 'double'):
698 error('Attempt to read condition-code register as FP')
699 if self.read_code != None:
700 return self.buildReadCode('readCCRegOperand')
701
702 int_reg_val = ''
703 if predRead:
704 int_reg_val = 'xc->readCCRegOperand(this, _sourceIndex++)'
705 if self.hasReadPred():
706 int_reg_val = '(%s) ? %s : 0' % \
707 (self.read_predicate, int_reg_val)
708 else:
709 int_reg_val = 'xc->readCCRegOperand(this, %d)' % self.src_reg_idx
710
711 return '%s = %s;\n' % (self.base_name, int_reg_val)
712
713 def makeWrite(self, predWrite):
714 if (self.ctype == 'float' or self.ctype == 'double'):
715 error('Attempt to write condition-code register as FP')
716 if self.write_code != None:
717 return self.buildWriteCode('setCCRegOperand')
718
719 if predWrite:
720 wp = 'true'
721 if self.hasWritePred():
722 wp = self.write_predicate
723
724 wcond = 'if (%s)' % (wp)
725 windex = '_destIndex++'
726 else:
727 wcond = ''
728 windex = '%d' % self.dest_reg_idx
729
730 wb = '''
731 %s
732 {
733 %s final_val = %s;
734 xc->setCCRegOperand(this, %s, final_val);\n
735 if (traceData) { traceData->setData(final_val); }
736 }''' % (wcond, self.ctype, self.base_name, windex)
737
738 return wb
739
740class ControlRegOperand(Operand):
741 def isReg(self):
742 return 1
743
744 def isControlReg(self):
745 return 1
746
747 def makeConstructor(self, predRead, predWrite):
748 c_src = ''
749 c_dest = ''
750
751 if self.is_src:
752 c_src = \
753 '\n\t_srcRegIdx[_numSrcRegs++] = %s + Misc_Reg_Base;' % \
754 (self.reg_spec)
755
756 if self.is_dest:
757 c_dest = \
758 '\n\t_destRegIdx[_numDestRegs++] = %s + Misc_Reg_Base;' % \
759 (self.reg_spec)
760
761 return c_src + c_dest
762
763 def makeRead(self, predRead):
764 bit_select = 0
765 if (self.ctype == 'float' or self.ctype == 'double'):
766 error('Attempt to read control register as FP')
767 if self.read_code != None:
768 return self.buildReadCode('readMiscRegOperand')
769
770 if predRead:
771 rindex = '_sourceIndex++'
772 else:
773 rindex = '%d' % self.src_reg_idx
774
775 return '%s = xc->readMiscRegOperand(this, %s);\n' % \
776 (self.base_name, rindex)
777
778 def makeWrite(self, predWrite):
779 if (self.ctype == 'float' or self.ctype == 'double'):
780 error('Attempt to write control register as FP')
781 if self.write_code != None:
782 return self.buildWriteCode('setMiscRegOperand')
783
784 if predWrite:
785 windex = '_destIndex++'
786 else:
787 windex = '%d' % self.dest_reg_idx
788
789 wb = 'xc->setMiscRegOperand(this, %s, %s);\n' % \
790 (windex, self.base_name)
791 wb += 'if (traceData) { traceData->setData(%s); }' % \
792 self.base_name
793
794 return wb
795
796class MemOperand(Operand):
797 def isMem(self):
798 return 1
799
800 def makeConstructor(self, predRead, predWrite):
801 return ''
802
803 def makeDecl(self):
804 # Note that initializations in the declarations are solely
805 # to avoid 'uninitialized variable' errors from the compiler.
806 # Declare memory data variable.
807 return '%s %s = 0;\n' % (self.ctype, self.base_name)
808
809 def makeRead(self, predRead):
810 if self.read_code != None:
811 return self.buildReadCode()
812 return ''
813
814 def makeWrite(self, predWrite):
815 if self.write_code != None:
816 return self.buildWriteCode()
817 return ''
818
819class PCStateOperand(Operand):
820 def makeConstructor(self, predRead, predWrite):
821 return ''
822
823 def makeRead(self, predRead):
824 if self.reg_spec:
825 # A component of the PC state.
826 return '%s = __parserAutoPCState.%s();\n' % \
827 (self.base_name, self.reg_spec)
828 else:
829 # The whole PC state itself.
830 return '%s = xc->pcState();\n' % self.base_name
831
832 def makeWrite(self, predWrite):
833 if self.reg_spec:
834 # A component of the PC state.
835 return '__parserAutoPCState.%s(%s);\n' % \
836 (self.reg_spec, self.base_name)
837 else:
838 # The whole PC state itself.
839 return 'xc->pcState(%s);\n' % self.base_name
840
841 def makeDecl(self):
842 ctype = 'TheISA::PCState'
843 if self.isPCPart():
844 ctype = self.ctype
845 return "%s %s;\n" % (ctype, self.base_name)
846
847 def isPCState(self):
848 return 1
849
850class OperandList(object):
851 '''Find all the operands in the given code block. Returns an operand
852 descriptor list (instance of class OperandList).'''
853 def __init__(self, parser, code):
854 self.items = []
855 self.bases = {}
856 # delete strings and comments so we don't match on operands inside
857 for regEx in (stringRE, commentRE):
858 code = regEx.sub('', code)
859 # search for operands
860 next_pos = 0
861 while 1:
862 match = parser.operandsRE.search(code, next_pos)
863 if not match:
864 # no more matches: we're done
865 break
866 op = match.groups()
867 # regexp groups are operand full name, base, and extension
868 (op_full, op_base, op_ext) = op
869 # if the token following the operand is an assignment, this is
870 # a destination (LHS), else it's a source (RHS)
871 is_dest = (assignRE.match(code, match.end()) != None)
872 is_src = not is_dest
873 # see if we've already seen this one
874 op_desc = self.find_base(op_base)
875 if op_desc:
876 if op_desc.ext != op_ext:
877 error('Inconsistent extensions for operand %s' % \
878 op_base)
879 op_desc.is_src = op_desc.is_src or is_src
880 op_desc.is_dest = op_desc.is_dest or is_dest
881 else:
882 # new operand: create new descriptor
883 op_desc = parser.operandNameMap[op_base](parser,
884 op_full, op_ext, is_src, is_dest)
885 self.append(op_desc)
886 # start next search after end of current match
887 next_pos = match.end()
888 self.sort()
889 # enumerate source & dest register operands... used in building
890 # constructor later
891 self.numSrcRegs = 0
892 self.numDestRegs = 0
893 self.numFPDestRegs = 0
894 self.numIntDestRegs = 0
895 self.numCCDestRegs = 0
896 self.numMiscDestRegs = 0
897 self.memOperand = None
898
899 # Flags to keep track if one or more operands are to be read/written
900 # conditionally.
901 self.predRead = False
902 self.predWrite = False
903
904 for op_desc in self.items:
905 if op_desc.isReg():
906 if op_desc.is_src:
907 op_desc.src_reg_idx = self.numSrcRegs
908 self.numSrcRegs += 1
909 if op_desc.is_dest:
910 op_desc.dest_reg_idx = self.numDestRegs
911 self.numDestRegs += 1
912 if op_desc.isFloatReg():
913 self.numFPDestRegs += 1
914 elif op_desc.isIntReg():
915 self.numIntDestRegs += 1
916 elif op_desc.isCCReg():
917 self.numCCDestRegs += 1
918 elif op_desc.isControlReg():
919 self.numMiscDestRegs += 1
920 elif op_desc.isMem():
921 if self.memOperand:
922 error("Code block has more than one memory operand.")
923 self.memOperand = op_desc
924
925 # Check if this operand has read/write predication. If true, then
926 # the microop will dynamically index source/dest registers.
927 self.predRead = self.predRead or op_desc.hasReadPred()
928 self.predWrite = self.predWrite or op_desc.hasWritePred()
929
930 if parser.maxInstSrcRegs < self.numSrcRegs:
931 parser.maxInstSrcRegs = self.numSrcRegs
932 if parser.maxInstDestRegs < self.numDestRegs:
933 parser.maxInstDestRegs = self.numDestRegs
934 if parser.maxMiscDestRegs < self.numMiscDestRegs:
935 parser.maxMiscDestRegs = self.numMiscDestRegs
936
937 # now make a final pass to finalize op_desc fields that may depend
938 # on the register enumeration
939 for op_desc in self.items:
940 op_desc.finalize(self.predRead, self.predWrite)
941
942 def __len__(self):
943 return len(self.items)
944
945 def __getitem__(self, index):
946 return self.items[index]
947
948 def append(self, op_desc):
949 self.items.append(op_desc)
950 self.bases[op_desc.base_name] = op_desc
951
952 def find_base(self, base_name):
953 # like self.bases[base_name], but returns None if not found
954 # (rather than raising exception)
955 return self.bases.get(base_name)
956
957 # internal helper function for concat[Some]Attr{Strings|Lists}
958 def __internalConcatAttrs(self, attr_name, filter, result):
959 for op_desc in self.items:
960 if filter(op_desc):
961 result += getattr(op_desc, attr_name)
962 return result
963
964 # return a single string that is the concatenation of the (string)
965 # values of the specified attribute for all operands
966 def concatAttrStrings(self, attr_name):
967 return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
968
969 # like concatAttrStrings, but only include the values for the operands
970 # for which the provided filter function returns true
971 def concatSomeAttrStrings(self, filter, attr_name):
972 return self.__internalConcatAttrs(attr_name, filter, '')
973
974 # return a single list that is the concatenation of the (list)
975 # values of the specified attribute for all operands
976 def concatAttrLists(self, attr_name):
977 return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
978
979 # like concatAttrLists, but only include the values for the operands
980 # for which the provided filter function returns true
981 def concatSomeAttrLists(self, filter, attr_name):
982 return self.__internalConcatAttrs(attr_name, filter, [])
983
984 def sort(self):
985 self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
986
987class SubOperandList(OperandList):
988 '''Find all the operands in the given code block. Returns an operand
989 descriptor list (instance of class OperandList).'''
990 def __init__(self, parser, code, master_list):
991 self.items = []
992 self.bases = {}
993 # delete strings and comments so we don't match on operands inside
994 for regEx in (stringRE, commentRE):
995 code = regEx.sub('', code)
996 # search for operands
997 next_pos = 0
998 while 1:
999 match = parser.operandsRE.search(code, next_pos)
1000 if not match:
1001 # no more matches: we're done
1002 break
1003 op = match.groups()
1004 # regexp groups are operand full name, base, and extension
1005 (op_full, op_base, op_ext) = op
1006 # find this op in the master list
1007 op_desc = master_list.find_base(op_base)
1008 if not op_desc:
1009 error('Found operand %s which is not in the master list!' \
1010 ' This is an internal error' % op_base)
1011 else:
1012 # See if we've already found this operand
1013 op_desc = self.find_base(op_base)
1014 if not op_desc:
1015 # if not, add a reference to it to this sub list
1016 self.append(master_list.bases[op_base])
1017
1018 # start next search after end of current match
1019 next_pos = match.end()
1020 self.sort()
1021 self.memOperand = None
1022 # Whether the whole PC needs to be read so parts of it can be accessed
1023 self.readPC = False
1024 # Whether the whole PC needs to be written after parts of it were
1025 # changed
1026 self.setPC = False
1027 # Whether this instruction manipulates the whole PC or parts of it.
1028 # Mixing the two is a bad idea and flagged as an error.
1029 self.pcPart = None
1030
1031 # Flags to keep track if one or more operands are to be read/written
1032 # conditionally.
1033 self.predRead = False
1034 self.predWrite = False
1035
1036 for op_desc in self.items:
1037 if op_desc.isPCPart():
1038 self.readPC = True
1039 if op_desc.is_dest:
1040 self.setPC = True
1041
1042 if op_desc.isPCState():
1043 if self.pcPart is not None:
1044 if self.pcPart and not op_desc.isPCPart() or \
1045 not self.pcPart and op_desc.isPCPart():
1046 error("Mixed whole and partial PC state operands.")
1047 self.pcPart = op_desc.isPCPart()
1048
1049 if op_desc.isMem():
1050 if self.memOperand:
1051 error("Code block has more than one memory operand.")
1052 self.memOperand = op_desc
1053
1054 # Check if this operand has read/write predication. If true, then
1055 # the microop will dynamically index source/dest registers.
1056 self.predRead = self.predRead or op_desc.hasReadPred()
1057 self.predWrite = self.predWrite or op_desc.hasWritePred()
1058
1059# Regular expression object to match C++ strings
1060stringRE = re.compile(r'"([^"\\]|\\.)*"')
1061
1062# Regular expression object to match C++ comments
1063# (used in findOperands())
1064commentRE = re.compile(r'(^)?[^\S\n]*/(?:\*(.*?)\*/[^\S\n]*|/[^\n]*)($)?',
1065 re.DOTALL | re.MULTILINE)
1066
1067# Regular expression object to match assignment statements
1068# (used in findOperands())
1069assignRE = re.compile(r'\s*=(?!=)', re.MULTILINE)
1070
1071def makeFlagConstructor(flag_list):
1072 if len(flag_list) == 0:
1073 return ''
1074 # filter out repeated flags
1075 flag_list.sort()
1076 i = 1
1077 while i < len(flag_list):
1078 if flag_list[i] == flag_list[i-1]:
1079 del flag_list[i]
1080 else:
1081 i += 1
1082 pre = '\n\tflags['
1083 post = '] = true;'
1084 code = pre + string.join(flag_list, post + pre) + post
1085 return code
1086
1087# Assume all instruction flags are of the form 'IsFoo'
1088instFlagRE = re.compile(r'Is.*')
1089
1090# OpClass constants end in 'Op' except No_OpClass
1091opClassRE = re.compile(r'.*Op|No_OpClass')
1092
1093class InstObjParams(object):
1094 def __init__(self, parser, mnem, class_name, base_class = '',
1095 snippets = {}, opt_args = []):
1096 self.mnemonic = mnem
1097 self.class_name = class_name
1098 self.base_class = base_class
1099 if not isinstance(snippets, dict):
1100 snippets = {'code' : snippets}
1101 compositeCode = ' '.join(map(str, snippets.values()))
1102 self.snippets = snippets
1103
1104 self.operands = OperandList(parser, compositeCode)
1105
1106 # The header of the constructor declares the variables to be used
1107 # in the body of the constructor.
1108 header = ''
1109 header += '\n\t_numSrcRegs = 0;'
1110 header += '\n\t_numDestRegs = 0;'
1111 header += '\n\t_numFPDestRegs = 0;'
1112 header += '\n\t_numIntDestRegs = 0;'
1113 header += '\n\t_numCCDestRegs = 0;'
1114
1115 self.constructor = header + \
1116 self.operands.concatAttrStrings('constructor')
1117
1118 self.flags = self.operands.concatAttrLists('flags')
1119
1120 # Make a basic guess on the operand class (function unit type).
1121 # These are good enough for most cases, and can be overridden
1122 # later otherwise.
1123 if 'IsStore' in self.flags:
1124 self.op_class = 'MemWriteOp'
1125 elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
1126 self.op_class = 'MemReadOp'
1127 elif 'IsFloating' in self.flags:
1128 self.op_class = 'FloatAddOp'
1129 else:
1130 self.op_class = 'IntAluOp'
1131
1132 # Optional arguments are assumed to be either StaticInst flags
1133 # or an OpClass value. To avoid having to import a complete
1134 # list of these values to match against, we do it ad-hoc
1135 # with regexps.
1136 for oa in opt_args:
1137 if instFlagRE.match(oa):
1138 self.flags.append(oa)
1139 elif opClassRE.match(oa):
1140 self.op_class = oa
1141 else:
1142 error('InstObjParams: optional arg "%s" not recognized '
1143 'as StaticInst::Flag or OpClass.' % oa)
1144
1145 # add flag initialization to contructor here to include
1146 # any flags added via opt_args
1147 self.constructor += makeFlagConstructor(self.flags)
1148
1149 # if 'IsFloating' is set, add call to the FP enable check
1150 # function (which should be provided by isa_desc via a declare)
1151 if 'IsFloating' in self.flags:
1152 self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
1153 else:
1154 self.fp_enable_check = ''
1155
1156##############
1157# Stack: a simple stack object. Used for both formats (formatStack)
1158# and default cases (defaultStack). Simply wraps a list to give more
1159# stack-like syntax and enable initialization with an argument list
1160# (as opposed to an argument that's a list).
1161
1162class Stack(list):
1163 def __init__(self, *items):
1164 list.__init__(self, items)
1165
1166 def push(self, item):
1167 self.append(item);
1168
1169 def top(self):
1170 return self[-1]
1171
1172#######################
1173#
349
350 # Wrap the decode block in a pair of strings (e.g., 'case foo:'
351 # and 'break;'). Used to build the big nested switch statement.
352 def wrap_decode_block(self, pre, post = ''):
353 self.decode_block = pre + indent(self.decode_block) + post
354
355#####################################################################
356#
357# Bitfield Operator Support
358#
359#####################################################################
360
361bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
362
363bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
364bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
365
366def substBitOps(code):
367 # first convert single-bit selectors to two-index form
368 # i.e., <n> --> <n:n>
369 code = bitOp1ArgRE.sub(r'<\1:\1>', code)
370 # simple case: selector applied to ID (name)
371 # i.e., foo<a:b> --> bits(foo, a, b)
372 code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
373 # if selector is applied to expression (ending in ')'),
374 # we need to search backward for matching '('
375 match = bitOpExprRE.search(code)
376 while match:
377 exprEnd = match.start()
378 here = exprEnd - 1
379 nestLevel = 1
380 while nestLevel > 0:
381 if code[here] == '(':
382 nestLevel -= 1
383 elif code[here] == ')':
384 nestLevel += 1
385 here -= 1
386 if here < 0:
387 sys.exit("Didn't find '('!")
388 exprStart = here+1
389 newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
390 match.group(1), match.group(2))
391 code = code[:exprStart] + newExpr + code[match.end():]
392 match = bitOpExprRE.search(code)
393 return code
394
395
396#####################################################################
397#
398# Code Parser
399#
400# The remaining code is the support for automatically extracting
401# instruction characteristics from pseudocode.
402#
403#####################################################################
404
405# Force the argument to be a list. Useful for flags, where a caller
406# can specify a singleton flag or a list of flags. Also usful for
407# converting tuples to lists so they can be modified.
408def makeList(arg):
409 if isinstance(arg, list):
410 return arg
411 elif isinstance(arg, tuple):
412 return list(arg)
413 elif not arg:
414 return []
415 else:
416 return [ arg ]
417
418class Operand(object):
419 '''Base class for operand descriptors. An instance of this class
420 (or actually a class derived from this one) represents a specific
421 operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
422 derived classes encapsulates the traits of a particular operand
423 type (e.g., "32-bit integer register").'''
424
425 def buildReadCode(self, func = None):
426 subst_dict = {"name": self.base_name,
427 "func": func,
428 "reg_idx": self.reg_spec,
429 "ctype": self.ctype}
430 if hasattr(self, 'src_reg_idx'):
431 subst_dict['op_idx'] = self.src_reg_idx
432 code = self.read_code % subst_dict
433 return '%s = %s;\n' % (self.base_name, code)
434
435 def buildWriteCode(self, func = None):
436 subst_dict = {"name": self.base_name,
437 "func": func,
438 "reg_idx": self.reg_spec,
439 "ctype": self.ctype,
440 "final_val": self.base_name}
441 if hasattr(self, 'dest_reg_idx'):
442 subst_dict['op_idx'] = self.dest_reg_idx
443 code = self.write_code % subst_dict
444 return '''
445 {
446 %s final_val = %s;
447 %s;
448 if (traceData) { traceData->setData(final_val); }
449 }''' % (self.dflt_ctype, self.base_name, code)
450
451 def __init__(self, parser, full_name, ext, is_src, is_dest):
452 self.full_name = full_name
453 self.ext = ext
454 self.is_src = is_src
455 self.is_dest = is_dest
456 # The 'effective extension' (eff_ext) is either the actual
457 # extension, if one was explicitly provided, or the default.
458 if ext:
459 self.eff_ext = ext
460 elif hasattr(self, 'dflt_ext'):
461 self.eff_ext = self.dflt_ext
462
463 if hasattr(self, 'eff_ext'):
464 self.ctype = parser.operandTypeMap[self.eff_ext]
465
466 # Finalize additional fields (primarily code fields). This step
467 # is done separately since some of these fields may depend on the
468 # register index enumeration that hasn't been performed yet at the
469 # time of __init__(). The register index enumeration is affected
470 # by predicated register reads/writes. Hence, we forward the flags
471 # that indicate whether or not predication is in use.
472 def finalize(self, predRead, predWrite):
473 self.flags = self.getFlags()
474 self.constructor = self.makeConstructor(predRead, predWrite)
475 self.op_decl = self.makeDecl()
476
477 if self.is_src:
478 self.op_rd = self.makeRead(predRead)
479 self.op_src_decl = self.makeDecl()
480 else:
481 self.op_rd = ''
482 self.op_src_decl = ''
483
484 if self.is_dest:
485 self.op_wb = self.makeWrite(predWrite)
486 self.op_dest_decl = self.makeDecl()
487 else:
488 self.op_wb = ''
489 self.op_dest_decl = ''
490
491 def isMem(self):
492 return 0
493
494 def isReg(self):
495 return 0
496
497 def isFloatReg(self):
498 return 0
499
500 def isIntReg(self):
501 return 0
502
503 def isCCReg(self):
504 return 0
505
506 def isControlReg(self):
507 return 0
508
509 def isPCState(self):
510 return 0
511
512 def isPCPart(self):
513 return self.isPCState() and self.reg_spec
514
515 def hasReadPred(self):
516 return self.read_predicate != None
517
518 def hasWritePred(self):
519 return self.write_predicate != None
520
521 def getFlags(self):
522 # note the empty slice '[:]' gives us a copy of self.flags[0]
523 # instead of a reference to it
524 my_flags = self.flags[0][:]
525 if self.is_src:
526 my_flags += self.flags[1]
527 if self.is_dest:
528 my_flags += self.flags[2]
529 return my_flags
530
531 def makeDecl(self):
532 # Note that initializations in the declarations are solely
533 # to avoid 'uninitialized variable' errors from the compiler.
534 return self.ctype + ' ' + self.base_name + ' = 0;\n';
535
536class IntRegOperand(Operand):
537 def isReg(self):
538 return 1
539
540 def isIntReg(self):
541 return 1
542
543 def makeConstructor(self, predRead, predWrite):
544 c_src = ''
545 c_dest = ''
546
547 if self.is_src:
548 c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s;' % (self.reg_spec)
549 if self.hasReadPred():
550 c_src = '\n\tif (%s) {%s\n\t}' % \
551 (self.read_predicate, c_src)
552
553 if self.is_dest:
554 c_dest = '\n\t_destRegIdx[_numDestRegs++] = %s;' % \
555 (self.reg_spec)
556 c_dest += '\n\t_numIntDestRegs++;'
557 if self.hasWritePred():
558 c_dest = '\n\tif (%s) {%s\n\t}' % \
559 (self.write_predicate, c_dest)
560
561 return c_src + c_dest
562
563 def makeRead(self, predRead):
564 if (self.ctype == 'float' or self.ctype == 'double'):
565 error('Attempt to read integer register as FP')
566 if self.read_code != None:
567 return self.buildReadCode('readIntRegOperand')
568
569 int_reg_val = ''
570 if predRead:
571 int_reg_val = 'xc->readIntRegOperand(this, _sourceIndex++)'
572 if self.hasReadPred():
573 int_reg_val = '(%s) ? %s : 0' % \
574 (self.read_predicate, int_reg_val)
575 else:
576 int_reg_val = 'xc->readIntRegOperand(this, %d)' % self.src_reg_idx
577
578 return '%s = %s;\n' % (self.base_name, int_reg_val)
579
580 def makeWrite(self, predWrite):
581 if (self.ctype == 'float' or self.ctype == 'double'):
582 error('Attempt to write integer register as FP')
583 if self.write_code != None:
584 return self.buildWriteCode('setIntRegOperand')
585
586 if predWrite:
587 wp = 'true'
588 if self.hasWritePred():
589 wp = self.write_predicate
590
591 wcond = 'if (%s)' % (wp)
592 windex = '_destIndex++'
593 else:
594 wcond = ''
595 windex = '%d' % self.dest_reg_idx
596
597 wb = '''
598 %s
599 {
600 %s final_val = %s;
601 xc->setIntRegOperand(this, %s, final_val);\n
602 if (traceData) { traceData->setData(final_val); }
603 }''' % (wcond, self.ctype, self.base_name, windex)
604
605 return wb
606
607class FloatRegOperand(Operand):
608 def isReg(self):
609 return 1
610
611 def isFloatReg(self):
612 return 1
613
614 def makeConstructor(self, predRead, predWrite):
615 c_src = ''
616 c_dest = ''
617
618 if self.is_src:
619 c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s + FP_Reg_Base;' % \
620 (self.reg_spec)
621
622 if self.is_dest:
623 c_dest = \
624 '\n\t_destRegIdx[_numDestRegs++] = %s + FP_Reg_Base;' % \
625 (self.reg_spec)
626 c_dest += '\n\t_numFPDestRegs++;'
627
628 return c_src + c_dest
629
630 def makeRead(self, predRead):
631 bit_select = 0
632 if (self.ctype == 'float' or self.ctype == 'double'):
633 func = 'readFloatRegOperand'
634 else:
635 func = 'readFloatRegOperandBits'
636 if self.read_code != None:
637 return self.buildReadCode(func)
638
639 if predRead:
640 rindex = '_sourceIndex++'
641 else:
642 rindex = '%d' % self.src_reg_idx
643
644 return '%s = xc->%s(this, %s);\n' % \
645 (self.base_name, func, rindex)
646
647 def makeWrite(self, predWrite):
648 if (self.ctype == 'float' or self.ctype == 'double'):
649 func = 'setFloatRegOperand'
650 else:
651 func = 'setFloatRegOperandBits'
652 if self.write_code != None:
653 return self.buildWriteCode(func)
654
655 if predWrite:
656 wp = '_destIndex++'
657 else:
658 wp = '%d' % self.dest_reg_idx
659 wp = 'xc->%s(this, %s, final_val);' % (func, wp)
660
661 wb = '''
662 {
663 %s final_val = %s;
664 %s\n
665 if (traceData) { traceData->setData(final_val); }
666 }''' % (self.ctype, self.base_name, wp)
667 return wb
668
669class CCRegOperand(Operand):
670 def isReg(self):
671 return 1
672
673 def isCCReg(self):
674 return 1
675
676 def makeConstructor(self, predRead, predWrite):
677 c_src = ''
678 c_dest = ''
679
680 if self.is_src:
681 c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s + CC_Reg_Base;' % \
682 (self.reg_spec)
683 if self.hasReadPred():
684 c_src = '\n\tif (%s) {%s\n\t}' % \
685 (self.read_predicate, c_src)
686
687 if self.is_dest:
688 c_dest = \
689 '\n\t_destRegIdx[_numDestRegs++] = %s + CC_Reg_Base;' % \
690 (self.reg_spec)
691 c_dest += '\n\t_numCCDestRegs++;'
692 if self.hasWritePred():
693 c_dest = '\n\tif (%s) {%s\n\t}' % \
694 (self.write_predicate, c_dest)
695
696 return c_src + c_dest
697
698 def makeRead(self, predRead):
699 if (self.ctype == 'float' or self.ctype == 'double'):
700 error('Attempt to read condition-code register as FP')
701 if self.read_code != None:
702 return self.buildReadCode('readCCRegOperand')
703
704 int_reg_val = ''
705 if predRead:
706 int_reg_val = 'xc->readCCRegOperand(this, _sourceIndex++)'
707 if self.hasReadPred():
708 int_reg_val = '(%s) ? %s : 0' % \
709 (self.read_predicate, int_reg_val)
710 else:
711 int_reg_val = 'xc->readCCRegOperand(this, %d)' % self.src_reg_idx
712
713 return '%s = %s;\n' % (self.base_name, int_reg_val)
714
715 def makeWrite(self, predWrite):
716 if (self.ctype == 'float' or self.ctype == 'double'):
717 error('Attempt to write condition-code register as FP')
718 if self.write_code != None:
719 return self.buildWriteCode('setCCRegOperand')
720
721 if predWrite:
722 wp = 'true'
723 if self.hasWritePred():
724 wp = self.write_predicate
725
726 wcond = 'if (%s)' % (wp)
727 windex = '_destIndex++'
728 else:
729 wcond = ''
730 windex = '%d' % self.dest_reg_idx
731
732 wb = '''
733 %s
734 {
735 %s final_val = %s;
736 xc->setCCRegOperand(this, %s, final_val);\n
737 if (traceData) { traceData->setData(final_val); }
738 }''' % (wcond, self.ctype, self.base_name, windex)
739
740 return wb
741
742class ControlRegOperand(Operand):
743 def isReg(self):
744 return 1
745
746 def isControlReg(self):
747 return 1
748
749 def makeConstructor(self, predRead, predWrite):
750 c_src = ''
751 c_dest = ''
752
753 if self.is_src:
754 c_src = \
755 '\n\t_srcRegIdx[_numSrcRegs++] = %s + Misc_Reg_Base;' % \
756 (self.reg_spec)
757
758 if self.is_dest:
759 c_dest = \
760 '\n\t_destRegIdx[_numDestRegs++] = %s + Misc_Reg_Base;' % \
761 (self.reg_spec)
762
763 return c_src + c_dest
764
765 def makeRead(self, predRead):
766 bit_select = 0
767 if (self.ctype == 'float' or self.ctype == 'double'):
768 error('Attempt to read control register as FP')
769 if self.read_code != None:
770 return self.buildReadCode('readMiscRegOperand')
771
772 if predRead:
773 rindex = '_sourceIndex++'
774 else:
775 rindex = '%d' % self.src_reg_idx
776
777 return '%s = xc->readMiscRegOperand(this, %s);\n' % \
778 (self.base_name, rindex)
779
780 def makeWrite(self, predWrite):
781 if (self.ctype == 'float' or self.ctype == 'double'):
782 error('Attempt to write control register as FP')
783 if self.write_code != None:
784 return self.buildWriteCode('setMiscRegOperand')
785
786 if predWrite:
787 windex = '_destIndex++'
788 else:
789 windex = '%d' % self.dest_reg_idx
790
791 wb = 'xc->setMiscRegOperand(this, %s, %s);\n' % \
792 (windex, self.base_name)
793 wb += 'if (traceData) { traceData->setData(%s); }' % \
794 self.base_name
795
796 return wb
797
798class MemOperand(Operand):
799 def isMem(self):
800 return 1
801
802 def makeConstructor(self, predRead, predWrite):
803 return ''
804
805 def makeDecl(self):
806 # Note that initializations in the declarations are solely
807 # to avoid 'uninitialized variable' errors from the compiler.
808 # Declare memory data variable.
809 return '%s %s = 0;\n' % (self.ctype, self.base_name)
810
811 def makeRead(self, predRead):
812 if self.read_code != None:
813 return self.buildReadCode()
814 return ''
815
816 def makeWrite(self, predWrite):
817 if self.write_code != None:
818 return self.buildWriteCode()
819 return ''
820
821class PCStateOperand(Operand):
822 def makeConstructor(self, predRead, predWrite):
823 return ''
824
825 def makeRead(self, predRead):
826 if self.reg_spec:
827 # A component of the PC state.
828 return '%s = __parserAutoPCState.%s();\n' % \
829 (self.base_name, self.reg_spec)
830 else:
831 # The whole PC state itself.
832 return '%s = xc->pcState();\n' % self.base_name
833
834 def makeWrite(self, predWrite):
835 if self.reg_spec:
836 # A component of the PC state.
837 return '__parserAutoPCState.%s(%s);\n' % \
838 (self.reg_spec, self.base_name)
839 else:
840 # The whole PC state itself.
841 return 'xc->pcState(%s);\n' % self.base_name
842
843 def makeDecl(self):
844 ctype = 'TheISA::PCState'
845 if self.isPCPart():
846 ctype = self.ctype
847 return "%s %s;\n" % (ctype, self.base_name)
848
849 def isPCState(self):
850 return 1
851
852class OperandList(object):
853 '''Find all the operands in the given code block. Returns an operand
854 descriptor list (instance of class OperandList).'''
855 def __init__(self, parser, code):
856 self.items = []
857 self.bases = {}
858 # delete strings and comments so we don't match on operands inside
859 for regEx in (stringRE, commentRE):
860 code = regEx.sub('', code)
861 # search for operands
862 next_pos = 0
863 while 1:
864 match = parser.operandsRE.search(code, next_pos)
865 if not match:
866 # no more matches: we're done
867 break
868 op = match.groups()
869 # regexp groups are operand full name, base, and extension
870 (op_full, op_base, op_ext) = op
871 # if the token following the operand is an assignment, this is
872 # a destination (LHS), else it's a source (RHS)
873 is_dest = (assignRE.match(code, match.end()) != None)
874 is_src = not is_dest
875 # see if we've already seen this one
876 op_desc = self.find_base(op_base)
877 if op_desc:
878 if op_desc.ext != op_ext:
879 error('Inconsistent extensions for operand %s' % \
880 op_base)
881 op_desc.is_src = op_desc.is_src or is_src
882 op_desc.is_dest = op_desc.is_dest or is_dest
883 else:
884 # new operand: create new descriptor
885 op_desc = parser.operandNameMap[op_base](parser,
886 op_full, op_ext, is_src, is_dest)
887 self.append(op_desc)
888 # start next search after end of current match
889 next_pos = match.end()
890 self.sort()
891 # enumerate source & dest register operands... used in building
892 # constructor later
893 self.numSrcRegs = 0
894 self.numDestRegs = 0
895 self.numFPDestRegs = 0
896 self.numIntDestRegs = 0
897 self.numCCDestRegs = 0
898 self.numMiscDestRegs = 0
899 self.memOperand = None
900
901 # Flags to keep track if one or more operands are to be read/written
902 # conditionally.
903 self.predRead = False
904 self.predWrite = False
905
906 for op_desc in self.items:
907 if op_desc.isReg():
908 if op_desc.is_src:
909 op_desc.src_reg_idx = self.numSrcRegs
910 self.numSrcRegs += 1
911 if op_desc.is_dest:
912 op_desc.dest_reg_idx = self.numDestRegs
913 self.numDestRegs += 1
914 if op_desc.isFloatReg():
915 self.numFPDestRegs += 1
916 elif op_desc.isIntReg():
917 self.numIntDestRegs += 1
918 elif op_desc.isCCReg():
919 self.numCCDestRegs += 1
920 elif op_desc.isControlReg():
921 self.numMiscDestRegs += 1
922 elif op_desc.isMem():
923 if self.memOperand:
924 error("Code block has more than one memory operand.")
925 self.memOperand = op_desc
926
927 # Check if this operand has read/write predication. If true, then
928 # the microop will dynamically index source/dest registers.
929 self.predRead = self.predRead or op_desc.hasReadPred()
930 self.predWrite = self.predWrite or op_desc.hasWritePred()
931
932 if parser.maxInstSrcRegs < self.numSrcRegs:
933 parser.maxInstSrcRegs = self.numSrcRegs
934 if parser.maxInstDestRegs < self.numDestRegs:
935 parser.maxInstDestRegs = self.numDestRegs
936 if parser.maxMiscDestRegs < self.numMiscDestRegs:
937 parser.maxMiscDestRegs = self.numMiscDestRegs
938
939 # now make a final pass to finalize op_desc fields that may depend
940 # on the register enumeration
941 for op_desc in self.items:
942 op_desc.finalize(self.predRead, self.predWrite)
943
944 def __len__(self):
945 return len(self.items)
946
947 def __getitem__(self, index):
948 return self.items[index]
949
950 def append(self, op_desc):
951 self.items.append(op_desc)
952 self.bases[op_desc.base_name] = op_desc
953
954 def find_base(self, base_name):
955 # like self.bases[base_name], but returns None if not found
956 # (rather than raising exception)
957 return self.bases.get(base_name)
958
959 # internal helper function for concat[Some]Attr{Strings|Lists}
960 def __internalConcatAttrs(self, attr_name, filter, result):
961 for op_desc in self.items:
962 if filter(op_desc):
963 result += getattr(op_desc, attr_name)
964 return result
965
966 # return a single string that is the concatenation of the (string)
967 # values of the specified attribute for all operands
968 def concatAttrStrings(self, attr_name):
969 return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
970
971 # like concatAttrStrings, but only include the values for the operands
972 # for which the provided filter function returns true
973 def concatSomeAttrStrings(self, filter, attr_name):
974 return self.__internalConcatAttrs(attr_name, filter, '')
975
976 # return a single list that is the concatenation of the (list)
977 # values of the specified attribute for all operands
978 def concatAttrLists(self, attr_name):
979 return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
980
981 # like concatAttrLists, but only include the values for the operands
982 # for which the provided filter function returns true
983 def concatSomeAttrLists(self, filter, attr_name):
984 return self.__internalConcatAttrs(attr_name, filter, [])
985
986 def sort(self):
987 self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
988
989class SubOperandList(OperandList):
990 '''Find all the operands in the given code block. Returns an operand
991 descriptor list (instance of class OperandList).'''
992 def __init__(self, parser, code, master_list):
993 self.items = []
994 self.bases = {}
995 # delete strings and comments so we don't match on operands inside
996 for regEx in (stringRE, commentRE):
997 code = regEx.sub('', code)
998 # search for operands
999 next_pos = 0
1000 while 1:
1001 match = parser.operandsRE.search(code, next_pos)
1002 if not match:
1003 # no more matches: we're done
1004 break
1005 op = match.groups()
1006 # regexp groups are operand full name, base, and extension
1007 (op_full, op_base, op_ext) = op
1008 # find this op in the master list
1009 op_desc = master_list.find_base(op_base)
1010 if not op_desc:
1011 error('Found operand %s which is not in the master list!' \
1012 ' This is an internal error' % op_base)
1013 else:
1014 # See if we've already found this operand
1015 op_desc = self.find_base(op_base)
1016 if not op_desc:
1017 # if not, add a reference to it to this sub list
1018 self.append(master_list.bases[op_base])
1019
1020 # start next search after end of current match
1021 next_pos = match.end()
1022 self.sort()
1023 self.memOperand = None
1024 # Whether the whole PC needs to be read so parts of it can be accessed
1025 self.readPC = False
1026 # Whether the whole PC needs to be written after parts of it were
1027 # changed
1028 self.setPC = False
1029 # Whether this instruction manipulates the whole PC or parts of it.
1030 # Mixing the two is a bad idea and flagged as an error.
1031 self.pcPart = None
1032
1033 # Flags to keep track if one or more operands are to be read/written
1034 # conditionally.
1035 self.predRead = False
1036 self.predWrite = False
1037
1038 for op_desc in self.items:
1039 if op_desc.isPCPart():
1040 self.readPC = True
1041 if op_desc.is_dest:
1042 self.setPC = True
1043
1044 if op_desc.isPCState():
1045 if self.pcPart is not None:
1046 if self.pcPart and not op_desc.isPCPart() or \
1047 not self.pcPart and op_desc.isPCPart():
1048 error("Mixed whole and partial PC state operands.")
1049 self.pcPart = op_desc.isPCPart()
1050
1051 if op_desc.isMem():
1052 if self.memOperand:
1053 error("Code block has more than one memory operand.")
1054 self.memOperand = op_desc
1055
1056 # Check if this operand has read/write predication. If true, then
1057 # the microop will dynamically index source/dest registers.
1058 self.predRead = self.predRead or op_desc.hasReadPred()
1059 self.predWrite = self.predWrite or op_desc.hasWritePred()
1060
1061# Regular expression object to match C++ strings
1062stringRE = re.compile(r'"([^"\\]|\\.)*"')
1063
1064# Regular expression object to match C++ comments
1065# (used in findOperands())
1066commentRE = re.compile(r'(^)?[^\S\n]*/(?:\*(.*?)\*/[^\S\n]*|/[^\n]*)($)?',
1067 re.DOTALL | re.MULTILINE)
1068
1069# Regular expression object to match assignment statements
1070# (used in findOperands())
1071assignRE = re.compile(r'\s*=(?!=)', re.MULTILINE)
1072
1073def makeFlagConstructor(flag_list):
1074 if len(flag_list) == 0:
1075 return ''
1076 # filter out repeated flags
1077 flag_list.sort()
1078 i = 1
1079 while i < len(flag_list):
1080 if flag_list[i] == flag_list[i-1]:
1081 del flag_list[i]
1082 else:
1083 i += 1
1084 pre = '\n\tflags['
1085 post = '] = true;'
1086 code = pre + string.join(flag_list, post + pre) + post
1087 return code
1088
1089# Assume all instruction flags are of the form 'IsFoo'
1090instFlagRE = re.compile(r'Is.*')
1091
1092# OpClass constants end in 'Op' except No_OpClass
1093opClassRE = re.compile(r'.*Op|No_OpClass')
1094
1095class InstObjParams(object):
1096 def __init__(self, parser, mnem, class_name, base_class = '',
1097 snippets = {}, opt_args = []):
1098 self.mnemonic = mnem
1099 self.class_name = class_name
1100 self.base_class = base_class
1101 if not isinstance(snippets, dict):
1102 snippets = {'code' : snippets}
1103 compositeCode = ' '.join(map(str, snippets.values()))
1104 self.snippets = snippets
1105
1106 self.operands = OperandList(parser, compositeCode)
1107
1108 # The header of the constructor declares the variables to be used
1109 # in the body of the constructor.
1110 header = ''
1111 header += '\n\t_numSrcRegs = 0;'
1112 header += '\n\t_numDestRegs = 0;'
1113 header += '\n\t_numFPDestRegs = 0;'
1114 header += '\n\t_numIntDestRegs = 0;'
1115 header += '\n\t_numCCDestRegs = 0;'
1116
1117 self.constructor = header + \
1118 self.operands.concatAttrStrings('constructor')
1119
1120 self.flags = self.operands.concatAttrLists('flags')
1121
1122 # Make a basic guess on the operand class (function unit type).
1123 # These are good enough for most cases, and can be overridden
1124 # later otherwise.
1125 if 'IsStore' in self.flags:
1126 self.op_class = 'MemWriteOp'
1127 elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
1128 self.op_class = 'MemReadOp'
1129 elif 'IsFloating' in self.flags:
1130 self.op_class = 'FloatAddOp'
1131 else:
1132 self.op_class = 'IntAluOp'
1133
1134 # Optional arguments are assumed to be either StaticInst flags
1135 # or an OpClass value. To avoid having to import a complete
1136 # list of these values to match against, we do it ad-hoc
1137 # with regexps.
1138 for oa in opt_args:
1139 if instFlagRE.match(oa):
1140 self.flags.append(oa)
1141 elif opClassRE.match(oa):
1142 self.op_class = oa
1143 else:
1144 error('InstObjParams: optional arg "%s" not recognized '
1145 'as StaticInst::Flag or OpClass.' % oa)
1146
1147 # add flag initialization to contructor here to include
1148 # any flags added via opt_args
1149 self.constructor += makeFlagConstructor(self.flags)
1150
1151 # if 'IsFloating' is set, add call to the FP enable check
1152 # function (which should be provided by isa_desc via a declare)
1153 if 'IsFloating' in self.flags:
1154 self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
1155 else:
1156 self.fp_enable_check = ''
1157
1158##############
1159# Stack: a simple stack object. Used for both formats (formatStack)
1160# and default cases (defaultStack). Simply wraps a list to give more
1161# stack-like syntax and enable initialization with an argument list
1162# (as opposed to an argument that's a list).
1163
1164class Stack(list):
1165 def __init__(self, *items):
1166 list.__init__(self, items)
1167
1168 def push(self, item):
1169 self.append(item);
1170
1171 def top(self):
1172 return self[-1]
1173
1174#######################
1175#
1174# Output file template
1176# ISA Parser
1177# parses ISA DSL and emits C++ headers and source
1175#
1176
1178#
1179
1177file_template = '''
1178/*
1179 * DO NOT EDIT THIS FILE!!!
1180 *
1181 * It was automatically generated from the ISA description in %(filename)s
1182 */
1183
1184%(includes)s
1185
1186%(global_output)s
1187
1188namespace %(namespace)s {
1189
1190%(namespace_output)s
1191
1192} // namespace %(namespace)s
1193
1194%(decode_function)s
1195'''
1196
1197max_inst_regs_template = '''
1198/*
1199 * DO NOT EDIT THIS FILE!!!
1200 *
1201 * It was automatically generated from the ISA description in %(filename)s
1202 */
1203
1204namespace %(namespace)s {
1205
1206 const int MaxInstSrcRegs = %(MaxInstSrcRegs)d;
1207 const int MaxInstDestRegs = %(MaxInstDestRegs)d;
1208 const int MaxMiscDestRegs = %(MaxMiscDestRegs)d;
1209
1210} // namespace %(namespace)s
1211
1212'''
1213
1214class ISAParser(Grammar):
1215 def __init__(self, output_dir, cpu_models):
1216 super(ISAParser, self).__init__()
1217 self.output_dir = output_dir
1218
1180class ISAParser(Grammar):
1181 def __init__(self, output_dir, cpu_models):
1182 super(ISAParser, self).__init__()
1183 self.output_dir = output_dir
1184
1185 self.filename = None # for output file watermarking/scaremongering
1186
1219 self.cpuModels = cpu_models
1220
1221 # variable to hold templates
1222 self.templateMap = {}
1223
1224 # This dictionary maps format name strings to Format objects.
1225 self.formatMap = {}
1226
1187 self.cpuModels = cpu_models
1188
1189 # variable to hold templates
1190 self.templateMap = {}
1191
1192 # This dictionary maps format name strings to Format objects.
1193 self.formatMap = {}
1194
1195 # Track open files and, if applicable, how many chunks it has been
1196 # split into so far.
1197 self.files = {}
1198 self.splits = {}
1199
1200 # isa_name / namespace identifier from namespace declaration.
1201 # before the namespace declaration, None.
1202 self.isa_name = None
1203 self.namespace = None
1204
1227 # The format stack.
1228 self.formatStack = Stack(NoFormat())
1229
1230 # The default case stack.
1231 self.defaultStack = Stack(None)
1232
1233 # Stack that tracks current file and line number. Each
1234 # element is a tuple (filename, lineno) that records the
1235 # *current* filename and the line number in the *previous*
1236 # file where it was included.
1237 self.fileNameStack = Stack()
1238
1239 symbols = ('makeList', 're', 'string')
1240 self.exportContext = dict([(s, eval(s)) for s in symbols])
1241
1242 self.maxInstSrcRegs = 0
1243 self.maxInstDestRegs = 0
1244 self.maxMiscDestRegs = 0
1245
1205 # The format stack.
1206 self.formatStack = Stack(NoFormat())
1207
1208 # The default case stack.
1209 self.defaultStack = Stack(None)
1210
1211 # Stack that tracks current file and line number. Each
1212 # element is a tuple (filename, lineno) that records the
1213 # *current* filename and the line number in the *previous*
1214 # file where it was included.
1215 self.fileNameStack = Stack()
1216
1217 symbols = ('makeList', 're', 'string')
1218 self.exportContext = dict([(s, eval(s)) for s in symbols])
1219
1220 self.maxInstSrcRegs = 0
1221 self.maxInstDestRegs = 0
1222 self.maxMiscDestRegs = 0
1223
1224 def __getitem__(self, i): # Allow object (self) to be
1225 return getattr(self, i) # passed to %-substitutions
1226
1227 # Change the file suffix of a base filename:
1228 # (e.g.) decoder.cc -> decoder-g.cc.inc for 'global' outputs
1229 def suffixize(self, s, sec):
1230 extn = re.compile('(\.[^\.]+)$') # isolate extension
1231 if self.namespace:
1232 return extn.sub(r'-ns\1.inc', s) # insert some text on either side
1233 else:
1234 return extn.sub(r'-g\1.inc', s)
1235
1236 # Get the file object for emitting code into the specified section
1237 # (header, decoder, exec, decode_block).
1238 def get_file(self, section):
1239 if section == 'decode_block':
1240 filename = 'decode-method.cc.inc'
1241 else:
1242 if section == 'header':
1243 file = 'decoder.hh'
1244 else:
1245 file = '%s.cc' % section
1246 filename = self.suffixize(file, section)
1247 try:
1248 return self.files[filename]
1249 except KeyError: pass
1250
1251 f = self.open(filename)
1252 self.files[filename] = f
1253
1254 # The splittable files are the ones with many independent
1255 # per-instruction functions - the decoder's instruction constructors
1256 # and the instruction execution (execute()) methods. These both have
1257 # the suffix -ns.cc.inc, meaning they are within the namespace part
1258 # of the ISA, contain object-emitting C++ source, and are included
1259 # into other top-level files. These are the files that need special
1260 # #define's to allow parts of them to be compiled separately. Rather
1261 # than splitting the emissions into separate files, the monolithic
1262 # output of the ISA parser is maintained, but the value (or lack
1263 # thereof) of the __SPLIT definition during C preprocessing will
1264 # select the different chunks. If no 'split' directives are used,
1265 # the cpp emissions have no effect.
1266 if re.search('-ns.cc.inc$', filename):
1267 print >>f, '#if !defined(__SPLIT) || (__SPLIT == 1)'
1268 self.splits[f] = 1
1269 # ensure requisite #include's
1270 elif filename in ['decoder-g.cc.inc', 'exec-g.cc.inc']:
1271 print >>f, '#include "decoder.hh"'
1272 elif filename == 'decoder-g.hh.inc':
1273 print >>f, '#include "base/bitfield.hh"'
1274
1275 return f
1276
1277 # Weave together the parts of the different output sections by
1278 # #include'ing them into some very short top-level .cc/.hh files.
1279 # These small files make it much clearer how this tool works, since
1280 # you directly see the chunks emitted as files that are #include'd.
1281 def write_top_level_files(self):
1282 dep = self.open('inc.d', bare=True)
1283
1284 # decoder header - everything depends on this
1285 file = 'decoder.hh'
1286 with self.open(file) as f:
1287 inc = []
1288
1289 fn = 'decoder-g.hh.inc'
1290 assert(fn in self.files)
1291 f.write('#include "%s"\n' % fn)
1292 inc.append(fn)
1293
1294 fn = 'decoder-ns.hh.inc'
1295 assert(fn in self.files)
1296 f.write('namespace %s {\n#include "%s"\n}\n'
1297 % (self.namespace, fn))
1298 inc.append(fn)
1299
1300 print >>dep, file+':', ' '.join(inc)
1301
1302 # decoder method - cannot be split
1303 file = 'decoder.cc'
1304 with self.open(file) as f:
1305 inc = []
1306
1307 fn = 'decoder-g.cc.inc'
1308 assert(fn in self.files)
1309 f.write('#include "%s"\n' % fn)
1310 inc.append(fn)
1311
1312 fn = 'decode-method.cc.inc'
1313 # is guaranteed to have been written for parse to complete
1314 f.write('#include "%s"\n' % fn)
1315 inc.append(fn)
1316
1317 inc.append("decoder.hh")
1318 print >>dep, file+':', ' '.join(inc)
1319
1320 extn = re.compile('(\.[^\.]+)$')
1321
1322 # instruction constructors
1323 splits = self.splits[self.get_file('decoder')]
1324 file_ = 'inst-constrs.cc'
1325 for i in range(1, splits+1):
1326 if splits > 1:
1327 file = extn.sub(r'-%d\1' % i, file_)
1328 else:
1329 file = file_
1330 with self.open(file) as f:
1331 inc = []
1332
1333 fn = 'decoder-g.cc.inc'
1334 assert(fn in self.files)
1335 f.write('#include "%s"\n' % fn)
1336 inc.append(fn)
1337
1338 fn = 'decoder-ns.cc.inc'
1339 assert(fn in self.files)
1340 print >>f, 'namespace %s {' % self.namespace
1341 if splits > 1:
1342 print >>f, '#define __SPLIT %u' % i
1343 print >>f, '#include "%s"' % fn
1344 print >>f, '}'
1345 inc.append(fn)
1346
1347 inc.append("decoder.hh")
1348 print >>dep, file+':', ' '.join(inc)
1349
1350 # instruction execution per-CPU model
1351 splits = self.splits[self.get_file('exec')]
1352 for cpu in self.cpuModels:
1353 for i in range(1, splits+1):
1354 if splits > 1:
1355 file = extn.sub(r'_%d\1' % i, cpu.filename)
1356 else:
1357 file = cpu.filename
1358 with self.open(file) as f:
1359 inc = []
1360
1361 fn = 'exec-g.cc.inc'
1362 assert(fn in self.files)
1363 f.write('#include "%s"\n' % fn)
1364 inc.append(fn)
1365
1366 f.write(cpu.includes+"\n")
1367
1368 fn = 'exec-ns.cc.inc'
1369 assert(fn in self.files)
1370 print >>f, 'namespace %s {' % self.namespace
1371 print >>f, '#define CPU_EXEC_CONTEXT %s' \
1372 % cpu.strings['CPU_exec_context']
1373 if splits > 1:
1374 print >>f, '#define __SPLIT %u' % i
1375 print >>f, '#include "%s"' % fn
1376 print >>f, '}'
1377 inc.append(fn)
1378
1379 inc.append("decoder.hh")
1380 print >>dep, file+':', ' '.join(inc)
1381
1382 # max_inst_regs.hh
1383 self.update('max_inst_regs.hh',
1384 '''namespace %(namespace)s {
1385 const int MaxInstSrcRegs = %(maxInstSrcRegs)d;
1386 const int MaxInstDestRegs = %(maxInstDestRegs)d;
1387 const int MaxMiscDestRegs = %(maxMiscDestRegs)d;\n}\n''' % self)
1388 print >>dep, 'max_inst_regs.hh:'
1389
1390 dep.close()
1391
1392
1393 scaremonger_template ='''// DO NOT EDIT
1394// This file was automatically generated from an ISA description:
1395// %(filename)s
1396
1397''';
1398
1246 #####################################################################
1247 #
1248 # Lexer
1249 #
1250 # The PLY lexer module takes two things as input:
1251 # - A list of token names (the string list 'tokens')
1252 # - A regular expression describing a match for each token. The
1253 # regexp for token FOO can be provided in two ways:
1254 # - as a string variable named t_FOO
1255 # - as the doc string for a function named t_FOO. In this case,
1256 # the function is also executed, allowing an action to be
1257 # associated with each token match.
1258 #
1259 #####################################################################
1260
1261 # Reserved words. These are listed separately as they are matched
1262 # using the same regexp as generic IDs, but distinguished in the
1263 # t_ID() function. The PLY documentation suggests this approach.
1264 reserved = (
1265 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
1266 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
1399 #####################################################################
1400 #
1401 # Lexer
1402 #
1403 # The PLY lexer module takes two things as input:
1404 # - A list of token names (the string list 'tokens')
1405 # - A regular expression describing a match for each token. The
1406 # regexp for token FOO can be provided in two ways:
1407 # - as a string variable named t_FOO
1408 # - as the doc string for a function named t_FOO. In this case,
1409 # the function is also executed, allowing an action to be
1410 # associated with each token match.
1411 #
1412 #####################################################################
1413
1414 # Reserved words. These are listed separately as they are matched
1415 # using the same regexp as generic IDs, but distinguished in the
1416 # t_ID() function. The PLY documentation suggests this approach.
1417 reserved = (
1418 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
1419 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
1267 'OUTPUT', 'SIGNED', 'TEMPLATE'
1420 'OUTPUT', 'SIGNED', 'SPLIT', 'TEMPLATE'
1268 )
1269
1270 # List of tokens. The lex module requires this.
1271 tokens = reserved + (
1272 # identifier
1273 'ID',
1274
1275 # integer literal
1276 'INTLIT',
1277
1278 # string literal
1279 'STRLIT',
1280
1281 # code literal
1282 'CODELIT',
1283
1284 # ( ) [ ] { } < > , ; . : :: *
1285 'LPAREN', 'RPAREN',
1286 'LBRACKET', 'RBRACKET',
1287 'LBRACE', 'RBRACE',
1288 'LESS', 'GREATER', 'EQUALS',
1289 'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON',
1290 'ASTERISK',
1291
1292 # C preprocessor directives
1293 'CPPDIRECTIVE'
1294
1295 # The following are matched but never returned. commented out to
1296 # suppress PLY warning
1297 # newfile directive
1298 # 'NEWFILE',
1299
1300 # endfile directive
1301 # 'ENDFILE'
1302 )
1303
1304 # Regular expressions for token matching
1305 t_LPAREN = r'\('
1306 t_RPAREN = r'\)'
1307 t_LBRACKET = r'\['
1308 t_RBRACKET = r'\]'
1309 t_LBRACE = r'\{'
1310 t_RBRACE = r'\}'
1311 t_LESS = r'\<'
1312 t_GREATER = r'\>'
1313 t_EQUALS = r'='
1314 t_COMMA = r','
1315 t_SEMI = r';'
1316 t_DOT = r'\.'
1317 t_COLON = r':'
1318 t_DBLCOLON = r'::'
1319 t_ASTERISK = r'\*'
1320
1321 # Identifiers and reserved words
1322 reserved_map = { }
1323 for r in reserved:
1324 reserved_map[r.lower()] = r
1325
1326 def t_ID(self, t):
1327 r'[A-Za-z_]\w*'
1328 t.type = self.reserved_map.get(t.value, 'ID')
1329 return t
1330
1331 # Integer literal
1332 def t_INTLIT(self, t):
1333 r'-?(0x[\da-fA-F]+)|\d+'
1334 try:
1335 t.value = int(t.value,0)
1336 except ValueError:
1337 error(t, 'Integer value "%s" too large' % t.value)
1338 t.value = 0
1339 return t
1340
1341 # String literal. Note that these use only single quotes, and
1342 # can span multiple lines.
1343 def t_STRLIT(self, t):
1344 r"(?m)'([^'])+'"
1345 # strip off quotes
1346 t.value = t.value[1:-1]
1347 t.lexer.lineno += t.value.count('\n')
1348 return t
1349
1350
1351 # "Code literal"... like a string literal, but delimiters are
1352 # '{{' and '}}' so they get formatted nicely under emacs c-mode
1353 def t_CODELIT(self, t):
1354 r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
1355 # strip off {{ & }}
1356 t.value = t.value[2:-2]
1357 t.lexer.lineno += t.value.count('\n')
1358 return t
1359
1360 def t_CPPDIRECTIVE(self, t):
1361 r'^\#[^\#].*\n'
1362 t.lexer.lineno += t.value.count('\n')
1363 return t
1364
1365 def t_NEWFILE(self, t):
1366 r'^\#\#newfile\s+"[^"]*"'
1367 self.fileNameStack.push((t.value[11:-1], t.lexer.lineno))
1368 t.lexer.lineno = 0
1369
1370 def t_ENDFILE(self, t):
1371 r'^\#\#endfile'
1372 (old_filename, t.lexer.lineno) = self.fileNameStack.pop()
1373
1374 #
1375 # The functions t_NEWLINE, t_ignore, and t_error are
1376 # special for the lex module.
1377 #
1378
1379 # Newlines
1380 def t_NEWLINE(self, t):
1381 r'\n+'
1382 t.lexer.lineno += t.value.count('\n')
1383
1384 # Comments
1385 def t_comment(self, t):
1386 r'//.*'
1387
1388 # Completely ignored characters
1389 t_ignore = ' \t\x0c'
1390
1391 # Error handler
1392 def t_error(self, t):
1393 error(t, "illegal character '%s'" % t.value[0])
1394 t.skip(1)
1395
1396 #####################################################################
1397 #
1398 # Parser
1399 #
1400 # Every function whose name starts with 'p_' defines a grammar
1401 # rule. The rule is encoded in the function's doc string, while
1402 # the function body provides the action taken when the rule is
1403 # matched. The argument to each function is a list of the values
1404 # of the rule's symbols: t[0] for the LHS, and t[1..n] for the
1405 # symbols on the RHS. For tokens, the value is copied from the
1406 # t.value attribute provided by the lexer. For non-terminals, the
1407 # value is assigned by the producing rule; i.e., the job of the
1408 # grammar rule function is to set the value for the non-terminal
1409 # on the LHS (by assigning to t[0]).
1410 #####################################################################
1411
1412 # The LHS of the first grammar rule is used as the start symbol
1413 # (in this case, 'specification'). Note that this rule enforces
1414 # that there will be exactly one namespace declaration, with 0 or
1415 # more global defs/decls before and after it. The defs & decls
1416 # before the namespace decl will be outside the namespace; those
1417 # after will be inside. The decoder function is always inside the
1418 # namespace.
1419 def p_specification(self, t):
1421 )
1422
1423 # List of tokens. The lex module requires this.
1424 tokens = reserved + (
1425 # identifier
1426 'ID',
1427
1428 # integer literal
1429 'INTLIT',
1430
1431 # string literal
1432 'STRLIT',
1433
1434 # code literal
1435 'CODELIT',
1436
1437 # ( ) [ ] { } < > , ; . : :: *
1438 'LPAREN', 'RPAREN',
1439 'LBRACKET', 'RBRACKET',
1440 'LBRACE', 'RBRACE',
1441 'LESS', 'GREATER', 'EQUALS',
1442 'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON',
1443 'ASTERISK',
1444
1445 # C preprocessor directives
1446 'CPPDIRECTIVE'
1447
1448 # The following are matched but never returned. commented out to
1449 # suppress PLY warning
1450 # newfile directive
1451 # 'NEWFILE',
1452
1453 # endfile directive
1454 # 'ENDFILE'
1455 )
1456
1457 # Regular expressions for token matching
1458 t_LPAREN = r'\('
1459 t_RPAREN = r'\)'
1460 t_LBRACKET = r'\['
1461 t_RBRACKET = r'\]'
1462 t_LBRACE = r'\{'
1463 t_RBRACE = r'\}'
1464 t_LESS = r'\<'
1465 t_GREATER = r'\>'
1466 t_EQUALS = r'='
1467 t_COMMA = r','
1468 t_SEMI = r';'
1469 t_DOT = r'\.'
1470 t_COLON = r':'
1471 t_DBLCOLON = r'::'
1472 t_ASTERISK = r'\*'
1473
1474 # Identifiers and reserved words
1475 reserved_map = { }
1476 for r in reserved:
1477 reserved_map[r.lower()] = r
1478
1479 def t_ID(self, t):
1480 r'[A-Za-z_]\w*'
1481 t.type = self.reserved_map.get(t.value, 'ID')
1482 return t
1483
1484 # Integer literal
1485 def t_INTLIT(self, t):
1486 r'-?(0x[\da-fA-F]+)|\d+'
1487 try:
1488 t.value = int(t.value,0)
1489 except ValueError:
1490 error(t, 'Integer value "%s" too large' % t.value)
1491 t.value = 0
1492 return t
1493
1494 # String literal. Note that these use only single quotes, and
1495 # can span multiple lines.
1496 def t_STRLIT(self, t):
1497 r"(?m)'([^'])+'"
1498 # strip off quotes
1499 t.value = t.value[1:-1]
1500 t.lexer.lineno += t.value.count('\n')
1501 return t
1502
1503
1504 # "Code literal"... like a string literal, but delimiters are
1505 # '{{' and '}}' so they get formatted nicely under emacs c-mode
1506 def t_CODELIT(self, t):
1507 r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
1508 # strip off {{ & }}
1509 t.value = t.value[2:-2]
1510 t.lexer.lineno += t.value.count('\n')
1511 return t
1512
1513 def t_CPPDIRECTIVE(self, t):
1514 r'^\#[^\#].*\n'
1515 t.lexer.lineno += t.value.count('\n')
1516 return t
1517
1518 def t_NEWFILE(self, t):
1519 r'^\#\#newfile\s+"[^"]*"'
1520 self.fileNameStack.push((t.value[11:-1], t.lexer.lineno))
1521 t.lexer.lineno = 0
1522
1523 def t_ENDFILE(self, t):
1524 r'^\#\#endfile'
1525 (old_filename, t.lexer.lineno) = self.fileNameStack.pop()
1526
1527 #
1528 # The functions t_NEWLINE, t_ignore, and t_error are
1529 # special for the lex module.
1530 #
1531
1532 # Newlines
1533 def t_NEWLINE(self, t):
1534 r'\n+'
1535 t.lexer.lineno += t.value.count('\n')
1536
1537 # Comments
1538 def t_comment(self, t):
1539 r'//.*'
1540
1541 # Completely ignored characters
1542 t_ignore = ' \t\x0c'
1543
1544 # Error handler
1545 def t_error(self, t):
1546 error(t, "illegal character '%s'" % t.value[0])
1547 t.skip(1)
1548
1549 #####################################################################
1550 #
1551 # Parser
1552 #
1553 # Every function whose name starts with 'p_' defines a grammar
1554 # rule. The rule is encoded in the function's doc string, while
1555 # the function body provides the action taken when the rule is
1556 # matched. The argument to each function is a list of the values
1557 # of the rule's symbols: t[0] for the LHS, and t[1..n] for the
1558 # symbols on the RHS. For tokens, the value is copied from the
1559 # t.value attribute provided by the lexer. For non-terminals, the
1560 # value is assigned by the producing rule; i.e., the job of the
1561 # grammar rule function is to set the value for the non-terminal
1562 # on the LHS (by assigning to t[0]).
1563 #####################################################################
1564
1565 # The LHS of the first grammar rule is used as the start symbol
1566 # (in this case, 'specification'). Note that this rule enforces
1567 # that there will be exactly one namespace declaration, with 0 or
1568 # more global defs/decls before and after it. The defs & decls
1569 # before the namespace decl will be outside the namespace; those
1570 # after will be inside. The decoder function is always inside the
1571 # namespace.
1572 def p_specification(self, t):
1420 'specification : opt_defs_and_outputs name_decl opt_defs_and_outputs decode_block'
1421 global_code = t[1]
1422 isa_name = t[2]
1423 namespace = isa_name + "Inst"
1424 # wrap the decode block as a function definition
1425 t[4].wrap_decode_block('''
1426StaticInstPtr
1427%(isa_name)s::Decoder::decodeInst(%(isa_name)s::ExtMachInst machInst)
1428{
1429 using namespace %(namespace)s;
1430''' % vars(), '}')
1431 # both the latter output blocks and the decode block are in
1432 # the namespace
1433 namespace_code = t[3] + t[4]
1434 # pass it all back to the caller of yacc.parse()
1435 t[0] = (isa_name, namespace, global_code, namespace_code)
1573 'specification : opt_defs_and_outputs top_level_decode_block'
1436
1574
1437 # ISA name declaration looks like "namespace <foo>;"
1438 def p_name_decl(self, t):
1439 'name_decl : NAMESPACE ID SEMI'
1440 t[0] = t[2]
1575 for f in self.splits.iterkeys():
1576 f.write('\n#endif\n')
1441
1577
1442 # 'opt_defs_and_outputs' is a possibly empty sequence of
1443 # def and/or output statements.
1578 for f in self.files.itervalues(): # close ALL the files;
1579 f.close() # not doing so can cause compilation to fail
1580
1581 self.write_top_level_files()
1582
1583 t[0] = True
1584
1585 # 'opt_defs_and_outputs' is a possibly empty sequence of def and/or
1586 # output statements. Its productions do the hard work of eventually
1587 # instantiating a GenCode, which are generally emitted (written to disk)
1588 # as soon as possible, except for the decode_block, which has to be
1589 # accumulated into one large function of nested switch/case blocks.
1444 def p_opt_defs_and_outputs_0(self, t):
1445 'opt_defs_and_outputs : empty'
1590 def p_opt_defs_and_outputs_0(self, t):
1591 'opt_defs_and_outputs : empty'
1446 t[0] = GenCode(self)
1447
1448 def p_opt_defs_and_outputs_1(self, t):
1449 'opt_defs_and_outputs : defs_and_outputs'
1592
1593 def p_opt_defs_and_outputs_1(self, t):
1594 'opt_defs_and_outputs : defs_and_outputs'
1450 t[0] = t[1]
1451
1452 def p_defs_and_outputs_0(self, t):
1453 'defs_and_outputs : def_or_output'
1595
1596 def p_defs_and_outputs_0(self, t):
1597 'defs_and_outputs : def_or_output'
1454 t[0] = t[1]
1455
1456 def p_defs_and_outputs_1(self, t):
1457 'defs_and_outputs : defs_and_outputs def_or_output'
1598
1599 def p_defs_and_outputs_1(self, t):
1600 'defs_and_outputs : defs_and_outputs def_or_output'
1458 t[0] = t[1] + t[2]
1459
1460 # The list of possible definition/output statements.
1601
1602 # The list of possible definition/output statements.
1603 # They are all processed as they are seen.
1461 def p_def_or_output(self, t):
1604 def p_def_or_output(self, t):
1462 '''def_or_output : def_format
1605 '''def_or_output : name_decl
1606 | def_format
1463 | def_bitfield
1464 | def_bitfield_struct
1465 | def_template
1466 | def_operand_types
1467 | def_operands
1607 | def_bitfield
1608 | def_bitfield_struct
1609 | def_template
1610 | def_operand_types
1611 | def_operands
1468 | output_header
1469 | output_decoder
1470 | output_exec
1471 | global_let'''
1612 | output
1613 | global_let
1614 | split'''
1615
1616 # Utility function used by both invocations of splitting - explicit
1617 # 'split' keyword and split() function inside "let {{ }};" blocks.
1618 def split(self, sec, write=False):
1619 assert(sec != 'header' and "header cannot be split")
1620
1621 f = self.get_file(sec)
1622 self.splits[f] += 1
1623 s = '\n#endif\n#if __SPLIT == %u\n' % self.splits[f]
1624 if write:
1625 f.write(s)
1626 else:
1627 return s
1628
1629 # split output file to reduce compilation time
1630 def p_split(self, t):
1631 'split : SPLIT output_type SEMI'
1632 assert(self.isa_name and "'split' not allowed before namespace decl")
1633
1634 self.split(t[2], True)
1635
1636 def p_output_type(self, t):
1637 '''output_type : DECODER
1638 | HEADER
1639 | EXEC'''
1472 t[0] = t[1]
1473
1640 t[0] = t[1]
1641
1642 # ISA name declaration looks like "namespace <foo>;"
1643 def p_name_decl(self, t):
1644 'name_decl : NAMESPACE ID SEMI'
1645 assert(self.isa_name == None and "Only 1 namespace decl permitted")
1646 self.isa_name = t[2]
1647 self.namespace = t[2] + 'Inst'
1648
1474 # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
1475 # directly to the appropriate output section.
1476
1477 # Massage output block by substituting in template definitions and
1478 # bit operators. We handle '%'s embedded in the string that don't
1479 # indicate template substitutions (or CPU-specific symbols, which
1480 # get handled in GenCode) by doubling them first so that the
1481 # format operation will reduce them back to single '%'s.
1482 def process_output(self, s):
1483 s = self.protectNonSubstPercents(s)
1484 # protects cpu-specific symbols too
1485 s = self.protectCpuSymbols(s)
1486 return substBitOps(s % self.templateMap)
1487
1649 # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
1650 # directly to the appropriate output section.
1651
1652 # Massage output block by substituting in template definitions and
1653 # bit operators. We handle '%'s embedded in the string that don't
1654 # indicate template substitutions (or CPU-specific symbols, which
1655 # get handled in GenCode) by doubling them first so that the
1656 # format operation will reduce them back to single '%'s.
1657 def process_output(self, s):
1658 s = self.protectNonSubstPercents(s)
1659 # protects cpu-specific symbols too
1660 s = self.protectCpuSymbols(s)
1661 return substBitOps(s % self.templateMap)
1662
1488 def p_output_header(self, t):
1489 'output_header : OUTPUT HEADER CODELIT SEMI'
1490 t[0] = GenCode(self, header_output = self.process_output(t[3]))
1663 def p_output(self, t):
1664 'output : OUTPUT output_type CODELIT SEMI'
1665 kwargs = { t[2]+'_output' : self.process_output(t[3]) }
1666 GenCode(self, **kwargs).emit()
1491
1667
1492 def p_output_decoder(self, t):
1493 'output_decoder : OUTPUT DECODER CODELIT SEMI'
1494 t[0] = GenCode(self, decoder_output = self.process_output(t[3]))
1495
1496 def p_output_exec(self, t):
1497 'output_exec : OUTPUT EXEC CODELIT SEMI'
1498 t[0] = GenCode(self, exec_output = self.process_output(t[3]))
1499
1500 # global let blocks 'let {{...}}' (Python code blocks) are
1501 # executed directly when seen. Note that these execute in a
1502 # special variable context 'exportContext' to prevent the code
1503 # from polluting this script's namespace.
1504 def p_global_let(self, t):
1505 'global_let : LET CODELIT SEMI'
1668 # global let blocks 'let {{...}}' (Python code blocks) are
1669 # executed directly when seen. Note that these execute in a
1670 # special variable context 'exportContext' to prevent the code
1671 # from polluting this script's namespace.
1672 def p_global_let(self, t):
1673 'global_let : LET CODELIT SEMI'
1674 def _split(sec):
1675 return self.split(sec)
1506 self.updateExportContext()
1507 self.exportContext["header_output"] = ''
1508 self.exportContext["decoder_output"] = ''
1509 self.exportContext["exec_output"] = ''
1510 self.exportContext["decode_block"] = ''
1676 self.updateExportContext()
1677 self.exportContext["header_output"] = ''
1678 self.exportContext["decoder_output"] = ''
1679 self.exportContext["exec_output"] = ''
1680 self.exportContext["decode_block"] = ''
1681 self.exportContext["split"] = _split
1682 split_setup = '''
1683def wrap(func):
1684 def split(sec):
1685 globals()[sec + '_output'] += func(sec)
1686 return split
1687split = wrap(split)
1688del wrap
1689'''
1690 # This tricky setup (immediately above) allows us to just write
1691 # (e.g.) "split('exec')" in the Python code and the split #ifdef's
1692 # will automatically be added to the exec_output variable. The inner
1693 # Python execution environment doesn't know about the split points,
1694 # so we carefully inject and wrap a closure that can retrieve the
1695 # next split's #define from the parser and add it to the current
1696 # emission-in-progress.
1511 try:
1697 try:
1512 exec fixPythonIndentation(t[2]) in self.exportContext
1698 exec split_setup+fixPythonIndentation(t[2]) in self.exportContext
1513 except Exception, exc:
1514 if debug:
1515 raise
1516 error(t, 'error: %s in global let block "%s".' % (exc, t[2]))
1699 except Exception, exc:
1700 if debug:
1701 raise
1702 error(t, 'error: %s in global let block "%s".' % (exc, t[2]))
1517 t[0] = GenCode(self,
1518 header_output=self.exportContext["header_output"],
1519 decoder_output=self.exportContext["decoder_output"],
1520 exec_output=self.exportContext["exec_output"],
1521 decode_block=self.exportContext["decode_block"])
1703 GenCode(self,
1704 header_output=self.exportContext["header_output"],
1705 decoder_output=self.exportContext["decoder_output"],
1706 exec_output=self.exportContext["exec_output"],
1707 decode_block=self.exportContext["decode_block"]).emit()
1522
1523 # Define the mapping from operand type extensions to C++ types and
1524 # bit widths (stored in operandTypeMap).
1525 def p_def_operand_types(self, t):
1526 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
1527 try:
1528 self.operandTypeMap = eval('{' + t[3] + '}')
1529 except Exception, exc:
1530 if debug:
1531 raise
1532 error(t,
1533 'error: %s in def operand_types block "%s".' % (exc, t[3]))
1708
1709 # Define the mapping from operand type extensions to C++ types and
1710 # bit widths (stored in operandTypeMap).
1711 def p_def_operand_types(self, t):
1712 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
1713 try:
1714 self.operandTypeMap = eval('{' + t[3] + '}')
1715 except Exception, exc:
1716 if debug:
1717 raise
1718 error(t,
1719 'error: %s in def operand_types block "%s".' % (exc, t[3]))
1534 t[0] = GenCode(self) # contributes nothing to the output C++ file
1535
1536 # Define the mapping from operand names to operand classes and
1537 # other traits. Stored in operandNameMap.
1538 def p_def_operands(self, t):
1539 'def_operands : DEF OPERANDS CODELIT SEMI'
1540 if not hasattr(self, 'operandTypeMap'):
1541 error(t, 'error: operand types must be defined before operands')
1542 try:
1543 user_dict = eval('{' + t[3] + '}', self.exportContext)
1544 except Exception, exc:
1545 if debug:
1546 raise
1547 error(t, 'error: %s in def operands block "%s".' % (exc, t[3]))
1548 self.buildOperandNameMap(user_dict, t.lexer.lineno)
1720
1721 # Define the mapping from operand names to operand classes and
1722 # other traits. Stored in operandNameMap.
1723 def p_def_operands(self, t):
1724 'def_operands : DEF OPERANDS CODELIT SEMI'
1725 if not hasattr(self, 'operandTypeMap'):
1726 error(t, 'error: operand types must be defined before operands')
1727 try:
1728 user_dict = eval('{' + t[3] + '}', self.exportContext)
1729 except Exception, exc:
1730 if debug:
1731 raise
1732 error(t, 'error: %s in def operands block "%s".' % (exc, t[3]))
1733 self.buildOperandNameMap(user_dict, t.lexer.lineno)
1549 t[0] = GenCode(self) # contributes nothing to the output C++ file
1550
1551 # A bitfield definition looks like:
1552 # 'def [signed] bitfield <ID> [<first>:<last>]'
1553 # This generates a preprocessor macro in the output file.
1554 def p_def_bitfield_0(self, t):
1555 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
1556 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
1557 if (t[2] == 'signed'):
1558 expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
1559 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1734
1735 # A bitfield definition looks like:
1736 # 'def [signed] bitfield <ID> [<first>:<last>]'
1737 # This generates a preprocessor macro in the output file.
1738 def p_def_bitfield_0(self, t):
1739 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
1740 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
1741 if (t[2] == 'signed'):
1742 expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
1743 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1560 t[0] = GenCode(self, header_output=hash_define)
1744 GenCode(self, header_output=hash_define).emit()
1561
1562 # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
1563 def p_def_bitfield_1(self, t):
1564 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
1565 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
1566 if (t[2] == 'signed'):
1567 expr = 'sext<%d>(%s)' % (1, expr)
1568 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1745
1746 # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
1747 def p_def_bitfield_1(self, t):
1748 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
1749 expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
1750 if (t[2] == 'signed'):
1751 expr = 'sext<%d>(%s)' % (1, expr)
1752 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1569 t[0] = GenCode(self, header_output=hash_define)
1753 GenCode(self, header_output=hash_define).emit()
1570
1571 # alternate form for structure member: 'def bitfield <ID> <ID>'
1572 def p_def_bitfield_struct(self, t):
1573 'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI'
1574 if (t[2] != ''):
1575 error(t, 'error: structure bitfields are always unsigned.')
1576 expr = 'machInst.%s' % t[5]
1577 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1754
1755 # alternate form for structure member: 'def bitfield <ID> <ID>'
1756 def p_def_bitfield_struct(self, t):
1757 'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI'
1758 if (t[2] != ''):
1759 error(t, 'error: structure bitfields are always unsigned.')
1760 expr = 'machInst.%s' % t[5]
1761 hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1578 t[0] = GenCode(self, header_output=hash_define)
1762 GenCode(self, header_output=hash_define).emit()
1579
1580 def p_id_with_dot_0(self, t):
1581 'id_with_dot : ID'
1582 t[0] = t[1]
1583
1584 def p_id_with_dot_1(self, t):
1585 'id_with_dot : ID DOT id_with_dot'
1586 t[0] = t[1] + t[2] + t[3]
1587
1588 def p_opt_signed_0(self, t):
1589 'opt_signed : SIGNED'
1590 t[0] = t[1]
1591
1592 def p_opt_signed_1(self, t):
1593 'opt_signed : empty'
1594 t[0] = ''
1595
1596 def p_def_template(self, t):
1597 'def_template : DEF TEMPLATE ID CODELIT SEMI'
1763
1764 def p_id_with_dot_0(self, t):
1765 'id_with_dot : ID'
1766 t[0] = t[1]
1767
1768 def p_id_with_dot_1(self, t):
1769 'id_with_dot : ID DOT id_with_dot'
1770 t[0] = t[1] + t[2] + t[3]
1771
1772 def p_opt_signed_0(self, t):
1773 'opt_signed : SIGNED'
1774 t[0] = t[1]
1775
1776 def p_opt_signed_1(self, t):
1777 'opt_signed : empty'
1778 t[0] = ''
1779
1780 def p_def_template(self, t):
1781 'def_template : DEF TEMPLATE ID CODELIT SEMI'
1782 if t[3] in self.templateMap:
1783 print "warning: template %s already defined" % t[3]
1598 self.templateMap[t[3]] = Template(self, t[4])
1784 self.templateMap[t[3]] = Template(self, t[4])
1599 t[0] = GenCode(self)
1600
1601 # An instruction format definition looks like
1602 # "def format <fmt>(<params>) {{...}};"
1603 def p_def_format(self, t):
1604 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
1605 (id, params, code) = (t[3], t[5], t[7])
1606 self.defFormat(id, params, code, t.lexer.lineno)
1785
1786 # An instruction format definition looks like
1787 # "def format <fmt>(<params>) {{...}};"
1788 def p_def_format(self, t):
1789 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
1790 (id, params, code) = (t[3], t[5], t[7])
1791 self.defFormat(id, params, code, t.lexer.lineno)
1607 t[0] = GenCode(self)
1608
1609 # The formal parameter list for an instruction format is a
1610 # possibly empty list of comma-separated parameters. Positional
1611 # (standard, non-keyword) parameters must come first, followed by
1612 # keyword parameters, followed by a '*foo' parameter that gets
1613 # excess positional arguments (as in Python). Each of these three
1614 # parameter categories is optional.
1615 #
1616 # Note that we do not support the '**foo' parameter for collecting
1617 # otherwise undefined keyword args. Otherwise the parameter list
1618 # is (I believe) identical to what is supported in Python.
1619 #
1620 # The param list generates a tuple, where the first element is a
1621 # list of the positional params and the second element is a dict
1622 # containing the keyword params.
1623 def p_param_list_0(self, t):
1624 'param_list : positional_param_list COMMA nonpositional_param_list'
1625 t[0] = t[1] + t[3]
1626
1627 def p_param_list_1(self, t):
1628 '''param_list : positional_param_list
1629 | nonpositional_param_list'''
1630 t[0] = t[1]
1631
1632 def p_positional_param_list_0(self, t):
1633 'positional_param_list : empty'
1634 t[0] = []
1635
1636 def p_positional_param_list_1(self, t):
1637 'positional_param_list : ID'
1638 t[0] = [t[1]]
1639
1640 def p_positional_param_list_2(self, t):
1641 'positional_param_list : positional_param_list COMMA ID'
1642 t[0] = t[1] + [t[3]]
1643
1644 def p_nonpositional_param_list_0(self, t):
1645 'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
1646 t[0] = t[1] + t[3]
1647
1648 def p_nonpositional_param_list_1(self, t):
1649 '''nonpositional_param_list : keyword_param_list
1650 | excess_args_param'''
1651 t[0] = t[1]
1652
1653 def p_keyword_param_list_0(self, t):
1654 'keyword_param_list : keyword_param'
1655 t[0] = [t[1]]
1656
1657 def p_keyword_param_list_1(self, t):
1658 'keyword_param_list : keyword_param_list COMMA keyword_param'
1659 t[0] = t[1] + [t[3]]
1660
1661 def p_keyword_param(self, t):
1662 'keyword_param : ID EQUALS expr'
1663 t[0] = t[1] + ' = ' + t[3].__repr__()
1664
1665 def p_excess_args_param(self, t):
1666 'excess_args_param : ASTERISK ID'
1667 # Just concatenate them: '*ID'. Wrap in list to be consistent
1668 # with positional_param_list and keyword_param_list.
1669 t[0] = [t[1] + t[2]]
1670
1671 # End of format definition-related rules.
1672 ##############
1673
1674 #
1675 # A decode block looks like:
1676 # decode <field1> [, <field2>]* [default <inst>] { ... }
1677 #
1792
1793 # The formal parameter list for an instruction format is a
1794 # possibly empty list of comma-separated parameters. Positional
1795 # (standard, non-keyword) parameters must come first, followed by
1796 # keyword parameters, followed by a '*foo' parameter that gets
1797 # excess positional arguments (as in Python). Each of these three
1798 # parameter categories is optional.
1799 #
1800 # Note that we do not support the '**foo' parameter for collecting
1801 # otherwise undefined keyword args. Otherwise the parameter list
1802 # is (I believe) identical to what is supported in Python.
1803 #
1804 # The param list generates a tuple, where the first element is a
1805 # list of the positional params and the second element is a dict
1806 # containing the keyword params.
1807 def p_param_list_0(self, t):
1808 'param_list : positional_param_list COMMA nonpositional_param_list'
1809 t[0] = t[1] + t[3]
1810
1811 def p_param_list_1(self, t):
1812 '''param_list : positional_param_list
1813 | nonpositional_param_list'''
1814 t[0] = t[1]
1815
1816 def p_positional_param_list_0(self, t):
1817 'positional_param_list : empty'
1818 t[0] = []
1819
1820 def p_positional_param_list_1(self, t):
1821 'positional_param_list : ID'
1822 t[0] = [t[1]]
1823
1824 def p_positional_param_list_2(self, t):
1825 'positional_param_list : positional_param_list COMMA ID'
1826 t[0] = t[1] + [t[3]]
1827
1828 def p_nonpositional_param_list_0(self, t):
1829 'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
1830 t[0] = t[1] + t[3]
1831
1832 def p_nonpositional_param_list_1(self, t):
1833 '''nonpositional_param_list : keyword_param_list
1834 | excess_args_param'''
1835 t[0] = t[1]
1836
1837 def p_keyword_param_list_0(self, t):
1838 'keyword_param_list : keyword_param'
1839 t[0] = [t[1]]
1840
1841 def p_keyword_param_list_1(self, t):
1842 'keyword_param_list : keyword_param_list COMMA keyword_param'
1843 t[0] = t[1] + [t[3]]
1844
1845 def p_keyword_param(self, t):
1846 'keyword_param : ID EQUALS expr'
1847 t[0] = t[1] + ' = ' + t[3].__repr__()
1848
1849 def p_excess_args_param(self, t):
1850 'excess_args_param : ASTERISK ID'
1851 # Just concatenate them: '*ID'. Wrap in list to be consistent
1852 # with positional_param_list and keyword_param_list.
1853 t[0] = [t[1] + t[2]]
1854
1855 # End of format definition-related rules.
1856 ##############
1857
1858 #
1859 # A decode block looks like:
1860 # decode <field1> [, <field2>]* [default <inst>] { ... }
1861 #
1862 def p_top_level_decode_block(self, t):
1863 'top_level_decode_block : decode_block'
1864 codeObj = t[1]
1865 codeObj.wrap_decode_block('''
1866StaticInstPtr
1867%(isa_name)s::Decoder::decodeInst(%(isa_name)s::ExtMachInst machInst)
1868{
1869 using namespace %(namespace)s;
1870''' % self, '}')
1871
1872 codeObj.emit()
1873
1678 def p_decode_block(self, t):
1679 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
1680 default_defaults = self.defaultStack.pop()
1681 codeObj = t[5]
1682 # use the "default defaults" only if there was no explicit
1683 # default statement in decode_stmt_list
1684 if not codeObj.has_decode_default:
1685 codeObj += default_defaults
1686 codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
1687 t[0] = codeObj
1688
1689 # The opt_default statement serves only to push the "default
1690 # defaults" onto defaultStack. This value will be used by nested
1691 # decode blocks, and used and popped off when the current
1692 # decode_block is processed (in p_decode_block() above).
1693 def p_opt_default_0(self, t):
1694 'opt_default : empty'
1695 # no default specified: reuse the one currently at the top of
1696 # the stack
1697 self.defaultStack.push(self.defaultStack.top())
1698 # no meaningful value returned
1699 t[0] = None
1700
1701 def p_opt_default_1(self, t):
1702 'opt_default : DEFAULT inst'
1703 # push the new default
1704 codeObj = t[2]
1705 codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
1706 self.defaultStack.push(codeObj)
1707 # no meaningful value returned
1708 t[0] = None
1709
1710 def p_decode_stmt_list_0(self, t):
1711 'decode_stmt_list : decode_stmt'
1712 t[0] = t[1]
1713
1714 def p_decode_stmt_list_1(self, t):
1715 'decode_stmt_list : decode_stmt decode_stmt_list'
1716 if (t[1].has_decode_default and t[2].has_decode_default):
1717 error(t, 'Two default cases in decode block')
1718 t[0] = t[1] + t[2]
1719
1720 #
1721 # Decode statement rules
1722 #
1723 # There are four types of statements allowed in a decode block:
1724 # 1. Format blocks 'format <foo> { ... }'
1725 # 2. Nested decode blocks
1726 # 3. Instruction definitions.
1727 # 4. C preprocessor directives.
1728
1729
1730 # Preprocessor directives found in a decode statement list are
1731 # passed through to the output, replicated to all of the output
1732 # code streams. This works well for ifdefs, so we can ifdef out
1733 # both the declarations and the decode cases generated by an
1734 # instruction definition. Handling them as part of the grammar
1735 # makes it easy to keep them in the right place with respect to
1736 # the code generated by the other statements.
1737 def p_decode_stmt_cpp(self, t):
1738 'decode_stmt : CPPDIRECTIVE'
1739 t[0] = GenCode(self, t[1], t[1], t[1], t[1])
1740
1741 # A format block 'format <foo> { ... }' sets the default
1742 # instruction format used to handle instruction definitions inside
1743 # the block. This format can be overridden by using an explicit
1744 # format on the instruction definition or with a nested format
1745 # block.
1746 def p_decode_stmt_format(self, t):
1747 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
1748 # The format will be pushed on the stack when 'push_format_id'
1749 # is processed (see below). Once the parser has recognized
1750 # the full production (though the right brace), we're done
1751 # with the format, so now we can pop it.
1752 self.formatStack.pop()
1753 t[0] = t[4]
1754
1755 # This rule exists so we can set the current format (& push the
1756 # stack) when we recognize the format name part of the format
1757 # block.
1758 def p_push_format_id(self, t):
1759 'push_format_id : ID'
1760 try:
1761 self.formatStack.push(self.formatMap[t[1]])
1762 t[0] = ('', '// format %s' % t[1])
1763 except KeyError:
1764 error(t, 'instruction format "%s" not defined.' % t[1])
1765
1766 # Nested decode block: if the value of the current field matches
1767 # the specified constant, do a nested decode on some other field.
1768 def p_decode_stmt_decode(self, t):
1769 'decode_stmt : case_label COLON decode_block'
1770 label = t[1]
1771 codeObj = t[3]
1772 # just wrap the decoding code from the block as a case in the
1773 # outer switch statement.
1774 codeObj.wrap_decode_block('\n%s:\n' % label)
1775 codeObj.has_decode_default = (label == 'default')
1776 t[0] = codeObj
1777
1778 # Instruction definition (finally!).
1779 def p_decode_stmt_inst(self, t):
1780 'decode_stmt : case_label COLON inst SEMI'
1781 label = t[1]
1782 codeObj = t[3]
1783 codeObj.wrap_decode_block('\n%s:' % label, 'break;\n')
1784 codeObj.has_decode_default = (label == 'default')
1785 t[0] = codeObj
1786
1787 # The case label is either a list of one or more constants or
1788 # 'default'
1789 def p_case_label_0(self, t):
1790 'case_label : intlit_list'
1791 def make_case(intlit):
1792 if intlit >= 2**32:
1793 return 'case ULL(%#x)' % intlit
1794 else:
1795 return 'case %#x' % intlit
1796 t[0] = ': '.join(map(make_case, t[1]))
1797
1798 def p_case_label_1(self, t):
1799 'case_label : DEFAULT'
1800 t[0] = 'default'
1801
1802 #
1803 # The constant list for a decode case label must be non-empty, but
1804 # may have one or more comma-separated integer literals in it.
1805 #
1806 def p_intlit_list_0(self, t):
1807 'intlit_list : INTLIT'
1808 t[0] = [t[1]]
1809
1810 def p_intlit_list_1(self, t):
1811 'intlit_list : intlit_list COMMA INTLIT'
1812 t[0] = t[1]
1813 t[0].append(t[3])
1814
1815 # Define an instruction using the current instruction format
1816 # (specified by an enclosing format block).
1817 # "<mnemonic>(<args>)"
1818 def p_inst_0(self, t):
1819 'inst : ID LPAREN arg_list RPAREN'
1820 # Pass the ID and arg list to the current format class to deal with.
1821 currentFormat = self.formatStack.top()
1822 codeObj = currentFormat.defineInst(self, t[1], t[3], t.lexer.lineno)
1823 args = ','.join(map(str, t[3]))
1824 args = re.sub('(?m)^', '//', args)
1825 args = re.sub('^//', '', args)
1826 comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
1827 codeObj.prepend_all(comment)
1828 t[0] = codeObj
1829
1830 # Define an instruction using an explicitly specified format:
1831 # "<fmt>::<mnemonic>(<args>)"
1832 def p_inst_1(self, t):
1833 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
1834 try:
1835 format = self.formatMap[t[1]]
1836 except KeyError:
1837 error(t, 'instruction format "%s" not defined.' % t[1])
1838
1839 codeObj = format.defineInst(self, t[3], t[5], t.lexer.lineno)
1840 comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
1841 codeObj.prepend_all(comment)
1842 t[0] = codeObj
1843
1844 # The arg list generates a tuple, where the first element is a
1845 # list of the positional args and the second element is a dict
1846 # containing the keyword args.
1847 def p_arg_list_0(self, t):
1848 'arg_list : positional_arg_list COMMA keyword_arg_list'
1849 t[0] = ( t[1], t[3] )
1850
1851 def p_arg_list_1(self, t):
1852 'arg_list : positional_arg_list'
1853 t[0] = ( t[1], {} )
1854
1855 def p_arg_list_2(self, t):
1856 'arg_list : keyword_arg_list'
1857 t[0] = ( [], t[1] )
1858
1859 def p_positional_arg_list_0(self, t):
1860 'positional_arg_list : empty'
1861 t[0] = []
1862
1863 def p_positional_arg_list_1(self, t):
1864 'positional_arg_list : expr'
1865 t[0] = [t[1]]
1866
1867 def p_positional_arg_list_2(self, t):
1868 'positional_arg_list : positional_arg_list COMMA expr'
1869 t[0] = t[1] + [t[3]]
1870
1871 def p_keyword_arg_list_0(self, t):
1872 'keyword_arg_list : keyword_arg'
1873 t[0] = t[1]
1874
1875 def p_keyword_arg_list_1(self, t):
1876 'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
1877 t[0] = t[1]
1878 t[0].update(t[3])
1879
1880 def p_keyword_arg(self, t):
1881 'keyword_arg : ID EQUALS expr'
1882 t[0] = { t[1] : t[3] }
1883
1884 #
1885 # Basic expressions. These constitute the argument values of
1886 # "function calls" (i.e. instruction definitions in the decode
1887 # block) and default values for formal parameters of format
1888 # functions.
1889 #
1890 # Right now, these are either strings, integers, or (recursively)
1891 # lists of exprs (using Python square-bracket list syntax). Note
1892 # that bare identifiers are trated as string constants here (since
1893 # there isn't really a variable namespace to refer to).
1894 #
1895 def p_expr_0(self, t):
1896 '''expr : ID
1897 | INTLIT
1898 | STRLIT
1899 | CODELIT'''
1900 t[0] = t[1]
1901
1902 def p_expr_1(self, t):
1903 '''expr : LBRACKET list_expr RBRACKET'''
1904 t[0] = t[2]
1905
1906 def p_list_expr_0(self, t):
1907 'list_expr : expr'
1908 t[0] = [t[1]]
1909
1910 def p_list_expr_1(self, t):
1911 'list_expr : list_expr COMMA expr'
1912 t[0] = t[1] + [t[3]]
1913
1914 def p_list_expr_2(self, t):
1915 'list_expr : empty'
1916 t[0] = []
1917
1918 #
1919 # Empty production... use in other rules for readability.
1920 #
1921 def p_empty(self, t):
1922 'empty :'
1923 pass
1924
1925 # Parse error handler. Note that the argument here is the
1926 # offending *token*, not a grammar symbol (hence the need to use
1927 # t.value)
1928 def p_error(self, t):
1929 if t:
1930 error(t, "syntax error at '%s'" % t.value)
1931 else:
1932 error("unknown syntax error")
1933
1934 # END OF GRAMMAR RULES
1935
1936 def updateExportContext(self):
1937
1938 # create a continuation that allows us to grab the current parser
1939 def wrapInstObjParams(*args):
1940 return InstObjParams(self, *args)
1941 self.exportContext['InstObjParams'] = wrapInstObjParams
1942 self.exportContext.update(self.templateMap)
1943
1944 def defFormat(self, id, params, code, lineno):
1945 '''Define a new format'''
1946
1947 # make sure we haven't already defined this one
1948 if id in self.formatMap:
1949 error(lineno, 'format %s redefined.' % id)
1950
1951 # create new object and store in global map
1952 self.formatMap[id] = Format(id, params, code)
1953
1954 def expandCpuSymbolsToDict(self, template):
1955 '''Expand template with CPU-specific references into a
1956 dictionary with an entry for each CPU model name. The entry
1957 key is the model name and the corresponding value is the
1958 template with the CPU-specific refs substituted for that
1959 model.'''
1960
1961 # Protect '%'s that don't go with CPU-specific terms
1962 t = re.sub(r'%(?!\(CPU_)', '%%', template)
1963 result = {}
1964 for cpu in self.cpuModels:
1965 result[cpu.name] = t % cpu.strings
1966 return result
1967
1968 def expandCpuSymbolsToString(self, template):
1969 '''*If* the template has CPU-specific references, return a
1970 single string containing a copy of the template for each CPU
1971 model with the corresponding values substituted in. If the
1972 template has no CPU-specific references, it is returned
1973 unmodified.'''
1974
1975 if template.find('%(CPU_') != -1:
1976 return reduce(lambda x,y: x+y,
1977 self.expandCpuSymbolsToDict(template).values())
1978 else:
1979 return template
1980
1981 def protectCpuSymbols(self, template):
1982 '''Protect CPU-specific references by doubling the
1983 corresponding '%'s (in preparation for substituting a different
1984 set of references into the template).'''
1985
1986 return re.sub(r'%(?=\(CPU_)', '%%', template)
1987
1988 def protectNonSubstPercents(self, s):
1989 '''Protect any non-dict-substitution '%'s in a format string
1990 (i.e. those not followed by '(')'''
1991
1992 return re.sub(r'%(?!\()', '%%', s)
1993
1994 def buildOperandNameMap(self, user_dict, lineno):
1995 operand_name = {}
1996 for op_name, val in user_dict.iteritems():
1997
1998 # Check if extra attributes have been specified.
1999 if len(val) > 9:
2000 error(lineno, 'error: too many attributes for operand "%s"' %
2001 base_cls_name)
2002
2003 # Pad val with None in case optional args are missing
2004 val += (None, None, None, None)
2005 base_cls_name, dflt_ext, reg_spec, flags, sort_pri, \
2006 read_code, write_code, read_predicate, write_predicate = val[:9]
2007
2008 # Canonical flag structure is a triple of lists, where each list
2009 # indicates the set of flags implied by this operand always, when
2010 # used as a source, and when used as a dest, respectively.
2011 # For simplicity this can be initialized using a variety of fairly
2012 # obvious shortcuts; we convert these to canonical form here.
2013 if not flags:
2014 # no flags specified (e.g., 'None')
2015 flags = ( [], [], [] )
2016 elif isinstance(flags, str):
2017 # a single flag: assumed to be unconditional
2018 flags = ( [ flags ], [], [] )
2019 elif isinstance(flags, list):
2020 # a list of flags: also assumed to be unconditional
2021 flags = ( flags, [], [] )
2022 elif isinstance(flags, tuple):
2023 # it's a tuple: it should be a triple,
2024 # but each item could be a single string or a list
2025 (uncond_flags, src_flags, dest_flags) = flags
2026 flags = (makeList(uncond_flags),
2027 makeList(src_flags), makeList(dest_flags))
2028
2029 # Accumulate attributes of new operand class in tmp_dict
2030 tmp_dict = {}
2031 attrList = ['reg_spec', 'flags', 'sort_pri',
2032 'read_code', 'write_code',
2033 'read_predicate', 'write_predicate']
2034 if dflt_ext:
2035 dflt_ctype = self.operandTypeMap[dflt_ext]
2036 attrList.extend(['dflt_ctype', 'dflt_ext'])
2037 for attr in attrList:
2038 tmp_dict[attr] = eval(attr)
2039 tmp_dict['base_name'] = op_name
2040
2041 # New class name will be e.g. "IntReg_Ra"
2042 cls_name = base_cls_name + '_' + op_name
2043 # Evaluate string arg to get class object. Note that the
2044 # actual base class for "IntReg" is "IntRegOperand", i.e. we
2045 # have to append "Operand".
2046 try:
2047 base_cls = eval(base_cls_name + 'Operand')
2048 except NameError:
2049 error(lineno,
2050 'error: unknown operand base class "%s"' % base_cls_name)
2051 # The following statement creates a new class called
2052 # <cls_name> as a subclass of <base_cls> with the attributes
2053 # in tmp_dict, just as if we evaluated a class declaration.
2054 operand_name[op_name] = type(cls_name, (base_cls,), tmp_dict)
2055
2056 self.operandNameMap = operand_name
2057
2058 # Define operand variables.
2059 operands = user_dict.keys()
2060 extensions = self.operandTypeMap.keys()
2061
2062 operandsREString = r'''
2063 (?<!\w) # neg. lookbehind assertion: prevent partial matches
2064 ((%s)(?:_(%s))?) # match: operand with optional '_' then suffix
2065 (?!\w) # neg. lookahead assertion: prevent partial matches
2066 ''' % (string.join(operands, '|'), string.join(extensions, '|'))
2067
2068 self.operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
2069
2070 # Same as operandsREString, but extension is mandatory, and only two
2071 # groups are returned (base and ext, not full name as above).
2072 # Used for subtituting '_' for '.' to make C++ identifiers.
2073 operandsWithExtREString = r'(?<!\w)(%s)_(%s)(?!\w)' \
2074 % (string.join(operands, '|'), string.join(extensions, '|'))
2075
2076 self.operandsWithExtRE = \
2077 re.compile(operandsWithExtREString, re.MULTILINE)
2078
2079 def substMungedOpNames(self, code):
2080 '''Munge operand names in code string to make legal C++
2081 variable names. This means getting rid of the type extension
2082 if any. Will match base_name attribute of Operand object.)'''
2083 return self.operandsWithExtRE.sub(r'\1', code)
2084
2085 def mungeSnippet(self, s):
2086 '''Fix up code snippets for final substitution in templates.'''
2087 if isinstance(s, str):
2088 return self.substMungedOpNames(substBitOps(s))
2089 else:
2090 return s
2091
1874 def p_decode_block(self, t):
1875 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
1876 default_defaults = self.defaultStack.pop()
1877 codeObj = t[5]
1878 # use the "default defaults" only if there was no explicit
1879 # default statement in decode_stmt_list
1880 if not codeObj.has_decode_default:
1881 codeObj += default_defaults
1882 codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
1883 t[0] = codeObj
1884
1885 # The opt_default statement serves only to push the "default
1886 # defaults" onto defaultStack. This value will be used by nested
1887 # decode blocks, and used and popped off when the current
1888 # decode_block is processed (in p_decode_block() above).
1889 def p_opt_default_0(self, t):
1890 'opt_default : empty'
1891 # no default specified: reuse the one currently at the top of
1892 # the stack
1893 self.defaultStack.push(self.defaultStack.top())
1894 # no meaningful value returned
1895 t[0] = None
1896
1897 def p_opt_default_1(self, t):
1898 'opt_default : DEFAULT inst'
1899 # push the new default
1900 codeObj = t[2]
1901 codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
1902 self.defaultStack.push(codeObj)
1903 # no meaningful value returned
1904 t[0] = None
1905
1906 def p_decode_stmt_list_0(self, t):
1907 'decode_stmt_list : decode_stmt'
1908 t[0] = t[1]
1909
1910 def p_decode_stmt_list_1(self, t):
1911 'decode_stmt_list : decode_stmt decode_stmt_list'
1912 if (t[1].has_decode_default and t[2].has_decode_default):
1913 error(t, 'Two default cases in decode block')
1914 t[0] = t[1] + t[2]
1915
1916 #
1917 # Decode statement rules
1918 #
1919 # There are four types of statements allowed in a decode block:
1920 # 1. Format blocks 'format <foo> { ... }'
1921 # 2. Nested decode blocks
1922 # 3. Instruction definitions.
1923 # 4. C preprocessor directives.
1924
1925
1926 # Preprocessor directives found in a decode statement list are
1927 # passed through to the output, replicated to all of the output
1928 # code streams. This works well for ifdefs, so we can ifdef out
1929 # both the declarations and the decode cases generated by an
1930 # instruction definition. Handling them as part of the grammar
1931 # makes it easy to keep them in the right place with respect to
1932 # the code generated by the other statements.
1933 def p_decode_stmt_cpp(self, t):
1934 'decode_stmt : CPPDIRECTIVE'
1935 t[0] = GenCode(self, t[1], t[1], t[1], t[1])
1936
1937 # A format block 'format <foo> { ... }' sets the default
1938 # instruction format used to handle instruction definitions inside
1939 # the block. This format can be overridden by using an explicit
1940 # format on the instruction definition or with a nested format
1941 # block.
1942 def p_decode_stmt_format(self, t):
1943 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
1944 # The format will be pushed on the stack when 'push_format_id'
1945 # is processed (see below). Once the parser has recognized
1946 # the full production (though the right brace), we're done
1947 # with the format, so now we can pop it.
1948 self.formatStack.pop()
1949 t[0] = t[4]
1950
1951 # This rule exists so we can set the current format (& push the
1952 # stack) when we recognize the format name part of the format
1953 # block.
1954 def p_push_format_id(self, t):
1955 'push_format_id : ID'
1956 try:
1957 self.formatStack.push(self.formatMap[t[1]])
1958 t[0] = ('', '// format %s' % t[1])
1959 except KeyError:
1960 error(t, 'instruction format "%s" not defined.' % t[1])
1961
1962 # Nested decode block: if the value of the current field matches
1963 # the specified constant, do a nested decode on some other field.
1964 def p_decode_stmt_decode(self, t):
1965 'decode_stmt : case_label COLON decode_block'
1966 label = t[1]
1967 codeObj = t[3]
1968 # just wrap the decoding code from the block as a case in the
1969 # outer switch statement.
1970 codeObj.wrap_decode_block('\n%s:\n' % label)
1971 codeObj.has_decode_default = (label == 'default')
1972 t[0] = codeObj
1973
1974 # Instruction definition (finally!).
1975 def p_decode_stmt_inst(self, t):
1976 'decode_stmt : case_label COLON inst SEMI'
1977 label = t[1]
1978 codeObj = t[3]
1979 codeObj.wrap_decode_block('\n%s:' % label, 'break;\n')
1980 codeObj.has_decode_default = (label == 'default')
1981 t[0] = codeObj
1982
1983 # The case label is either a list of one or more constants or
1984 # 'default'
1985 def p_case_label_0(self, t):
1986 'case_label : intlit_list'
1987 def make_case(intlit):
1988 if intlit >= 2**32:
1989 return 'case ULL(%#x)' % intlit
1990 else:
1991 return 'case %#x' % intlit
1992 t[0] = ': '.join(map(make_case, t[1]))
1993
1994 def p_case_label_1(self, t):
1995 'case_label : DEFAULT'
1996 t[0] = 'default'
1997
1998 #
1999 # The constant list for a decode case label must be non-empty, but
2000 # may have one or more comma-separated integer literals in it.
2001 #
2002 def p_intlit_list_0(self, t):
2003 'intlit_list : INTLIT'
2004 t[0] = [t[1]]
2005
2006 def p_intlit_list_1(self, t):
2007 'intlit_list : intlit_list COMMA INTLIT'
2008 t[0] = t[1]
2009 t[0].append(t[3])
2010
2011 # Define an instruction using the current instruction format
2012 # (specified by an enclosing format block).
2013 # "<mnemonic>(<args>)"
2014 def p_inst_0(self, t):
2015 'inst : ID LPAREN arg_list RPAREN'
2016 # Pass the ID and arg list to the current format class to deal with.
2017 currentFormat = self.formatStack.top()
2018 codeObj = currentFormat.defineInst(self, t[1], t[3], t.lexer.lineno)
2019 args = ','.join(map(str, t[3]))
2020 args = re.sub('(?m)^', '//', args)
2021 args = re.sub('^//', '', args)
2022 comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
2023 codeObj.prepend_all(comment)
2024 t[0] = codeObj
2025
2026 # Define an instruction using an explicitly specified format:
2027 # "<fmt>::<mnemonic>(<args>)"
2028 def p_inst_1(self, t):
2029 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
2030 try:
2031 format = self.formatMap[t[1]]
2032 except KeyError:
2033 error(t, 'instruction format "%s" not defined.' % t[1])
2034
2035 codeObj = format.defineInst(self, t[3], t[5], t.lexer.lineno)
2036 comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
2037 codeObj.prepend_all(comment)
2038 t[0] = codeObj
2039
2040 # The arg list generates a tuple, where the first element is a
2041 # list of the positional args and the second element is a dict
2042 # containing the keyword args.
2043 def p_arg_list_0(self, t):
2044 'arg_list : positional_arg_list COMMA keyword_arg_list'
2045 t[0] = ( t[1], t[3] )
2046
2047 def p_arg_list_1(self, t):
2048 'arg_list : positional_arg_list'
2049 t[0] = ( t[1], {} )
2050
2051 def p_arg_list_2(self, t):
2052 'arg_list : keyword_arg_list'
2053 t[0] = ( [], t[1] )
2054
2055 def p_positional_arg_list_0(self, t):
2056 'positional_arg_list : empty'
2057 t[0] = []
2058
2059 def p_positional_arg_list_1(self, t):
2060 'positional_arg_list : expr'
2061 t[0] = [t[1]]
2062
2063 def p_positional_arg_list_2(self, t):
2064 'positional_arg_list : positional_arg_list COMMA expr'
2065 t[0] = t[1] + [t[3]]
2066
2067 def p_keyword_arg_list_0(self, t):
2068 'keyword_arg_list : keyword_arg'
2069 t[0] = t[1]
2070
2071 def p_keyword_arg_list_1(self, t):
2072 'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
2073 t[0] = t[1]
2074 t[0].update(t[3])
2075
2076 def p_keyword_arg(self, t):
2077 'keyword_arg : ID EQUALS expr'
2078 t[0] = { t[1] : t[3] }
2079
2080 #
2081 # Basic expressions. These constitute the argument values of
2082 # "function calls" (i.e. instruction definitions in the decode
2083 # block) and default values for formal parameters of format
2084 # functions.
2085 #
2086 # Right now, these are either strings, integers, or (recursively)
2087 # lists of exprs (using Python square-bracket list syntax). Note
2088 # that bare identifiers are trated as string constants here (since
2089 # there isn't really a variable namespace to refer to).
2090 #
2091 def p_expr_0(self, t):
2092 '''expr : ID
2093 | INTLIT
2094 | STRLIT
2095 | CODELIT'''
2096 t[0] = t[1]
2097
2098 def p_expr_1(self, t):
2099 '''expr : LBRACKET list_expr RBRACKET'''
2100 t[0] = t[2]
2101
2102 def p_list_expr_0(self, t):
2103 'list_expr : expr'
2104 t[0] = [t[1]]
2105
2106 def p_list_expr_1(self, t):
2107 'list_expr : list_expr COMMA expr'
2108 t[0] = t[1] + [t[3]]
2109
2110 def p_list_expr_2(self, t):
2111 'list_expr : empty'
2112 t[0] = []
2113
2114 #
2115 # Empty production... use in other rules for readability.
2116 #
2117 def p_empty(self, t):
2118 'empty :'
2119 pass
2120
2121 # Parse error handler. Note that the argument here is the
2122 # offending *token*, not a grammar symbol (hence the need to use
2123 # t.value)
2124 def p_error(self, t):
2125 if t:
2126 error(t, "syntax error at '%s'" % t.value)
2127 else:
2128 error("unknown syntax error")
2129
2130 # END OF GRAMMAR RULES
2131
2132 def updateExportContext(self):
2133
2134 # create a continuation that allows us to grab the current parser
2135 def wrapInstObjParams(*args):
2136 return InstObjParams(self, *args)
2137 self.exportContext['InstObjParams'] = wrapInstObjParams
2138 self.exportContext.update(self.templateMap)
2139
2140 def defFormat(self, id, params, code, lineno):
2141 '''Define a new format'''
2142
2143 # make sure we haven't already defined this one
2144 if id in self.formatMap:
2145 error(lineno, 'format %s redefined.' % id)
2146
2147 # create new object and store in global map
2148 self.formatMap[id] = Format(id, params, code)
2149
2150 def expandCpuSymbolsToDict(self, template):
2151 '''Expand template with CPU-specific references into a
2152 dictionary with an entry for each CPU model name. The entry
2153 key is the model name and the corresponding value is the
2154 template with the CPU-specific refs substituted for that
2155 model.'''
2156
2157 # Protect '%'s that don't go with CPU-specific terms
2158 t = re.sub(r'%(?!\(CPU_)', '%%', template)
2159 result = {}
2160 for cpu in self.cpuModels:
2161 result[cpu.name] = t % cpu.strings
2162 return result
2163
2164 def expandCpuSymbolsToString(self, template):
2165 '''*If* the template has CPU-specific references, return a
2166 single string containing a copy of the template for each CPU
2167 model with the corresponding values substituted in. If the
2168 template has no CPU-specific references, it is returned
2169 unmodified.'''
2170
2171 if template.find('%(CPU_') != -1:
2172 return reduce(lambda x,y: x+y,
2173 self.expandCpuSymbolsToDict(template).values())
2174 else:
2175 return template
2176
2177 def protectCpuSymbols(self, template):
2178 '''Protect CPU-specific references by doubling the
2179 corresponding '%'s (in preparation for substituting a different
2180 set of references into the template).'''
2181
2182 return re.sub(r'%(?=\(CPU_)', '%%', template)
2183
2184 def protectNonSubstPercents(self, s):
2185 '''Protect any non-dict-substitution '%'s in a format string
2186 (i.e. those not followed by '(')'''
2187
2188 return re.sub(r'%(?!\()', '%%', s)
2189
2190 def buildOperandNameMap(self, user_dict, lineno):
2191 operand_name = {}
2192 for op_name, val in user_dict.iteritems():
2193
2194 # Check if extra attributes have been specified.
2195 if len(val) > 9:
2196 error(lineno, 'error: too many attributes for operand "%s"' %
2197 base_cls_name)
2198
2199 # Pad val with None in case optional args are missing
2200 val += (None, None, None, None)
2201 base_cls_name, dflt_ext, reg_spec, flags, sort_pri, \
2202 read_code, write_code, read_predicate, write_predicate = val[:9]
2203
2204 # Canonical flag structure is a triple of lists, where each list
2205 # indicates the set of flags implied by this operand always, when
2206 # used as a source, and when used as a dest, respectively.
2207 # For simplicity this can be initialized using a variety of fairly
2208 # obvious shortcuts; we convert these to canonical form here.
2209 if not flags:
2210 # no flags specified (e.g., 'None')
2211 flags = ( [], [], [] )
2212 elif isinstance(flags, str):
2213 # a single flag: assumed to be unconditional
2214 flags = ( [ flags ], [], [] )
2215 elif isinstance(flags, list):
2216 # a list of flags: also assumed to be unconditional
2217 flags = ( flags, [], [] )
2218 elif isinstance(flags, tuple):
2219 # it's a tuple: it should be a triple,
2220 # but each item could be a single string or a list
2221 (uncond_flags, src_flags, dest_flags) = flags
2222 flags = (makeList(uncond_flags),
2223 makeList(src_flags), makeList(dest_flags))
2224
2225 # Accumulate attributes of new operand class in tmp_dict
2226 tmp_dict = {}
2227 attrList = ['reg_spec', 'flags', 'sort_pri',
2228 'read_code', 'write_code',
2229 'read_predicate', 'write_predicate']
2230 if dflt_ext:
2231 dflt_ctype = self.operandTypeMap[dflt_ext]
2232 attrList.extend(['dflt_ctype', 'dflt_ext'])
2233 for attr in attrList:
2234 tmp_dict[attr] = eval(attr)
2235 tmp_dict['base_name'] = op_name
2236
2237 # New class name will be e.g. "IntReg_Ra"
2238 cls_name = base_cls_name + '_' + op_name
2239 # Evaluate string arg to get class object. Note that the
2240 # actual base class for "IntReg" is "IntRegOperand", i.e. we
2241 # have to append "Operand".
2242 try:
2243 base_cls = eval(base_cls_name + 'Operand')
2244 except NameError:
2245 error(lineno,
2246 'error: unknown operand base class "%s"' % base_cls_name)
2247 # The following statement creates a new class called
2248 # <cls_name> as a subclass of <base_cls> with the attributes
2249 # in tmp_dict, just as if we evaluated a class declaration.
2250 operand_name[op_name] = type(cls_name, (base_cls,), tmp_dict)
2251
2252 self.operandNameMap = operand_name
2253
2254 # Define operand variables.
2255 operands = user_dict.keys()
2256 extensions = self.operandTypeMap.keys()
2257
2258 operandsREString = r'''
2259 (?<!\w) # neg. lookbehind assertion: prevent partial matches
2260 ((%s)(?:_(%s))?) # match: operand with optional '_' then suffix
2261 (?!\w) # neg. lookahead assertion: prevent partial matches
2262 ''' % (string.join(operands, '|'), string.join(extensions, '|'))
2263
2264 self.operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
2265
2266 # Same as operandsREString, but extension is mandatory, and only two
2267 # groups are returned (base and ext, not full name as above).
2268 # Used for subtituting '_' for '.' to make C++ identifiers.
2269 operandsWithExtREString = r'(?<!\w)(%s)_(%s)(?!\w)' \
2270 % (string.join(operands, '|'), string.join(extensions, '|'))
2271
2272 self.operandsWithExtRE = \
2273 re.compile(operandsWithExtREString, re.MULTILINE)
2274
2275 def substMungedOpNames(self, code):
2276 '''Munge operand names in code string to make legal C++
2277 variable names. This means getting rid of the type extension
2278 if any. Will match base_name attribute of Operand object.)'''
2279 return self.operandsWithExtRE.sub(r'\1', code)
2280
2281 def mungeSnippet(self, s):
2282 '''Fix up code snippets for final substitution in templates.'''
2283 if isinstance(s, str):
2284 return self.substMungedOpNames(substBitOps(s))
2285 else:
2286 return s
2287
2288 def open(self, name, bare=False):
2289 '''Open the output file for writing and include scary warning.'''
2290 filename = os.path.join(self.output_dir, name)
2291 f = open(filename, 'w')
2292 if f:
2293 if not bare:
2294 f.write(ISAParser.scaremonger_template % self)
2295 return f
2296
2092 def update(self, file, contents):
2297 def update(self, file, contents):
2093 '''Update the output file. If the contents are unchanged,
2094 the scons hash feature will avoid recompilation.'''
2095 file = os.path.join(self.output_dir, file)
2096 f = open(file, 'w')
2298 '''Update the output file only. Scons should handle the case when
2299 the new contents are unchanged using its built-in hash feature.'''
2300 f = self.open(file)
2097 f.write(contents)
2098 f.close()
2099
2100 # This regular expression matches '##include' directives
2101 includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[^"]*)".*$',
2102 re.MULTILINE)
2103
2104 def replace_include(self, matchobj, dirname):
2105 """Function to replace a matched '##include' directive with the
2106 contents of the specified file (with nested ##includes
2107 replaced recursively). 'matchobj' is an re match object
2108 (from a match of includeRE) and 'dirname' is the directory
2109 relative to which the file path should be resolved."""
2110
2111 fname = matchobj.group('filename')
2112 full_fname = os.path.normpath(os.path.join(dirname, fname))
2113 contents = '##newfile "%s"\n%s\n##endfile\n' % \
2114 (full_fname, self.read_and_flatten(full_fname))
2115 return contents
2116
2117 def read_and_flatten(self, filename):
2118 """Read a file and recursively flatten nested '##include' files."""
2119
2120 current_dir = os.path.dirname(filename)
2121 try:
2122 contents = open(filename).read()
2123 except IOError:
2124 error('Error including file "%s"' % filename)
2125
2126 self.fileNameStack.push((filename, 0))
2127
2128 # Find any includes and include them
2129 def replace(matchobj):
2130 return self.replace_include(matchobj, current_dir)
2131 contents = self.includeRE.sub(replace, contents)
2132
2133 self.fileNameStack.pop()
2134 return contents
2135
2301 f.write(contents)
2302 f.close()
2303
2304 # This regular expression matches '##include' directives
2305 includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[^"]*)".*$',
2306 re.MULTILINE)
2307
2308 def replace_include(self, matchobj, dirname):
2309 """Function to replace a matched '##include' directive with the
2310 contents of the specified file (with nested ##includes
2311 replaced recursively). 'matchobj' is an re match object
2312 (from a match of includeRE) and 'dirname' is the directory
2313 relative to which the file path should be resolved."""
2314
2315 fname = matchobj.group('filename')
2316 full_fname = os.path.normpath(os.path.join(dirname, fname))
2317 contents = '##newfile "%s"\n%s\n##endfile\n' % \
2318 (full_fname, self.read_and_flatten(full_fname))
2319 return contents
2320
2321 def read_and_flatten(self, filename):
2322 """Read a file and recursively flatten nested '##include' files."""
2323
2324 current_dir = os.path.dirname(filename)
2325 try:
2326 contents = open(filename).read()
2327 except IOError:
2328 error('Error including file "%s"' % filename)
2329
2330 self.fileNameStack.push((filename, 0))
2331
2332 # Find any includes and include them
2333 def replace(matchobj):
2334 return self.replace_include(matchobj, current_dir)
2335 contents = self.includeRE.sub(replace, contents)
2336
2337 self.fileNameStack.pop()
2338 return contents
2339
2340 AlreadyGenerated = {}
2341
2136 def _parse_isa_desc(self, isa_desc_file):
2137 '''Read in and parse the ISA description.'''
2138
2342 def _parse_isa_desc(self, isa_desc_file):
2343 '''Read in and parse the ISA description.'''
2344
2345 # The build system can end up running the ISA parser twice: once to
2346 # finalize the build dependencies, and then to actually generate
2347 # the files it expects (in src/arch/$ARCH/generated). This code
2348 # doesn't do anything different either time, however; the SCons
2349 # invocations just expect different things. Since this code runs
2350 # within SCons, we can just remember that we've already run and
2351 # not perform a completely unnecessary run, since the ISA parser's
2352 # effect is idempotent.
2353 if isa_desc_file in ISAParser.AlreadyGenerated:
2354 return
2355
2356 # grab the last three path components of isa_desc_file
2357 self.filename = '/'.join(isa_desc_file.split('/')[-3:])
2358
2139 # Read file and (recursively) all included files into a string.
2140 # PLY requires that the input be in a single string so we have to
2141 # do this up front.
2142 isa_desc = self.read_and_flatten(isa_desc_file)
2143
2144 # Initialize filename stack with outer file.
2145 self.fileNameStack.push((isa_desc_file, 0))
2146
2359 # Read file and (recursively) all included files into a string.
2360 # PLY requires that the input be in a single string so we have to
2361 # do this up front.
2362 isa_desc = self.read_and_flatten(isa_desc_file)
2363
2364 # Initialize filename stack with outer file.
2365 self.fileNameStack.push((isa_desc_file, 0))
2366
2147 # Parse it.
2148 (isa_name, namespace, global_code, namespace_code) = \
2149 self.parse_string(isa_desc)
2367 # Parse.
2368 self.parse_string(isa_desc)
2150
2369
2151 # grab the last three path components of isa_desc_file to put in
2152 # the output
2153 filename = '/'.join(isa_desc_file.split('/')[-3:])
2370 ISAParser.AlreadyGenerated[isa_desc_file] = None
2154
2371
2155 # generate decoder.hh
2156 includes = '#include "base/bitfield.hh" // for bitfield support'
2157 global_output = global_code.header_output
2158 namespace_output = namespace_code.header_output
2159 decode_function = ''
2160 self.update('decoder.hh', file_template % vars())
2161
2162 # generate decoder.cc
2163 includes = '#include "decoder.hh"'
2164 global_output = global_code.decoder_output
2165 namespace_output = namespace_code.decoder_output
2166 # namespace_output += namespace_code.decode_block
2167 decode_function = namespace_code.decode_block
2168 self.update('decoder.cc', file_template % vars())
2169
2170 # generate per-cpu exec files
2171 for cpu in self.cpuModels:
2172 includes = '#include "decoder.hh"\n'
2173 includes += cpu.includes
2174 global_output = global_code.exec_output[cpu.name]
2175 namespace_output = namespace_code.exec_output[cpu.name]
2176 decode_function = ''
2177 self.update(cpu.filename, file_template % vars())
2178
2179 # The variable names here are hacky, but this will creat local
2180 # variables which will be referenced in vars() which have the
2181 # value of the globals.
2182 MaxInstSrcRegs = self.maxInstSrcRegs
2183 MaxInstDestRegs = self.maxInstDestRegs
2184 MaxMiscDestRegs = self.maxMiscDestRegs
2185 # max_inst_regs.hh
2186 self.update('max_inst_regs.hh',
2187 max_inst_regs_template % vars())
2188
2189 def parse_isa_desc(self, *args, **kwargs):
2190 try:
2191 self._parse_isa_desc(*args, **kwargs)
2192 except ISAParserError, e:
2193 e.exit(self.fileNameStack)
2194
2195# Called as script: get args from command line.
2196# Args are: <path to cpu_models.py> <isa desc file> <output dir> <cpu models>
2197if __name__ == '__main__':
2198 execfile(sys.argv[1]) # read in CpuModel definitions
2199 cpu_models = [CpuModel.dict[cpu] for cpu in sys.argv[4:]]
2200 ISAParser(sys.argv[3], cpu_models).parse_isa_desc(sys.argv[2])
2372 def parse_isa_desc(self, *args, **kwargs):
2373 try:
2374 self._parse_isa_desc(*args, **kwargs)
2375 except ISAParserError, e:
2376 e.exit(self.fileNameStack)
2377
2378# Called as script: get args from command line.
2379# Args are: <path to cpu_models.py> <isa desc file> <output dir> <cpu models>
2380if __name__ == '__main__':
2381 execfile(sys.argv[1]) # read in CpuModel definitions
2382 cpu_models = [CpuModel.dict[cpu] for cpu in sys.argv[4:]]
2383 ISAParser(sys.argv[3], cpu_models).parse_isa_desc(sys.argv[2])